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Model reduction of linear hybrid systems
Ion Victor Gosea, Mihaly Petreczky, John Leth, Rafael Wisniewski and Athanasios C. Antoulas

Abstract—The paper proposes a model reduction algorithm for
linear hybrid systems, i.e., hybrid systems with externally induced
discrete events, with linear continuous subsystems, and linear
reset maps. The model reduction algorithm is based on balanced
truncation. Moreover, the paper also proves an analytical error
bound for the difference between the input-output behaviors of
the original and the reduced order model. This error bound is
formulated in terms of singular values of the Gramians used for
model reduction.

I. INTRODUCTION

In this paper we propose a model reduction method for
linear hybrid systems with external switching. A linear hybrid
system is a hybrid system continuous states of which are
governed by linear differential equations, the reset maps are
linear, and the discrete-events are external inputs. Linear
hybrid systems can be viewed as a generalization of linear
switched systems [1], [2], but in contrast to linear switched
systems we allow state jumps and the change of discrete states
is supposed to follow the transition structure of a Moore au-
tomaton. Linear hybrid systems occur in several applications,
and a well known class of piecewise-affine systems is directly
related to linear hybrid systems, as the former can be viewed
as a feedback interconnection of the latter with a discrete-event
generator. The model reduction method we propose is based on
balanced truncation, performed for each linear subsystem. The
corresponding Gramians have to satisfy certain linear matrix
inequalities (LMIs). In addition to the novel algorithm, we
propose an analytic error bound for the difference between the
input-output behaviors of the original and the reduced-order
models. This error bound is a direct counterpart of the well-
known error bound for balanced truncation of linear systems
[3], and it involves the singular values of the Gramians.

To the best of our knowledge, the contribution of the paper
is new. Indeed, the existing methods for model reduction of
hybrid systems can be grouped into the following categories.

LMI-based methods These methods compute the matrices
of the reduced order model by solving a set of LMIs. The dis-
advantage is that the proposed conditions are only sufficient,
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and the trade-off between the dimension of the reduced model
and the error bound is not clear. Moreover, the computational
complexity of solving those LMIs might be too high. Without
claiming completeness, we mention the following papers [4],
[5], [6], [7]. First of all, the cited papers do not deal with
linear reset maps. Moreover, in contrast to the cited papers,
the current paper proposes a method, whose applicability
depends on the existence of solution for a few simple LMIs
which are necessary to find the observability/controllability
Gramians. Once the existence of these Gramians is assured,
the model reduction method can be applied. Moreover, there
is an analytic error bound and the trade-off between the
approximation error and the dimension of the reduced system
is formalized in terms of the singular values of those Gramians.

Methods based on local Gramians
The algorithms which belong to this class are based on

finding observability/controllability Gramians for each lin-
ear subsystem. They are solutions of LMIs derived by re-
laxing the classical Lyapunov-like equations for observabil-
ity/controllability Gramians. The disadvantage of these meth-
ods is that often there are no error bounds or the reduced
order model need not be well-posed. Examples of such papers
include [8], [9], [10], [11], [12], [13]. Note that to the best
of our knowledge, the only algorithm which always yields
a well-posed linear switched system of the same type as the
original one and for which there exists an analytic error bound
is the one of [13]. Even this algorithm provides an error bound
only for sufficiently slow switching signals (i.e., switching
sequences with a suitable minimal dwell time). The method of
this paper is an extension of [13]. The main difference between
the current paper and [13] is the following:
• In contrast to [13], the error bound of this paper no longer

uses the assumption of minimum dwell time. However,
this comes at price, as the LMIs involved are more
conservative.

• The discrete states are no longer assumed to be inputs,
but they are states of the system and they are assumed
to evolve according to a Moore-automaton. However, the
Moore-automaton is driven by discrete events which are
external inputs. That is, the system class considered in
this paper is more general than that of [13].

More recently, a balancing truncation method for linear
switched systems that are characterized by constrained switch-
ing scenarios was proposed in [14]. The technique is based
on defining generalized Gramians for each discrete mode,
specifically tailored to particular switching scenarios.

Methods based on common Gramians These methods rely
on finding the same observability/controllability Gramian for
each linear subsystem. In most contributions, the Gramians
are derived as solutions of a suitable LMI. Such algorithms
were described in [15], [16] and an analytic error bound was
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derived in [17]. The results of this paper can also be viewed
as a direct extension of [17]. In particular, when applied to a
linear switched system of the type studied in [17], the results
of the present paper boil down to those of [17]. With respect to
[17], the main novelty of the present paper is that it considers
a system class which is much larger than the one of [17].
Nevertheless, some methods that do not rely on solving LMIs
are also available. For example, in [18] a balancing procedure
based on recasting the original linear switched system as
an envelope linear time-invariant system with no switching
was proposed. Additionally, a balancing procedure based on
reformulating the original system as a bilinear system with no
switching was presented in [19].

Moment matching The idea behind these algorithms is
to find a reduced order switched system such that certain
coefficients of the series expansions of the input-output maps
of the original and the reduced order system coincide. The
series expansion can be the Taylor series with respect to
switching times, in which case the so-called Markov parame-
ters are matched. Alternatively, the series expansion can be a
Laurent-series expansion of a multivariate Laplace transform
of the input-output map around a certain frequency. The
former approach was pursued in [20], [21], [22] , the latter
in [23]. While those methods do not allow for analytical error
bounds, under suitable assumption it can be guaranteed that
the reduced model will have the same input-output behavior
for certain switching signals [20], [21], [22]. A somewhat
different approach is that of [24], which considers switched
systems with autonomous switching and it proposed a model
reduction procedure which guarantees that the reduced model
has the same steady-state output response to certain inputs as
the original model.

The results of the present paper are based on balanced
truncation. As a result, in contrast to the cited papers, we are
able to propose an analytic error bound. Moreover, the class
of systems considered in this paper is much larger than that
of the cited papers. In particular, we allow reset maps and
the evolution of the discrete states is governed by a Moore-
automaton.

The paper is structured as follows. In Section II-B we fix
the notation and we present the formal definition of linear
hybrid systems and of some related concepts. In Section
III we present a balanced truncation algorithm for model
reduction and an analytical error bound for this algorithm.
In Section IV we present a numerical example to illustrate the
proposed algorithm. In Appendix A we present the proofs of
the technical results used in the paper.

II. PRELIMINARIES

A. Notation

Let N denote the set of natural numbers including 0, and
R+ = [0,+∞) denote the positive real time-axis. We denote by
PC(A,B) the set of all piecewise-continuous maps A→ B, and
by L2(A,B) the set of all Lebesgue measurable maps A→ B.
The L2-norm and Euclidean 2-norm are denoted by ‖·‖L2 and
‖ · ‖2 respectively.

B. Linear hybrid systems: definition and basic concepts

Definition 1 (LHS ). A linear hybrid system H (abbreviated
as LHS ) is a tuple

H =(Q,Γ,O,δ ,λ ,{nq,Aq,Bq,Cq}q∈Q,

{Mq1,γ,q2}q2∈Q,γ∈Γ,q1=δ (q2,γ),h0),
(1)

where

1) Q is a finite set, called the set of discrete states,
2) Γ is a finite set, called the set of discrete events,
3) O is a finite set, called the set of discrete outputs,
4) δ : Q×Γ→ Q is a function called the discrete state-

transition map,
5) λ : Q→O is a function called the discrete readout map.
6) Σq = (Aq,Bq,Cq), q ∈ Q is the linear system in the

discrete state q and Aq ∈Rnq×nq ,Bq ∈Rnq×m,Cq ∈Rp×nq

are the matrices of this linear system.
7) Mq1,γ,q2 ∈ Rnq1×nq2 are matrices for all q2 ∈ Q,γ ∈

Γ,q1 = δ (q2,γ), which are called reset maps.
8) h0 = (q0,x0) is the initial state, where q0 ∈ Q and x0 ∈

Rnq0 .

The space Rnq , q ∈ Q, 0 < nq ∈ N, is called the continuous
state space associated with the discrete state q, Rm is called
the continuous input space, Rp is called the continuous output
space. The state space HH of H is the set HH =

⋃
q∈Q{q}×

Rnq .

Notation 1. An element x∈HH comprises of a pair x=(q,xq)
with q ∈ Q and xq ∈ Rnq . In many places in the article, we
will suppress the notation and write x = xq, when it is clear
from the contents which discrete mode x is in.

Notice that the linear control systems associated with dif-
ferent discrete states may have different state-spaces, but they
have the same input and output space. The intuition behind the
definition of a linear hybrid system is as follows. We associate
a linear system

Σq

{
ẋ = Aqx+Bqu
y =Cqx

, (2)

with each discrete state q∈Q. As long as we are in the discrete
state q, the state x and the continuous output y develops
according to (2). The discrete state can change only if a
discrete event γ ∈ Γ takes place. If a discrete event γ occurs at
time t, then the new discrete state q+ is determined by applying
the discrete state-transition map δ to q, i.e. q+ = δ (q,γ).
The new continuous-state x+(t) ∈ Rnq+ is computed from the
current continuous state x(t−) = lims↑t x(s) by applying the
reset map Mq+,γ,q to x(t−), i.e. x+(t) = Mq+,γ,qx(t−). After the
transition, the continuous state x and the continuous output y
evolve according to the linear system associated with the new
discrete state q+, started from the initial state x+(t). Finally,
when in a discrete state q ∈Q, the system produces a discrete
output o = λ (q).

Notice that the discrete events are external inputs. All the
continuous subsystems are defined with the same inputs and
outputs, but on possibly different state-spaces. Below we will
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formalize the intuition described above, by defining input-to-
state and input-output maps for LHS . To this end, we need
the following.

Definition 2 (Timed sequences). A timed sequence of discrete
events is an infinite sequence over the set (Γ×R+), i.e. it is
a sequence of the form

w = (γ1, t1)(γ2, t2) · · ·(γk, tk) · · · , (3)

where γi ∈ Γ, k > 0 are discrete events, and ti ∈ R+ are time
instances, and limk→∞ ∑

k
i=1 ti = ∞. We denote the set of timed

sequences of discrete events by Γ∞
timed.

The interpretation of a timed sequence w ∈ Γ∞
timed as above

is the following. If w is of the form (3), then w represents the
scenario, when the event γi took place after the event γi−1 and
ti is the time which has passed between the arrival of γi−1 and
the arrival of γi, i.e. ti is the difference of the arrival times of
γi and γi−1. Hence, ti ≥ 0 but we allow ti = 0, i.e., we allow
γi to arrive instantly after γi−1. If i = 1, then t1 is simply the
time when the first event γ1 arrived.

Notation 2 (Inputs U). Denote by U = L2(R+,Rm)×Γ∞
timed

the set of inputs of a LHS .

If (u,w) ∈U, then u represents the continuous-valued input
to be fed to the system, w represents the timed-event sequence.
Below we define the notion of input-to-state and input-output
maps for LHSs . These functions map elements from U to
states and outputs respectively.

In the rest of this section, H denotes a LHS of the form (1).

Definition 3 (Input-to-state map). The input-to-state map of
H induced by the initial state h0 = (q0,x0) ∈HH of H is the
function ξH,h0 : U→ PC(R+,HH)×PC(R+,Q)such that the
following holds. For any (u,w) ∈ U, where w is of the form
(3), define T0 = 0,Ti = ∑

i
j=1 t j, i∈N. Then ξH,h0(u,w) = (x,q)

such that
1) q(t) = qi, t ∈ [Ti,Ti+1), where q0 = qI and qi+1 =

δ (qi,γi+1) for all i ∈ N
2) The restriction of x to [0,T1) is the unique solu-

tion (in the sense of Caratheodory) of the differential
equation ż(t) = AqI z(t) +BqI u(t), z(0) = xI on [0,T1),
and the restriction of x to [Ti,Ti+1) for i > 0 is the
unique solution (in the sense of Caratheodory) of the
differential equation ż(s) = Aqiz(s) + Bqiu(s), z(Ti) =
Mqi+1,γi+1,qi limt↑Ti x(t).

Definition 4 (Input-output map). The input-output map of the
system H induced by the state h ∈HH of H is the function
υH,h : U→PC(R+,O)×PC(R+,Rp)defined as follows: for all
(u,w) ∈U, υH,h(u,w) = (o,y), such that if (q,x) = ξH,h(u,w),
then

o(t) = λ (q(t)), y(t) =Cq(t)x(t).

The input-output map υH,h induced by the initial state h0 is
called the input-output map of H and it is denoted by υH .

III. BALANCED TRUNCATION

Consider an LHS H of the form (1) with initial condition
h0 = (q0,x0) such that x0 = 0.

Definition 5. A collection {Qq}q∈Q of positive definite matri-
ces is called a collection of generalized observability Grami-
ans of H, if for all q ∈ Q,

AT
q Qq +QqAq +CT

q Cq < 0,

∀γ ∈ Γ, q+ = δ (q,γ) : MT
q+,γ,qQq+Mq+,γ,q−Qq 6 0.

(4)

Definition 6. A collection {Pq}q∈Q of positive definite matri-
ces is called a collection of generalized reachability Gramians
of H, if for all q ∈ Q,

AqPq +PqAT
q +BqBT

q < 0,

∀γ ∈ Γ, q+ = δ (q,γ) : Mq+,γ,qPqMT
q+,γ,q−Pq+ 6 0.

(5)

Remark 1. The LMIs in (4) can be rewritten as follows

∀x ∈ Rnq : 2(Aqx)T Qqx≤−‖Cqx‖2
2,

xT MT
q+,γ,qQq+Mq+,γ,qx≤ xT Qqx.

(6)

The LMIs in (5) can be rewritten as follows

∀x ∈ Rnq ,u ∈ Rm : 2(Aqx+Bqu)T P−1
q x≤ ‖u‖2

2,

xT MT
q+,γ,qP

−1
q+ Mq+,γ,qx≤ xT P−1

q x.
(7)

Definition 7. We say that the LHS H is quadratically stable,
if there exists a collection Pq > 0, q ∈ Q, such that

AT
q Pq +PqAq < 0,

∀γ ∈ Γ, q+ = δ (q,γ) : MT
q+,γ,qPq+Mq+,γ,q−Pq ≤ 0.

(8)

Next, we will briefly sketch the proof for the fact that the
LMIs in (5) are equivalent to those in (7). In what follows we
use the following classical result.

Lemma 1. Assume P and Q are negative definite matrices,
i.e., P,Q < 0. Then it follows that[

P A
B Q

]
≤ 0⇔ P−AQ−1B≤ 0. (9)

Hence, using the above lemma, one can write that

Mq+,γ,qPqMT
q+,γ,q−Pq+ ≤ 0⇔

[
−Pq+ Mq+,γ,q

MT
q+,γ,q −P−1

q

]
≤ 0

⇔
[
−P−1

q MT
q+,γ,q

Mq+,γ,q −Pq+

]
≤ 0⇔−P−1

q +MT
q+,γ,qP−1

q+ Mq+,γ,q ≤ 0.

(10)

This immediately shows that the second inequality in (7) holds
for any x ∈ Rnq .

Lemma 2 (Stability and Gramians). H is quadratically stable
iff there exist generalized observability Gramians iff there exist
generalized controllability Gramians.

Lemma 3. [Observability Gramian and output energy] If
{Qq}q∈Q are observability Gramians, h0 = (q0,x0), (q,x) =
ξH,h0(0,w), (o,y) = υH,h0(0,w) (i.e. x,y are the continuous
state and output trajectories of H if started from the initial
state h0 and fed with the timed sequence w and zero continuous
input u = 0), then∫

∞

0
‖y(s)‖2

2ds≤ xT
0 Qq0x0.
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Lemma 4. [Controllability Gramian and input energy] If
{Pq}q∈Q are reachability Gramians, h0 = (q0,0), (q,x) =
ξH,h0(u,w) (i.e. x,q are the continuous and discrete state
trajectories of H if started from the initial state h0 and fed
with the timed sequence w and continuous input u), then

x(t)P−1
q(t)x(t)≤

∫ t

0
‖u(s)‖2

2.

We can formulate the following balanced model reduction.

Procedure 1. 1) Compute reachabilility and observability
Gramians {Pq > 0}q∈Q and {Qq > 0}q∈Q which satisfy
(5), and, respectively (4).

2) Find square factor matrices Uq so that Pq = UqUT
q .

Additionally, compute the eigenvalue decomposition of
the symmetric matrix UT

q QqUq, as

UT
q QqUq = VqΛ

2
qVT

q ,

where
Λq = diag(σq,1, . . . ,σq,nq),

is a diagonal matrix with the real entries sorted in
decreasing order, i.e., σq,1 ≥ σq,2 ≥ ·· · ≥ σq,nq .

3) Construct the transformation matrices Sq ∈ Rnq×nq as
follows

Sq = Λ
1/2
q VT

q U−1
q . (11)

Define the matrices (with q1 = δ (q2,γ), q2 ∈ Q)

Āq = SqAqS−1
q , B̄q = SqBq, C̄q =CqS−1

q ,

M̄q2,γ,q1 = Sq2Mq2,γ,q1S−1
q1
.

(12)

4) Choose the truncation orders 0 < rq ≤ nq and consider
the partitioning

Āq =

[
Ā11

q Ā12
q

Ā21
q Ā22

q

]
, B̄q =

[
B̄1

q
B̄2

q

]
,C̄q =

[
C̄1

q C̄2
q
]
, rq < nq,

M̄q1,γ,q2 =

[
M̄11

q1,γ,q2
M̄12

q1,γ,q2
,

M̄21
q1,γ,q2

M̄22
q1,γ,q2

]
if rq1 < nq1 ,rq2 < nq2 ,

M̄q1,γ,q2 =
[
M̄11

q1,γ,q2
M̄12

q1,γ,q2

]
if rq1 = nq1 ,rq2 < nq2 ,

M̄q1,γ,q2 =

[
M̄11

q1,γ,q2

M̄21
q1,γ,q2

]
if rq1 < nq1 ,rq2 = nq2 ,

(13)

where Ā11
q ∈ Rrq×rq , M̄11

q1,γ,q2
∈ Rrq1×rq2 , B̄1

q ∈
Rrq×m, and C̄1

q ∈ Rp×rq .
5) Define the reduced model

Ĥ = (Q,Γ,O,δ ,λ ,{rq, Âq, B̂q,Ĉq}q∈Q,

{M̂q1,γ,q2}q2∈Q,γ∈Γ,q1=δ (q2,γ),(q0,0)),

where

Âq = Ā11
q , B̂q = B̄1

q, Ĉq = C̄1
q , if rq ≤ nq,

M̂q1,γ,q2 = M̄11
q1,γ,q2

, if rq1 < nq1 or rq2 < nq2 ,

Âq = Āq, B̂q = B̄q, Ĉq = C̄q, if rq = nq,

M̂q1,γ,q2 = M̄q1,γ,q2 , if rq1 = nq1 and rq2 = nq2 .

(14)

Lemma 5 (Balanced realization). Consider the LHS H̄ =
(Q,Γ,O,δ ,λ , {rq, Āq, B̄q,C̄q}q∈Q,{M̄q1,γ,q2}q2∈Q,γ∈Γ,q1=δ (q2,γ),
(q0,0)). Then {Λq}q∈Q are both generalized reachability and
observability Gramians of H̄.

In the sequel, we will say that an LHS is balanced, if it
has generalized reachability Gramians {Pq}q∈Q, generalized
observability Gramians {Qq}q∈Q, and for all q ∈ Q, the
matrices Qq and Pq are equal and are diagonal. Lemma 5
says that H̄ is balanced. In fact, more is true.

Lemma 6 (Preservation of balancing and stability). The
reduced order model Ĥ is balanced, its generalized ob-
servability and reachability Gramians are {Λ̂q}q∈Q, Λ̂q =
diag(σq,1, . . . ,σq,rq). In particular, Ĥ is quadratically stable.

Theorem 1 (Error bound). For any (u,w) ∈ U, consider the
outputs (o,y)= υH(u,w) and (ô, ŷ)= υĤ(u,w) generated by H
and Ĥ respectively under the input u and timed event sequence
w from the corresponding initial state. Then ô = o, and

‖y− ŷ‖L2 ≤ 2(∑
q∈Q

nq−rq

∑
i=1

σq,rq+i)‖u‖L2 .

First we prove Theorem 1 for the case when nq− rq ≤ 1
for all q ∈ Q. More precisely, for each q ∈ Q, consider the
decomposition

Λq =

[
Λ̂q 0
0 βq

]
, βq ∈ R. (15)

Define β = minq∈Q βq and for each q ∈ Q, define

rq =

{
nq−1 if βq = β ,

nq otherwise .

Consider the reduced order model Ĥ from Procedure 1 for this
choice of rq.

Theorem 2 (One step error bound). For any (u,w) ∈ U,
consider the outputs (o,y) = υH(u,w) and (ô, ŷ) = υĤ(u,w)
generated by H and Ĥ respectively under the input u and
timed event sequence w from the corresponding initial state.
Then ô = o, and

‖y− ŷ‖L2 ≤ 2β‖u‖L2 .

Theorem 1 follows by repeated application of Theorem 2.
The proof of Theorem 2 is done via a sequence of lemmas.
In order to state these lemmas, we introduce the following
notation. Consider the balanced LHS H̄ from Lemma 5. Note
that the LHSs H̄ and H are isomorphic, and hence they
have the same input-output map. Consider now the state
trajectory (q, x̄) = ξH̄,h0

(u,w) of H̄ and the state trajectory
(q̂, x̂) = ξĤ,ĥ0

(u,w), ĥ0 = (q0,0) is the initial state of Ĥ. It
is easy to see that q = q̂.

For any t ∈ R+ such that rq(t) = nq(t) − 1, consider the
partitioning

x̄(t) =
[

x̄1(t)
x̄2(t)

]
,

with x̄1(t) ∈ Rrqi , x̄2(t) ∈ R. Define the functions

xo(t) =


[

x̄1(t)− x̂(t)
x̄2(t)

]
, rq(t) = nq(t)−1

x̄(t)− x̂(t) otherwise
,

xc(t) =


[

x̄1(t)+ x̂(t)
x̄2(t)

]
, rq(t) = nq(t)−1

x̄(t)+ x̂(t) otherwise
.

(16)
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Note that the following holds:

y(t)− ŷ(t) =Cq(t)xo(t).

Define the function

V (xo(t),xc(t)) = xo(t)T
Λq(t)xo(t)+β

2xc(t)T
Λ
−1
q(t)xc(t). (17)

Lemma 7. The temporal derivative of the function V, as
defined in (17), satisfies

∂V (xo(t),xc(t))
∂ t

6 4β
2‖u(t)‖2

2−‖y(t)− ŷ(t)‖2
2, (18)

for all t ∈ [Ti−1,Ti).

Proof of Lemma 7: Note that

ĀqΛq +ΛqĀT
q + B̄qB̄T

q < 0, (19)

ĀT
q Λq +ΛqĀq +C̄T

q C̄q < 0. (20)

Two cases have to be distinguished.
The first one is when rqi = nqi , i.e., in the discrete mode qi

no truncation takes place. In that case, notice that

ẋo(t) = Āqixo(t), ẋc(t) = Āqixc(t)+2B̄2
qi

u(t). (21)

We observe that d
dt xo(t)T Λqixo(t) = 2(Āqixo(t))T Λqixo(t) ≤

−xT
o (t)C̄

T
qi

C̄qixo(t) =−‖y(t)− ŷ(t)‖2
2 due to (20) and Remark

1. By Remark 1 and (19), d
dt xc(t)T Λ−1

qi
xc(t) = 2(Āqixc(t) +

2B̄qiu(t))
T Λ−1

qi
xc(t) ≤ −4‖u(t)‖2

2. Hence, the claim of the
lemma is satisfied.

Assume now that rqi = nqi − 1. Then βqi = β and the
following holds:

ẋo(t) = Āqi xo(t)+
[

0
B̄2

qi
(t)

]
u(t)+

[
0

Ā21
qi
(t)

]
x̂(t), (22)

ẋc(t) = Āqi xc(t)+2B̄qi u(t)−
[

0
B̄2

qi
(t)

]
u(t)−

[
0

Ā21
qi
(t)

]
x̂(t).

(23)

By using (22), (20), (6) and Remark 1, it follows that

d
dt

xo(t)T
Λqixo(t) = 2xT

o (t)Ā
T
qi

Λqixo(t)

+2

([
0

B̄2
qi

u(t)+ Ā21
qi

x̂(t)

]T

Λqixo(t)

)
6 ‖C̄qixo(t)‖2

2 +2αo =−‖y(t)− ŷ(t)‖2
2 +2αo,

(24)

where

αo =

[
0

B̄2
qi

u(t)+ Ā21
qi

x̂(t)

]T [
Λ̂qi 0
0 βqi

][
x̄1(t)− x̂(t)

x̄2(t)

]
= βqi

(
B̄2

qi
u(t)+ Ā21

qi
x̂(t)
)T x̄2(t).

(25)

Similarly, by using (23), (7) from Remark 1 and (19), we show
that

d
dt

xc(t)T
Λ
−1
qi

xc(t) = 2
(
Āqixc(t)+ B̄qi2u(t)

)T
Λ
−1
qi

xc(t)

−2

([
0

B̄2
qi

u(t)+ Ā21
qi

x̂(t)

]T

Λ
−1
qi

xc(t)

)
6 4‖u(t)‖2

2−2αc,

(26)

where

αc =

[
0

B̄2
qi

u(t)+ Ā21
qi

x̂(t)

]T [
Λ̂−1

qi
0

0 β−1
qi

][
x̄1(t)+ x̂(t)

x̄2(t)

]
= β

−1
qi

(
B̄2

qi
u(t)+ Ā21

qi
x̄(t)
)T x̄2(t).

(27)

From (25) and (27) and β = βqi , observe that αo = β 2αc.
Hence, by adding the inequality in (24) with the one in (26)
multiplied by β 2 = β 2

qi
, it follows that

d
dt

xo(t)T
Λqixo(t)+β

2 d
dt

xc(t)T
Λ
−1
qi

xc(t)

6−‖y(t)− ŷ(t)‖2
2 +4β

2
qi
‖u(t)‖2

2,

and by using the definition of V in (17), it automatically proves
the result in (18).

Lemma 8. For all i ∈ N,

V (x(Ti+1), x̂(Ti+1))≤V (x(T−i+1), x̂(T
−

i+1)), (28)

where x(T−i+1) = limt↑Ti+1 x(t), and x̂(T−i+1) = limt↑Ti+1 x̂(t).

Proof of Lemma 8: Note that qi = q(t) for all t ∈ [Ti,Ti+1)
and that δ (qi,γi+1) = qi+1. Moreover, by virtue of {Λq}q∈Q
being generalized observability and reachability Gramians for
H̄, and Remark 1, the following holds

M̄T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qi < Λ
−1
qi
, (29)

M̄T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qi < Λqi . (30)

In order to prove (28), the following cases have to be
distinguished.

Assume that rqi+1 = nqi+1, i.e., no truncation takes place in
mode qi+1. In this case, x(Ti+1) = M̄qi+1,γi+1,qix(T

−
i+1), and

x̂(Ti+1) = M̄11
qi+1,γi+1,qi

x̂(T−i+1) = M̄qi+1,γi+1,qi

[
x̂(T−i+1)

0

]
, (31)

if rqi = nqi −1, and

x̂(Ti+1) = M̄qi+1,γi+1,qi x̂(T
−

i+1), (32)

if rqi = nqi . Notice that if rqi = nqi , then

xc(Ti+1) = x(Ti+1)+ x̂(Ti+1),

xo(Ti+1) = x(Ti+1)− x̂(Ti+1),

xc(T−i+1) = x(T−i+1)+ x̂(T−i+1),

xo(T−i+1) = x(T−i+1)− x̂(T−i+1).

(33)

Similarly, if rqi = nqi −1, then

xc(T−i+1) = x(T−i+1)+

[
x̂(T−i+1)

0

]
,

xo(T−i+1) = x(T−i+1)−
[

x̂(T−i+1)
0

]
.

(34)

From (31)-(34), it follows that

xc(Ti+1) = M̄qi+1,γi+1,qixc(T−i+1),

xo(Ti+1) = M̄qi+1,γi+1,qixo(T−i+1).
(35)
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From (35) it then follows that

V (x(Ti+1), x̂(Ti+1)) = xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1 M̄qi+1,γi+1,qi xo(T−i+1)

+β
2xT

c (T
−

i+1)M̄
T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qi xc(T−i+1). (36)

From (30)-(29) it follows that

xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1 M̄qi+1,γi+1,qi xo(T−i+1)≤ xT
o (T

−
i+1)Λqi xo(T−i+1),

xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qi xc(T−i+1)≤ xT
c (T

−
i+1)Λ

−1
qi

xc(T−i+1).

Hence, from (36), it follows that

V (x(Ti+1), x̂(Ti+1))≤ xT
o (T

−
i+1)Λqixo(T−i+1)

+β
2xT

c (T
−

i+1)Λ
−1
qi

xc(T−i+1) =V (x(T−i+1), x̂(T
−

i+1)),

i.e., (28) holds.
Consider now the case when rqi+1 = nqi+1 − 1, i.e., in

mode qi+1 truncation takes place. In this case, x(Ti+1) =
M̄qi+1,γi+1,qix(T

−
i+1), and

x̂(Ti+1) = M̄11
qi+1,γi+1,qi

x̂(T−i+1)

= M̄qi+1,γi+1,qi

[
x̂(T−i+1)

0

]
−
[

0
M̄21

qi+1,γi+1,qi

]
x̂(T−i+1),

(37)

if rqi = nqi −1, and

x̂(Ti+1) = M̄11
qi+1,γi+1,qi

x̂(T−i+1)

= M̄qi+1,γi+1,qi x̂(T
−

i+1)−
[

0
M̄21

qi+1,γi+1,qi

]
x̂(T−i+1),

(38)

if rq = nq. Notice that

xc(Ti+1) = x(Ti+1)+

[
x̂(Ti+1)

0

]
,

xo(Ti+1) = x(Ti+1)−
[

x̂(Ti+1)
0

]
,

(39)

and if rq = nq, then

xc(T−i+1) = x(T−i+1)+ x̂(T−i+1),

xo(T−i+1) = x(T−i+1)− x̂(T−i+1),
(40)

and for rq = nq−1,

xc(T−i+1) = x(T−i+1)+

[
x̂(T−i+1)

0

]
,

xo(T−i+1) = x(T−i+1)−
[

x̂(T−i+1)
0

]
.

(41)

From (37)-(41) it then follows that

xc(Ti+1) = M̄qi+1,γi+1,qixc(T−i+1)−
[

0
M̄21

qi+1,γi+1,qi

]
x̂(T−i+1),

xo(Ti+1) = M̄qi+1,γi+1,qixo(T−i+1)+

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1).

(42)

From (42) it then follows that

xT
o (Ti+1)Λqi+1xo(Ti+1) =

xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)+

2xT
o (T

−1
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

+

([
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

)T

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1).

(43)

Since Λqi+1 =

[
Λ̂qi+1 0

0 βqi+1

]
, it follows that

([
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

)T

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

= βqi+1‖M̄
21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2.

Moreover,

2xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1) =

γo−2βqi+1‖M̄
21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2,

where

γo =


2βqi+1

(
M̄21

qi+1,γi+1,qi
x1(T−i+1)+ M̄22

qi+1,γi+1,qi
x2(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi −1

2βqi+1

(
M̄21

qi+1,γi+1,qi
x(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi

.

Hence, it follows that

xT
o (Ti+1)Λqi+1xo(Ti+1)

= xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)

+ γo−βqi+1‖M̄
21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2.

(44)

With a similar reasoning,

xT
c (Ti+1)Λ

−1
qi+1

xc(Ti+1)

= xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

−2xT
c (T

−1
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

+(

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1))

T
Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1).

(45)

Since Λ−1
qi+1

=

[
Λ̂−1

qi+1
0

0 β−1
qi+1

]
, we can again write that

([
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

)T

Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

= β
−1
qi+1
‖M̄21

qi+1,γi+1,qi
x̂(T−i+1)‖

2
2,

and

2xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

= γc +2β
−1
qi+1
‖M̄21

qi+1,γi+1,qi
x̂(T−i+1)‖

2
2,

where

γc =


2β−1

qi+1

(
M̄21

qi+1,γi+1,qi
x1(T−i+1)+ M̄22

qi+1,γi+1,qi
x2(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi −1

2β−1
qi+1

(
M̄21

qi+1,γi+1,qi
x(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi

,
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and hence

xT
c (Ti+1)Λ

−1
qi+1

xc(Ti+1)

= xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

− γc−β
−1
qi+1
‖M̄21

qi+1,γi+1,qi
x̂(T−i+1)‖

2
2.

(46)

Note that β = βqi+1 since it was assumed that rqi+1 = nqi+1−1.
Moreover, notice that β 2

qi+1
γc = γo, hence by using (44) and

(46)

V (x(Ti+1), x̂(Ti+1))

= xT
o (Ti+1)Λqi+1xo(Ti+1)+β

2xT
c (Ti+1)Λ

−1
qi+1

xc(Ti+1)

= xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)

+ γo−βqi+1‖M̄
21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2

+β
2
qi+1

xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

−β
2
qi+1

γc−β
2
qi+1

β
−1
qi+1
‖M̄21

qi+1,γi+1,qi
x̂(T−i+1)‖

2
2,

and therefore

V (x(Ti+1), x̂(Ti+1))

= xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)

+β
2xT

c (T
−

i+1)M̄
T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

−2β‖M̄21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2.

Using that 2β 2‖M̄21
qi+1,γi+1,qi

x̂(T−i+1)‖2
2 ≥ 0, it then follows that

V (x(Ti+1), x̂(Ti+1))

≤ xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)

+β
2xT

c (T
−

i+1)M̄
T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1).

From (30) and (29), it then follows that

V (x(Ti+1), x̂(Ti+1))

≤ xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)

+β
2xT

c (T
−

i+1)M̄
T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

≤ xT
o (T

−
i+1)Λqixo(T−i+1)+β

2xT
c (T

−
i+1)Λ

−1
qi

xc(T−i+1)

=V (x(T−i+1), x̂(T
−

i+1)),

i.e., (28) holds.
Proof of Theorem 2: From Lemma 7 it follows that

V (x(s), x̂(s))−V (x(Ti), x̂(Ti)) =
∫ s

Ti

∂V (xo(t),xc(t))
∂ t

dt

6 4β
2
∫ s

Ti

‖u(t)‖2
2dt−

∫ s

Ti

‖y(t)− ŷ(t)‖2
2dt,

and hence

V (x(T−i+1), x̂(T
−

i+1))−V (x(Ti), x̂(Ti))

6 4β
2
∫ Ti+1

Ti

‖u(t)‖2
2dt−

∫ Ti+1

Ti

‖y(t)− ŷ(t)‖2
2dt.

By Lemma 8, V (x(Ti+1), x̂(Ti+1)) ≤ V (x(T−i+1), x̂(T
−

i+1)) and
hence

V (x(Ti+1), x̂(Ti+1))−V (x(Ti), x̂(Ti))

6 4β
2
∫ Ti+1

Ti

‖u(t)‖2
2dt−

∫ Ti+1

Ti

‖y(t)− ŷ(t)‖2
2dt.

By summing up the inequalities above,

V (x(Tk), x̂(Tk))−V (x(T0), x̂(T0))

=
k−1

∑
i=0

V (x(Ti+1), x̂(Ti+1))−V (x(Ti), x̂(Ti))

≤
k−1

∑
i=0

4β
2
∫ Ti+1

Ti

‖u(t)‖2
2dt

−
∫ Ti+1

Ti

‖y(t)− ŷ(t)‖2
2dt

= 4β
2
∫ Tk

T0

‖u(t)‖2
2dt−

∫ Tk

T0

‖y(t)− ŷ(t)‖2
2dt.

Using that T0 = 0, x(0) = 0, x̂(0) = 0, and V (0,0) = 0 and
V (x(Tk), x̂(Tk))≥ 0, it follows that

0≤ 4β
2
∫ Tk

0
‖u(t)‖2

2dt−
∫ Tk

T0

‖y(t)dt− ŷ(t)‖2
2dt⇔∫ Tk

T0

‖y(t)dt− ŷ(t)‖2
2dt ≤ 4β

2
∫ Tk

0
‖u(t)‖2

2dt.

Since limk→∞ Tk = ∞, the statement of the theorem follows

IV. NUMERICAL EXAMPLES

In this section, we analyze the practical applicability of the
proposed MOR procedure. We consider a low-order artificial
example represented by a linear hybrid systems with four
subsystems.

First, we characterize the discrete dynamics. The discrete
state-transition map δ : Ω×Γ→ Ω can be described in two
ways, explicitly, i.e.:

Mode q1 : δ (q1,0) = q4, δ (q1,1) = q2,

Mode q2 : δ (q2,0) = q3, δ (q2,1) = q4,

Mode q3 : δ (q3,0) = q4, δ (q3,1) = q1,

Mode q4 : δ (q4,0) = q2, δ (q4,1) = q3.

or using a directed graph, i.e. as in Fig. 1.

Fig. 1. Directed graph representation of the state transition map.
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Next, we explicitly introduce the chosen discrete event sig-
nal γ :R+→Γ and also the discrete state trajectory q :R+→Ω

γ(t) =



1, t ∈ [0,T1),

0, t ∈ [T1,T2),

1, t ∈ [T2,T3),

. . .

1, t ∈ [T10,T11).

q(t) =



q2, t ∈ [0,T1),

q3, t ∈ [T1,T2),

q1, t ∈ [T2,T3),

. . .

q4, t ∈ [T10,T11),

(47)

with given T1, . . . ,T11 (see Fig. 2). Additionally, in Fig. 2, we
depict the two signals introduced in (47), i.e. γ(t) and q(t) as
a function of time (the time interval for this application was
chosen to be [0,15] seconds).

0 5 10 15

0

0.5

1

Discrete event signal

0 5 10 15

Time(t)

2

4

M
o
d
es

Discrete state trajectory

Fig. 2. The discrete event signal γ(t) (up) and the discrete state trajectory
q(t) (down).

Finally, we proceed to the description of the continuous
dynamics. Hence, the system matrices (Aq,Bq,Cq),1 ≤ q ≤ 3
corresponding to the linear hybrid system under consideration
are written as follows:

A1 =

 −1 0 0
0 −3 0
0 0 −4

 , A2 =

[
−2 0
0 −1

]
,

A3 =

 −3 0 0
0 −1 0
0 0 −2

 , A4 =

[
1 0
0 1

2

]
,

B1 =

 1
−1
1

 , B2 =

[
1
1

]
, B3 =

 1
1
3

 ,

B4 =

[
2
−1

]
, C1 =

[
1 −1 1

]
, C2 =

[
1 3

2

]
,

C3 =
[

1 1 1
]
, C4 =

[
2 1

]
.

Additionally, the reset maps are given by the following matrices

M4,0,1 =
1
τ

[
0 0 −1
0 1

2 0

]
, M2,1,1 =

1
τ

[
0 1 0
1 0 0

]
,

M3,0,2 =
1
τ

 0 1
1 0
0 0

 , M4,1,2 =
1
τ

[
−1 1
0 1

]
,

M4,0,3 =
1
τ

[
0 0 1
0 0 0

]
, M1,1,3 =

1
τ

 1 −1 0
0 0 1
0 −1 0

 ,
M2,0,4 =

1
τ

[
−1 0
0 − 1

2

]
, M3,1,4 =

1
τ

 −1 0
1 0
0 1

2

 .

In the definition of the reset maps, one can observe that the
scale τ > 0 is used. More precisely, in what follows, the value
τ = 3 was chosen for performing the numerical computations.

We perform a time-domain simulation by using as con-
tinuous control input, the function u(t) = 5sin(20t)e−t/5 +
0.5e−t/2. In Fig. 3, we depict both the control input u(t) and
the observed output y(t) (as introduced in (2))

0 5 10 15
-10

0

10
Input signal

0 5 10 15

Time(t)

-2

0

2
Output signal

Fig. 3. The control input u(t) (up) and the observed output y(t) (down).

The next step is to find appropriate Gramians to be used in
the balanced truncation procedure. We start by first computing
the observability Gramians.

We are looking for positive definite matrices that satisfy the
conditions in (4). Hence, for each mode, we explicitly state
the corresponding LMIs:

• Mode 1:


AT

1 Q1 +Q1A1 +CT
1 C1 < 0,

MT
4,0,1Q4M4,0,1−Q1 6 0,

MT
2,1,1Q2M2,1,1−Q1 6 0.

• Mode 2:


AT

2 Q2 +Q2A2 +CT
2 C2 < 0,

MT
3,0,2Q3M3,0,2−Q2 6 0,

MT
4,1,2Q4M4,1,2−Q2 6 0.

• Mode 3:


AT

3 Q3 +Q3A3 +CT
3 C3 < 0,

MT
4,0,3Q4M4,0,3−Q3 6 0,

MT
1,1,3Q1M1,1,3−Q3 6 0.

• Mode 4:


AT

4 Q4 +Q4A4 +CT
4 C4 < 0,

MT
2,0,4Q2M2,0,4−Q4 6 0,

MT
3,1,4Q3M3,1,4−Q4 6 0.

It is to be remarked that, for τ = 1, the above systems of
LMIs could not be solved (by means of the optimization soft-
ware provided in [25] and [26]). Nevertheless, when choosing
τ = 3, we were able to find a valid solution, i.e. a collection of
positive definite matrices {Q1,Q2,Q3,Q4}. More precisely,
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we could find:

Q1 =

 3.2662 −0.1118 0.0733
−0.1118 1.7564 −0.0693
0.0733 −0.0693 1.4755

 ,
Q2 =

[
2.4546 −0.0023
−0.0023 4.0827

]
,

Q3 =

 1.7873 −0.0041 0.0752
−0.0041 3.4766 0.1468
0.0752 0.1468 2.4182

 ,
Q4 =

[
3.9745 0.6789
0.6789 4.6925

]
.

Next, we need to find positive definite matrices Pi that
satisfy the conditions in (5). For each mode, we will state the
corresponding LMIs:

• Mode 1:

{
A1P1 +P1AT

1 +B1BT
1 < 0,

M1,1,3P3MT
1,1,3−P1 6 0,

• Mode 2:


A2P2 +P2AT

2 +B2BT
2 < 0,

M2,0,4P4MT
2,0,4−P2 6 0,

M2,1,1P1MT
2,1,1−P2 6 0.

• Mode 3:


A3P3 +P3AT

3 +B3BT
3 < 0,

M3,0,2P2MT
3,0,2−P3 6 0,

M3,1,4P4MT
3,1,4−P3 6 0.

• Mode 4:


A4P4 +P4AT

4 +B4BT
4 < 0,

M4,0,1P1MT
4,0,1−P4 6 0,

M4,0,3P3MT
4,0,3−P4 6 0,

M4,1,2P2MT
4,1,2−P4 6 0.

Again, for τ = 3, we could find the following matrices

P1 =

 5.3173 −0.1332 0.3859
−0.1332 2.3055 −0.0914
0.3859 −0.0914 1.9288

 ,
P2 =

[
3.8471 0.1453
0.1453 5.3503

]
,

P3 =

 3.1234 −0.0344 0.3250
−0.0344 5.2759 0.5661
0.3250 0.5661 4.5523

 ,
P4 =

[
6.2062 −0.3344
−0.3344 7.4608

]
.

Next, we present the Gramians in balanced representation,
i.e. the diagonal matrices Λq from step 2 of Procedure 1.

Λ1 = diag(4.1894,2.0184,1.6542),
Λ2 = diag(4.6754,3.0703),
Λ3 = diag(4.3741,3.2543,2.3291),
Λ4 = diag(5.9718,4.8538).

By choosing the reduction orders to be r1 = 2,r2 = 2,r3 = 2
and r4 = 2 (a dimension reduction is performed only for
the first and third mode), we put together a reduced-order
linear hybrid system. The time-domain simulation results are
depicted in Fig. 4.

0 5 10 15

-1

0

1

Output signals
Original system

Reduced system

0 5 10 15
Time(t)

10
-15

10
-10

10
-5

10
0

Approximation error

Fig. 4. The observed outputs for the original and reduced systems and the
deviation between them (for the first choice of rk’s).

Next, we reduce the dimension of the systems corresponding
to the second and forth modes as well. Hence, choose reduc-
tion orders r1 = 2,r2 = 1,r3 = 2 and r4 = 1. The time-domain
simulations results are depicted in Fig. 5.

0 5 10 15

-1

0

1

Output signals Original system

Reduced system

0 5 10 15
Time(t)

10
-6

10
-4

10
-2

10
0

Approximation error

Fig. 5. The observed outputs for the original and reduced systems and the
deviation between them (for the second choice of rk’s).

V. CONCLUSION

In this paper a balanced truncation procedure for reducing
linear hybrid systems was proposed. For each linear subsys-
tem, specific Gramian matrices were computed by solving
particular LMIs. An analytical error bound in terms of singular
values of the Gramians was also provided.

We demonstrated the effectiveness of the procedure through
a numerical example. Extensions that could be further devel-
oped include extending the proposed procedure to the case of
hybrid systems with mild nonlinearities (such as systems with
bilinear or stochastic behavior).

APPENDIX

Proof of Lemma 2: Assume that H is quadratically
stable and assume that the positive definite matrices {Pq}q∈Q
satisfy (8). Then for suitable γq > 0, AT

q Pq +PqAq < −γqInq .
Note that CT

q Cq ≤ µqInq for a suitable µq > 0. By taking µ =

min{ γq
µq
}q∈Q, it then follows that AT

q Pq +PqAq + µCT
q Cq < 0

from which it follows that Qq =
1
µ

Pq is a generalized observ-
ability Gramian. Similarly, by replacing CT

q Cq by PqBqBT
q Pq

and repeating the argument above it follows that AT
q Pq+PqAq+

µPqBqBT
q Pq < 0 and by multiplying the latter LMI by P−1

q from
right and left it follows that AqP−1

q +P−1
q AT

q +µBqBT
q < 0 from

which, using the second equation of (8) and (10) it follows that
Pq =

1
µ

P−1
q is a generalized reachability Gramian. Conversely,

if {Qq}q∈Q are generalized observability Gramians, then
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AT
q Qq +QqAq < −CT

q Cq ≤ 0 and hence Pq = Qq satisfy (8).
Similarly, if {Pq}q∈Q are generalized reachability Gramians,
then by applying (7) with u = 0 implies that Pq =P−1

q , q∈Q
satisfy (8).

Proof of Lemma 3: Let x(t) be the corresponding solution
to the LHS in (1), and also introduce the function

V (x(t)) =

{
xT (t)Qq0x(t), t ∈ [0, t1)
xT (t)Qqix(t), t ∈ [Ti−1,Ti), i > 2

, (48)

where Ti = ∑
i
`=1 t`. By considering the uncontrolled case, the

input function is considered to be u(t) = 0, ∀t. Using that
dx(t)

dt = Aqix(t), write the derivative of V (t) from (48) for t ∈
[Ti−1,Ti),

∂V (x(t))
∂ t

=
dxT (t)

dt
Qqix(t)+ xT (t)Qqi

dx(t)
dt

= xT (t)
(
AT

qi
Qqi +QqiAqi

)
x(t).

By substituting the first inequality in (4) into the above
relation, and using that y(t) =Cqix(t), t ∈ [Ti−1,Ti), it follows
that

∂V (x(t))
∂ t

6−y(t)T y(t). (49)

Introduce the following notation

x(T−i ) = lim
t↗Ti

x(t), V (x(T−i )) = lim
t↗Ti

V (x(t)). (50)

By integrating the inequality (49) from Ti−1 to t ∈ [Ti−1,Ti),
it follows that

V (x(t))−V (x(Ti−1))6−
t∫

Ti−1

y(s)T y(s)ds. (51)

Using that x(Ti) = Mqi+1,γ,qix(T
−

i ), write

V (x(Ti)) = xT (T−i )MT
qi+1,γ,qi

Qqi+1Mqi+1,γ,qix(T
−

i ). (52)

From the second inequality in (4), i.e.
MT

qi+1,γ,qi
Qqi+1Mqi+1,γ,qi 6 Qqi , write

V (x(Ti)) = xT (T−i )MT
qi+1,γ,qi

Qqi+1Mqi+1,γ,qix(T
−

i )

6 xT (T−i )Qqix(T
−

i ).
(53)

Therefore, from (50), it follows that

V (x(Ti))6V (x(T−i )). (54)

Putting together the inequalities in (51) and (54), it follows
that

V (x(Ti))−V (x(Ti−1))6−
Ti∫

Ti−1

y(s)T y(s)ds. (55)

Now using the convention T0 = 0 and adding all the inequal-
ities in (55), we obtain

`

∑
i=1

V (x(Ti))−V (x(Ti−1))6−
`

∑
i=1

Ti∫
Ti−1

y(s)T y(s)ds

⇒V (x(T`))−V (x(0))6−
T`∫

0

y(s)T y(s)ds. (56)

Since V (x(T`)) = xT (T`)Qq`+1x(T`) > 0, from (56) it follows
that,

V (x(0))>

T`∫
0

y(s)T y(s)ds, ∀ `≥ 0. (57)

By using that V (x(0)) = x(0)T Qq0x(0), the result in Lemma
3 is hence proven.

Proof of Lemma 4: Recall that Pq satisfies the first
inequality in (5). By multiplying this inequality with P−1

q
both to the left and to the right, we write

AT
q P−1

q +P−1
q Aq +P−1

q BqBT
q P−1

q < 0. (58)

Let x(t) be the corresponding solution to the LHS in (1), and
also introduce the function

W (x(t)) =

{
xT (t)P−1

q1
x(t), t ∈ [0, t1),

xT (t)P−1
qi

x(t), t ∈ [Ti−1,Ti), i > 2
. (59)

Using that ẋ(t) = Aqix(t) + Bqiu(t) and the definition of
W (x(t)) in (59), for t ∈ [Ti−1,Ti), we have

∂W (x(t))
∂ t

=
dxT (t)

dt
P−1

qi
x(t)+ xT (t)P−1

qi

dx(t)
dt

= xT (t)
(
AT

qi
P−1

qi
+P−1

qi
Aqi

)
x(t)+2x(t)T P−1

qi
Bqiu(t),

and by using the inequality in (58), it follows that

∂W (x(t))
∂ t

6−x(t)T P−1
qi

BqiB
T
qi
P−1

qi
x(t)+2x(t)T P−1

qi
Bqiu(t)

=−‖BT
qi
P−1

qi
x(t)−u(t)‖2

2 +u(t)T u(t). (60)

Hence, the following inequality holds as,

∂W (x(t))
∂ t

6 u(t)T u(t), t ∈ [Ti−1,Ti). (61)

Using (61) and integrating from Ti−1 to t, we obtain

W (x(t))−W (x(Ti−1))6

t∫
Ti−1

uT (s)u(s)ds. (62)

Using that x(Ti) = Mqi+1,γ,qix(T
−

i ), write

W (x(Ti)) = xT (T−i )MT
qi+1,γ,qi

P−1
qi+1

Mqi+1,γ,qix(T
−

i ). (63)

From the second inequality in (7), one can directly derive that
MT

qi+1,γ,qi
P−1

qi+1
Mqi+1,γ,qi 6 P−1

qi
. Then,

W (x(Ti)) = xT (T−i )MT
qi+1,γ,qi

P−1
qi+1

Mqi+1,γ,qix(T
−

i )

6 xT (T−i )P−1
qi

x(T−i ).
(64)

Therefore, it follows that W (x(Ti)) 6 W (x(T−i )), where
W (x(T−i )) = lim

t↑Ti
W (x(t)) for i > 0 and W (x(0−)) =W (x(0)).
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By combining this inequality with the inequality in (62),
one can write

W (x(T−i ))−W (x(T−i−1))6

Ti∫
Ti−1

uT (s)u(s)ds ⇒

`

∑
i=1

W (x(T−i ))−W (x(T−i−1))6
`

∑
i=1

Ti∫
Ti−1

uT (s)u(s)ds ⇒

W (x(T−` ))−W (x(0−))6

T`∫
0

uT (s)u(s)ds. (65)

Since x(0) = 0, it follows that W (x(0−)) = 0. Also, from the
definition of the function W, it is clear that W (x(T−` )) =
xT (T−` )P−1

q` x(T−` ). Hence, from (65), we directly conclude
that

xT (T−` )P−1
q` x(T−` )6

T`∫
0

uT (s)u(s)ds, ∀`> 1, (66)

which proves the result in Lemma 4.
Proof of Lemma 5: It is easy to see that ST

q ΛqSq = Qq

and S−1
q ΛqS−T

q = Pq. From ST
q ΛqSq = Qq it follows that

ĀT
q Λq +ΛqĀq +C̄T

q C̄q < 0,

∀γ ∈ Γ,q+ = δ (q,γ) : M̄T
q+,γ,qΛq+M̄q+,γ,q−Λq 6 0,

which means that {Λq}q∈Q are generalized observability
Gramians of H̄. Indeed, by using (12),

ĀT
q Λq +ΛqĀq +C̄T

q C̄q = S−T
q AT

q ST
q Λq +ΛqSqAqS−1

q

+S−T
q CT

q CqS−1
q = S−T

q (AT
q ST

q ΛqSq︸ ︷︷ ︸
=Qq

+ST
q ΛqSq︸ ︷︷ ︸
=Qq

Aq +CT
q Cq)S−1

q

= S−T
q (AT

q Qq +QqAq +CT
q Cq)S−1

q .

Since AT
q Qq +QqAq +CT

q Cq < 0, it follows that

ĀT
q Λq +ΛqĀq +C̄T

q C̄q

= S−T
q (AT

q Qq +QqAq +CT
q Cq)S−1

q < 0.

Similarly,

M̄T
q+,γ,qΛq+M̄q+,γ,q−Λq = S−T

q MT
q+,γ,qST

q+Λq+Sq+Mq+,γ,qS−1
q

−Λq = S−T
q (MT

q+,γ,q ST
q+Λq+Sq+︸ ︷︷ ︸
=Qq+

Mq+,γ,q−ST
q ΛqSq︸ ︷︷ ︸
=Qq

)S−1
q

= S−T
q (MT

q+,γ,qQ
+
q Mq+,γ,q−Qq)S−1

q .

Since (MT
q+,γ,qQq+Mq+,γ,q−Qq)≤ 0, it then follows that

M̄T
q+,γ,qΛq+M̄q+,γ,q−Λq

= S−T
q (MT

q+,γ,qQ
+
q Mq+,γ,q−Qq)S−1

q ≤ 0.

The proof that {Λq}q∈Q are generalized reachability Gramians
is similar to the proof above.

Proof of Lemma 6: We will show that {Λ̂q}q∈Q are
observability Gramians, the proof that it is a reachability
Gramian is completely analogous. The claim of the lemma
on quadratic stability of Ĥ follows from Lemma 2. First,
we show that ÂT

q Λ̂q + Λ̂qÂq + ĈT
q Ĉq < 0 for all q ∈ Q. If

rq = nq, then (Āq, B̄q,C̄q,Λq) = (Âq, B̂q,Ĉq, Λ̂q), and as by
Lemma 5 it follows that {Λq}q∈Q is a o observability Gramian,
ÂT

q Λ̂q + Λ̂qÂq +ĈT
q Ĉq < 0 holds. If rq < nq, then

ĀT
q Λq +ΛqĀq +C̄T

q C̄q =

[
(Ā11

q )T (Ā21
q )T

(Ā12
q )T (Ā22

q )T

][
Λ̂q 0
0 βq

]
+

[
Λ̂q 0
0 βq

][
Ā11

q Ā12
q

Ā21
q Ā22

q

]
+

[
(C̄1

q)
T

(C̄2
q)

T

][
C̄1

q C̄2
q
]
=[

(Ā11
q )T Λ̂q + Λ̂qĀ11

q +(C̄1
q)

T C̄1
q ?

? ?

]
=

[
ÂT

q Λ̂q + Λ̂qÂq +ĈT
q Ĉq ?

? ?

]
.

(67)

From Lemma 5 it follows that {Λq}q∈Q are observability
Gramians, and thus ĀT

q Λq +ΛqĀq +C̄T
q C̄q < 0 holds. This im-

plies that the left-upper rq×rq block of ĀT
q Λq+ΛqĀq+C̄T

q C̄q,
which equals ÂT

q Λ̂q + Λ̂qÂq +ĈT
q Ĉq is also negative definite.

Next, we show that

M̂T
q+,γ,qΛ̂q+M̂q+,γ,q− Λ̂q 6 0. (68)

If rq = nq,rq+ = nq+ , then M̂q+,γ,q = M̄q+,γ,q, Λq = Λ̂q, Λq+ =

Λ̂+
q , and as M̄T

q+,γ,qΛq+M̄q+,γ,q−Λq ≤ 0. (68) follows. For the
other cases, we proceed to prove that

M̂T
q+,γ,qΛ̂q+M̂q+,γ,q− Λ̂q =

[
D ?
? ?

]
,

where the matrix D is such that

D≥ M̂T
q+,γ,qΛ̂q+M̂q+,γ,q− Λ̂q.

If this is the case, then from (68) it follows that D≤ 0, from
which it follows that M̂T

q+,γ,qΛ̂q+M̂q+,γ,q−Λ̂q≤ 0. Consider the
case when rq+ < nq+ and rq < nq.

M̄T
q+,γ,qΛq+M̄q+,γ,q−Λq =

[
(M̄11

q+,γ,q)
T (M̄21

q+,γ,q)
T

(M̄12
q+,γ,q)

T (M̄22
q+,γ,q)

T

]
[

Λ̂q+ 0
0 βq+

][
M̄11

q+,γ,q M̄12
q+,γ,q

M̄21
q+,γ,q M̄22

q+,γ,q

]
−
[

Λ̂q 0
0 βq

]
=(M̄11

q+,γ,q)
T

Λ̂q+M̄11
q+,γ,q +βq+(M̄

21
q+,γ,q)

T M̄21
q+,γ,q− Λ̂q︸ ︷︷ ︸

=D

?

? ?

 .
In this case, since βq+(M̄21

q+,γ,q)
T M̄21

q+,γ,q ≥ 0, it follows that

D = (M̄11
q+,γ,q)

T
Λ̂q+M̄11

q+,γ,q− Λ̂q +βq+(M̄
21
q+,γ,q)

T M̄21
q+,γ,q

≥ (M̄11
q+,γ,q)

T
Λ̂q+M̄11

q+,γ,q− Λ̂q = M̂T
q+,γ,qΛ̂

+
q M̂q+,γ,q− Λ̂q.

If rq+ = nq+ but rq < nq, then Λ̂q+ = Λq+ , and

M̄T
q+,γ,qΛq+M̄q+,γ,q−Λq =

[
(M̄11

q+,γ,q)
T

(M̄12
q+,γ,q)

T

]
Λ̂q+

[
M̄11

q+,γ,q M̄12
q+,γ,q

]

−
[

Λ̂q 0
0 βq

]
=

(M̄11
q+,γ,q)

T
Λ̂q+M̄11

q+,γ,q− Λ̂q︸ ︷︷ ︸
=D

?

? ?

 .
In this case, D = M̂T

q+,γ,qΛ̂q+M̂q+,γ,q− Λ̂q. Finally, if rq+ < nq+

but rq = nq, then Λ̂q = Λq, and

M̄T
q+,γ,qΛq+M̄q+,γ,q−Λq =

[
(M̄11

q+,γ,q)
T (M̄21

q+,γ,q)
T
]

[
Λ̂q+ 0

0 βq+

][
M̄11

q+,γ,q
M̄21

q+,γ,q

]
− Λ̂q

= (M̄11
q+,γ,q)

T
Λ̂q+M̄11

q+,γ,q− Λ̂q +βq+(M̄
21
q+,γ,q)

T M̄21
q+,γ,q = D
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and in this case D ≥ M̂T
q+,γ,qΛ̂q+M̂q+,γ,q − Λ̂q since

βq+(M̄21
q+,γ,q)

T M̄21
q+,γ,q ≥ 0.

REFERENCES

[1] D. Liberzon, Switching in Systems and Control. Birkhäuser, Boston,
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