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AFFINE QUANTUM SUPER SCHUR-WEYL DUALITY

YUVAL Z. FLICKER

Abstract. The Schur-Weyl duality, which started as the study of the commuting actions
of the symmetric group Sd and GL(n,C) on V ⊗d where V = Cn, was extended by Drinfeld
and Jimbo to the context of the finite Iwahori-Hecke algebra Hd(q

2) and quantum algebras
Uq(gl(n)), on using universal R-matrices, which solve the Yang-Baxter equation. There
were two extensions of this duality in the Hecke-quantum case: to the affine case, by Chari
and Pressley, and to the super case, by Moon and by Mitsuhashi. We complete this chain
of works by completing the cube, dealing with the general affine super case, relating the
commuting actions of the affine Iwahori-Hecke algebra Ha

d (q
2) and of the affine quantum Lie

superalgebra Uσ
q,a(sl(m,n)) using the presentation by Yamane in terms of generators and

relations, acting on the dth tensor power of the superspace V = Cm+n. Thus we construct
a functor and show it is an equivalence of categories of Ha

d (q
2) and Uσ

q,a(sl(m,n))-modules
when d < n′ = m+ n.
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1. Introduction

The finite dimensional irreducible representations of the general linear group GL(n,C), or
equivalently its Lie algebra gl(n,C), where n is a positive integer and C is an algebraically
closed field of characteristic zero, can be classified as highest weight modules, constructed as
quotients of Verma modules. This applies to any semisimple Lie algebra, and was extended
to classical semisimple Lie superalgebras by Kac [K77].

Another approach was introduced by Schur [Sch01], and differently in [Sch27], who con-
sidered the permutation action of the symmetric group Sd on d ≥ 1 letters, and the diagonal
action of GL(n,C) ≃ GL(V ), on V ⊗d. Schur proved that these two actions have a double
centralizing property in End(V ⊗d). Representations of GL(V ) are thus determined from
those of Sd.

Denote Schur’s representation by πd : Sd → End(V ⊗d). The group algebra CSd de-
composes as ⊕λ∈Par(d)Iλ, where Iλ are simple algebras, and Par(d) is the set of partitions
λ = (λ1, λ2, . . . ), λi ≥ λi+1 ≥ 0, of d:

∑
λi = d. Hence there is a subset Γ(n; d) ⊂ Par(d)

such that πd(CSd) ≃ ⊕λ∈Γ(n;d)Iλ, so that the GL(V )-irreducible representations which appear
in End(V ⊗d) are precisely those associated to Γ(n; d). This gives a bijection between the
set of representations of GL(n) which appear in V ⊗d and a subset of the set of irreducible
representations of Sd, known by the work of Frobenius [F00] and Young [Yg]. Schur’s work
was continued by Weyl [W53], who determined the Γ(n; d) and proved Weyl’s strip theo-
rem, which asserts that λ = (λ1, λ2, . . . ) ∈ Γ(n; d) iff λj = 0 for j > n. In particular, if
n ≥ d = λ1 + λ2 + . . . then λj = 0 for all j > n, hence Γ(n; d) = Par(d), so there is a
canonical bijection between the set of irreducible representations of GL(n,C) in V ⊗d, and
the set of irreducible representations of Sd.

Multiplying πd : Sd → End(V ⊗d) with σ 7→ sgn(σ), Sd ։ {±1}, one gets the same
results, but with the vertical strips Γ(m; d)′ (where λ′ is the transpose of λ) replacing the
horizontal strips Γ(m; d). Gluing these two permutations actions of Sd on V ⊗d, Berele and
Regev [BR87] studied the permutation action of Sd on V ⊗d, where V = V0⊕V1, dimV0 = m,
dimV1 = n, such that the restricted action on V0 permutes without a sign, and on V1 with
sgn(σ). Obtained are the Young diagrams not containing the box (m+1, n+1). This yields
a representation π̂d : Sd → End(V ⊗d), and a subset Γ(m,n; d) ⊂ Par(d) with π̂d(CSd) ≃
⊕λ∈Γ(m,n;d)Iλ. The Hook theorem [BR87, Theorem 3.20] asserts that λ = (λ1, λ2, . . . ) ∈
Γ(m,n; d) iff λj ≤ n for j > m, i.e., λm+1 < n + 1. Note that if d < (m + 1)(n + 1) then
d = |λ| =

∑
i≥1 λi ≥

∑
1≤i≤m+1 λi ≥ (m+ 1)λm+1 implies λm+1 < n + 1.

Another way to state Schur’s work is as follows. Let (ρ, V ) be the natural n-dimensional
representation of GL(n,C), and ρd the diagonal representation on V ⊗d. This action of
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GL(n,C) commutes with the permutation action πd of Sd on V ⊗d. Thus to any right Sd-
module M there is a GL(n,C)-module F (M) = M ⊗Sd

V ⊗d. The Schur-Weyl theory asserts
that for d ≤ n, the functor M 7→ F (M) defines an equivalence from the category of Sd-
modules of finite rank, to the category of finite rank GL(n,C)-modules whose irreducible
constituents all occur in V ⊗d.

Drinfeld and Jimbo introduced, independently, in 1985, a family of Hopf algebras Uq(g),
depending on a parameter q ∈ C×, associated to any symmetrizable Kac-Moody algebra g.
For q not a root of unity, Jimbo [J86] announced an analogue of the Schur-Weyl duality with
the quantum group Uq(gl(n)) replacing gl(n,C), V replaced by the natural n-dimensional
irreducible representation of Uq(gl(n)), and Sd by its Hecke algebra Hd(q

2). The latter is
isomorphic to the group algebra C(q)Sd of Sd over the field C(q) (see Proposition 7.2 for
a precise statement). The representation of this Hecke algebra on V ⊗d is defined by the
R-operators, or “universal R-matrix”, which is the solution for the quantum Yang-Baxter
equation, and satisfies the relations of the generators defining the Hecke algebra.

The Hecke algebra, Hd(q
2), also called the finite Iwahori-Hecke algebra, is the finite part of

the general affine Iwahori-Hecke algebra, Ha
d (q

2), which for prime-power q is the convolution
algebra Cc[I\G/I] of the compactly supported C-valued functions on the group G of points
over a local non-Archimedean field F whose residual cardinality is q, of a reductive connected
F -group, which are bi-invariant under the action of an Iwahori subgroup I of G. The finite
Iwahori-Hecke algebra Hd(q

2) is just the subalgebra corresponding to Cc[I\K/I], where K
is a maximal compact subgroup of G. The affine algebra is of great importance (when q is
a prime-power) for automorphic forms and neighboring areas. It was given a presentation
in terms of generators and relations by Iwahori and Matsumoto [IM65], and another one –
which reflects better the structure of the double coset space I\G/I, by J. Bernstein [HKP10].
These presentations make sense for all q.

Drinfeld suggested in [D86] that the Schur-Weyl theory should extend to relate the affine

Hecke algebra Ha
d (q

2) and the affine quantum algebra Uq(ŝl(n)). This was done by Chari-
Pressley [CP96], who constructed a functor from the category of finite-rank Ha

d (q
2)-modules

to the category of completely decomposable finite rank Uq(ŝl(n))-modules whose irreducible
constituents occur in V ⊗d, when q is not a root of unity, extending Jimbo’s functor [J86]
relating the non-affine Uq(gl(n)) and Hd(q

2); see also [G86]. A suitable limit as q → 1 gives
Drinfeld’s [D86] (see also [D88]) Schur-Weyl duality for the Yangian Y (gl(n)), where the role
of Sd is played by a degenerate affine Hecke algebra whose defining relations are obtained
from those of Ha

d (q
2) for some q → 1.

A “super” extension of Jimbo’s work [J86] to the context of the quantum superalgebra
Uq(gl(m,n)), where the Hecke algebra Hd(q

2) remains, but its action is composed with a
sign character, or alternatively a quantum extension of the work of Berele-Regev [BR87],
thus the action of Sd is replaced by that of the finite Iwahori-Hecke algebra, and that of
GL(n,C) by that of the quantum superalgebra Uq(gl(m,n)), was done by Moon [Mo03], and
also by Mitsuhashi [Mi06]. Both use the result of Benkart, Kang, Kashiwara [BKK00] which
shows the complete reducibility of the tensor product V ⊗d of the natural representation V
of Uq(gl(m,n)) using the crystal base theory of Uq(gl(m,n)).
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However, it is the action of the affine Hecke algebra which is the most interesting. Our
aim here is to complete this missing general case by extending the Schur-Weyl duality to
relate the action of the affine Iwahori-Hecke algebra Ha

d (q
2) with that of the affine quantum

Lie superalgebra Uσ
q,a(sl(m,n)), thus extending the functor constructed by Jimbo and Chari-

Pressley to the context of the affine Hecke algebra and the affine quantum Lie superalgebra
Uσ
q,a(sl(m,n)), or alternatively the work of Moon and Mitsuhashi to the affine quantum Lie

superalgebra case. This is the natural, general case.
A necessary ingredient is a definition of the quantum affine Lie superalgebra in terms of

generators and relations. This is provided by the work of Yamane [Y99]. In this affine super
case there are new relations: (QS 4)(4) and (QS 5)(4), that do not appear in the non-super
case, and we need to verify that they too are satisfied by the operators that we introduce.
This is a novelty of the affine super case.

As in [CP96, Theorem 4.2], to extend [Mo03] and [Mi06] to the affine case one needs to
verify the relations which are new to the affine case, satisfied by the additional generators,
x±
0 , or E0 and F0. Naturally our results can be used to obtain equivalence of categories of

representations of affine Iwahori-Hecke algebras and affine quantum Lie superalgebras, as
done in [CP96] in the non-graded case. We prefer to leave this for a sequel, as well as other
applications we have in mind.

In [K14] (see also [KKK13]) the main philosophy and results of categorification and 2-
representation theory, and the quantum affine Schur-Weyl duality in this language is ex-
plained. The Khovanov-Lauda-Rouquier algebras play a central role. This is an interesting
direction of further work. For recent survey of related work, and directions of current re-
search, from relations to geometry by Maulik-Okounkov, to categorification of cluster alge-
bras using R-matrices by Kang-Kashiwara-Kim-Oh, see [H17]. For representation theory of
Uσ
q,a(sl(m,n)) see [Zh17] and references there, as well as [Zr93]. We hope there is still some

interest in our modest but explicit construction.
Perhaps the most interesting fact about the Schur-Weyl duality in this quantun-Hecke

setting is the unexpected connection between the affine Iwahori-Hecke algebra, which comes
from number theory and automorphic forms for prime-power q, on one hand, and the quan-
tum theory of Yang-Baxter equations, which affords the action of the Hecke algebra via
the R-operators, for general q, originating from physics, on the other hand. The parameter
q is the residual cardinality of the local field from the arithmetic perspective, and can be
interpreted as the temperature from the physical point of view.

My initial motivation to study this area was to understand Drinfeld’s ideas on the Yang-
Baxter equation and on quantum groups. I was fascinated by the words – not knowing
their meaning – since I studied his “elliptic modules”. Clearly there is a strong resemblance
between the Schur-Weyl duality, and the Galois-Automorphic duality that Drinfeld studied
in “elliptic modules”. Another push came from a very brief conversation with Eric Opdam
who mentioned to me his work ([HO97]). This led me to realize that the area concerns Hecke
algebras, with which I am familiar. The final nail came from a brief social conversation with
Mikhail Kapranov that led me later to read his [K18], and then to Manin [M97] and to
Deligne-Morgan [DM99] notes on Bernstein’s lectures at IAS, which made me realize the
significance of supersymmetry.
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2. Superalgebras

Let m, n ≥ 1 be positive integers. Put n′ = m + n, n′′ = n′ − 1. Let R be a field of
characteristic zero. For a fuller exposition to superalgebras see [DM99].

The general linear (Lie) superalgebra g = gl(m,n) over R is the algebra M(n′ × n′, R) of
n′ × n′ matrices over R, Z/2-graded as gl(m,n)0 ⊕ gl(m,n)1, where

gl(m,n)0 = {diag(A,D); A ∈ M(m×m,R), D ∈ M(n× n,R)},

and
gl(m,n)1 = {( 0 B

C 0 ) ; B ∈ M(m × n,R), C ∈ M(n×m,R)} ,

with the bilinear super bracket [x, y] = xy − (−1)abyx for x ∈ gl(m,n)a, y ∈ gl(m,n)b, a,
b ∈ {0, 1}, on gl(m,n). An element of gl(m,n) is called homogeneous if it lies in gl(m,n)a.

Define a parity function p by p(x) = a if 0 6= x ∈ gl(m,n)a, a ∈ {0, 1}.
Define the supertrace str ( A B

C D ) = trA− trD on gl(m,n), where tr is the usual trace.
Put sl(m,n) = ker str. Put I = {1, 2, . . . , n′}, I ′ = {1, 2, . . . , n′′ = n′ − 1}.
Let Ei,j ∈ gl(m,n) be the matrix whose only nonzero entry is 1 at the (i, j)-position.
The Cartan subalgebra h of gl(m,n) is the R-span SpR{Ei,i; i ∈ I}, namely the algebra of

diagonal matrices.
Let hi ∈ h (i ∈ I ′) be Ei,i − (−1)p(i)Ei+1,i+1, where p(m) = 1 and p(i) = 0 for i 6= m.
Denote by h∗ = Hom(h, R) the dual space of h. Under the adjoint action (Ad(h)y = [h, y])

of h, gl(m,n) decomposes as a direct sum of root spaces h⊕⊕α∈h∗ gl(m,n)α, where

gl(m,n)α = {X ; Ad(h)X = α(h)X, ∀h ∈ h}.

An α ∈ h∗ − {0} is called a root if the root space gl(m,n)α is not zero.
Let {εi; i ∈ I} denote the standard basis of Rn′

= Rm ⊕ Rn. In particular {εi; 1 ≤
i ≤ m} is the standard basis of Rm, and {εi; m < i ≤ n′} of Rn. The simple roots are
αi = εi − εi+1 ∈ h∗, i ∈ I ′, and the fundamental weights are ̟i = ε1+ · · ·+ εi ∈ h∗, i ∈ I ′.
A root α is even if gl(m,n)α ∩ gl(m,n)0 6= 0, and odd if gl(m,n)α ∩ gl(m,n)1 6= 0. Thus all
simple roots are even, except αm, which is odd.

The lattice of integral weights P ⊂ h∗ is the Z-span of {εi; i ∈ I}. The dual weight lattice

P ∨ ⊂ h is the free Z-module spanned by Ei,i, i ∈ I. For λ ∈ h∗, h ∈ h define λ(h) = 〈h, λ〉
by linearity and εi(Ej,j) = δi,j = δ(i, j) (= 1 if i = j; =0 if i 6= j). We get a natural pairing
〈., .〉 : h × h∗ → R with 〈hi, αj〉 = αj(hi). The Cartan matrix A = (aij = αj(hi); i, j ∈ I ′)
has nonzero entries: 2 at each diagonal place (i, i) 6= (m,m); −1 at each underdiagonal
place (i + 1, i) and at each over diagonal place (i, i + 1), except at (m,m + 1) where the
entry is 1. The entries at (m,m) and at (i, j) with |i − j| ≥ 2 are zero. The Cartan
matrix is symmetrizable in the sense that DA is symmetric, where D = diag(Im,−In−1),
and Ik denotes the identity k × k matrix. Denote the diagonal entries of D by di, thus
D = diag(d1, . . . , dn′−1), and di = 1 (1 ≤ i ≤ m), di = −1 (m < i < n′). Explicitly

A =




2 −1 0
−1 2 −1 0
0 0
0 −1 0 1 0
0 −1 2 −1 0
0 0
0 −1 2 −1
0 −1 2


 , DA =




2 −1 0
−1 2 −1 0
0 0
0 −1 0 1 0
0 1 −2 1 0
0 0
0 1 −2 1
0 1 −2




The middle rows are the mth and (m+ 1)st, DA is symmetric. We also put d0 = dn′ = −1.
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The above is the example with which we deal. In general g will be the contragredient Lie
superalgebra corresponding as in [K77], [K78] to the following data (I ′, P, {αi}, {Hi}, A, D,
〈x, y〉, (x, y)). Let I ′ be the index set for the simple roots. Assume it is partitioned into two
parts corresponding to the even simple roots and the odd simple roots:

I ′ = I ′even ∪ I ′odd.

Write p(i) = 0 if i ∈ I ′even, and p(i) = 1 if i ∈ I ′odd. In our example of g = gl(m,n),
I ′odd = {m}, I ′even = I ′ − {m}, I ′ = {1, . . . , m+ n− 1 = n′′}.

Let P be a free Z-module – its elements are called the integral weights – given with a
Q-valued symmetric bilinear form (., .). Also given for each i ∈ I ′ is the simple root αi ∈ P
and the simple coroot hi ∈ P ∨. In the natural pairing 〈., .〉 : P ∨ × P → Z they are assumed
to satisfy: 〈hi, αi〉 = 2 if i ∈ I ′even; 〈hi, αi〉 = 0 or 2 if i ∈ I ′odd; 〈hi, αj〉 ≤ 0 if j 6= i and
p(i) = p(j). Also given are nonzero integers di with

di〈hi, λ〉 = (αi, λ) ∀λ ∈ P.

Since di〈hi, αj〉 = (αi, αj) = (αj , αi) = dj〈hj , αi〉, the Cartan matrix

A = (aij = 〈hi, αj〉; i, j ∈ I ′)

is symmetrizable: DA is symmetric if D = diag(di; i ∈ I ′).
More generally, one may consider a vector space V of dimension (m,n), and a homogeneous

basis (εi; 1 ≤ i ≤ m + n) with εi of parity p(i). Each such ordered basis gives rise to a
deformation of the enveloping algebra of gl(V ) as in the next section. But we consider here
only the case where all even εi are placed first, for simplicity.

3. Quantum superalgebras

Following [BKK00] (and its predecessors [KT91], [FLV91], [St92], [St93], [Y94], [Y99],
and [Zr14]) we now introduce the q-deformation Uq(g) of the universal enveloping algebra
of the contragredient Lie superalgebra g corresponding as in [K77], [K78] to the data of last
section. Denote by q an indeterminate, put qi = qdi . Define the bilinear form [x, y]v to be
xy − (−1)p(x)p(y)vyx on homogeneous x, y; note that [., .] = [., .]1. The associated quantum
enveloping algebra U ′

q(g) is the associative algebra over Q(q) with 1, generated by ei, fi
(i ∈ I ′), and qh (h ∈ P ∨), satisfying

qh = 1 for h = 0; qh+h′

= qhqh
′

for h, h′ ∈ P ∨;

qhei = q〈h,αi〉eiq
h, qhfi = q−〈h,αi〉fiq

h for h ∈ P ∨, i ∈ I ′;

[ei, fj] = eifj − (−1)p(i)p(j)fjei is δ(i, j)
qhi − q−hi

q − q−1
for i, j ∈ I ′;

(note that the notation x+
i and x−

i is often used for ei and fi);
and the bitransitivity conditions [K77, p. 19] (We first consider the previous relations, and
if in the resulting algebra a satisfies the following property, then we put a = 0):
If a ∈

∑
i∈I′ U

′
q(n+)eiU

′
q(n+) satisfies fia ∈ U ′

q(n+)fi for all i ∈ I ′ then a = 0.
If a ∈

∑
i∈I′ U

′
q(n−)fiU

′
q(n−) satisfies eia ∈ U ′

q(n−)ei for all i ∈ I ′ then a = 0.
Here U ′

q(n+) is the subalgebra of U ′
q(g) generated by {ei; i ∈ I ′}, and U ′

q(n−) by {fi; i ∈ I ′}.
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Now U ′
q(g) is a Hopf superalgebra whose comultiplication ∆, counit ε, antipode S are

∆(qh) = qh ⊗ qh, ∆(ei) = ei ⊗ q−dihi + 1⊗ ei, ∆(fi) = fi ⊗ 1 + qdihi ⊗ fi;

ε(qh) = 1, ε(ei) = 0 = ε(fi); S(q±h) = q∓h, S(ei) = −eiq
dihi, S(fi) = −q−dihifi.

Here h ∈ P ∨, i ∈ I ′. It is only the Hopf superalgebra structure which matters to us. It
is not a Hopf algebra. One can introduce a Hopf algebra structure by replacing U ′

q(g) by
Uq(g) = U ′

q(g)⋊ 〈σ〉, where σ is the involution on U ′
q(g) given by:

σ(qh) = qh, σ(ei) = (−1)p(i)ei, σ(fi) = (−1)p(i)fi,

where again h ∈ P ∨, i ∈ I ′. Then Uq(g) is a Hopf algebra with comultiplication ∆σ, counit
εσ, antipode Sσ given by

∆σ(σ) = σ ⊗ σ; ∆σ(q
h) = qh ⊗ qh;

∆σ(ei) = ei ⊗ q−dihi + σp(i) ⊗ ei, ∆σ(fi) = fi ⊗ 1 + σp(i)qdihi ⊗ fi;

εσ(σ) = 1 = εσ(q
h), εσ(ei) = 0 = εσ(fi);

Sσ(σ) = σ; Sσ(q
±h) = q∓h, Sσ(ei) = −σp(i)eiq

dihi, Sσ(fi) = −σp(i)q−dihifi.

In our case of g = gl(m,n), the bitransitivity conditions take the form (see [Y99, §6, Prop.
6.5.1, 6.7.1]:
quadratic relations (missing in [Zh14, bottom of p. 669]):

[ei, ej] = 0 = [fi, fj] if dist(i, j) 6= 1, i, j ∈ I ′;

here dist(i, j) = |i− j|; when i = j = m this is:

e2m = 0 = f 2
m;

cubic relations:

[ei, [ei, ej]q−1 ]q = e2i ej − (q + q−1)eiejei + eje
2
i is 0 if dist(i, j) = 1 and i 6= m;

same as last line with ei, ej replaced by fi, fj, or x
±
i , x

±
i , i, j ∈ I ′;

quartic relations (use e2m = 0 = f 2
m for the =), m, n > 1:

[[[em−1, em]q, em+1]q−1 , em] = em+1emem−1em + em−1emem+1em

+emem−1emem+1 + emem+1emem−1 − (q + q−1)emem−1em+1em is 0;

same as the last formula with e replaced by f , or x±.
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4. Weight modules

A Uq(g)-module M is called a weight module if it admits a weight space decomposition
M = ⊕λ∈PMλ, where Mλ = {u ∈ M ; qhu = q〈h,λ〉u ∀h ∈ P ∨}. A weight module is a
highest weight module with highest weight λ ∈ P if there exists a unique (up to a scalar
multiple) superhomogeneous (σuλ = ±uλ) nonzero vector uλ ∈ M , called a highest weight

vector, such that M = Uq(g)uλ; eiuλ = 0 for all i ∈ I ′; qhuλ = q〈h,λ〉uλ for all h ∈ P ∨.
Denote the irreducible highest weight module with highest weight λ by V (λ). In our case of
g = gl(m,n), the set of dominant integral weights is

Λ =

{
λ =

∑

1≤i≤n′

λi εi; λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λm, λm+1 ≥ · · · ≥ λm+n

}
.

Let R = Q(q) and V = V0 ⊕ V1 be a Z/2-graded vector space, where V0 = ⊕1≤i≤mRvi,
V1 = ⊕m<i≤n′Rvi, n

′ = m+ n. Write p(vi) = p(i) = 0 if 1 ≤ i ≤ m, and = 1 if m < i ≤ n′.
The fundamental representation (ρ, V ) of Uq(gl(m,n)) is irreducible and has highest weight

ε1. It is defined by

ρ(σ)vi = (−1)p(i)vi (i, j ∈ I); ρ(qh)vi = q〈h,εi〉vi (h ∈ P ∨);

ρ(ei)vj = δ(j, i+ 1)vj−1; ρ(fi)vj = δ(i, j)vj+1;

where v0 = 0 = vn′+1. In the basis {vi; i ∈ I} of V , ρ(ei) = Ei,i+1, ρ(fi) = Ei+1,i, ρ(q
h) =

diag(q〈h,εi〉). This representation extends to a representation ρd of Uq = Uq(gl(m,n)) on V ⊗d

via the map
∆(k) = (∆σ ⊗ Id⊗(k−1))∆(k−1) : Uq → U⊗(k+1)

q ,

where ∆(1) = ∆σ : Uq → U⊗2
q . Thus we put

ρd(x) = ρ⊗d ◦∆(d−1)(x), x ∈ Uq = Uq(gl(m,n)).

Explicitly ρd : Uq → EndQ(q)(V
⊗d) is given by

ρd(σ) = ρ(σ)⊗d, ρd(q
h) = ρ(qh)⊗d (h ∈ P ∨),

ρd(ei) =
∑

1≤k≤d

ρ(σp(i))⊗(k−1) ⊗ ρ(ei)⊗ ρ(q−dihi)⊗(d−k) (i ∈ I ′),

ρd(fi) =
∑

1≤k≤d

ρ(σp(i)qdihi)⊗(k−1) ⊗ ρ(fi)⊗ Id⊗(d−k) (i ∈ I ′).

Proposition 4.1. ([Zr98, Prop 1], [BKK00, Prop. 3.1]). ρd is a completely reducible repre-

sentation of Uq(gl(m,n)) on V ⊗d, d ≥ 1.

5. Affine Lie superalgebras

We now proceed to describe the quantum affine Lie superalgebra Uσ
q = Uσ

q,a(sl(m,n)) which
is the main object of study in this work. It will be defined using generators and relations
following [Y99]. To ease the comparison with [Y99], note that our (n′ = m+n, n′′ = n′−1, m)
are (N, n,N −m) in [Y99]. In this section we describe the non-quantum case.

Let Z/2 = {0, 1} be the cyclic group of order 2. Let V = V (0) ⊕ V (1) be a Z/2-
graded vector space. An X ∈ V (i), i = 0, 1, is called homogeneous of (degree i and) parity
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p(X) = i. A Lie superalgebra is a Z/2-graded C-space g = g(0) ⊕ g(1) with a bilinear map
[·, ·] : g× g → g, called a Lie superbracket, such that for homogeneous elements X , Y , Z we
have

[X, Y ] = −(−1)p(X)p(Y )[Y,X ] ∈ g(p(X) + p(Y )),

[X, [Y, Z]] = [[X, Y ], Z] + (−1)p(X)p(Y )[Y, [X,Z]].

An invariant form on g is a bilinear form (·|·) : g × g → C satisfying, for homogeneous X ,
Y , Z in g, supersymmetry and Lie invariance, namely

(X|Y ) = (−1)p(X)p(Y )(Y |X), ([X, Y ]|Z) = (X|[Y, Z]).

For X ∈ g, define ad(X) : g → g by (ad(X))(Y ) = [X, Y ]. Put Lg = g⊗C C[t, t−1].
Following [VdL89], inspired by [K90] in the non-super case, define a Lie superalgebra

ĝ = ĝ(0)⊕ ĝ(1) by ĝ(0) = Lg(0)⊕ Cc⊕ Cd, ĝ(1) = Lg(1) and

[X⊗tr+a1c+b1d, Y ⊗ts+a2c+b2d] = [X, Y ]⊗tr+s+rδ(r,−s)(X|Y )c+b1sY ⊗ts−b2rX⊗tr.

We are interested only in the nontwisted case, so we do not discuss the twisted case.
To define a symmetrizable affine Lie superalgebra abstractly define a datum to be a triple

(E ,Π, p), consisting of: (1) A finite dimensional C-vector space E with a non-degenerate
symmetric bilinear form (·, ·) : E × E → C. (2) A linearly independent subset Π =
{α0, α1, . . . , αn′′} of E ; the αi are called simple roots; P = Zα0 ⊕ · · · ⊕ Zαn′′ the root lattice;
P+ = Z≥0α0 ⊕ · · · ⊕ Z≥0αn′′ the positive root semilattice; put P− = −P+. (3) A function
p : Π ։ Z/2; it extends uniquely to a group homomorphism p : P ։ Z/2, called a parity

function. Define the Cartan algebra H = E∗ = Hom(E ,C) to be the linear dual of E . Identify
an element ν ∈ E with Hν ∈ H by µ(Hν) = (µ, ν) for all µ ∈ E .

For a datum (E ,Π, p) define a Lie superalgebra G̃ = G̃(E ,Π, p) by generators

H ∈ H; Ei, Fi (0 ≤ i ≤ n′′);

relations:

[H,H ′] = 0 (H, H ′ ∈ H),

[H,Ei] = αi(H)Ei, [H,Fi] = −αi(H)Fi,

[Ei, Fj ] = δ(i, j)Hαi
;

and parities

p(Ei) = p(Fi) = p(αi), p(H) = 0 (H ∈ H).

The superalgebra G̃ has a triangular decomposition G̃ = Ñ+ ⊕ H̃ ⊕ Ñ−, where Ñ+ is the

free superalgebra with generators Ei, and Ñ− with Fi.
To a given datum (E ,Π, p) associate a partially ordered set I(E ,Π, p) of admissible Lie

superalgebras G# = G̃/r#, where r# is an ideal of G̃ which is admissible: r#∩H = {0}. The

partial order > is defined by G̃/r#1 > G̃/r#2 if r#1 ⊂ r#2 . Then G̃ is the unique top element.
Denote by G the unique bottom element of I(E ,Π, p). It is called a minimal admissible Lie

superalgebra. Note that G#
1 > G#

2 iff there is a surjection Ψ[G#
1 , G

#
2 ] : G

#
1 → G#

2 with
(H,Ei, Fi) → (H,Ei, Fi). For any subset B of I(E ,Π, p) define

VBG
# = G̃/ ∩G#∈B kerΨ[G̃, G#].
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It is > G# for all G# ∈ B. For any α ∈ E and G# ∈ I(E ,Π, p) put G#
α = {X ∈ G#; [H,X ] =

α(H)X, ∀H ∈ H} and Φ[G#] = {α ∈ E − {0}; dimG#
α 6= 0}. The subspace G#

0 = H, called
the Cartan subalgebra of G#, is the same for all G#. Clearly Φ[G#] ⊂ P+ ∪ P− − {0}, and
G#

1 > G#
2 implies Φ[G#

1 ] ⊃ Φ[G#
2 ]. Put Φ(E ,Π, p) = Φ[G].

In a Dynkin diagram associated with a datum (E ,Π, p) occur vertices labeled by αi, or
simply i, 0 ≤ i ≤ n′′, and marked by

©, called white, if (αi, αi) 6= 0 and p(αi) = 0,

②, called gray, if (αi, αi) = 0 and p(αi) = 1,

②, called black, if (αi, αi) 6= 0 and p(αi) = 1.

We are interested only in Dynkin diagrams whose vertices are white and gray.
There is no edge between the ith and jth vertices if (αi, αj) = 0. There is an edge

✐ ✐
i j

if (αi, αi) = (αj , αj) = −2(αi, αj) 6= 0,

② ×x
i j

if (αi, αj) 6= 0, and also x = −(αj , αj)/2 if (αj, αj) 6= 0.

Here × can be white or gray. The Dynkin diagram of interest to us is of type (AA)(1).
Dynkin diagram of type (AA)(1):

✐
α1

✐
α2

... ✐
αm−1

②
αm

✐
αm+1

... ✐
αn′′

②
α0

✟
✟

✟
✟

✟
✟

✟✟

❍
❍
❍
❍
❍
❍
❍❍

Figure 1. Affine sl(m,n)

The superscript (1) mean nontwisted, and we omit it from now on. The Dynkin diagram
of type (AA) is determined by m ≥ 1 and n′ > m, n′ ≥ 3. We put n′′ = n′ − 1, and
n = n′ −m (our (n′ = m+n, n′′ = n′ − 1, m) are (N, n,N − n) in [Y99, §1.5]). The vertices
labeled by m and 0 in the diagram are gray.

From now on we consider only those (E ,Π, p) of type (AA).
Let E ex (“E-extended”) be an (n′ + 2)-dimensional C-vector space with a nondegenerate

bilinear symmetric form (·, ·) and a basis (ε1, . . . , εn′, δ,Λ0) (whose elements are named the
“fundamental elements of (E ,Π, p))” satisfying

(εi, εj) = δ(i, j)di (di = ±1), (εi, δ) = (δ, δ) = (Λ0,Λ0) = 0, (δ,Λ0) = 1.

Write (AA)g for (AA) if
∑

1≤i≤n′ di 6= 0, and (AA)b for (AA) if
∑

1≤i≤n′ di = 0 (g = good,

b = bad). Put θ =
∑

1≤i≤n′ diεi. Define E to be E ex if (AA)b, and {x ∈ E ex; (x, θ) = 0} if
(AA)g. Then (·, ·) restricts to a nondegenerate symmetric form on E . The vertices in the
Dynkin diagram are labeled by the roots αi = εi − εi+1 (1 ≤ i < n′), and α0 = εn′ − ε1.
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The Lie superalgebra G = G(E ,Π, p) of type (AA) is called of affine type (AA).
The infinite dimensional symmetrizable minimal admissible Lie superalgebras of finite

growth are parametrized in [VdL89]. They are the affine Lie superalgebras listed at [Y99,
§1.5]. We shall be concerned here only with those of type (AA) (= (AA)(1)).

The diagram (AA)g corresponds to sl(m,n) = A(m− 1, n− 1), m 6= n (in fact, decorated
by a superscript (1), to indicate the non-twisted form). The center of sl(m,m) is CI2m. Put
A(m− 1, m− 1) = sl(m,m)/CI2m. Note that sl(m,m) and A(m− 1, m− 1) are not minimal
admissible Lie superalgebras since their simple roots are linearly dependent. The simple roots
of gl(m,m) are linearly independent. Let (sl(m,m)(1))H be the subalgebra sl(m,m)(1)⊕CE1,1

of gl(m,m)(1), where E1,1 denotes the matrix whose only nonzero entry is 1 at the (1, 1)
position. Put (A(m − 1, m − 1)(1))H for the quotient (sl(m,m)(1))H/(⊕k 6=0CI2m ⊗ tk). It is
a minimal admissible Lie superalgebra.

For our (E ,Π, p) of type (AA) we have dimCGα = 1 for α ∈ Φ[G]− Zδ, G = G(E ,Π, p).
An admissible Lie superalgebra G# > G is called affine admissible if Φ[G#] = Φ[G] and

dimCG
#
α = 1 for each α ∈ Φ[G]−Zδ. Write AI = AI(E ,Π, p) for the set of affine admissible

Lie superalgebras with datum (E ,Π, p). Then G#
AI = G̃/ ∩G#∈AI kerΨ[G̃, G#] is the unique

maximal affine-admissible Lie superalgebra in AI.
Let ρ ∈ E be a vector satisfying (ρ, αi) = 1

2
(αi, αi) for all αi ∈ Π ([Y99, Proposition

1.2.2]). If (δ, ρ) 6= 0 then G#
AI = G. An example where (δ, ρ) = 0 is G1 with Dynkin diagram

(AA) and n′ = 4, with parity given by p(α1) = p(α3) = 0, p(α0) = p(α2) = 1. Then

G1 = (A(1, 1)(1))H 6= G#
1,AI = (sl(2, 2)(1))H, and dim(G1)kδ = 2 6= 3 = dimC(G

#
1,AJ)kδ for

k 6= 0. In fact, G#
AI is G = sl(m,n)(1) in case (AA)g (thus m 6= n), and it is (sl(n′/2, n′/2)(1))H

in case (AA)b (where n′ = 2m, n = m) ([Y99, Theorem 3.5.1]).

Theorem 5.1. ([Y99, Theorem 4.1.1]). The Lie superalgebra G#
AI of datum (E ,Π, p) of type

(AA) can also be defined by generators H ∈ H, Ei, Fi (0 ≤ i ≤ n′′), parities p(H) = 0,
p(Ei) = p(Fi) = p(αi) = 0 (i 6= 0, m), p(E0) = p(F0) = 1 = p(Em) = p(Fm), and relations

(S1) [H,H ′] = 0, H, H ′ ∈ H;
(S2) [H,Ei] = αi(H)Ei, [H,Fi] = −αi(H)Fi;
(S3) [Ei, Fj ] = δijHαi

;
(S4)(1) [Ei, Fj ] = 0 if dist(αi, αj) ≥ 2;
(S4)(2) [E0, F0] = 0 = [Em, Em], thus E2

0 = 0 = E2
m;

(S4)(3) [Ei, [Ei, Ei+1]] = 0 = [Ei, [Ei, Ei−1]] (0 6= i 6= m);
(S4)(4) [[[Em−1, Em], Em+1], Em] = 0, equivalently [[[Em+1, Em], Em−1], Em] = 0;
(S4)(4′) [[[En′′, E0], E1], E0] = 0, equivalently [[[E1, E0], En′′], E0] = 0;
(S5)(1)− (S5)(4′) : same as (S4)(1)− (S4)(4′) with Fj replacing Ej.

6. Affine quantum Lie superalgebras

Finally we arrive to the description of the objects of interest in this work, the affine
quantum Lie superalgebras and their defining relations, following [Y99, Y01, Y, §6]. Here
the Quantum-Serre relations (QS) replace the Serre relations (S) of Theorem 5.1.

Let C(q) denote the field of rational functions in an indeterminate q. Denote by σ the
generator of Z/2. Let V be a Z/2-graded C(q)-algebra. It is a Lie C(q)-superalgebra with
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the superbracket defined by linearity and

[X, Y ] = XY − (−1)p(X)p(Y )Y X

on homogeneous elements X , Y of V . Now Z/2 acts on V by σ(X) = (−1)p(X)X on
homogeneous elements. Define the C(q)-algebra V σ, called the extension of V by σ, to
be V ⋊ Z/2 = V ⊕ σV , where V σ = σV and σXσ = σ(X). For Z/2-graded C(q)-algebras
homomorphisms ϕ : V → W , define the extension ϕσ : V σ → W σ of ϕ by σ, by ϕσ(X) = ϕX
(X ∈ V ) and ϕσ(σ) = σ. It is an algebra homomorphism.

Let (E ,Π, p) be a datum. A quadruple (E ,Π, p,Γ) is a lattice datum if (a) Γ is a lattice in
E , namely Γ is a Z-span of a basis of E , (b) Π ⊂ Γ, (c) (γ, γ′) ∈ Z for all γ, γ′ ∈ Γ.

For a lattice datum (E ,Π = {α0, . . . , αn′′}, p,Γ), define an associative Z/2-graded C(q)-

algebra Ũq = Ũq(E ,Π, p,Γ) with 1, by generators

Kγ (γ ∈ Γ), Ei, Fi (0 ≤ i ≤ n′′),

parities

p(Kγ) = 0, p(E0) = p(F0) = p(Em) = p(Fm) = 1, p(Ei) = p(Fi) = 0 (i 6= 0, m),

and relations
(QS 1) K0 = 1, KγKγ′ = Kγ+γ′ (γ, γ′ ∈ Γ);
(QS 2) KγEiK

−1
γ = q(γ,αi)Ei, KγFiK

−1
γ = q−(γ,αi)Fi;

(QS 3) [Ei, Fj] = δij
Kαi

−K−1
αi

qi−q−1
i

(0 ≤ i, j ≤ n′′).

Recall from section 2 that di = 1 (1 ≤ i ≤ m) and di = −1 (m < i ≤ n′), and d0 = dn′.
Note that the sub-Hopf-algebra of Uq(g) of section 3 generated by the ei, fi, q

hi, σ for
1 ≤ i ≤ n′′ embeds naturally in the affine quantum Lie superalgebra Uσ

q of this section by

ei 7→ EiK
−1
αi

, fi 7→ Kαi
Ei, qhi 7→ Kdi

αi
, σ 7→ σ.

This embedding is a homomorphism of Hopf algebras. Indeed we have qhi−q−hi

q−q−1 = qdihi−q−dihi

qi−q−1
i

as qi = qdi . Note that the finite-type Schur-Weyl duality of Proposition 11.1 below is stated
for Uσ

q (sl(m,n)) to simplify the notation, but it applies to Uσ
q .

The extension Ũσ
q = Ũσ

q (E ,Π, p,Γ) of Ũq by σ has a Hopf algebra structure (Ũq,∆, S, ε).
The comultiplication ∆, antipode S, counit ε are defined by

∆(σ) = σ ⊗ σ, ∆(Kγ) = Kγ ⊗Kγ,

∆(Ei) = Ei ⊗ 1 +Kαi
σp(αi) ⊗ Ei, ∆(Fi) = Fi ⊗K−1

αi
+ σp(αi) ⊗ Fi,

S(σ) = σ, S(Kγ) = K−1
γ , S(Ei) = −K−1

αi
σp(αi)Ei, S(Fi) = −σp(αi)FiKαi

,

ε(σ) = 1, ε(Kγ) = 1, ε(Ei) = 0, ε(Fi) = 0.

Let Ũ+
q be the subalgebra with 1 of Ũq generated by the E0, . . . , En′′ . It is in fact freely

generated by these generators. The analogous statement holds for Ũ−
q , generated by the

F0, . . . , Fn′′ . The subalgebra with 1 of Ũq generated by the Kγ (γ ∈ Γ) is denoted by T . The
Kγ (γ ∈ Γ) make a basis of T , and there is a C(q)-linear isomorphism

Ũ+
q ⊗C(q) T

σ ⊗C(q) Ũ
−
q → Ũσ

q , X ⊗ Z ⊗ Y 7→ XZY, T σ = T ⊕ σT.
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Following Drinfeld, [Y99, 6.3] defines subspaces I+ of Ũ+
q and I− of Ũ−

q , and Hopf ideals

J+ = I+T σŨ−
q and J− = Ũ+

q T
σI− of Ũσ

q , and the Hopf algebra

Uσ
q = Uσ

q (E ,Π, p,Γ) = (Uσ
q ,∆, S, ε) = Ũσ

q /(J
+ + J−).

If π : Ũσ
q → Uσ

q is the quotient map, write σ, Kγ , Ei, Fi, T , T
σ, Ũ+

q , Ũ
−
q also for their images

under π. Note that ker π|T σ = {0}, ker π|Ũ+
q = I+, ker π|Ũ−

q = I−. There is a C(q)-linear
isomorphism

U+
q ⊗C(q) T

σ ⊗C(q) U
−
q

∼
−→ Uσ

q , X ⊗ Z ⊗ Y 7→ XZY.

Remark 6.1. Specialization at q = 1. Let A = C[q, q−1] be the C-subalgebra of the field C(q)
generated by q and q−1. Let Uσ

A be the A-algebra of Uσ
q = Uσ

q (E ,Π, p,Γ) generated by

σ, Kγ, [Kγ] =
Kγ −K−1

γ

q − q−1
(γ ∈ Γ), Ei, Fi (0 ≤ i ≤ n′′).

Let T σ
A (resp. U+

A , U
−
A ) be the subalgebra of T σ (resp. U+

q , U
−
q ) generated by σ, Kγ , [Kγ ]

(resp. Ei, Fi). Note that if {γ(r); 1 ≤ r ≤ dim E} is a Z-basis of Γ, then

{σa(0)
∏

1≤r≤dim E

K
a(r)
γ(r) [Kγ(r)]

b(r); a(0) ∈ {0, 1}; a(r), b(r) ∈ Z≥0}

is an A-basis of T σ. Also there is an A-module isomorphism

U+
A ⊗A T σ

A ⊗A U−
A

∼
−→ Uσ

A, X ⊗ Z ⊗ Y 7→ XZY.

Denote by C1 the field C regarded as a left A-module in which q acts as 1. Define the
C-algebras Uσ

C = Uσ
A ⊗A C1, T

σ
C = T σ

A ⊗A C1, U
+
C = U+

A ⊗A C1, U
−
C = U−

A ⊗A C1. There is a
C-linear isomorphism

U+
C ⊗C T σ

C ⊗C U−
C

∼
−→ Uσ

C , X ⊗ Z ⊗ Y 7→ XZY.

Define
′Uσ

C = Uσ
C/V, V = 〈Kγ ⊗A 1− 1⊗A 1; γ ∈ Γ〉;

V is a 2-sided ideal in Uσ
C . Define π1 : Uσ

A → ′Uσ
C by π1(X) = X ⊗A 1 + V . Denote the

images of σ, [Kγ], Ei, Fi under π1 by σ, Hγ, Ei, Fi. Recall that an element ν ∈ E was
identified with Hν ∈ H = E∗ by µ(Hν) = (µ, ν) for all µ ∈ E . Then there is a unique Lie

C-superalgebra homomorphism χ̃ : G̃(E ,Π, p) → ′Uσ
C with χ̃(Hγ) = Hγ (γ ∈ Γ), χ̃(Ei) = Ei,

χ̃(Fi) = Fi (0 ≤ i ≤ n′′). Define an admissible Lie superalgebra GΓ = GΓ(E ,Π, p) in

I(E ,Π, p) by G̃(E ,Π, p)/ ker χ̃. Denote by χ : GΓ → ′Uσ
C the Lie superalgebra monomorphism

obtained from χ. Let U(GΓ) be the universal enveloping superalgebra of GΓ. Denote by
Ξ : U(GΓ) → ′Uσ

C the surjection with Ξ|GΓ = χ. Then the extension U(GΓ)σ of U(GΓ) by σ
has a Hopf C-algebra structure, the extension Ξσ of Ξ by σ is a Hopf C-algebra surjection,
which in fact is an isomorphism ([Y99, Lemma 6.6.1]). In conclusion, the specialization of

Uσ
A at q = 1, ′Uσ

C , is U(GΓ)σ, where GΓ = G̃(E ,Π, p)/ ker χ̃ ∈ I(E ,Π, p).

For datum (E ,Π, p) of affine (AA) type, fix a lattice datum (E ,Π, p,Γ) by
Γ = Zε1 ⊕ · · · ⊕ Zεn′ ⊕ Zδ ⊕ ZΛ0 if (AA)b, namely

∑
1≤i≤n′ di = 0;
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Γ = P ⊕ ZΛ0, P = Zα0 ⊕ · · · ⊕ Zαn′′ if (AA)g, namely
∑

1≤i≤n′ di 6= 0,
and say that (E ,Π, p,Γ) is of affine (AA)-type.

For α ∈ P , put (Uσ
q )α = {X ∈ Uσ

q ; KγXK−1
γ = q(α,γ)X, ∀γ ∈ Γ}.

For Xα ∈ (Uσ
q )α, Xβ ∈ (Uσ

q )β , put

JXα, XβK = XαXβ − (−1)p(Xα)p(Xβ)q−(α,β)XβXα.

Recall that [X, Y ] = XY − (−1)p(X)p(Y )Y X for homogeneous X , Y .

Proposition 6.1. ([Y99, Theorem 6.8.2]). Let (E ,Π, p,Γ) be a lattice datum of affine (AA)-
type. Then the C(q)-algebra Uq(E ,Π, p,Γ) can also be defined by generators Kγ (γ ∈ Γ), Ei,

Fi (0 ≤ i ≤ n′′), parities p(Kγ) = 0, p(Ei) = p(Fi) = p(αi) = 0 (i 6= 0, m), p(E0) = p(F0) =
1 = p(Em) = p(Fm), and the quantum Serre relations (QS 1), (QS 2), (QS 3), (QS 4)(a) and
(QS 5)(a), 1 ≤ a ≤ 4, where (QS 5)(a) are obtained from (QS 4)(a) on replacing Ej by Fj,

and:
(QS 4)(1) [Ei, Ej ] = 0 if dist(αi, αj) ≥ 2 (i.e., i 6= j and (αi, αj) = 0);
(QS 4)(2) [E0, E0] = 0 = [Em, Em], i.e. E2

0 = 0 = E2
m;

(QS 4)(3) JEi, JEi, Ei±1KK = 0, 0 6= i 6= m; i.e. E2
i Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0;

(QS 4)(4) [JJEm−1, EmK, Em+1K, Em] = 0, equivalently [JJEm+1, EmK, Em−1K, Em] = 0;
(QS 4)(4′) [JJEn′′, E0K, E1K, E0] = 0, equivalently [JJE1, E0K, En′′K, E0] = 0;
(QS 5)(1)− (QS 5)(4′) : same as (QS 4)(1)− (QS 4)(4′) with Fj replacing Ej.

We assume in Proposition 6.1 that m 6= n. When m = n there are additional relations (see
[Y99, Theorem 8.4.3]). Note that (QS 4)(1) asserts E0Em+EmE0 = 0, and EiEj −EjEi = 0
in the other cases.

7. Hecke algebra

Next we proceed to introduce an action of the affine Iwahori-Hecke algebra, denoted
Ha

d (q
2), on V ⊗d, via the theory of R-operators, developed from Drinfeld’s and Jimbo’s solu-

tion of the quantum Yang-Baxter equation.
By the Hecke algebra in the theory of admissible representations one usually means the

convolution algebra H of complex valued compactly supported measures on a local reductive
group. It suffices to consider here G(F ), the group of F -points of a reductive connected group
G over F , G = GL(d) in our case, where F is a local non-Archimedean field. Fixing a Haar
measure dg, and noting that a measure in H has the form f dg where f : G(F ) → C

is compactly supported and smooth (biinvariant under a compact open subgroup K ′ of
G(F )), one identifies H with ∪K ′Cc(K

′\G(F )/K ′). The spherical Hecke algebra HK =
Cc(K\G(F )/K), where K = G(O) is the hyperspecial maximal compact subgroup of our
G(F ), O being the ring of integers of F , is commutative, and can be studied by means of the
Satake transform. When K ′ is taken to be an Iwahori subgroup I ⊂ G(O), the pullback of
B(Fq), the upper triangular Borel subgroup of G(Fq), under the reduction G(O) → G(Fq),
obtained from the reduction O → Fq = O/(πππ) modulo the maximal ideal (πππ) in the local ring
O, the convolution algebra HI = Cc(I\G(F )/I) is called the affine Iwahori-Hecke algebra.
The structure of this algebra, of great importance in the study of admissible representations
of the group of points over a local non-Archimedean field F of a reductive connected group
G, was studied by Iwahori and Matsumoto [IM65], who gave a presentation in terms of
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generators and relations. This presentation depends on the (residual) cardinality q of Fq,
but the isomorphism class of the algebra HI need not be, as specified in Proposition 7.2.

7.1. Bernstein presentation. A useful presentation, better reflecting the structure of the
group G(F ), was given by J. Bernstein; see [HKP10] for a clear exposition. Bernstein’s
presentation exhibits HI as composed from the finite Iwahori-Hecke algebra Cc(I\K/I),
K = G(O), which can be presented as generated by T1, . . . , Td, subject to the relations:
(1) TiTj = TjTi if |i − j| > 1 (commutation relations); (2) TiTi+1Ti = Ti+1TiTi+1 (braid
relations); (3) (Ti + 1)(Ti − q2) = 0 (quadratic relations), and the commutative spherical
algebra R = Cc(A∩I\A), where A denotes the diagonal subgroup ofG(F ), which is generated
by the commuting elements θλ, λ ∈ P ∨ ≃ A/A ∩ I. This is the same as the lattice P ∨ of
section 2 in our case of G = GL(d). The Ti can be viewed as normalized characteristic
functions of the double cosets IsiI, where si (1 ≤ i < d) are transpositions generating the
Weyl group W = I\K/I, which is the symmetric group on d letters: = Sd, in our case
of GL(d), where the si are the reflections (i, i + 1). Bernstein observed that to determine
H , the commutation relations between the Ti and the θλ need to be specified. Bernstein’s
presentation of HI consists then of generators Ti = Tαi

, where αi range over a base of simple
roots, in our case 1 ≤ i < d, satisfying the commutation relations, the braid relations, and
the quadratic relations, and the commuting generators θλ, λ ∈ P , satisfying the Bernstein
relations

θλTi − Tiθsiλ = (q2 − 1)
θλ − θsiλ
1− θ−α∨

i

.

Here si are the reflections in the Weyl group associated with the coroots α∨
i ∈ P . Note that

the quadratic relations imply T−1
i = q−2Ti + (q−2 − 1), namely that the Ti are invertible.

In our case of GL(d), the lattice P ≃ Zd is spanned by εi = (0, . . . , 0, 1, 0, . . . , 0), 1 in
the ith place, 1 ≤ i ≤ d. The simple coroots are α∨

i = εi − εi+1, and the corresponding
reflections si interchange εi and εi+1, and fix the other εj. Thus the lattice {θλ; λ ∈ P} is
generated by yi = θ− εi . To write the Bernstein relation for λ = − εi, note that siλ = − εi+1,
so yi = θλ, θsi(λ) = yi+1, θ−α∨

i
= yiy

−1
i+1. Hence the relation in this case is

yiTi − Tiyi+1 = (q2 − 1)
yi − yi+1

1− yiy
−1
i+1

= −(q2 − 1)yi+1.

So
yiTi = (Ti − (q2 − 1))yi+1 = T−1

i q2yi+1, or TiyiTi = q2yi+1.

Normalizing Ti by putting T̂i = q−1Ti, the relation becomes T̂iyiT̂i = yi+1. In summary:

Definition 7.1. Fix d ≥ 1 and q ∈ C× which is not a root of 1. The affine Iwahori-Hecke

(in short: Hecke) algebra Ha
d (q

2) is the associative algebra over C(q) with 1 generated by T̂i

(1 ≤ i < d) and y±1
j (1 ≤ j ≤ d), subject to the relations

T̂iT̂i+1T̂i = T̂i+1T̂iT̂i+1; T̂iT̂j = T̂jT̂i (|i− j| > 1);

(T̂i + q−1)(T̂i − q) = 0, or T̂ 2
i − (q − q−1)T̂i − 1 = 0;

yjy
−1
j = 1 = y−1

j yj; yjyk = ykyj; yjT̂i = T̂iyj if j 6= i, i+ 1;

T̂iyiT̂i = yi+1.
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The associative subalgebra with 1 over Q(q) generated by the T̂i (1 ≤ i < d) is called the
finite Hecke algebra Hd(q

2). Then we have

Proposition 7.1. Hd(q
2) →֒ Ha

d (q
2), and C(q)[y±1

1 , . . . , y±1
d ] ⊗Hd(q

2) → Ha
d (q

2) is an iso-

morphism of vector spaces.

By Maschke theorem, the group algebra of a finite group W over a field F is semisimple
precisely when the characteristic of F does not divide the order of W . Consider the Hecke
algebra H(q2) defined over the field Q(q) (instead of C(q)), associated with any Coxeter
system (W,S) of any type, not just type A, where the Weyl groupW is Sd. By [GU89], H(q2)
is semisimple if and only if q2 is not a root of the Poincaré polynomial P (q) =

∑
w∈W qℓ(w),

in particular when q2 is not a root of 1. Here ℓ : W → Z≥0 is the length function on (W,S).

Proposition 7.2. The Hecke algebra H(q2) and the group algebra Q(q)W of the Weyl group

W over the field Q(q) are isomorphic whenever H(q2) is semisimple.

Remark 7.1. This is proven in [L81]. If q is indeterminate, the isomorphism H(q2) ≃ Q(q)W
is already in [B68, Ex. 26, 27, p. 56]. See [G93, chapter 13] for an exposition in type A.
Note that the f in the proof of [Mo03, Lemma 2.12] does not preserve the braid relations.

8. Parabolic induction

The natural embedding Sd × Sb →֒ Sd+b, where Sd is the symmetric group on the let-
ters t1, . . . , td, and Sb on td+1, . . . , td+b, extends to the functor of (normalized) induction of
admissible representations. Considering only the Iwahori-unramified case, we have:

Proposition 8.1. There exists a unique homomorphism φ(d, b) : Ha
d (q

2)⊗Ha
b (q

2) → Ha
d+b(q

2)

of Hecke algebras which maps T̂i⊗1 7→ T̂i, yj⊗1 7→ yj (1 ≤ i < d, 1 ≤ j ≤ d), 1⊗ T̂i 7→ T̂i+d,

1⊗ yj 7→ yj+d (1 ≤ i < b, 1 ≤ j ≤ b). The restriction of φ(d, b) to Hd(q
2)⊗Hb(q

2) defines a
homomorphism into Hd+b(q

2).

Let Mi be a right Ha
di
(q2)-module (i = 1, 2). Then M1 ⊗M2, their outer tensor product,

is an Ha
d1
(q2) ⊗ Ha

d2
(q2)-module. The induced Ha

d1+d2
(q2)-module Ia(M1,M2), studied by

Bernstein and Zelevinsky [BZ76], [BZ77], [Ze80], also named the Zelevinsky tensor product
of M1 and M2, is defined by

Ia(M1,M2) = ind
Ha

d1+d2
(q2)

Ha
d1

(q2)⊗Ha
d2

(q2)(M1 ⊗M2) = (M1 ⊗M2)⊗Ha
d1

(q2)⊗Hd2
(q2) H

a
d1+d2

(q2).

Up to a canonical isomorphism this induction is associative, and satisfies the pentagon axion
(for a product of four objects). The same holds with the superscript a removed, for finite
Hecke algebras.

Let M be an Ha
d (q

2)-module. By M |Hd(q
2) we mean M regarded as an Hd(q

2)-module by
restriction.

Proposition 8.2. Let Mi be a finite dimensional Ha
di
(q2)-module (i = 1, 2). Then there is a

natural isomorphism Ia(M1,M2)|Hd1+d2(q
2) ≃ I(M1|Hd1(q

2),M2|Hd2(q
2)).
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Proof. The natural map Ia(M1,M2)|Hd1+d2(q
2) → I(M1|Hd1(q

2),M2|Hd2(q
2)), (m1 ⊗m2)⊗

h 7→ (m1 ⊗ m2) ⊗ h (mi ∈ Mi, h ∈ Hd1+d2(q
2)), is well-defined surjective homomor-

phism of Hd1+d2(q
2)-modules. By Proposition 7.1, the rank of Ha

d1+d2
(q2) as an Ha

d1
(q2) ⊗

Ha
d2
(q2)-module is equal to the rank of Hd1+d2(q

2) as an Hd1(q
2) ⊗ Hd2(q

2)-module. Hence
dimC I

a(M1,M2) = dimC I(M1,M2). �

The theory of unramified representations suggests a family of universal Ha
d (q

2)-modules
Mc = Ha

d (q
2)/Hc, where c = (c1, . . . , cd) ∈ C×d and Hc is the right ideal in Ha

d (q
2) generated

by yj − cj (1 ≤ j ≤ d). It is part of the Langlands-Zelevinsky classification [Ze80] that

Proposition 8.3. (a) Every finite dimensional irreducible Ha
d (q

2)-module is isomorphic to a

quotient of some Mc.

(b) For all c ∈ C×d, Mc is isomorphic as an Hd(q
2)-module to the right regular representation.

(c) Mc is reducible as an Ha
d (q

2)-module iff cj = q2ck for some j, k.

Some representations of Ha
d (q

2) can be lifted from those of Hd(q
2):

Proposition 8.4. For each z ∈ C× there is a unique homomorphism evz : Ha
d (q

2) → Hd(q
2)

which is the identity on Hd(q
2) ⊂ Ha

d (q
2) (thus evz(T̂i) = T̂i (1 ≤ i < d)) and maps y1 to z.

Moreover, evz(yj) = zT̂j−1T̂j−2 . . . T̂2T̂
2
1 T̂2 . . . T̂j−1 (1 ≤ j ≤ d).

Let M be any Hd(q
2)-module. Pulling back M by evz gives an Ha

d (q
2)-module M(z) which

is isomorphic to M as an Hd(q
2)-module.

9. Yang-Baxter equations

Quantum algebras were developed by Drinfeld [D85], [D86] and Jimbo [J86]. In particular
[D86] introduced quasi triangular Hopf algebras. This is a Hopf algebra A with an element
R ∈ A⊗̂A satisfying (recall that ∆ is the comultiplication, and put ∆′ = τ∆, τ(x⊗y) = y⊗x)

∆′(x) = R∆(x)R−1 ∀x ∈ A,

(∆⊗ id)R = R13R23, (id⊗∆)R = R13R12,

where R12, R23, R13 are explicitly defined in Theorem 10.1 below. The element R satisfies
the Yang-Baxter (YB) equation; it is called the universal R-matrix. Construction of the
quasi triangular Hopf algebra is based in [D86] on the notion of the quantum double: the
quantum double W (A) of a Hopf algebra A is a quasi triangular Hopf algebra isomorphic
to A ⊗ A′ as a vector space, with the canonical R-matrix R =

∑
i ei ⊗ ei, where {ei} and

{ei} are dual bases in A and its dual A′. For any quantum algebra Uq(g), which is the
Drinfeld-Jimbo deformation of a Kac-Moody algebra g, there is a surjection to Uq(g) from
the quantum double of the corresponding Borel subalgebra: W (Uq(b+)) → Uq(g). Thus any
quantum algebra Uq(g) is a quasi triangular Hopf algebra. The problem is to give an explicit
expression to the universal R-matrix directly in terms of Uq(g). The implicit form of such
an expression was given by [D86].

For quantum superalgebras: q-deformations of finite dimensional contragredient Lie su-
peralgebras, such a formula is given in [KT91]. Let us recall the universal R-matrix in our
case of Uq(gl(m,n)). This R will be used to construct an action of the Hecke algebra Hd(q

2)
on V ⊗d, which commutes with the action ρd of Uq(gl(m,n)) on V ⊗d.
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10. Universal R-matrix

Let τ be the (bilinear) involution τ(x⊗ y) = (−1)p(x)p(y)y ⊗ x (for homogeneous elements
x and y) of Uq(gl(m,n))⊗ Uq(gl(m,n)). Define the opposite comultiplication by ∆′ = τ∆.

Theorem 10.1. ([KT91]) There is a unique invertible solution

R =
∑

i

xi ⊗ yi ∈ Uq(gl(m,n))⊗̂Uq(gl(m,n))

of parity 0 (where ⊗̂ means the completion) of the equations

∆′(x) = R∆(x)R−1 ∀x ∈ Uq(gl(m,n)),

(∆⊗ id)R = R13R23, (id⊗∆)R = R13R12,

where R12 =
∑

i xi ⊗ yi ⊗ 1, R23 =
∑

i 1⊗ xi ⊗ yi, R
13 =

∑
i xi ⊗ 1⊗ yi.

This R is called the universal R-matrix. The space V is Z/2-graded, = V0 ⊕ V1, and εi,
(1 ≤ i ≤ n′), makes a basis with V0 = ⊕1≤i≤mCεi, V1 = ⊕m<i≤n′Cεi. Then p(εi) is 0 if
1 ≤ i ≤ m, and 1 if m < i ≤ n′. Applying R to V ⊗V relative to the basis {εi⊗εj ; i, j ∈ I},
I = {1, . . . , n′}, the matrix R in End(V ⊗ V ) is given by

R =
∑

1≤i≤n′

q(−1)p(εi)Ei,i ⊗ Ei,i +
∑

1≤i 6=j≤n′

Ei,i ⊗ Ej,j +
∑

1≤i<j≤n′

(−1)p(εi)(q − q−1)Ej,i ⊗ Ei,j.

Here ρ(Eij)εk = δ(j, k)εi. The action of End(V ⊗ V ) on V ⊗ V is Z/2-graded, namely for
homogeneous elements

X ⊗ Y ∈ End(V ⊗ V ) = End(V )⊗ End(V )

and u⊗ w ∈ V ⊗ V , we have

(X ⊗ Y )(u⊗ w) = (−1)p(Y )p(u)Xu⊗ Y w.

The product of tensors is given as

(X1 ⊗X2)(Y1 ⊗ Y2) = (−1)p(X2)p(Y1)X1Y1 ⊗X2Y2

for homogeneous X1 ⊗X2, Y1 ⊗ Y2 ∈ End(V ⊗ V ). Define

σ : V ⊗ V → V ⊗ V by σ(u⊗ w) = (−1)p(u)p(w)w ⊗ u.

Then Ř = σR is given by

Ř =
∑

1≤i≤n′

(−1)p(εi)q(−1)p(εi)Ei,i⊗Ei,i+
∑

1≤i 6=j≤n′

(−1)p(εi)Ej,i⊗Ei,j+
∑

1≤i<j≤n′

(q−q−1)Ei,i⊗Ej,j.

By direct computation we check that

Ř2 = (q − q−1)Ř + I.

For each j (1 ≤ j < d) put Řj = id
⊗(j−1)
V ⊗Ř ⊗ id

⊗(d−j−1)
V ∈ End(V ⊗d), where Ř operates

on the (j, j + 1) factors. We have (Ři + q−1)(Ři − q) = 0, and one checks (see [Mo03, Prop.
2.7], [Mi06, Thm 2.1]):
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Proposition 10.2. (1) The Řj satisfy the commutation relations ŘiŘj = ŘjŘi if |i− j| ≥ 2;
and the braid relations ŘiŘi+1Ři = Ři+1ŘiŘi+1 (1 ≤ i < d), so they define an action πd of

Hd(q
2) on V ⊗d. (2) This action πd commutes with the natural action ρd of Uq(gl(m,n)) on

V ⊗d, namely Řj ∈ End(ρd,Uq(gl(m,n)))(V
⊗d) for all j (1 ≤ j < d).

For (2) see [Mo03, Prop. 2.9], [Mi06, Prop. 4.1, 4.2]. Moreover, [Mo03, Thm 3.13, Cor.
3.14], [Mi06, Thm 4.4] show that πd(Hd(q

2)) and ρd(Uq(gl(m,n))) are the centralizers of each
other in End(V ⊗d), thus

Endρd(Uq(gl(m,n)))(V
⊗d) = πd(Hd(q

2)),

and

Endπd(Hd(q2))(V
⊗d) = ρd(Uq(gl(m,n)))

by the double centralizer theorem of [CR81, Thm 3.54]. Moreover, [Mo03, Thm 5.16], [Mi06,
Thm 5.1] show that as an Hd(q

2)× Uq(gl(m,n))-bimodule,

V ⊗d = ⊕λ∈Γ(m,n;d)Hλ ⊗ V (λ),

where Γ(m,n; d) = {λ = (λ1, λ2, . . . ) ∈ Par(d); λj ≤ n if j > m}, V (λ) is an irreducible
representation of Uq(gl(m,n)) indexed by λ with V (λ) 6≃ V (µ) if λ 6= µ, and Hλ is an
irreducible representation of Hd(q

2) indexed by λ.
In the ordinary (nonsuper) quantum case, this result is due to Jimbo [J86]. In the super,

yet non quantum, case, this is due to Berele-Regev [BR87, Thm 3.20]. In the non super,
non quantum, case, this is the original result of Schur [Sch27], as refined by Weyl [W53].
Proposition 10.2 is simply an extension of Jimbo’s result, which is the case n = 0, to the
super (n ≥ 1) case.

11. Affine Schur-Weyl duality

Let us rephrase the Weyl-Schur duality of [Mo03, Theorem 5.16] (and [Mi06, Theorem
5.1], [Zy, Theorem 3.16]) in the context of quantum Lie superalgebras in a form useful for
our generalization to the affine quantum super case.

Proposition 11.1. Fix integers d, m, n ≥ 2. There is a unique left Hd(q
2)-module structure

on V ⊗d such that T̂i acts as Ři (1 ≤ i < d); the action of Hd(q
2) commutes with the natural

action of Uσ
q (sl(m,n)) on V ⊗d. If M is a right Hd(q

2)-module, define J(M) = M⊗Hd(q2)V
⊗d,

with the natural (ρd = ρ⊗d(∆(d−1))) left Uσ
q (sl(m,n))-module structure obtained from that on

V ⊗d. If d < (n+1)(m+1) then the functor M 7→ J(M) is an equivalence from the category of

finite dimensional Hd(q
2)-modules to the category of finite dimensional Uσ

q (sl(m,n))-modules

whose irreducible constituents all occur as constituents of V ⊗d.

Our main result is the next construction of a functor F , an equivalence of categories. The
work is to check that the following extension to the affine context holds. But first we recall
the definition of the fundamental representation (ρ, V ) of Uσ

q,AI = Uσ
q,AI(E ,Π, p). The space

V = V0 ⊕ V1 is a superspace, thus Z/2-graded, V0 = ⊕1≤i≤mCεi, V1 = ⊕m<i≤n′Cεi, and
there is a parity function p : V ։ Z/2 with p(εi) being 0 on V0 and 1 on V1. The σ acts as
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ρ(σ)εi = (−1)p(εi)εi (i ∈ I = {1, . . . , n′ = n + m}), thus ρ(σ) = diag(Im,−In) in the basis
{εi}. Also ρ(Kγ)εi = q(γ,εi)εi (γ ∈ Γ ⊂ E),

ρ(Ei)εj = δ(j, i+ 1)q−1
i+1εi, ρ(Fi)εj = δ(i, j)qi+1εi+1,

where we put ε0 = 0 = εn′+1. Thus in the basis {εi; i ∈ I} of V ,

ρ(Ei) = q−1
i+1Ei,i+1, ρ(Fi) = qi+1Ei+1,i, ρ(Kγ) = diag(q(γ,εi)).

Then ρ([En′′ , Fn′′ ]) = ρ
(

Kn′′−K−1
n′′

q−1−q

)
, confirming (QS 3).

Recall that αi = εi − εi+1 (1 ≤ i < n′) and α0 = −ε1 + εn′, and that (εi, εj) = δij(−1)p(εi).
In particular ρ(Kαi

) = diag(I, q, q−1, I), I signifies the identity matrix of the suitable size, q
at the ith place, if 1 ≤ i < m; ρ(Km) = diag(I, q, q, I), q at the mth and (m + 1)st places;
ρ(Kαi

) = diag(I, q−1, q, I), q−1 at the ith place, ifm < i < n′. Put K∏ =
∏

1≤i≤n′′ Kαi
. Then

ρ(K∏) = diag(q, I, q). Put E∏ = E1E2 · · ·En′′ and F∏ = Fn′′ · · ·F2F1. Then ρ(E∏) = E1,n′

and ρ(F∏) = En′,1. Put K0 = Kα0 = K−1∏ . Then Kα0Kα1 . . .Kαn′′
– as a central element of

Uσ
q – acts as the identity.

For each a ∈ C× extend the representation (ρ, V ) of Uσ
q,AI to a Ũσ

q = Ũσ
q (E ,Π, p)-module

(ρ, V (a)) by E0 = aFΠ and F0 = a−1EΠ, thus ρ(E0) = aρ(F∏) and ρ(F0) = a−1ρ(E∏). Then

E0F0 + F0E0 =
Kα0−K−1

α0

q−1−q
, which is compatible with (QS 3) with the choice q0 = q−1, thus

d0 = −1.
Recall also that Ũσ

q has a Hopf algebra structure (∆, S, ε) with ∆(σ) = σ ⊗ σ, ∆(Kγ) =

Kγ ⊗Kγ , ∆(Fi) = Fi ⊗K−1
αi

+ σp(αi) ⊗Fi, ∆(Ei) = Ei ⊗ 1 +Kαi
σp(αi) ⊗Ei where the parity

p of αi is 0 except when i = 0 or i = m when it is 1. We defined ∆(k) : Ũσ
q → (Ũσ

q )
⊗(k+1)

to be (∆ ⊗ 1⊗(k−1))∆(k−1), where ∆(1) = ∆. Also we defined ρd : Ũσ
q → End(V ⊗d) by

ρd(x) = ρ⊗d ◦∆(d−1)(x). Explicitly: ρd(σ) = ρ(σ)⊗d, ρd(Kγ) = ρ(Kγ)
⊗d, and

ρd(Ei) =
∑

1≤k≤d

ρ(σp(αi)Kαi
)⊗(k−1) ⊗ ρ(Ei)⊗ 1⊗(d−k),

ρd(Fi) =
∑

1≤k≤d

ρ(σp(αi))⊗(k−1) ⊗ ρ(Fi)⊗ ρ(K−1
αi

)⊗(d−k),

(recall that p(αi) = 0 if i 6= 0, m; p(α0) = 1 = p(αm)) since we have, by induction,

∆(d−1)(Ei) =
∑

1≤j≤d

(σp(αi)Kαi
)⊗(j−1) ⊗Ei ⊗ 1⊗(d−j) = ∆(d−2)(Ei)⊗ 1 + (σp(αi)Kαi

)⊗(d−1) ⊗Ei,

∆(d−1)(Fi) =
∑

1≤j≤d

(σp(αi))⊗(j−1) ⊗ Fi ⊗ (K−1
αi

)⊗(d−j) = ∆(d−2)(Fi)⊗K−1
αi

+ (σp(αi))⊗(d−1) ⊗ Fi.

Theorem 11.2. Fix integers d, m, n ≥ 2. There is a functor F from the category of fi-

nite dimensional right Ha
d (q

2)-modules to the category of finite dimensional semisimple left

Uσ
q,AI(E ,Π, p)-modules whose irreducible constituents are all submodules of V ⊗d, defined as



AFFINE QUANTUM SUPER SCHUR-WEYL DUALITY 21

follows. Let M be a right Ha
d (q

2)-module. Define F(M) to be J(M) as a Uσ
q (sl(m,n))-

module. Let the remaining generators of Uσ
q,AI(E ,Π, p) act by

(ρd(E0))(m⊗ v) =
∑

1≤j≤d

my−1
j ⊗ ρ⊗d(Y

(d)
jE )v, Y

(d)
jE = (σK−1∏ )⊗(j−1) ⊗ F∏ ⊗ 1⊗(d−j),

(ρd(F0))(m⊗ v) =
∑

1≤j≤d

myj ⊗ ρ⊗d(Y
(d)
jF )v, Y

(d)
jF = σ⊗(j−1) ⊗E∏ ⊗K

⊗(d−j)∏ ,

for all m ∈ M and v ∈ V ⊗d, and ρd(Kα0)(m⊗v) = m⊗ρ(K−1
Π )dv, and ρd

([
K0−K−1

0

q−q−1

])
(m⊗v)

=
∑

1≤j≤d

m⊗

(
(ρ(K−1∏ )⊗(j−1) ⊗ ρ

(
K∏ −K−1∏

q − q−1

)
⊗ ρ(K∏)⊗(d−j))

)
v.

If d < n′ then the functor M 7→ F(M) is an equivalence from the category of finite dimen-

sional Ha
d (q

2)-modules to the category of finite dimensional Uσ
q,AI(sl(m,n))-modules whose

irreducible constituents all occur as constituents of V ⊗d.

This Theorem holds also for d = 1. Its proof uses implicitly this case. We showed that our
functor is an equivalence only for d < n′. Perhaps this result extends to d < (n+ 1)(m+ 1)
instead of d < n′ = m+ n. But our method of proof, which follows [CP96], requires d < n′.
Note that m ∈ M is unrelated to the integer m = dim V0.

12. Operators are well-defined

The first task in order to prove the theorem is to show that the operators ρd(E0) and
ρd(F0) are well defined. Then we need to check they satisfy the relations which define Uσ

q,AI.

We need to check only the new relations, those involving the generators E0, F0,
[
K0−K−1

0

q−q−1

]
.

We leave the verification of (QS 2) for E0, F0, Kα0 to the reader. Then we need establish
the equivalence of categories. In this section we check the operators are well defined. Thus
we need to verify that

(ρd(F0))(mT̂i ⊗ v) = (ρd(F0))(m⊗ T̂iv)

for all m ∈ M and v ∈ V ⊗d, namely as operators on J(M) = M ⊗Hd(q2) V
⊗d we have

∑

1≤j≤d

T̂iyj ⊗ ρ⊗d(Y
(d)
jF ) =

∑

1≤j≤d

yj ⊗ ρ⊗d(Y
(d)
jF )T̂i.

Recall that T̂ 2
i −(q−q−1)T̂i−1 = 0, (T̂i−q)(T̂i+q−1) = 0, T̂i−(q−q−1) = T̂−1

i , T̂iyiT̂i = yi+1,

and so T̂iyi+1 = T̂ 2
i yiT̂i = ((q − q−1)T̂i + 1)yiT̂i = (q − q−1)yi+1 + yiT̂i.

If j 6= i, i+ 1, then T̂i commutes with yj and with ρ⊗d(Y
(d)
jF ). So it remains to show:

T̂iyi ⊗ Y
(d)
iF + T̂iyi+1 ⊗ Y

(d)
i+1,F = yi ⊗ Y

(d)
iF T̂i + yi+1 ⊗ Y

(d)
i+1,F T̂i.

Using the relations T̂i satisfies, we see that the left side equals

yi+1 ⊗ T̂−1
i Y

(d)
iF + (q − q−1)yi+1 ⊗ Y

(d)
i+1,F + yiT̂i ⊗ Y

(d)
i+1,F .
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Comparing to the right side we obtain

yi ⊗ [T̂iY
(d)
i+1,F − Y

(d)
i,F T̂i] + yi+1 ⊗ [T̂−1

i Y
(d)
i,F − Y

(d)
i+1,F T̂

−1
i ] = 0.

Hence it suffices to show: T̂iY
(d)
i+1,F = Y

(d)
i,F T̂i. Only two factors in the tensor product are

affected, so we need only check that Ř(ρ(σ) ⊗ ρ(E∏)) = (ρ(E∏) ⊗ ρ(K∏))Ř. Recall the

explicit expression for Ř:

Ř =
∑

1≤i≤n′

(−1)p(εi)q(−1)p(εi)Ei,i⊗Ei,i+
∑

1≤i 6=j≤n′

(−1)p(εi)Ej,i⊗Ei,j+
∑

1≤i<j≤n′

(q−q−1)Ei,i⊗Ej,j.

and that ρ(K∏) = diag(q, I, q), ρ(E∏) = E1n′ and ρ(σ) = diag(Im,−In). The left side
becomes

Ř(diag(Im,−In)⊗ E1,n′) = qE11 ⊗ E11E1n′ +
∑

i 6=j=1

(−1)p(εi)E1i ⊗Ei1E1n′

and the right

(E1n′ ⊗ diag(q, I, q))Ř = −q · q−1E1n′En′n′ ⊗En′n′ +
∑

i 6=j=n′

(−1)p(εi)E1n′En′i ⊗Ein′ · qδ(i,1).

All terms in the sums are equal to one another, except that indexed by i = n′ in the first
sum and that indexed by i = 1 in the 2nd sum. The remaining two terms are qE11 ⊗E1n′ +
(−1)E1n′ ⊗ En′n′ in both cases, proving the required equality.

Similarly, to verify that ρd(E0) is well defined we need to show:

(ρd(E0))(mT̂i ⊗ v) = (ρd(E0))(m⊗ T̂iv),

i.e., that as operators on J(M) = M ⊗Hd(q2) V
⊗d we have

∑

1≤j≤d

T̂iy
−1
j ⊗ ρ⊗d(Y

(d)
jE ) =

∑

1≤j≤d

y−1
j ⊗ ρ⊗d(Y

(d)
jE )T̂i.

If j 6= i, i+ 1, then T̂i commutes with yj and with ρ⊗d(Y
(d)
jE ). So it remains to show:

T̂iy
−1
i ⊗ Y

(d)
iE + T̂iy

−1
i+1 ⊗ Y

(d)
i+1,E = y−1

i ⊗ Y
(d)
i+1,ET̂i + y−1

i+1Y
(d)
i+1,ET̂i.

Using the relations T̂i satisfies, we see this reduced to

y−1
i ⊗ [Y

(d)
i,E (−T̂i + (q − q−1)) + T̂−1

i Y
(d)
i+1,E] + y−1

i+1 ⊗ [−Y
(d)
i+1,ET̂i + T̂iY

(d)
i,E ] = 0.

Hence it suffices to show: Y
(d)
i+1,ET̂i = T̂iY

(d)
i,E . Only two factors in the tensor product do not

commute, so we are left with the need to show:

(ρ(σK−1∏ )⊗ ρ(F∏))Ř = Ř(ρ(F∏)⊗ 1),

where ρ(F∏) = En′,1. The right side is

Ř(En′,1 ⊗ 1) = −q−1En′,n′En′,1 ⊗En′,n′ +
∑

1≤j<n′=i

(−1)p(εi)Ej,n′En′,1 ⊗ En′,j(−1)1−p(εj),
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while the left side is (diag(Im,−In) diag(q
−1, I, q−1)⊗ En′,1)Ř

= qq−1E11 ⊗ En′,1E11 +
∑

i=1<j≤n′

(−1)p(ε1)Ej,1 ⊗ En′,1E1,j(−1)p(εj)q−δ(j,n′).

All terms in the sums on both sides are equal except that indexed by j = 1 on the right
and j = n′ on the left, so the remaining two terms on both sides are equal to E11 ⊗ En′,1 −
q−1En′,1 ⊗En′,n′, proving the required equality.

13. Relations (QS 3), (QS 4)(2)

Consider the superbracket [E1, F0] = E1F0 − F0E1. Then

(ρd([E1F0 − F0E1]))(m⊗ v) =
∑

1≤j,k≤d

myj ⊗ ρ⊗d(Xk,j)v

where Xk,j is AkBj −BjAk, we put K1 for Kα1 , and

Ak = K
⊗(k−1)
1 ⊗ E1 ⊗ 1⊗(d−k), Bj = σ⊗(j−1) ⊗ E∏ ⊗K

⊗(d−j)∏ .

Recall that ρ(E1) = E12 and ρ(E∏) = E1,n′, ρ(K∏) = diag(q, I, q), ρ(K1) = diag(q, q−1, I),
ρ(σ) = diag(Im,−In). We apply ρ⊗d but delete the ρ from the notation for simplicity. Then
AkBj − BjAk is 0 if j = k as E12E1,n′ = 0 = E1,n′E12. It is easy to check that Ak and Bj

commute when j > k. When k > j, all factors commute, except those at positions k and j.
At these two positions we get

K1 ⊗ E1 · E∏ ⊗K∏ − E∏ ⊗K∏ ·K1 ⊗ E1 = qE1,n′ ⊗E12 −E1,n′ ⊗ qE12 = 0.

Consider the superbracket [E0, F0] = E0F0 + F0E0. Then

(ρd([F0, E0]))(m⊗ v) =
∑

1≤j,k≤d

my−1
j yk ⊗ ρ⊗d(Y

(d)
kE · Y (d)

jF + Y
(d)
jF · Y (d)

kE )v.

Note that all factors in the tensor product in Y
(d)
kE ·Y (d)

jF +Y
(d)
jF ·Y (d)

kE commute except those at

the positions j, k. The terms corresponding to a pair j < k add up to σK−1∏ ⊗F∏ ·E∏⊗K∏+

E∏⊗K∏ ·σK−1∏ ⊗F∏. This equals q−1E1,n′ ⊗qEn′,1+(−1)q−1E1,n′ ⊗qEn′,1 = 0. If k < j we

get at the positions (k, j) the sum F∏ ⊗ 1 ·σ⊗E∏ + σ⊗E∏ ·F∏ ⊗ 1 = (F∏σ+ σF∏)⊗E∏,
and the dirst factor is 0.

When j = k the term is

(K−1∏ )⊗(j−1) ⊗ [E∏F∏ + F∏E∏]⊗K
⊗(d−j)∏ .

But

ρ(E∏)ρ(F∏) + ρ(F∏)ρ(E∏) = E1n′En′1 + En′1E1n′ = diag(1, 0, . . . , 0, 1) =
ρ(K∏ −K−1∏ )

q − q−1
,

and (QS3) follows.
To see that the relation [F0, F0] = 0, namely F 2

0 = 0, is preserved by ρd, we consider

ρd(F0)
2(m⊗ v) =

∑

j,k

mykyj ⊗ ρ⊗d(Y
(d)
jF · Y (d)

kF )v.
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It suffices to look at the factors in the tensor product where E∏ occur, as the other factors
commute. Applying ρ⊗2 to E∏ ⊗K∏ · σ ⊗E∏ + σ ⊗E∏ · E∏ ⊗K∏ we get

E1n′ diag(I,−I)⊗ diag(q, I, q)E1n′ + diag(I,−I)E1n′ ⊗ E1n′ diag(q, I, q),

which is 0, when j 6= k. When j = k we have ρ(E∏)2 = E2
1n′ = 0.

14. Relations (QS 4)(3)

Next we verify that the relation relation (QS 4)(3): JEi, JEi, Ei±1KK = 0, 0 6= i 6= m,
is preserved by ρd. This has to be verified only when one of the indices is 0. The two
relations are JE1, JE1, E0KK = 0 and JEn′′ , JEn′′ , E0KK = 0. By the definition of J., .K, since
−(α1, α0) = −(ε1 − ε2, εn′ − ε1) = (ε1, ε1) = 1 and

−(α1, α1 + α0) = −(ε1 − ε2, ε1 − ε2 + εn′ − ε1) = −(ε2, ε2) = −1,

the first relation becomes

0 = [E1, [E1, E0]q]q−1 = E1(E1E0 − qE0E1)− q−1(E1E0 − qE0E1)E1

= E2
1E0 − (q + q−1)E1E0E1 + E0E

2
1 .

Then to show vanishing of

(ρd([E1, [E1, E0]q]q−1))(m⊗ v) =
∑

j

my−1
j ⊗ [ρd(E1), [ρd(E1), ρ

⊗d(Y
(d)
jE )]q]q−1v,

it suffices to show the vanishing of ρ⊗d of [∆(d−1)(E1), [∆
(d−1)(E1), Y

(d)
j,E ]q, ]q−1 . When d = 1

this leads to ρ([E1, [E1, E0]q]q−1) = [E12, [E12, En′,1]q]q−1 , which is 0 since E2
12 = 0, E12En′,1 =

0. When d = 2 we are led to

[∆(E1), [∆(E1), F∏ ⊗ 1 + σK−1∏ ⊗ F∏]q]q−1

= [E1 ⊗ 1 +K1 ⊗E1, [E1 ⊗ 1 +K1 ⊗E1, σK
−1∏ ⊗ F∏]q]q−1

+[E1 ⊗ 1 +K1 ⊗E1, [E1 ⊗ 1 +K1 ⊗E1, F
∏ ⊗ 1]q]q−1 .

Apply ρ⊗2. The [., .]q of the first summand is

E12⊗En′,1−q(q−1E12⊗En′,1+σ diag(1, q−1, I, q−1)⊗En′,2) = −qσ diag(1, q−1, I, q−1)⊗En′,2,

so the [., .]q−1 is −E12 ⊗En′,2 + E12 ⊗ En′,2 = 0. The [., .]q of the second summand is

En′,1 ⊗E12 − q(En′,2 ⊗ 1 + En′,1 ⊗E12) = (1− q2)En′,1 ⊗E12 − qEn′,2 ⊗ 1,

so the [., .]q−1 is −qEn′,2 ⊗ E12 − q−1((1− q2)En′,2 ⊗E12 − q · q−1En′,2 ⊗ E12) = 0.
In general, we need to verify that after applying ρ⊗d, that we shall omit to simplify the

notation, the sum
∑

1≤s,t≤d a(s, t, j) is mapped to zero for each j, where

a(s, t, j) = [K
⊗(s−1)
1 ⊗E1⊗1⊗(d−s), [K

⊗(t−1)
1 ⊗E1⊗1⊗(d−t), (σK−1∏ )⊗(j−1)⊗En′,1⊗1⊗(d−j)]q]q−1 .

Fix j. The term s = t = j is zero since this case reduces to that of d = 1, as the components
at all other positions commute. So (ρ⊗3 of) a(j, j, j) = 0.

Fix j′ 6= j. If s, t range over the set {j, j′}, this reduces to the case of d = 2, for the same
reason. In particular, the sum of the terms a(j′, j, j), a(j, j′, j), a(j′, j′, j) is zero.
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Fix {j′′, j′}, j 6= j′ 6= j′′ 6= j. It remains to show that a(j′, j′′, j) + a(j′′, j′, j) = 0 for all
triples {j, j′′, j′}. As the components in the other positions commute, it suffices to consider
the case where d = 3. There are 3 cases: j = 1, 2, 3. Consider j = 1. We have

[K1 ⊗ E1 ⊗ 1, [K1 ⊗K1 ⊗E1, En′,1 ⊗ 1⊗ 1]q]q−1 (s = 2, t = 3).

We first compute the inner bracket [., .]q using K1En′,1 − qEn′,1K1 = (1 − q2)En′,1. Then
using E1K1 = q−1E1, K1E1 = qE1, this term is seen to be (1− q2)(q−1 − q)En′,1 ⊗E1 ⊗E1.
The term corresponding to s = 3, t = 2 is

[K1 ⊗K1 ⊗ E1, [K1 ⊗ E1 ⊗ 1, En′,1 ⊗ 1⊗ 1]q]q−1 = (1− q2)(q − q−1)En′,1 ⊗ E1 ⊗ E1

by similar computations, so the sum of these two terms is zero. When j = 2, for s = 1, t = 3
we have

[E1 ⊗ 1⊗ 1, [K1 ⊗K1 ⊗E1, σK
−1∏ ⊗ En′,1 ⊗ 1]q]q−1

= (1− q2)(E1K1σK
−1∏ − q−1K1σK

−1∏ E1)⊗En′1 ⊗ E1 = 0,

and for s = 3, t = 1

[K1 ⊗K1 ⊗ E1, [E1 ⊗ 1⊗ 1, σK−1∏ ⊗ En′,1 ⊗ 1]q]q−1

is zero since the first component in the inner [., .]q is E1σK
−1∏ −qσK−1∏ E1 = E1−q ·q−1E1 = 0.

Finally, when j = 3,

[E1 ⊗ 1⊗ 1, [K1 ⊗ E1 ⊗ 1, σK−1∏ ⊗ σK−1∏ ⊗ En′,1]q]q−1

is 0 since the 3rd component at the inner [., .]q is E1σK
−1∏ − qσK−1∏ E1 = 0, and

[K1 ⊗ E1 ⊗ 1, [E1 ⊗ 1⊗ 1, σK−1∏ ⊗ σK−1∏ ⊗ En′,1]q]q−1 = 0

since the first component in the inner [., .]q is again E1σK
−1∏ − qσK−1∏ E1 = 0.

We also need to check that the relation

0 = JEn′′ , JEn′′ , E0KK = [En′′, [En′′, E0]q]q−1

(second equality from −(αn′′ , α0) = −(εn′′ − εn′,−ε1 + εn′) = 1, −(αn′′, α0 + αn′′) = −1) is
preserved by ρd, namely that so is [∆(d−1)(En′′), [∆(d−1)(En′′), E0]q]q−1 = 0. Recall that

∆(d−1)(En′′) =
∑

0≤j≤d−1

(σp(αn′′)Kαn′′
)⊗j ⊗ En′′ ⊗ 1⊗(d−1−j).

Recall that p(αn′′) = p(αi) = 0 if i 6= 0, m, and p(α0) = p(αm) = 1. The verification of this
case is similar to that of the previous case, and is left to the reader.

This completes the verification that the relations (QS 4)(3) are preserved under ρd.
The relations (QS 5)(3), in which the E are replaced by F , are verified by analogous

computations.
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15. Relations (QS 4)(4′)

Finally we need to theck that the relation (QS 4)(4′), which is [JJEn′′ , E0K, E1K, E0] = 0,
equivalently [JJE1, E0K, En′′K, E0] = 0, is preserved under ρd. Consider the last relation. Since

−(α1, α0) = −(ε1 − ε2, εn′′ − ε1) = (ε1, ε1) = 1, JE1, E0K = [E1, E0]q = E1E0 − qE0E1.

Since
−(α1 + α0, αn′′) = −(ε1 − ε2 + εn′ − ε1, εn′′ − εn′) = (εn′ , εn′) = −1,

the JJE1, E0K, En′′K is [[E1, E0]q, En′′ ]q−1 , and the remaining bracket, [∗, E0], is ∗E0 + E0∗,
since p(E1E0En′′) = 1 and p(E0) = 1. We need to show then

[[[ρd(E1), ρd(E0)]q, ρd(En′′)]q−1, ρd(E0)] = 0.

As
ρd(E1) = ρ⊗d(∆(d−1)(E1)) =

∑

0≤j<d

K⊗j
α1

⊗ ρ(E1)⊗ 1⊗(d−1−j)

and

(ρd(E0))(m⊗ v) =
∑

1≤j≤d

my−1
j ⊗ ρ⊗d(Y

(d)
jE )v, Y

(d)
jE = (σK−1∏ )⊗(j−1) ⊗ F∏ ⊗ 1⊗(d−j),

we need consider the sum of terms of the form (as before, to simplify the notation, by E1,
K1 = Kα1 , F

∏, K∏, σ, En′′ , Kn′′ we mean below their images under ρ: E12, diag(q, q
−1, I),

En′,1, diag(q, I, q), diag(Im,−In), En′′,n′, diag(I, q−1, q))

a(j1, j2, j3, j4) = [[[K
⊗(j1−1)
1 ⊗ E1 ⊗ 1⊗(d−j1), (σK−1∏ )⊗(j2−1) ⊗ F∏ ⊗ 1⊗(d−j2)]q,

(σKn′′)⊗(j3−1) ⊗ En′′ ⊗ 1⊗(d−j3)]q−1 , (σK−1∏ )⊗(j4−1) ⊗ F∏ ⊗ 1⊗(d−j4)].

To keep track of the accounting, the procedure will be to fix (j2, j4), and consider the sum
of the terms a for all the possibilities for j1, j3. In all cases the sum is zero. There are too
many cases to record all computations here, but the technique is as in the previous section.
We describe a few cases. If all ji are equal to the same j, then we may assume d = 1, as
the other components in the tensor product commute. In this case we are reduced to the
computation (recall that we apply ρ although this is omitted from the notation):

[[[E1, F
∏]q, En′′ ]q−1 , F∏].

The inner bracket is [E12, En′,1]q = −qEn′,2. The bracket of this with En′′ = En′′,n′ is En′′,2,
and this bracketed with F∏ = En′,1 is 0 as En′′,2En′,1 = 0 = En′,1En′′,2.

Next we consider the case of j2 = j4 = j, and j1, j3 in {j, j′}. We may work with d = 2,
so j = 1 or 2. When j = 1, j1 = 1, j3 = 2, we get

[[[E12 ⊗ 1, En′,1 ⊗ 1]q, σKn′′ ⊗En′′]q−1 , En′,1 ⊗ 1] = q(1− q−2)[En′,2 ⊗ En′′ , En′,1 ⊗ 1] = 0.

When j = 1, j1 = 2, j3 = 1, we get

[[[K1 ⊗E1, F∏ ⊗ 1]q, En′′ ⊗ 1]q−1, F∏ ⊗ 1] = −q−1(1− q2)[En′′,1 ⊗ E1, En′,1 ⊗ 1] = 0.

And when j1 = 2 = j3,

[[[K1 ⊗E1, F∏ ⊗ 1]q, σKn′′ ⊗En′′]q−1 , F∏ ⊗ 1]

is zero since [., .]q is (1− q2)En′,1 ⊗ E12, and the bracket of E12 with En′′ is zero.
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When j = 2, j1 = 1, j3 = 2:

[[[E1 ⊗ 1, σK−1∏ ⊗ F∏]q, σKn′′ ⊗ En′′]q−1 , σK−1∏ ⊗ F∏]

is zero since [., .]q is (E1 − q · q−1E1)⊗ F∏ = 0. When j = 2, j1 = 2, j3 = 1:

[[[K1 ⊗ E1, σK
−1∏ ⊗ F∏]q, En′′ ⊗ 1]q−1 , σK−1∏ ⊗ F∏]

vanishes since [., .]q−1 is ∗ ⊗ En′,2, and En′,2 times F∏ = En′,1 (on the right and on the left)
is 0. The last case, where j1 = 1 = j3 is zero as the [., .]q is the same as in the case j = 2,
j1 = 1, j3 = 2.

If j2 = j4 = j and j1, j3 6= j then we may work with d = 3. Thus if j = 1, (j1, j3) is (2,3)
or (3,2). If j = 2, (j1, j3) is (1,3) or (3,1). If j = 3, (j1, j3) is (1,2) or (2,1).

If j2 6= j4, and j1, j3 ∈ {j2, j4}, then (j2, j4) = (1, 2) and (j1, j3) = (1, 2) and (2, 1), or
(j2, j4) = (2, 1) and (j1, j3) = (1, 2) and (2, 1). If j1, j3 ∈ {j2, j4, j

′} but not both in {j2, j4},
then we can work with d = 3. The pair (j1, j3) is (j2, j

′), (j4, j
′), (j′, j2), (j

′, j4), that is, one
of j1, j3 is in {j2, j4}, the other is not.

When j2 6= j4, and j1, j3 /∈ {j2, j4}, then we work in d = 3 if j1 = j3 and with d = 4 if not.
In particular it suffices to work with d ≤ 4, and in each case the computation is reduced to
a simple matrix multiplication, that can be verified by hand or by machine.

This computation verifies (QS 4)(4′). The verification of the cases of (QS 5), where the
generators E are replaced by the generators F , is similar.

We conclude that the formulae for ρd(E0) and ρd(F0) then define a representation of
Uσ
q,AI(E ,Π, p,Γ).
If f : M → M ′ is a homomorphism of Ha

d (q
2)-modules, define F(f) : F(M) → F(M ′) by

(F(f))(m ⊗ v) = f(m) ⊗ v. Then F(f) is a well-defined homomorphism of Uσ
q,AI(E ,Π, p)-

modules, so that F is a functor between the categories of representations as specified in the
theorem.

16. The functor F is an equivalence

Assume from now on that d < n′. To show that the functor F – which we have seen is a
well-defined functor between the categories specified in the theorem – is an equivalence, one
has to show:
(a) Every finite dimensional Uσ

q,AI(E ,Π, p,Γ)-module W which is completely reducible and

each of its irreducible constituents is a constituent of V ⊗d is isomorphic to F(M) = M⊗Hd(q2)

V ⊗d for some Ha
d (q

2)-module M .
(b) F is bijective on sets of morphisms.

To prove (a), by Proposition 11.1 we assume that W = J(M) for some Hd(q
2)-module

M . We shall construct the action of the y±1
j on M from the given action of ρd(E0), ρd(F0),

ρd(H) on W .

Lemma 16.1. (a) Let M be a finite dimensional Hd(q
2)-module. Fix v ∈ V ⊗d. Suppose

that the projection of v to each isotypical component of J(M) is nonzero. Then the map

M → J(M), m 7→ m⊗ v, is injective.

(b) Recall that {ε1, . . . , εn′} denotes the standard basis of V . Suppose v = εi1 ⊗ · · · ⊗ εid ∈
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V ⊗d, where i1, . . . , id ∈ {1, . . . , n′} are distinct. Then V ⊗d = Uσ
q,AI(E ,Π0, p,Γ) · v, where

Π0 = {α1, . . . , αn′′}. In particular v satisfies the condition stated in (a).

Proof. As in [CP96, Lemma 4.3], (a) follows from Proposition 11.1, and (b) is clear. �

Lemma 16.2. (a) For j (1 ≤ j < n′) put a(j) = ε2 ⊗ · · · ⊗ εj, b(j) = εj+1 ⊗ · · · ⊗ εd,

v(j) = a(j)⊗ εn′ ⊗ b(j), w(j) = a(j)⊗ ε1 ⊗ b(j).

Then there exists αjF ∈ EndC M with

(ρd(F0))(m⊗ v(j)) = αjF (m)⊗ ρ⊗d(Y
(d)
jF )v(j)

and αjE ∈ EndC M with

(ρd(E0))(m⊗ w(j)) = αjE(m)⊗ ρ⊗d(Y
(d)
jE )w(j).

We have ρ⊗d(Y
(d)
jF )v(j) = ±w(j), and ρ⊗d(Y

(d)
jE )w(j) = ±v(j).

Proof. For τ in the symmetric group Sd on d letters, put

w(j)
τ = (ετ(2) ⊗ · · · ⊗ ετ(j))⊗ ετ(1) ⊗ (ετ(j+1) ⊗ · · · ⊗ ετ(d)).

The set {w(j)
τ ; τ ∈ Sd} spans the subspace of V ⊗d of weight λd = ε1 + ε2 + · · · + εd. In-

deed, (ρd(Kγ))εi = q(γ,εi)εi, so (ρd(Kγ))w
(j)
τ = q(γ,ε1+···+εd)w

(j)
τ . Note that ρd(Kγ)ρd(F0) =

q−(γ,α0)ρd(F0)ρd(Kγ), hence ρd(F0) adds ε1−εn′ to the weight, hence it takes εn′ to ε1. Hence
for every m ∈ M we have

(ρd(F0))(m⊗ v(j)) =
∑

τ∈Sd

mτ ⊗ w(j)
τ

for some mτ ∈ M . By the definition of Ř, w
(j)
τ is a nonzero scalar multiple of h · w(j) for

some h ∈ Hd(q
2), h = h(τ). Hence (ρd(F0))(m ⊗ v(j)) equals m′ ⊗ w(j) for some m′ ∈ M .

Then there exists αjF ∈ EndC M with m′ = αjF (m) for all m ∈ M by Lemma 16.1. The
existence αjE ∈ EndCM is proven analogously. �

Lemma 16.3. For all m ∈ M and v ∈ V ⊗d we have

(ρd(E0))(m⊗v) =
∑

1≤j≤d

αjE(m)⊗ρ⊗d(Y
(d)
jE )v, (ρd(F0))(m⊗v) =

∑

1≤j≤d

αjF (m)⊗ρ⊗d(Y
(d)
jF )v.

Proof. Recall that KγF0K
−1
γ = q−(γ,α0)F0, where α0 = εn′ − ε1, and ρ(Kγ)εi = q(γ,εi)εi.

Hence ρd(Kγ)ρd(F0)(m⊗ v), where v = εi1 ⊗· · ·⊗ εid, is q
(γ,−α0+εi1+···+εid)ρd(F0)(m⊗ v), and

this will be 0 if no ij is n
′, as then −εn′ + ε1 + εi1 + · · ·+ εid cannot be a weight of V ⊗d. So

we may assume some component of v is εn′.
Let r ≥ 0, s ≥ 1, r + s ≤ d, 1 ≤ j1 < j2 < · · · < jr ≤ d, 1 ≤ j′1 < j′2 < · · · < j′s ≤ d,

assume {j1, . . . , jr} ∩ {j′1, . . . , j
′
s} = ∅. Write j = (j1, . . . , jr), j

′ = (j′1, . . . , j
′
s). Let V (j,j′)

be the subspace of V ⊗d spanned by the vectors which have ε1 in positions j1, . . . , jr; εn′ in
positions j′1, . . . , j

′
s; and vectors from {ε2, . . . , εn′′} in the remaining positions. We prove the

lemma when v is in V (j,j′) for all j, j′ in two steps.
(i) For s = 1, by induction on r.
(ii) For all r, by induction on s.
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By Lemma 16.1(b), applied to the subalgebra of Uσ
q generated by the Ei, Fi, K

±1
αi

for i ∈

{2, . . . , n′′ − 1}, to prove our lemma for all v ∈ V (j,j′) it suffices to prove it for one 0 6= v ∈
V (j,j′) whose components have no vector from {ε2, . . . , εn′′} twice. Such vectors exist since
1 ≤ d+ 1− r − s ≤ d ≤ n′′.
Proof of step (i). Here s = 1. The case of r = 0 follows from Lemma 16.2(a): take

v = a(j′1)⊗ εn′ ⊗ b(j′1), w = a(j′1)⊗ ε1 ⊗ b(j′1),

(recall: a(j) = ε2 ⊗ · · · ⊗ εj , b(j) = εj+1 ⊗ · · · ⊗ εd). As Y
(d)
jF = σ⊗(j−1) ⊗E∏ ⊗K

⊗(d−j)∏ , and

ρ(E∏) = E1,n′ , we have ρ⊗d(Y
(d)
j′1,F

)v = w times (−1)max(0,j′1−m), and ρ⊗d(Y
(d)
j,F )v = 0 for all j 6=

j′1, hence (ρd(F0))(m ⊗ v) =
∑

1≤j≤d αjF (m) ⊗ ρ⊗d(Y
(d)
j,F )v, where αjF (m) = (−1)max(0,j−m).

Recall that the integer m = dim V0 in the exponent is not m ∈ M on the left.

Assume Step (i) holds for r−1. Put j̃ = (j2, . . . , jr). Define v′ ∈ V (j̃,j′) to be a pure tensor
with ε2 in the j1 position, and distinct vectors from {ε3, . . . , εn′′} in the remaining positions.
Then v = ρd(E1)v

′. Indeed, recall that ρd(E1) =
∑

k ρ(Kα1)
⊗(k−1) ⊗ ρ(E1) ⊗ 1⊗(d−k), that

ρ(E1)εj = δ(2, j)ε1, and that v′ has ε2 only at position j1 (and ε1 only at positions j2, . . . , jr),
so only k = j1 survives in the sum over k which defines ρd(E1), and (ρd(E1))v

′ = v as
ρ(K1) = diag(q, q−1, I) acts nontrivially only on ε1 and ε2.

Define v′′ by replacing εn′ in position j′ = j′1 in v′ by ε1, and v′′′ by replacing ε2 in position
j1 in v′′ by ε1. Now r(v′) = r − 1, so we can apply the induction on r (in the 3rd equality
below, and (QS 3) in the second).

(ρd(F0))(m⊗ v) = ρd(F0)ρd(E1)(m⊗ v′) = ρd(E1)ρd(F0)(m⊗ v′)

= ρd(E1)
∑

1≤ℓ≤d

αℓ,F (m)⊗ ρ⊗d(Y
(d)
ℓ,F )v

′.

Recall again that Y
(d)
ℓ,F is σ⊗(ℓ−1) ⊗E∏ ⊗K

⊗(d−ℓ)∏ , and ρ(E∏) = E1,n′, and εn′ occurs only at

position j′1 in v′. Then only ℓ = j′1 survives in the sum, which becomes a multiple of v′′, by
a sign ι, which is −1 if the number of factors of the form εa with a > m in position less than
j′1 is odd. Since ε2 occurs in v′′ only in position j1, in the sum defining ρd(E1) only the sum-
mand indexed by k = j1 survives when acting on v′′, and it is ρ(K1)

⊗(jr−1)⊗ρ(E1)⊗1⊗(d−jr).

So ρd(E1) maps v′′ to v′′′. We obtain αj′1,F
(m) times ιv′′′ = ρ⊗d(Y

(d)
j′1,F

)v. For other j we have

0 = ρ⊗d(Y
(d)
j,F )v. So we end up with

∑
j αj,F (m)⊗ ρ⊗d(Y

(d)
j,F )v, completing step (i).

Proof of step (ii). Assume the lemma holds for all v ∈ V (j,j′) with less than s components
εn′. As in Step (i), it suffices to prove the claim for one element v 6= 0 in V (j,j′) which has
distinct entries from {ε2, . . . , εn′′−1} in the remaining positions. Fix such a v. Let v′ be the
tensor obtained from v on replacing εn′ in positions j′s−1 and j′s by εn′′. We claim that

ρd(Fn′′)2v′ = (q + q−1)v.

To see this, recall that ρ(Fn′′) = En′,n′′, p(αn′′) = 0,

ρd(Fn′′) =
∑

1≤k≤d

1⊗(k−1) ⊗ ρ(Fn′′)⊗ ρ(K−1
αn′ ′

)⊗(d−k), ρ(K−1
n′′ ) =

(
I
q

q−1

)
.
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So in ρd(Fn′′)2v′ the sum over k in each ρd(Fn′′) reduces to k = j′s−1, j
′
s, and all factors in

positions 6= j′s−1, j
′
s in each summand, commute. At these two positions the components of

v′ are εn′′ ⊗ εn′′ and those of ρd(Fn′′)2 are

(ρ(Fn′′)⊗ ρ(K−1
n′′ ) + 1⊗ ρ(Fn′′))(ρ(Fn′′)⊗ ρ(K−1

n′′ ) + 1⊗ ρ(Fn′′))

= ρ(Fn′′)⊗ ρ(K−1
n′′Fn′′) + ρ(Fn′′)⊗ ρ(Fn′′K−1

n′′ )

as ρ(Fn′′)2 = 0. So ρd(Fn′′)2v′ equals

1⊗(j′s−1−1) ⊗ ρ(Fn′′)⊗ ρ(K−1
n′′ )

⊗(j′s−1−j′s−1) ⊗ (ρ(K−1
n′′Fn′′) + ρ(Fn′′K−1

n′′ ))⊗ ρ(K−2
n′′ )

⊗(d−j′s)v′.

Now ρ(Fn′′)εn′′ = εn′, ρ(K−1
n′′Fn′′)εn′′ = q−1εn′ , ρ(Fn′′K−1

n′′ )εn′′ = qεn′ , ρ(K−1
n′′ )⊗(j′s−1−j′s−1) acts

trivially, so in conclusion v = 1
q+q−1ρd(Fn′′)2v′, as claimed.

To continue we use the equality (QS 5)(3):

ρd(F0)ρd(Fn′′)2 = (q + q−1)ρd(Fn′′)ρd(F0)ρd(Fn′′)− ρd(Fn′′)2ρd(F0)

in the second equality below:

(ρd(F0))(m⊗ v) =
1

q + q−1
ρd(F0)ρd(Fn′′)2(m⊗ v′) = A +B,

A = ρd(Fn′′)ρd(F0)ρd(Fn′′)(m⊗ v′), B = −
1

q + q−1
ρd(Fn′′)2ρd(F0)(m⊗ v′).

To find B, we write by induction

(ρd(F0))(m⊗ v′) =
∑

1≤k≤s−2

αj′
k
,F (m)⊗ ρ⊗d(Y

(d)
j′
k
F
)v′, Y

(d)
jF = σ⊗(j−1) ⊗E∏ ⊗K

⊗(d−j)∏ ,

as εn′ occurs only at the s−2 < s positions j′1, . . . , j
′
s−2 in v′. Recall that ρ(E∏) = E1,n′. Note

that ρd(Fn′′) changes the factors (εn′′ to εn′) of v′ only at the positions j′s−1, j
′
s. Applying

ρd(Fn′′) to (ρd(F0))(m ⊗ v′) would send the part εn′′ ⊗ εn′′ at the positions j′s−1 and j′s to
εn′⊗qεn′′ (from the summand of ρd(Fn′′) with (j′s−1, j

′
s)-parts ρ(Fn′′)⊗ρ(K−1

n′′ )), plus εn′′⊗εn′

(from the summand of ρd(Fn′′) with -parts 1⊗ ρ(Fn′′)). Applying ρd(Fn′′) again we obtain

εn′ ⊗ qεn′ + εn′ ⊗ q−1εn′ = (q + q−1)εn′ ⊗ εn′ .

Now ρ⊗d(Y
(d)
j′
k
,F
) acts on the two factors εn′ ⊗ εn′ of v at the positions (j′s−1, j

′
s) via ρ(K∏) =

diag(q, I, q), namely by multiplication by q, but not on v′. So in summary,

B = −q−2
∑

1≤k≤s−2

αj′
k
(m)⊗ ρ⊗d(Y

(d)
j′
k
,F
)v.

To compute A, let v′′ (resp. v′′′) be obtained from v′ on replacing the vector εn′′ at the
j′s−1 (resp. j′s) position by εn′. Observe that

(ρd(Fn′′))(m⊗ v′) = qm⊗ v′′ +m⊗ v′′′.

(Applying ρd(Fn′′) again we recover the result of the start of the proof: (ρd(Fn′′)2)(m⊗v′) =
(q + q−1)(m⊗ v).) As s(v′′) = s− 1 = s(v′′′) < s, by induction we get

ρd(F0)ρd(Fn′′)(m⊗ v′) = q
∑

k 6=s

αj′
k
,F (m)⊗ ρ⊗d(Y

(d)
j′
k
,F
)v′′ +

∑

k 6=s−1

αj′
k
,F (m)⊗ ρ⊗d(Y

(d)
j′
k
,F
)v′′′.
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Now we apply ρd(Fn′′). As v′′ has εn′′ only at the j′s-position, we get

ρd(Fn′′)
∑

k 6=s

αj′
k
,F (m)⊗ ρ⊗d(Y

(d)
j′
k
,F
)v′′ = q−1

∑

k≤s−1

αj′
k
,F (m)⊗ ρ⊗d(Y

(d)
j′
k
,F
)v.

Denote this by A1. As v
′′′ has εn′′ only at the j′s−1 position,

ρd(Fn′′)
∑

k 6=s−1

αj′
k
,F (m)⊗ ρ⊗d(Y

(d)
j′
k
,F
)v′′′ = A2 + q−1A3,

A2 = αj′s,F
(m)⊗ ρ⊗d(Y

(d)
j′s,F

)v, A3 = q−1
∑

k≤s−2

αj′
k
,F (m)⊗ ρ⊗d(Y

(d)
j′
k
,F
)v.

No factor q−1 appears in front of A2 since ρ(K∏) acts at positions > j′s, which did not change
from v′′′ to v in A2. Then A = qA1 + A2 + q−1A3 = q−1A3 + A2 + qA1. So B + A is

(ρd(F0))(m⊗v) = −q−2
∑

1≤k≤s−2

αj′
k
,F (m)⊗ρ⊗d(Y

(d)
j′
k
,F
)v+q−1 ·q−1

∑

k≤s−2

αj′
k
,F (m)⊗ρ⊗d(Y

(d)
j′
k
,F
)v

+αj′s,F
(m)⊗ρ⊗d(Y

(d)
j′s,F

)v+q ·q−1
∑

1≤k≤s−1

αj′
k
,F (m)⊗ρ⊗d(Y

(d)
j′
k
,F
)v =

∑

1≤k≤s

αj′
k
,F (m)⊗ρ⊗d(Y

(d)
j′
k
,F
)v.

�

Lemma 16.4. Setting my−1
j = αjE(m), myj = αjF (m) defines a right Ha

d (q
2)-module struc-

ture on M , extending its Hd(q
2)-module structure.

Proof. We have to check the following relations:

(i) yjy
−1
j = 1 = y−1

j yj; (ii) yjyk = ykyj; (iii) yj+1 = T̂jyjT̂j .
To prove (i) and (ii), we compute both sides of the equality

(ρd([E0, F0]))(m⊗ v) = ρd

([
Kα0 −K−1

α0

q − q−1

])
(m⊗ v).

For (i) we take v with εn′ in the jth position and εn′−(d−1), . . . , εn′−1 in the remaining posi-
tions, in any order.

For (ii) take v to be a tensor with ε1 in the jth place, εn′ in the kth position, and
distinct vectors from {ε2, . . . , εn′′} in the other positions. Note that since the central element
c = Kα0Kα1 . . .Kαn′′

acts as 1 on every Uσ
q (E ,Π, p,Γ)-moduleW , we have (ρd(Kα0))(m⊗v) =

m⊗ ρ(K−1∏ )⊗dv.

For (iii), take v = εi1 ⊗ · · · ⊗ εid ∈ V ⊗d with ij = 2, ij+1 = 1, and the remaining ik are
distinct from {3, . . . , n′′}. This is possible since d ≤ n′′. So: v has ε2 at position j, ε1 at
position j+1. The vector v′ is obtained from v on replacing ε1 at position j+1 by εn′. The
vector v′′ is obtained from v′ on replacing ε2 at position j by εn′ and εn′ at position j+1 by
ε2. The vector v′′′ is obtained from v on replacing ε2 at position j by ε1 and ε1 at position
j + 1 by ε2.

Now looking at the indices (i, j) = (2, n′) only, we have Ř(εn′ ⊗ ε2) = ε2 ⊗ εn′, and
Ř(ε2 ⊗ ε1) = ε1 ⊗ ε2. Then

m · T̂jyjT̂j ⊗ v = m · T̂jyj ⊗ v′′′ = (ρd(F0))(m · T̂j ⊗ v′′)
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= (ρd(F0))(m⊗ T̂jv
′′) = (ρd(F0))(m⊗ v′) = myj+1 ⊗ v.

Since v has distinct components, Lemma 16.1 implies that m · yj+1 = m · T̂jyjT̂j for all
m ∈ M .

This completes the proof that W ≃ F(M) as a Uσ
q,AI(E ,Π, p,Γ)-module. �

To show that F is an equivalence we still need to show that it is bijective on sets of
morphisms. Injectivity of F follows from that of J . For surjectivity, let F : F(M) → F(M ′)
be a homomorphism of Uσ

q,AI(E ,Π, p,Γ)-modules. By Lemma 16.1, F = J(f) for some

homomorphism f : M → M ′ of Hd(q
2)-modules. Since F commutes with the action of F0

we have (ρ(F0)F )(m⊗ v) = (Fρ(F0))(m⊗ v), i.e.,
∑

1≤j≤d

f(m) · yj ⊗ ρ⊗d(Y
(d)
jF )v =

∑

1≤j≤d

f(myj)⊗ ρ⊗d(Y
(d)
jF )v

for all m ∈ M and v ∈ V ⊗d. Choosing v suitably we deduce that f(myj) = f(m)yj for all j
(1 ≤ j ≤ d). This completes the proof of theorem 11.2. �

17. Basic properties of F

Our F is a functor of C-linear categories. It commutes with induction. Write Uσ
q,a(sl(m,n))

for Uσ
q,AI(E ,Π, p) for simplicity.

Proposition 17.1. Let Mi be a finite dimensional Ha
di
(q2)-module (i = 1, 2). Then there is a

natural isomorphism F(Ia(M1,M2)) ≃ F(M1)⊗ F(M2) of U
σ
q,a(sl(m,n))-modules.

Proof. Let φ : B → A be a homomorphism of associative algebras with a unit over a field,
M a right B-module, W a left A-module, and W |B is W regarded as a left B-module via φ.
Then there is a natural isomorphism of vector spaces: indA

B(M) ⊗W ≃ M ⊗B W |B. This
form of Frobenius reciprocity is given by (m⊗ a)⊗ w 7→ m⊗ aw (m ∈ M , a ∈ A, w ∈ W ).

Take A = Hd1+d2(q
2), B = Hd1(q

2)⊗Hd2(q
2), φ = φ(d1, d2), M = M1⊗M2, W = V ⊗(d1+d2),

V = V0⊕V1 (of dimension n′ = n+m) being the natural representation of Uσ
q (sl(m,n)). Note

that W ≃ (V ⊗d1)⊗ (V ⊗d2) as an Hd1(q
2)⊗Hd2(q

2)-module. We get a natural isomorphism
of vector spaces

F(Ia(M1,M2)) → (M1 ⊗M2)⊗Hd1
(q2)⊗Hd2

(q2) (V
⊗d1 ⊗ V ⊗d2).

The right side is isomorphic to F(M1)⊗ F(M2) as a vector space. It remains to check that
the resulting isomorphism F(Ia(M1,M2)) → F(M1) ⊗ F(M2) of vector spaces commutes
with the action of Uσ

q,a(sl(m,n)). �

Using the equivalence F one can relate the universal Ha
d (q

2)-modules Mc and for c ∈ C×

the Uσ
q,a(sl(m,n))-modules V (c), where V (c) is V as a Uσ

q (sl(m,n))-module, and K0 = Kα0

acts as K−1∏ and E0 as cρ(F∏) = cEn′,1, F0 as c−1ρ(E∏) = c−1E1,n′.

Proposition 17.2. Let c = (c1, . . . , cd) ∈ C×d, d ≥ 1, m, n ≥ 2. Then there exists a natural

isomorphism F(Mc) ≃ V (c1)⊗ · · · ⊗ V (cd).
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Proof. As an Hd(q
2)-module, Mc is the right regular representation. Hence the map V ⊗d →

J(Mc), v 7→ 1⊗ v, is an isomorphism of Uσ
q (sl(m,n))-modules.

(ρd(E0))(1⊗ v) =
∑

1≤j≤d

1 · y−1
j ⊗ ρ⊗d(Y

(d)
j,E )v = 1⊗

(
∑

1≤j≤d

c−1
j ⊗ ρ⊗d(Y

(d)
j,E )

)
v.

Also ρd(E0) =
∑

1≤j≤d(σK0)
⊗(j−1) ⊗ ρ(E0)⊗ 1⊗(d−j) acts on V (c1)⊗ · · · ⊗ V (cd) as

∑

1≤j≤d

(σK0)
⊗(j−1) ⊗ cjρ(F∏)⊗ 1⊗(d−j) =

∑
c−1
j Y

(d)
j,F .

The map V ⊗d → J(Mc) commutes with the action of ρ(F0), ρ(E0). �

Corollary 17.3. Let 1 ≤ d < n′. (a) Every finite dimensional Uσ
q,a(sl(m,n))-module which

appears as a quotient of V ⊗d as a Uσ
q,a(sl(m,n))-module is isomorphic to a quotient of V (c1)⊗

· · · ⊗ V (cd) for some c1, . . . , cd ∈ C. (b) Let c1, . . . , cd ∈ C. Then V (c1) ⊗ · · · ⊗ V (cd) is

reducible as a Uσ
q,a(sl(m,n))-module if and only if cj = q2ck for some j, k.

Proof. This follows from the corresponding result – Proposition 8.3 – for the affine Hecke
algebra in section 8 and the fact that F is an equivalence of categories. �

The Zelevinsky classification parametrizes all irreducible representations of GL(n, F ), F
being a p-adic field, in particular theHa

d (q
2)-modules as the special case of the representations

whose irreducible constituents have each a nonzero Iwahori-fixed vector. The equivalence F
carries this description to the category of Uσ

q,a(sl(m,n))-modules.
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