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SEQUENCES, MODULAR FORMS AND CELLULAR INTEGRALS

DERMOT MCCARTHY, ROBERT OSBURN, ARMIN STRAUB

Abstract. It is well-known that the Apéry sequences which arise in the irrationality proofs for
ζ(2) and ζ(3) satisfy many intriguing arithmetic properties and are related to the pth Fourier
coefficients of modular forms. In this paper, we prove that the connection to modular forms
persists for sequences associated to Brown’s cellular integrals and state a general conjecture
concerning supercongruences.

1. Introduction

Period integrals on the moduli space M0,N of curves of genus 0 with N marked points have
featured prominently in a variety of mathematical and physical contexts. These period integrals
are of particular importance as, for example, it is now known that they are Q-linear combinations
of multiple zeta values [12] thereby proving a conjecture of Goncharov and Manin [22], provide
an effective computation of a large class of Feynman integrals [10], occur in superstring theory
[11], [41] and have potential connections to higher Frobenius limits in relation to the Gamma
conjecture [21]. Recently, Brown [13] introduced a program where such period integrals play a
central role in understanding irrationality proofs of values of the Riemann zeta function. Before
discussing this program, we first briefly review the classical situation and some subsequent
developments.

Inspired by Apéry, Beukers [7] gave another proof of the irrationality of ζ(2) and ζ(3) by
considering the integrals

In := (−1)n
∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1
dxdy (1.1)

and

Jn :=
1

2

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1− xy)w)n+1
dxdydw. (1.2)

He showed that

In = a(n)ζ(2) + ã(n) and Jn = b(n)ζ(3) + b̃(n)

where ã(n) and b̃(n) are explicit rational numbers and

a(n) =

n∑

k=0

(
n

k

)2(n+ k

k

)
, b(n) =

n∑

k=0

(
n

k

)2(n+ k

k

)2

(1.3)
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are the Apéry numbers. Since their introduction, there has been substantial interest in both the
intrinsic arithmetic properties of the Apéry numbers and their relationship to modular forms.
For example, consider

η6(4z) =:

∞∑

n=1

α(n)qn,

the unique newform in S3(Γ0(16), (
−4
· )), where η(z) = q1/24

∏
n≥1(1 − qn) is the Dedekind eta-

function, q = e2πiz and z ∈ H. Ahlgren [1] showed that, for all primes p ≥ 5,

a
(p− 1

2

)
≡ α(p) (mod p2), (1.4)

thus confirming a conjecture in [42]. In [3], Ahlgren and Ono proved a conjecture of Beukers [9]
which stated that, if p is an odd prime, then

b
(p− 1

2

)
≡ β(p) (mod p2), (1.5)

where

η4(2z)η4(4z) =:
∞∑

n=1

β(n)qn

is the unique newform in S4(Γ0(8)). Both of these influential results required the existence of
an underlying modular Calabi-Yau variety, specifically a K3-surface for (1.4) and a Calabi-Yau
3-fold for (1.5) in order to relate the pth Fourier coefficients to finite field hypergeometric series.
Concerning arithmetic properties, Coster [17] proved the supercongruences

a(mpr) ≡ a(mpr−1) (mod p3r) (1.6)

and

b(mpr) ≡ b(mpr−1) (mod p3r) (1.7)

for primes p ≥ 5 and integers m, r ≥ 1. Other supercongruences of this type have been studied
in numerous works (for example, see [5], [8], [15], [16], [20], [25], [31]–[34], [43]). In order to view
(1.4)–(1.7) from a general perspective, we discuss the setup from [13].

Recall that M0,N , N ≥ 4, is the moduli space of genus zero curves (Riemann spheres) with
N ordered marked points (z1, . . . , zN ). It is the set of N -tuples of distinct points (z1, . . . , zN )
modulo the equivalence relation given by the action of PSL2. This action is triply-transitive
and so there is a unique representative of each equivalence class such that z1 = 0, zN−1 = 1
and zN = ∞. We introduce simplicial coordinates on M0,N by setting t1 = z2, t2 = z3, . . . ,
tN−3 = zN−2. This yields the identification

M0,N
∼= {(t1, . . . , tN−3) ∈ (P1 \ {0, 1,∞})N−3 | ti 6= tj for all i 6= j}.

A typical period integral on M0,N can be given as
∫

SN

∏
taii (1− tj)

bj (ti − tj)
cijdt1 . . . dtN−3, (1.8)

where ai, bj and cij ∈ Z are such that (1.8) converges and the simplex

SN = {(t1, . . . , tN−3) ∈ RN−3 : 0 < t1 < . . . < tN−3 < 1}
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is a connected component of M0,N (R). It was proved by Brown [12] that the integrals (1.8) are
Q-linear combinations of multiple zeta values of weight up to and including N − 3. That these
typically involve multiple zeta values of all weights is an obstruction to irrationality proofs. For
example, generic period integrals on M0,6 yield linear forms in 1, ζ(2) and ζ(3). To ensure the
vanishing of coefficients, we consider a variant of the classical “dinner table problem” [6], [38].

Suppose we have N ≥ 5 people sitting at a round table. We permute them such that each
person has two new neighbors. We represent the new seating arrangement (non-uniquely) by a
permutation σ = σN on {1, 2, . . . , N} and write σ = (σ(1), . . . , σ(N)). A permutation σ is called
convergent if no set of k elements in {1, . . . , N} are simultaneously consecutive for {1, . . . , N}
and σ for all 2 ≤ k ≤ N − 2. If N ≤ 7, then this is equivalent to the dinner table problem. For
N ≥ 8, this is a new condition. The main idea of [13] is to associate a rational function fσ and
a differential (N − 3)-form ωσ to a given σ as follows. Formally, we define

fσ =
∏

i

zi − zi+1

zσ(i) − zσ(i+1)
and ωσ =

dt1 . . . dtN−3∏
i zσ(i) − zσ(i+1)

, (1.9)

where the product is over all indices i modulo N , z1 = 0 and zN−1 = 1. We remove factors with
zN and then let zi+1 7→ ti for i = 1, 2, . . . , N − 3. If we consider the cellular integral

Iσ(n) = IN,σ(n) :=

∫

SN

fnσ ωσ, (1.10)

then Iσ(n) converges if and only if σ is convergent. For n = 0, we then obtain the cell-zeta values
ζσ(N−3) = Iσ(0) studied in [14], which are multiple zeta values of weight N−3. More generally,
by [13, Corollary 8.2], Iσ(n) is a Q-linear combination of multiple zeta values of weight less than
or equal to N − 3. Suppose that this linear combination is of the form AσN

(n)ζσ(N − 3), with
AσN

(n) ∈ Q, plus a combination of multiple zeta values of weight less than N − 3 (note that
AσN

(n) is necessarily unique if multiple zeta values of different weight are linearly independent
over Q; alternatively, since this independence remains open, a unique value can be selected,
unconditionally, by working motivically [13]). We then say that Aσ(n) = AσN

(n) is the leading
coefficient of the cellular integral Iσ(n). By construction, Aσ(0) = 1. Conjecturally, we can
define leading coefficients in this fashion for all convergent σ. Since we will be concerned with
specific permutations σ, in which case the linear combinations of multiple zeta values can be
made explicit, this issue will not disturb our discussion.

For example, if N = 5, then σ5 = (1, 3, 5, 2, 4) is the unique (up to dihedral symmetry, see
Section 2) convergent permutation, Iσ5(n) recovers Beukers’ integral (1.1) after a change of
variables, and the leading coefficients Aσ5(n) are the Apéry numbers a(n). Similarly, for N = 6,
one obtains (1.2) upon considering σ6 = (1, 5, 3, 6, 2, 4) and the leading coefficients Aσ6(n) are
the Apéry numbers b(n).

This general framework raises some natural questions. Is there an analogue of (1.4) and (1.5)
for N ≥ 7? Do the leading coefficients Aσ(n) satisfy supercongruences akin to (1.6)? The first
main result generalizes (1.4) to all odd weights greater than or equal to 3.

Theorem 1.1. For each odd positive integer N ≥ 5, there exists a convergent σN and a modular
form fk(z) =:

∑∞
n=1 γk(n)q

n of weight k = N − 2 such that, for all primes p ≥ 5,

AσN

(p− 1

2

)
≡ γk(p) (mod p2). (1.11)
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As the product of cellular integrals is not necessarily a cellular integral (see Example 2.4),
powers of the Apéry numbers a(n) are not automatically leading coefficients. We prove Theorem

1.1 by carefully constructing an explicit family of convergent σN such that AσN
(n) = a(n)(N−3)/2

and the required modular forms fk(z). For example, if N = 5, then Aσ5(n) = a(n) and
f3(z) = η6(4z). Thus, we recover (1.4). Now, consider the convergent permutation σ8 =
(8, 3, 6, 1, 4, 7, 2, 5) and

η12(2z) =:

∞∑

n=1

γ(n)qn,

the unique newform in S6(Γ0(4)). Our second main result is a higher weight version of (1.5).

Theorem 1.2. Let p be an odd prime. Then

Aσ8

(p− 1

2

)
≡ γ(p) (mod p2). (1.12)

In Section 10.1 of [13], Brown provided the following table for the number CN of convergent
σN (up to symmetries):

N 5 6 7 8 9 10 11

CN 1 1 5 17 105 771 7028
Table 1. CN for 5 ≤ N ≤ 11

Using the techniques from Section 3, we have obtained explicit binomial sum expressions for
all 898 of the leading coefficients AσN

(n) for 7 ≤ N ≤ 10. For example, if N = 7, then the
convergent permutations and associated leading coefficients are given in Table 2. The ordinary
generating functions of these five sequences satisfy fourth order differential equations of Calabi–
Yau type, and thus appear as sequences in the table [4] (where they are numbered as 193, 243,
101, 198, and 27). The remaining list of convergent permutations and binomial sum expressions
for the leading coefficients are available upon request. Based on numerical evidence, we make
the following conjecture which suggests that (1.6) is a generic property of leading coefficients.

Conjecture 1.3. For each N ≥ 5 and convergent σN , the leading coefficients AσN
(n) satisfy

AσN
(mpr) ≡ AσN

(mpr−1) (mod p3r) (1.13)

for all primes p ≥ 5 and integers m, r ≥ 1.

Given Theorems 1.1 and 1.2, it is natural to wonder if such supercongruences hold for all
leading coefficients AσN

(n). Do they arise from L-series attached to Galois representations? It
appears that a result similar to (1.5) and (1.12) also holds for a convergent σ10 and modular
form of weight 8. This and other observations will be the subject of forthcoming work. Finally,
it would be of interest to examine Theorems 1.1 and 1.2 and Conjecture 1.3 from the recent
“motivic” perspective of [40].

The paper is organized as follows. In Section 2, we first discuss the necessary background
on dihedral symmetries, the multiplicative structure of cellular integrals and modular forms
with complex multiplication, then prove Theorem 1.1. In Section 3, we explain how to derive
multiple binomial sum representations for the leading coefficients. In Section 4, we prove some
preliminary results on combinatorial congruences, recall finite field hypergeometric series and
then prove Theorem 1.2.
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(7, 2, 4, 1, 6, 3, 5)
n∑

j,k=0

(
n

k

)2(n
j

)2(n+ k + j

n

)(
k + j

k

)

(7, 2, 4, 6, 1, 3, 5)

n∑

j,k=0

(
n

k

)(
n

j

)(
n+ k

n

)(
n+ j

n

)(
n+ k + j

n

)(
n

k − j

)

(7, 2, 5, 1, 3, 6, 4)

[
n∑

k=0

(
n

k

)2(n+ k

n

)]2

(7, 2, 5, 1, 4, 6, 3)
n∑

j,k=0

(
n

k

)2(n
j

)2(n+ k

n

)(
k + j

n

)

(7, 3, 6, 2, 5, 1, 4)
n∑

j,k=0

(
n

k

)2(n
j

)2(n+ k

n

)(
n− k + j

n

)

Table 2. Convergent permutations σ7 and leading coefficients Aσ7(n)

2. Proof of Theorem 1.1

2.1. Dihedral symmetries and multiplicative structures. Let ΣN be the symmetric group
on {1, 2, . . . , N}. A dihedral structure on {1, 2, . . . , N} is an equivalence class of permutations
σ ∈ ΣN , where the equivalences are generated by

(σ1, σ2, . . . , σN ) ∼ (σ2, σ3, . . . , σN , σ1)

(σ1, σ2, . . . , σN ) ∼ (σN , σN−1, . . . , σ1).

A configuration on {1, 2, . . . , N} is an equivalence class [δ, δ′] of pairs (δ, δ′) of dihedral structures
modulo the equivalence relations

(δ, δ′) ∼ (σδ, σδ′)

for σ ∈ ΣN . Associated to every permutation σ ∈ ΣN is the configuration [σ] := [id, σ]. Clearly,
every configuration can be thus represented. Indeed, the configurations on {1, 2, . . . , N} can
be identified with the double cosets D2N\ΣN/D2N , where D2N are the dihedral permutations
of ΣN . Henceforth, we will not make a distinction between permutations and configurations.
The dual of a configuration [δ, δ′] is the configuration [δ′, δ]. Equivalently, the dual of [σ] is
[σ]∨ := [σ−1]. For further details, we refer to [13, Section 3.1]. The notion of a configuration is
important for our considerations because, up to a possible factor of (−1)n, the cellular integral
Iσ(n) only depends on the configuration [σ].

In [13, Section 6], Brown describes the following partial multiplication on pairs of dihedral
structures. A pair of dihedral structures (δ, δ′) on {1, 2, . . . , N} is multipliable along the triple
t = (t1, t2, t3), where t1, t2, t3 ∈ {1, 2, . . . , N} are distinct, if the elements t1, t2, t3 are consecutive
in δ and the elements t1, t3 are consecutive in δ′.

Let (α,α′) and (β, β′) be dihedral structures on X = {1, 2, . . . , N} and Y = {1, 2, . . . ,M},
respectively. If (α,α′) is multipliable along s, and (β′, β) (the dual of (β, β′)) is multipliable
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along t, then the product

(γ, γ′) := (α,α′) ⋆s,t (β, β
′)

is a pair of dihedral structures on the disjoint union Z of X and Y , where each of the three
elements s1, s2, s3 from X gets identified with the corresponding element t1, t2, t3 from Y . The
dihedral structure γ is the unique structure such that its restriction to X (respectively, Y )
coincides with α (respectively, β). We say that γ was obtained by shuffling α and β (more
general such shuffles are described in [14, Section 2.3.1]). γ′ is likewise obtained by shuffling α′

and β′.
In order to work explicitly, we identify this disjoint union of X and Y with the set Z =

{1, 2, . . . ,M +N − 3} in such a way that Y is the natural subset of Z, while the N − 3 elements
1, 2, . . . , N of X, with s1, s2, s3 removed, are identified, in that order, with the elements M +
1,M + 2, . . . ,M +N − 3 of Z. We note that different choices for this identification lead to the
same configuration [γ, γ′].

Example 2.1. For illustration, let us multiply (α,α′) = ((1, 2, 3, 4, 5), (1, 3, 5, 2, 4)) with (β, β′) =
(α,α′) along s = (1, 2, 3), t = (4, 2, 5). Here, X = {1, 2, 3, 4, 5}, Y = {1, 2, 3, 4, 5} and
Z = {1, 2, . . . , 7}. The elements 1, 2, 3, 4, 5 of Y are identified with the elements 1, 2, 3, 4, 5
of Z, and the elements 1, 2, 3, 4, 5 of X are identified with the elements 4, 2, 5, 6, 7 of Z. In
other words, we replace (α,α′) with (α,α′) = ((4, 2, 5, 6, 7), (4, 5, 7, 2, 6)). In order to obtain γ,
we shuffle α = (4, 2, 5, 6, 7) and β = (1, 2, 3, 4, 5) such that both dihedral structures are pre-
served (because of the conditions of multipliability there is a unique such shuffle). The result
is γ = (1, 2, 3, 4, 7, 6, 5). Likewise, shuffling α′ = (4, 5, 7, 2, 6) and β′ = (1, 3, 5, 2, 4) results in
γ′ = (1, 3, 5, 7, 2, 6, 4). We refer to [13, Example 6.3] for another example accompanied by a
helpful illustration.

The main interest in this partial multiplication stems from the following result. For its
statement, recall that every configuration [γ, γ′] can be represented as [σ] = [id, σ]. Since, up to
a sign, the cellular integral Iσ only depends on the configuration [σ], we may write I[γ,γ′] = Iσ.
Likewise, we write A[γ,γ′] = Aσ for the corresponding leading coefficients.

Proposition 2.2 ([13], Proposition 6.5). Suppose that

(γ, γ′) = (α,α′) ⋆s,t (β, β
′)

for some choice of s, t. Then, for all n ≥ 0, possibly up to a sign,

I[γ,γ′](n) = I[α,α′](n)I[β,β′](n).

In particular, A[γ,γ′](n) = A[α,α′](n)A[β,β′](n).

Example 2.3. Recall that, for σ5 = (1, 3, 5, 2, 4), the leading terms Aσ5(n) of the corresponding
cellular integrals are the Apéry numbers a(n). The configuration [σ5] is represented by the pairs
of dihedral structures (α,α′) = (β, β′) from Example 2.1. Let (γ, γ′) be the product of these two
pairs along s, t as chosen in Example 2.1. Observe that, as a configuration, [γ, γ′] = [σ7] with
σ7 = (1, 3, 7, 5, 2, 6, 4). By Proposition 2.2, Aσ7(n) = a(n)2.

Similarly, many leading coefficients Aσ(n) are products of leading coefficients of lower order.
However, it is not the case that products of leading coefficients are always leading coefficients.
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Example 2.4. Consider the configuration σ8 = (8, 3, 6, 1, 4, 7, 2, 5) featured in Theorem 1.2
and Section 3. This configuration is self-dual and not multipliable along any choice of triple t.
Indeed, we confirm numerically that the product a(n)Aσ8(n) is not a leading coefficient Aσ10(n)
for any configuration σ10.

Nevertheless, the next result guarantees that all positive integer powers of the Apéry numbers
a(n) are leading coefficients.

Proposition 2.5. If ρ = (N − 1, ρ0, N, ρ1, ρ2, . . . , ρN−3) ∈ ΣN , then

Aτ (n) = a(n)Aρ(n),

where τ = (N + 1, ρ0 + 1, N + 2, N, ρN−3 + 1, ρN−4 + 1, . . . , ρ1 + 1, 1).

Note that τ is of the same shape of ρ, so that the result can be iterated to conclude that
a(n)λAρ(n) is a leading coefficient for any integer λ ≥ 0.

Proof. Let (α,α′) = ((1, 2, 3, 4, 5), (1, 3, 5, 2, 4)) and (β, β′) = ((1, 2, . . . , N), ρ). Note that (α,α′)
is multipliable along s = (1, 2, 3), and that the dual of (β, β′) is multipliable along t = (N −
1, ρ0, N). Let (γ, γ′) = (α,α′) ⋆s,t (β, β

′).
To compute this product, we proceed as in Example 2.1 and replace (α,α′) with (α,α′) =

((N−1, ρ0, N,N+1, N+2), (N−1, N,N+2, ρ0, N+1)). Then, shuffling α = (N−1, ρ0, N,N+
1, N + 2) and β = (1, 2, . . . , N) such that both dihedral structures are preserved, we obtain

γ = (1, 2, . . . , N − 1, N + 2, N + 1, N).

Likewise, shuffling α′ = (N − 1, N,N + 2, ρ0, N + 1) and β′ = (N − 1, ρ0, N, ρ1, ρ2, . . . , ρN−3)
results in

γ′ = (N − 1, N + 1, ρ0, N + 2, N, ρ1, ρ2, . . . , ρN−3).

Since [α,α′] = [σ5] and [β, β′] = [ρ], Proposition 2.2 implies that

A[γ,γ′](n) = a(n)Aρ(n),

so that it only remains to observe that [γ, γ′] = [τ ]. First, swapping N and N + 2, we find that

[γ, γ′] = [(N − 1, N + 1, ρ0, N,N + 2, ρ1, ρ2, . . . , ρN−3)].

Finally, as configurations, we have

[(N − 1, N + 1, ρ0, N,N + 2, ρ1, ρ2, . . . , ρN−3)]

= [(N,N + 2, ρ0 + 1, N + 1, 1, ρ1 + 1, ρ2 + 1, . . . , ρN−3 + 1)]

= [(N + 1, ρ0 + 1, N + 2, N, ρN−3 + 1, ρN−4 + 1, . . . , ρ1 + 1, 1)],

which is [τ ], as claimed. �

Example 2.6. Let us illustrate with ρ = (4, 2, 5, 3, 1). Since Aρ(n) = a(n), Proposition 2.5
implies that

Aσ7(n) = a(n)2, σ7 = (6, 3, 7, 5, 2, 4, 1).

Note that this configuration agrees with the one obtained in Example 2.3. Iterating Proposi-
tion 2.5, we find

Aσ9(n) = a(n)3, σ9 = (8, 4, 9, 7, 2, 5, 3, 6, 1),

Aσ11(n) = a(n)4, σ11 = (10, 5, 11, 9, 2, 7, 4, 6, 3, 8, 1).



8 DERMOT MCCARTHY, ROBERT OSBURN, ARMIN STRAUB

In fact, the family of configurations in Example 2.6 can be made explicit as follows. For a
positive integer M and configuration (a1, a2, . . . , aN ), we write M + (a1, a2, . . . , aN ) for (M +
a1,M + a2, . . . ,M + aN ).

Corollary 2.7. Let M ≥ 2 be an integer. Then

Aσ2M+1
(n) = a(n)M−1,

where the configuration σ2M+1 is

σ2M+1 =M + (M, 0,M + 1,M − 1,−(M − 2),M − 3, . . . ,±1,∓1,±2, . . . ,−(M − 1)).

Proof. The statement is clearly true for M = 2, in which case σ5 = (4, 2, 5, 3, 1). The claim then
follows from Proposition 2.5 by induction. �

2.2. Modular forms with complex multiplication and Hecke characters. In this section,
we recall some properties of modular forms with complex multiplication and Hecke characters.
For more details, see [39].

Suppose ψ is a nontrivial real Dirichlet character with corresponding quadratic field K. A
newform f(z) =

∑∞
n=1 γ(n) q

n, where q := e2πiz, has complex multiplication (CM) by ψ, or by
K, if γ(p) = ψ(p) γ(p) for all primes p in a set of density one.

By the work of Hecke and Shimura we can construct CM newforms using Hecke characters.
Let K = Q(

√
−d) be an imaginary quadratic field with discriminant D, and let OK be its

ring of integers. For an ideal f ∈ OK , let I(f) denote the group of fractional ideals prime to
f. A Hecke character of weight k and modulo f is a homomorphism Φ : I(f) → C∗, satisfying

Φ(αOK) = αk−1 when α ≡× 1 (mod f). Let N(a) denote the norm of the ideal a. Then,

f(z) :=
∑

a

Φ(a)qN(a) =

∞∑

n=1

γ(n)qn,

where the sum is over all ideals a in OK prime to f, is a Hecke eigenform of weight k on

Γ0(|D| ·N(f)) with Nebentypus χ(n) =
(
D
n

) Φ(nOK)
nk−1 . Here,

(
a
n

)
is the Kronecker symbol. Fur-

thermore, f has CM by K. We call f the conductor of Φ if f is minimal, i.e., if Φ is defined
modulo f′ then f | f′. If f is the conductor of Φ then f(z) is a newform. From [39], we also know
that every CM newform comes from a Hecke character in this way.

We will see that Theorem 1.1 is a consequence of Corollary 2.7 and Corollary 2.11.

Theorem 2.8. Let k ≥ 2 be a positive integer. Then there exists a weight k CM newform

fk(z) =:

∞∑

n=1

γk(n)q
n ∈





Sk(Γ0(32)), if k is even,

Sk(Γ0(4), (
−4
· )), if k ≡ 1 (mod 4),

Sk(Γ0(16), (
−4
· )), if k ≡ 3 (mod 4),

such that, for any odd prime p,

γk(p) =

{
(−1)

(x+y−1)(k−1)
2

[
(x+ iy)k−1 + (x− iy)k−1

]
, if p ≡ 1 (mod 4), p = x2 + y2, x odd,

0, if p ≡ 3 (mod 4).

Proof. For k in each equivalence class modulo 4, we will define a Hecke character Ψk and
construct the required CM newform fk, using the methodology outlined above.
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For an ideal f ∈ OK , let I(f) denote the group of fractional ideals prime to f, and let J(f)
be the subset of principal fractional ideals whose generator is multiplicatively congruent to 1
modulo f, i.e., J(f) = {(α) ∈ I(f) | α ≡× 1 (mod f)}.

LetK = Q(
√
−1) which has discriminant D = −4 and whose ring of integers is OK = Z[

√
−1],

which is a principal ideal domain. Therefore, all fractional ideals of K are also principal, and
are of the form 1

m(α) where m ∈ Z \ {0} and α ∈ OK .
Case 1: k ≡ 1 (mod 4). Let f = (1). Then I(f) = J(f) is the set of all fractional ideals. We

define the Hecke character Φk : I((1)) → C∗ of weight k and conductor (1) by

Φk

(
1
m(α)

)
=
(
α
m

)k−1
.

Therefore,

fk(z) :=
∑

a

Φk(a)q
N(a) =

∞∑

n=1

γk(n)q
n ∈ Sk(Γ0(4), (

−4
· ))

is a CM newform and, for p an odd prime,

γk(p) =

{
(x+ iy)k−1 + (x− iy)k−1, if p ≡ 1 (mod 4), p = x2 + y2, x odd,

0, if p ≡ 3 (mod 4).

Case 2: k ≡ 3 (mod 4). Let f = (2). Then

I((2)) = { 1
m(α) | m ∈ Z odd, α = x+ iy ∈ Z[

√
−1], x and y different parity}

and

J((2)) = { 1
m (α) | m ∈ Z odd, α = x+ iy ∈ Z[

√
−1], x odd, y even}.

We define the Hecke character Φk : I((2)) → C∗ of weight k and conductor (2) by

Φk

(
1
m(x+ iy)

)
=
(
x+iy
m

)k−1
· (−1)y.

Therefore,

fk(z) :=
∑

a

Φk(a)q
N(a) =

∞∑

n=1

γk(n)q
n ∈ Sk(Γ0(16), (

−4
· ))

is a CM newform, and for p an odd prime,

γk(p) =

{
(x+ iy)k−1 + (x− iy)k−1, if p ≡ 1 (mod 4), p = x2 + y2, x odd,

0, if p ≡ 3 (mod 4).

Case 3: k even. Let f = (2 + 2i). Then

I((2 + 2i)) = { 1
m (α) | m ∈ Z odd, α = x+ iy ∈ Z[

√
−1], x and y different parity}

and

J((2 + 2i)) = { 1
m (α) | m ∈ Z odd, α = x+ iy ∈ Z[

√
−1], x odd, y even, such that

if m ≡ x (mod 4) then y ≡ 0 (mod 4), otherwise y ≡ 2 (mod 4)}.
We define the Hecke character Φk : I((2 + 2i)) → C∗ of weight k and conductor (2 + 2i) by

Φk

(
1
m (x+ iy)

)
=
(
x+iy
m

)k−1
χ(x+ iy)k−1 · (−1)y · (−1)

m−1
2 ,
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where

χ(x+ iy) = (−1)
x+y−1

2 ·
{
1, if x odd, y even,

i, if x even, y odd.

Therefore,

fk(z) :=
∑

a

Φk(a)q
N(a) =

∞∑

n=1

γk(n)q
n ∈ Sk(Γ0(32))

is a CM newform and, for p an odd prime,

γk(p) =

{
(−1)

x+y−1
2

[
(x+ iy)k−1 + (x− iy)k−1

]
, if p ≡ 1 (mod 4), p = x2 + y2, x odd,

0, if p ≡ 3 (mod 4).

�

Remark 2.9. When k is odd, an alternative expression for the CM newform fk(z) constructed
in Theorem 2.8 is given by the binary theta series

fk(z) =
1

4

∑

(n,m)∈Z2

(−1)m(k−1)/2(n− im)k−1qn
2+m2

. (2.1)

The formulation (2.1) was recently used to relate the L-series of fk at k − 1 to an interpolated
version of the leading coefficients in Corollary 2.7. For further details, see [36].

Corollary 2.10. Let k ≥ 2 be a positive integer and let fk(z) =:
∑∞

n=1 γk(n)q
n be the weight k

CM newform described in Theorem 2.8. Then, for any odd prime p and integer m ≥ 1,

γk(p)
m =

⌊m−1
2

⌋∑

t=0

(
m

t

)
pt(k−1)γ(m−2t)(k−1)+1(p) +





(
m
m
2

)
p

m
2
(k−1), if p ≡ 1 (mod 4) and m even,

0, otherwise.

Proof. This follows from a simple application of the binomial theorem on the expression for

γk(p) given in Theorem 2.8, while noting that (−1)
x+y−1

2 (x+ iy) · (−1)
x+y−1

2 (x− iy) = p. �

Corollary 2.11. Let l ≥ 1 be a positive integer and define k := 2l+1. Let fk(z) =:
∑∞

n=1 γk(n)q
n

be the weight k CM newform described in Theorem 2.8. Let a(n) =
∑n

j=0

(n
j

)2(n+j
j

)
be the Apéry

numbers introduced in (1.3). Then, for primes p ≥ 5,

a(p−1
2 )l ≡ γk(p) (mod p2).

Proof. By (1.4) and Corollary 2.10,

a(p−1
2 )l ≡ γ3(p)

l ≡ γk(p) (mod p2).

�

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let l ≥ 1 be a positive integer and define k = 2l + 1 and N = 2l + 3.
Consider fk(z) =:

∑∞
n=1 γk(n)q

n as in Theorem 2.8. By Corollary 2.7, there exists a convergent
σN whose leading coefficient AσN

(n) satisfies

AσN
(n) = a(n)l. (2.2)

Thus, the result then follows from (2.2) and Corollary 2.11. �
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3. Multiple binomial sums

3.1. Proving multiple binomial sum representations for Aσ(n). In this section, we out-
line how to obtain multiple binomial sum representations for the leading coefficients Aσ(n).
Our discussion applies to any configuration, but we proceed with the configuration σ8 =
(8, 3, 6, 1, 4, 7, 2, 5) for N = 8 which is relevant to Theorem 1.2. This is the self-dual config-
uration 8π6 in Brown’s notation [13, Section 10.1.4]. The leading coefficients Aσ8(n) have initial
terms

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .

and the following particularly symmetric binomial sum representation.

Proposition 3.1. For the configuration σ8 = (8, 3, 6, 1, 4, 7, 2, 5), the leading coefficients are

Aσ8(n) =
n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(
n

ki

)(
n+ ki
ki

)
. (3.1)

Proof. For σ = σ8, consider the cellular integral Iσ(n) =
∫
S8
fnσ ωσ where

fσ =
(z1 − z2)(z2 − z3)(z3 − z4)(z4 − z5)(z5 − z6)(z6 − z7)(z7 − z8)(z8 − z1)

(z8 − z3)(z3 − z6)(z6 − z1)(z1 − z4)(z4 − z7)(z7 − z2)(z2 − z5)(z5 − z8)
. (3.2)

As in Section 1, we let z1 = 0, z7 = 1, z8 = ∞. Then, in the coordinates t1 = z2, t2 = z3, t3 =
z4, t4 = z5, t5 = z6, we have

fσ =
(−t1)(t1 − t2)(t2 − t3)(t3 − t4)(t4 − t5)(t5 − 1)

(t2 − t5)(t5)(−t3)(t3 − 1)(1 − t1)(t1 − t4)
,

and

ωσ =
dt1dt2dt3dt4dt5

(t2 − t5)(t5)(−t3)(t3 − 1)(1 − t1)(t1 − t4)
.

The domain S8 of integration then consists of all (t1, t2, . . . , t5) ∈ R5 such that 0 < t1 < t2 <
. . . < t5 < 1. Algorithmic approaches to computing explicit period integrals, such as Iσ(n) for
specific values of n, are described in [10] or [37]. In particular, Panzer implemented his symbolic
integration approach [37] using hyperlogarithms in a Maple package called HyperInt. Using this
package, we explicitly evaluate Iσ(n) in terms of multiple zeta values for several small values of
n, and obtain:

Iσ(0) = 16ζ(5) − 8ζ(3)ζ(2)

Iσ(1) = 33Iσ(0)− 432ζ(3) + 316ζ(2) − 26

Iσ(2) = 8929Iσ(0)− 117500ζ(3) + 515189
6 ζ(2)− 331063

48

Iσ(3) = 4124193Iσ(0)− 54272204ζ(3) + 10708231609
270 ζ(2)− 12385477271

3888

Iσ(4) = 2435948001Iσ (0) − 32055790815ζ(3) + 23612586361625
1008 ζ(2)− 78031593554765

41472 .

As proven by Brown in [13, Section 4], the integrals Iσ(n) satisfy a linear recurrence with
polynomial coefficients. Slightly more specifically, the ordinary generating function

Fσ(x) :=

∞∑

n=0

Iσ(n)x
n
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satisfies a Picard–Fuchs differential equation. Again, in each specific instance, this differential
equation can be obtained algorithmically. A particularly efficient such approach is an extension
of the Griffiths–Dwork reduction method due to Lairez [28] for computing periods of rational
functions. To apply this method, we observe that

Fσ(x) =

∫

S8

ωσ

1− fσx
=

∫

S8

dt1dt2dt3dt4dt5
A−Bx

,

where

A = (t2 − t5)(t5)(−t3)(t3 − 1)(1 − t1)(t1 − t4),

B = (−t1)(t1 − t2)(t2 − t3)(t3 − t4)(t4 − t5)(t5 − 1).

Lairez’s method (implemented in Magma) then successfully determines a Fuchsian differential
equation of order 7 satisfied by Fσ(x). This differential equation has a two-dimensional space of
analytic solutions around x = 0. As a consequence, this differential equation together with the
two values Iσ(0), Iσ(1), explicitly obtained above, determines the values of the cellular integrals
Iσ(n) for all n ≥ 2.

Alternatively, the differential equation for the generating function Fσ(x) translates directly
into a recurrence of order 12 for the coefficients Iσ(n) and, hence, for the leading coefficients
Aσ(n). That is, we find that

1521n(n + 1)5(2n + 1)Aσ(n+ 1) =

11∑

j=0

qj(n)Aσ(n− j)

for certain polynomials qj(x) ∈ Z[x] of degree 7. To complete the proof, it therefore only remains
to verify that the numbers

Bσ(n) :=
n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(
n

ki

)(
n+ ki
n

)

satisfy the same recurrence with matching initial values. This can be done algorithmically
using, for instance, creative telescoping. In practice, the fact that Bσ(n) is a triple sum makes
the computation of the recurrence rather challenging. Yet, Koutschan’s Mathematica package
HolonomicFunctions [27] is able to determine a fourth order linear recurrence for Bσ(n) (see
below for more information on this recurrence). We then verify that this recurrence is a right
factor of the earlier recurrence of order 12 for Aσ(n). Since the first 12 initial values match
(in fact, additional reflection shows that two matching initial values suffice), we conclude that
Aσ(n) = Bσ(n). �

The proof of Proposition 3.1 demonstrates that any individual evaluation of leading coefficients
in terms of binomial sums can, in principle, be algorithmically proven due to recent advances in
symbolic computation. It is curious to note that we had to use Maple, Magma and Mathematica
in that computation.

Remark 3.2. We find that Aσ8(n), with σ8 as in Proposition 3.1, is the unique solution of a
fourth order recurrence

p4(n)an+4 + p3(n)an+3 + p2(n)an+2 + p1(n)an+1 + p0(n)an = 0,
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with initial conditions a0 = 1, a1 = 33 and aj = 0 for j < 0. Here, the coefficients pj(n) are
polynomials of degree 15, satisfying

pj(n) = −p4−j(−5− n),

for j ∈ {1, 2, 3, 4}. The latter relation is a consequence of the fact that the configuration σ8 is
self-dual (see [13, Section 4]).

3.2. Finding multiple binomial sum representations for Aσ(n). In this section, we illus-
trate how binomial sum representations can be found for any convergent configuration σ. As in
the previous section, we proceed with the configuration σ = σ8 = (8, 3, 6, 1, 4, 7, 2, 5). Consider
the cellular integral

Iσ(n) =

∫

S8

fnσ ωσ,

where fσ is as in (3.2). Because the action of PGL2 is triply transitive, we may also make the
convenient choice zσ(6) = z7 = 1, zσ(7) = z2 = 0, zσ(8) = z5 = ∞. Then, in the coordinates
t1 = z1, t2 = z3, t3 = z4, t4 = z6, t5 = z8, we have

fσ =
(t1)(−t2)(t2 − t3)(t4 − 1)(1− t5)(t5 − t1)

(t5 − t2)(t2 − t4)(t4 − t1)(t1 − t3)(t3 − 1)

and

ωσ =
dt1dt2dt3dt4dt5

(t5 − t2)(t2 − t4)(t4 − t1)(t1 − t3)(t3 − 1)
.

We then substitute

x1 = t5 − t2, x2 = t2 − t4, x3 = t4 − t1, x4 = t1 − t3, x5 = t3 − 1.

Observe that t3 = x5 + 1, t1 = x4 + x5 + 1 and, likewise,

t4 = x3 + x4 + x5 + 1, t2 = x2 + x3 + x4 + x5 + 1, t5 = x1 + x2 + x3 + x4 + x5 + 1,

so that, up to a sign in ωσ,

fσ =
x4,6x2,6x2,4x3,5x1,5x1,3

x1x2x3x4x5
,

ωσ =
dx1dx2dx3dx4dx5
x1x2x3x4x5

,

where xi,j = xi + xi+1 + . . .+ xj with x6 = 1.
At this point, it is natural to also consider the integral

Jσ(n) =
1

(2πi)5

∮

|xi|=ε
fnσωσ =

1

(2πi)5

∮

|xi|=ε

(
x4,6x2,6x2,4x3,5x1,5x1,3

x1x2x3x4x5

)n dx1dx2dx3dx4dx5
x1x2x3x4x5

,

where ε is chosen sufficiently small so that the integrals converge. By the residue theorem, this
integral evaluates to

Jσ(n) = [(x1x2x3x4x5)
n](x4,6x2,6x2,4x3,5x1,5x1,3)

n.

In particular, the values Jσ(n) are nonnegative integers. By the principle of creative telescoping,
we can derive a linear recurrence which is satisfied by both Iσ(n) and Jσ(n). In fact, we are
going to show that the leading coefficients Aσ(n) of Iσ(n) are equal to Jσ(n). Likely, one can
prove this equality in a general uniform fashion (for instance, following the approach of [18],
as suggested by Dupont). For our purposes, it suffices to observe that both sequences satisfy a
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common recurrence and agree to sufficiently many terms. It remains to express Jσ(n) in terms
of a multiple binomial sum.

Here, it will be convenient to not specialize x6. In order to find an explicit formula for Jσ(n),
we expand

Λ = (x1,5x2,6x1,3x2,4x3,5x4,6)
n

using the binomial theorem and then extract the coefficient of (x1x2x3x4x5x6)
n. Some care

needs to be applied at this stage, because the order in which terms are expanded can have a
considerable influence on the final binomial sum. For instance, the number of summations can
vary substantially. In the present case, it is natural to first expand

xn1,5 =

n∑

k1=0

(
n

k1

)
xk11,3x

n−k1
4,5 , x2,6 =

n∑

k2=0

(
n

k2

)
xk24,6x

n−k2
2,3 ,

and, in a second step, xn+k1
1,3 as well as xn+k4

4,6 , so that Λ equals

∑

k1,k4

(
n

k1

)(
n

k4

)
xn+k1
1,3 xn2,4x

n
3,5x

n+k4
4,6 xn−k4

2,3 xn−k1
4,5

=
∑

k1,k4,ℓ1,ℓ4

(
n

k1

)(
n

k4

)(
n+ k1
ℓ1

)(
n+ k4
ℓ4

)
xn2,4x

n
3,5x

n−k4+ℓ1
2,3 xn−k1+ℓ4

4,5 xn+k1−ℓ1
1 xn+k4−ℓ4

6 .

Since Jσ(n) is the coefficient of (x1x2x3x4x5x6)
n in Λ, we conclude that Jσ(n) is the coefficient

of (x2x3x4x5)
n in

∑

k1,k4

(
n

k1

)(
n

k4

)(
n+ k1
k1

)(
n+ k4
k4

)
xn2,4x

n
3,5x

n−k4+k1
2,3 xn−k1+k4

4,5 . (3.3)

We next expand xn2,4 and xn3,5 to obtain

xn2,4x
n
3,5x

n−k4+k1
2,3 xn−k1+k4

4,5

=
∑

k2,k3

(
n

k2

)(
n

k3

)
xn−k4+k1+k2
2,3 xn−k1+k4+k3

4,5 xn−k3
3 xn−k2

4

=
∑

k2,k3,ℓ2,ℓ3

(
n

k2

)(
n

k3

)(
n− k4 + k1 + k2

ℓ2

)(
n− k1 + k4 + k3

ℓ3

)

× xℓ22 x
n−k3+n−k4+k1+k2−ℓ2
3 xn−k2+n−k1+k4+k3−ℓ3

4 xℓ35 .

The coefficient of (x2x3x4x5)
n in that sum is

∑

k2,k3

(
n

k2

)(
n

k3

)(
n+ k2
n

)(
n+ k3
n

)
,

subject to the constraint k1 + k2 = k3 + k4. Finally, combined with (3.3), we conclude that

Jσ(n) =
n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(
n

ki

)(
n+ ki
n

)
,
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which is the binomial sum of Proposition 3.1. A similar procedure has been carried out to find
explicit binomial expressions for the remaining 897 leading coefficients AσN

(n) for 7 ≤ N ≤ 10.
Again, these expressions are available upon request.

4. Proof of Theorem 1.2

4.1. Congruences for binomial coefficients and harmonic sums. For a nonnegative in-
teger n, we define the harmonic sum Hn by

Hn :=
n∑

j=1

1

j

and H0 := 0. We first recall some elementary congruences (see Section 7.7, Theorems 133, 132
and 116 in [24]): For p an odd prime, we have

(
p− 1

2

)
!
4

≡ 1 (mod p), (4.1)

(
p− 1
p−1
2

)
≡ (−1)

p−1
2 22p−2 (mod p2), (4.2)

2p−1 − 1 ≡ p

(
1 +

1

3
+

1

5
· · ·+ 1

p− 2

)
(mod p2) (4.3)

and, for primes p > 3,
Hp−1 ≡ 0 (mod p2). (4.4)

We will also need the following result, which follows easily from (4.3) and (4.4).

Lemma 4.1. For a prime p > 3,

22p−2 ≡ 1− pH p−1
2

(mod p2).

For nonnegative integers n, let (a)n := a(a+1)(a+2) · · · (a+n−1) denote the rising factorial,
with (a)0 := 1. Let p be an odd prime. We note that, for 0 ≤ k ≤ (p − 1)/2,

(p−1
2 + k

k

)
≡ (1 + k)(2 + k) · · · (p−1

2 + k)(
p−1
2

)
!

≡
(k + 1) p−1

2(
p−1
2

)
!

(mod p),

and, similarly,
(p−1

2

k

)(p−1
2 + k

k

)
≡ (−1)k



(k + 1) p−1

2(
p−1
2

)
!




2

(mod p), (4.5)

as well as (
p− 1− k

p−1
2

)
≡ (−1)

p−1
2

(p−1
2 + k

k

)
(mod p). (4.6)

Lemma 4.2. For p an odd prime,

p−1∑

k=0

(k + 1)2p−1
2

≡ −1 (mod p).
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Proof. Let m := p−1
2 and write

(k + 1)2m = b0 +
2m∑

t=1

btk
t

for appropriate integers bt. Recall that, for positive integers s,

p−1∑

j=1

js ≡
{
−1 (mod p), if (p− 1)|s ,
0 (mod p), otherwise .

(4.7)

Therefore,

p−1∑

k=0

(k + 1)2m = p b0 +

p−1∑

k=0

2m∑

t=1

btk
t = p b0 +

2m∑

t=1

bt

p−1∑

k=1

kt ≡ −bp−1 (mod p).

Since (k + 1)2m is monic, bp−1 = 1. �

Lemma 4.3. For p an odd prime,
p−1
2∑

k1,k2,k3,k4=0∑
ki=p−1

[
4∏

i=1

(ki + 1)2p−1
2

](
H p−1

2
+k4

−Hk4

)
≡ 0 (mod p). (4.8)

Proof. For brevity, we again write m = p−1
2 . Let 0 ≤ k ≤ p−1

2 and consider

(m− k + 1)m = (p−1
2 − k + 1)(p−1

2 − k + 2) · · · (p− 2− k)(p − 1− k)

≡ (−p−1
2 − k)(−p−1

2 + 1− k) · · · (−2− k)(−1 − k)

≡ (−1)m(k + 1)m (mod p).

Similarly,

H2m−k −Hm−k =
1

p− 1− k
+

1

p− 2− k
+ · · ·+ 1

p−1
2 − k + 2

+
1

p−1
2 − k + 1

≡ 1

−1− k
+

1

−2− k
+ · · ·+ 1

−p−1
2 − k + 1

+
1

−p−1
2 − k

≡ − (Hm+k −Hk) (mod p).

Let

S =
m∑

k1,k2,k3,k4=0∑
ki=p−1

[
4∏

i=1

(ki + 1)2m

]
(Hm+k4 −Hk4)

be the left-hand side of (4.8). By replacing ki with m− ki, for i ∈ {1, 2, 3, 4}, we see that

S =

m∑

k1,k2,k3,k4=0∑
ki=p−1

[
4∏

i=1

(m− ki + 1)2m

]
(H2m−k4 −Hm−k4) ≡ −S (mod p).

Hence, the sum S must vanish modulo p. �
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Lemma 4.4. For p an odd prime,

p−1
2∑

k1,k2,k3,k4=0∑
ki=p−1

4∏

i=1

(p−1
2

ki

)(p−1
2 + ki
ki

)
≡

p−1
2∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(p−1
2

ki

)(p−1
2 + ki
ki

)
(mod p2).

Proof. Once more, m := p−1
2 . Replacing k1 and k2 with m− k1 and m− k2, respectively, yields

m∑

k1,k2,k3,k4=0∑
ki=p−1

4∏

i=1

(
m

ki

)(
m+ ki
ki

)
=

m∑

k1,k2,k3,k4=0
k1+k2=k3+k4

2∏

i=1

(
m

ki

)(
2m− ki
m− ki

) 4∏

i=3

(
m

ki

)(
m+ ki
ki

)
.

Let k := (k1, k2, k3, k4) and define

f(p, k) :=

2∏

i=1

(
m

ki

)(
2m− ki
m− ki

) 4∏

i=3

(
m

ki

)(
m+ ki
ki

)

and

g(p, k) :=
4∏

i=1

(
m

ki

)(
m+ ki
ki

)
.

Then it suffices to prove

m∑

k1,k2,k3,k4=0
k1+k2=k3+k4

f(p, k) ≡
m∑

k1,k2,k3,k4=0
k1+k2=k3+k4

g(p, k) (mod p2).

It follows from (4.6) that
(
2m− k

m− k

)
=

(
2m− k

m

)
≡ (−1)m

(
m+ k

k

)
(mod p).

Consequently, letting m− k := (m− k1,m− k2,m− k3,m− k4), we have that

f(p, k) + f(p,m− k)− g(p, k)− g(p,m− k)

=

[
4∏

i=1

(
m

ki

)][ 2∏

i=1

(
2m− ki
m− ki

)
−

2∏

i=1

(
m+ ki
ki

)][ 4∏

i=3

(
m+ ki
ki

)
−

4∏

i=3

(
2m− ki
m− ki

)]

≡ 0 (mod p2).

Therefore,

2

m∑

k1,k2,k3,k4=0
k1+k2=k3+k4

[f(p, k)− g(p, k)] =

m∑

k1,k2,k3,k4=0
k1+k2=k3+k4

[f(p, k) + f(p,m− k)− g(p, k)− g(p,m− k)]

≡ 0 (mod p2).

�
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4.2. Multiplicative characters and finite field hypergeometric functions. Let F̂∗
p denote

the group of multiplicative characters of F∗
p. We extend the domain of χ ∈ F̂∗

p to Fp, by defining
χ(0) := 0 (including the trivial character εp) and denote χ as the inverse of χ. When p is odd
we denote the character of order 2 of F∗

p by φp. We will drop the subscript p if it is clear from

the context. We recall the following orthogonality relation. For χ ∈ F̂∗
p, we have

∑

x∈Fp

χ(x) =

{
p− 1, if χ = ε,

0, if χ 6= ε.
(4.9)

For A, B ∈ F̂∗
p, let

(
A

B

)
:=

B(−1)

p

∑

x∈Fp

A(x)B(1− x).

Then, for A0, A1, . . . , An, B1, . . . , Bn ∈ F̂∗
p and x ∈ Fp, the finite field hypergeometric function

of Greene [23] is defined as

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣ x
)

p

:=
p

p− 1

∑

χ∈F̂∗

p

(
A0χ

χ

) n∏

i=1

(
Aiχ

Biχ

)
χ(x).

We consider the case where Ai = φp for all i and Bj = εp for all j and write

n+1Fn(x) = n+1Fn

(
φp, φp, . . . , φp
εp, . . . , εp

∣∣∣∣ x
)

p

for brevity.
Let Zp denote the ring of p-adic integers and Z∗

p its group of units. We define the Teichmüller
character to be the primitive character ω : Fp → Z∗

p satisfying ω(x) ≡ x (mod p) for all x ∈
{0, 1, . . . , p − 1}. In fact,

ω(x) ≡ xp
n−1

(mod pn) (4.10)

for all n ≥ 1.
Theorem 1.2 is now implied by Proposition 3.1 and the following result.

Theorem 4.5. Let

η12(2z) =:
∞∑

n=1

γ(n)qn

be the unique newform in S6(Γ0(4)). Then, for p an odd prime,

γ(p) ≡
p−1
2∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏

i=1

(p−1
2

ki

)(p−1
2 + ki
ki

)
(mod p2). (4.11)

Proof. We confirm that (4.11) holds for p = 3 and assume p ≥ 5 henceforth. For the Legendre
family of elliptic curves Eλ, given by

Eλ : y2 = x(x− 1)(x− λ), λ 6∈ {0, 1},
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we define

a(p, λ) := p+ 1−#Eλ(Fp).

Then, from [19, Proposition 2.1] and using the fact that dim(S6(Γ0(4))) = 1, we get that for p
an odd prime,

γ(p) = −3−
p−1∑

λ=2

(
a(p, λ)4 − 3p a(p, λ)2 + p2

)

= −p3 + 2p2 − 3−
p−1∑

λ=2

(
a(p, λ)4 − 3p a(p, λ)2

)
.

From [2, Lemma 2.1] we have
p−1∑

λ=2

a(p, λ)2 = p2 − 2p− 3,

so that, combining these two equations,

γ(p) = 2p3 − 4p2 − 9p − 3−
p−1∑

λ=2

a(p, λ)4. (4.12)

In [26, Section 4], Koike showed that for λ 6= 0, 1,

a(p, λ) = −φ(−1) · p · 2F1(λ).

We now recall a couple of facts about finite field hypergeometric functions from [30, Proposi-
tion 3] and [23, Theorem 4.2] respectively:

p · 2F1(1) = −φ(−1),

and, for λ 6= 0,

2F1(λ) = φ(λ) · 2F1

( 1
λ

)
.

Therefore,

p−1∑

λ=2

a(p, λ)4 =

p−1∑

λ=2

[−φ(−1) · p · 2F1(λ)]
4

=

p−1∑

λ=1

[−φ(−1) · p · 2F1(λ)]
4 − [−φ(−1) · p · 2F1(1)]

4

=

p−1∑

λ=1

[−φ(−1) · p · 2F1(λ)]
4 − 1

=

p−1∑

λ=1

[
−φ(−λ) · p · 2F1

( 1
λ

)]4
− 1. (4.13)
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By Theorem 2.4 in [29] (see also Theorem 1.1 in [35]) and (4.10), we get that, for λ 6= 0,

−φ(−λ) · p · 2F1

( 1
λ

)

= −φ(− 1
λ) · p · 2F1

( 1
λ

)

≡ (p+ 1)

(p−1)/2∑

j=0

(p−1
2

j

)(p−1
2 + j

j

)
(−1)jλjp

(
1 + 2jp

(
H p−1

2
+j −Hj

))

≡ (p+ 1)

(p−1)/2∑

j=0

(p−1
2

j

)(p−1
2 + j

j

)
(−1)j

(
1 + 2jp

(
H p−1

2
+j −Hj

))
ω(λj) (mod p2). (4.14)

For brevity, we again let m = (p − 1)/2 and write

f(p, k1, k2, k3, k4) :=

4∏

i=1

(
m

ki

)(
m+ ki
ki

)
(−1)ki (1 + 2pki (Hm+ki −Hki)) .

Combining (4.13) and (4.14) yields

1 +

p−1∑

λ=2

a(p, λ)4 ≡
p−1∑

λ=1


(p+ 1)

m∑

j=0

(
m

j

)(
m+ j

j

)
(−1)j (1 + 2jp (Hm+j −Hj))ω

j(λ)



4

≡ (4p + 1)

m∑

k1,k2,k3,k4=0

f(p, k1, k2, k3, k4)

p−1∑

λ=1

ωk1+k2+k3+k4(λ)

≡ −(3p + 1)

m∑

k1,k2,k3,k4=0∑
ki≡ 0 (mod p−1)

f(p, k1, k2, k3, k4) (mod p2), (4.15)

where we have used (4.9) and the facts that (p + 1)4 ≡ 4p + 1 (mod p2) and (4p + 1)(p − 1) ≡
−(3p+ 1) (mod p2). Accounting for (4.15) in (4.12), we now have

γ(p) ≡ −9p− 2 + (3p + 1)

m∑

k1,k2,k3,k4=0∑
ki≡ 0 (mod p−1)

f(p, k1, k2, k3, k4) (mod p2).

In order that
∑
ki ≡ 0 (mod p− 1), the sum

∑
ki must be either 0, p− 1 or 2(p− 1). In the

case
∑
ki = 0, we necessarily have k1 = k2 = k3 = k4 = 0, which contributes f(p, 0, 0, 0, 0) = 1.

In the third case, that is
∑
ki = 2(p − 1), we necessarily have k1 = k2 = k3 = k4 = p−1

2 = m.
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Applying (4.2), (4.4) and Lemma 4.1, we evaluate

f (p,m,m,m,m) =

[(
m

m

)(
p− 1

m

)
(−1)m (1 + p(p− 1) (Hp−1 −Hm))

]4

≡
[(
p− 1

m

)
(1− p (Hp−1 −Hm))

]4

≡
[
(−1)m 22p−2 (1 + pHm)

]4

≡ [(−1)m (1− pHm) (1 + pHm)]4 ≡ [(−1)m ]4 ≡ 1 (mod p2).

The only other possibility is
∑
ki = p− 1. Therefore,

γ(p) ≡ −3p+ (3p+ 1)

m∑

k1,k2,k3,k4=0∑
ki = p−1

f(p, k1, k2, k3, k4) (mod p2).

Noting that Hm+j −Hj ∈ Zp for 0 ≤ j ≤ m, we have

f(p, k1, k2, k3, k4) =
4∏

i=1

(
m

ki

)(
m+ ki
ki

)
(−1)ki (1 + 2pki (Hm+ki −Hki))

≡
[

4∏

i=1

(
m

ki

)(
m+ ki
ki

)](
1 + 2p

4∑

i=1

ki (Hm+ki −Hki)

)
(mod p2),

and so

γ(p) ≡ −3p + p
m∑

k1,k2,k3,k4=0∑
ki = p−1

g(p, k1, k2, k3, k4) +
m∑

k1,k2,k3,k4=0∑
ki = p−1

4∏

i=1

(
m

ki

)(
m+ ki
ki

)
(mod p2),

(4.16)

where, for brevity,

g(p, k1, k2, k3, k4) :=

[
4∏

i=1

(
m

ki

)(
m+ ki
ki

)](
3 + 2

4∑

i=1

ki (Hm+ki −Hki)

)
.

We will now show that
m∑

k1,k2,k3,k4=0∑
ki = p−1

g(p, k1, k2, k3, k4) ≡ 3 (mod p). (4.17)

Using (4.5) and (4.1), we note that, when
∑
ki = p− 1,

g(p, k1, k2, k3, k4) ≡
[

4∏

i=1

(−1)ki
(
(ki + 1)m

(m)!

)2
](

3 + 2
4∑

i=1

ki (Hm+ki −Hki)

)

≡
[

4∏

i=1

(ki + 1)2m

](
3 + 2

4∑

i=1

ki (Hm+ki −Hki)

)
(mod p). (4.18)
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Let us define

g1(p, k1, k2, k3, k4)

:=

[
4∏

i=1

(ki + 1)2m

](
3 + 2

3∑

i=1

ki (Hm+ki −Hki)− 2(k1 + k2 + k3) (Hm+k4 −Hk4)

)
(4.19)

as well as

g2(p, k1, k2, k3, k4) :=

[
4∏

i=1

(ki + 1)2m

]
2(p − 1) (Hm+k4 −Hk4) .

Then, using (4.18) and Lemma 4.3, we get that

m∑

k1,k2,k3,k4=0∑
ki = p−1

g(p, k1, k2, k3, k4) ≡
m∑

k1,k2,k3,k4=0∑
ki = p−1

g1(p, k1, k2, k3, k4) +
m∑

k1,k2,k3,k4=0∑
ki = p−1

g2(p, k1, k2, k3, k4)

≡
m∑

k1,k2,k3,k4=0∑
ki = p−1

g1(p, k1, k2, k3, k4) (mod p).

If m < k < p, then Hm+k − Hk ∈ 1
pZp and (k + 1)m ∈ pZp. Therefore, to establish (4.17) it

suffices to prove

p−1∑

k1,k2,k3,k4=0∑
ki = p−1

g1(p, k1, k2, k3, k4) ≡ 3 (mod p). (4.20)

Let k4 := p− 1− k1 − k2 − k3 and consider, for 1 ≤ i ≤ 3,

P (ki) :=
d

dki

[
ki (ki + 1)2m (k4 + 1)2m

]
= bi,0 +

4m∑

t=1

bi,tk
t
i

= ki (ki + 1)2m
d

dki

[
(k4 + 1)2m

]
+ (k4 + 1)2m

d

dki

[
ki (ki + 1)2m

]
.
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Now,

d

dki

[
ki (ki + 1)2m

]
= (ki + 1)2m + ki

d

dki

[
(ki + 1)2m

]

= (ki + 1)2m + ki

[
2 (ki + 1)m

d

dki
(ki + 1)m

]

= (ki + 1)2m + ki


2 (ki + 1)m

m∑

s=1

m∏

r=1
r 6=s

(ki + r)




= (ki + 1)2m

[
1 + 2ki

m∑

s=1

1

(ki + s)

]

= (ki + 1)2m [1 + 2ki (Hm+ki −Hki)] ,

and, similarly,

d

dki

[
(k4 + 1)2m

]
= 2 (k4 + 1)m

d

dki
[(k4 + 1)m]

= 2 (k4 + 1)m
d

dki
[(p− 1− k1 − k2 − k3 + 1)m]

= −2 (k4 + 1)m

m∑

s=1

m∏

r=1
r 6=s

(p− 1− k1 − k2 − k3 + r)

= −2(k4 + 1)2m (Hm+k4 −Hk4) .

So,

P (ki) = (ki + 1)2m (k4 + 1)2m [1 + 2ki (Hm+ki −Hki)− 2ki (Hm+k4 −Hk4)] . (4.21)

Noting (4.7), we see that

p−1∑

k1=0

P (ki) = p bi,0 +

p−1∑

k1=1

4m∑

t=1

bi,tk
t
i ≡

4m∑

t=1

bi,t

p−1∑

k1=1

ki
t ≡ −bi,p−1 − bi,2(p−1) (mod p).

By definition of P (ki), we have that

(ki + 1)2m (k4 + 1)2m = bi,0 +

4m∑

t=1

bi,t
t+ 1

kti ,

which is monic with integer coefficients. Thus, p | bi,p−1 and bi,2(p−1) = 2p− 1. Therefore,

p−1∑

ki=0

P (ki) ≡ −bi,p−1 − bi,2(p−1) ≡ 1 (mod p). (4.22)
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Considering (4.19), accounting for (4.21) and (4.22), and applying Lemma 4.2, we get that

p−1∑

k1,k2,k3,k4=0∑
ki = p−1

g1(p, k1, k2, k3, k4) =

p−1∑

k1,k2,k3=0

3∑

i=1




3∏

j=1
j 6=i

(kj + 1)2m


P (ki)

=

3∑

i=1

p−1∑

kj=0
j 6=i




3∏

j=1
j 6=i

(kj + 1)2m




p−1∑

ki=0

P (ki)

≡
3∑

i=1

p−1∑

kj=0
j 6=i




3∏

j=1
j 6=i

(kj + 1)2m


 ≡

3∑

i=1

1 = 3 (mod p).

This establishes (4.20), which in turn establishes (4.17). Now, accounting for (4.17) in (4.16),
we see that

γ(p) ≡
p−1
2∑

k1,k2,k3,k4=0∑
ki = p−1

4∏

i=1

(p−1
2

ki

)(p−1
2 + ki
ki

)
(mod p2).

Applying Lemma 4.4 completes the proof. �
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