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Abstract

Deep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic
host—microbe associations. However, how host—symbiont interactions vary on the molecular level between related host and
symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B.
thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a
methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of
sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could
supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially
between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large
repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host-microbe

interactions can be quite variable, even between closely related systems.

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-019-0517-6) contains supplementary
material, which is available to authorized users.
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Introduction

Bathymodiolus mussels harbor chemosynthetic bacterial
symbionts in their gills and thrive in diverse marine
habitats worldwide [1-3]. The intracellular symbionts fix
dissolved inorganic carbon into organic compounds using
the oxidation of reduced chemicals, such as methane, H,S,
short-chain alkanes, or hydrogen, as energy source [4—7].
Bathymodiolus symbioses show a high degree of
host—symbiont specificity, i.e., each host species harbors
one (or several) distinct symbiont phylotype(s) [8]. B.
thermophilus, for example, which colonizes hydrothermal
vent fields on the East Pacific Rise (EPR), hosts a thio-
trophic (sulfur-oxidizing, SOX) symbiont [9, 10]. In
contrast, B. azoricus from the Mid-Atlantic Ridge (MAR)
contains two symbiont phylotypes, a SOX symbiont
(thiotroph) and a methane-oxidizing (MOX) symbiont
(methanotroph) [5]. Despite these differences, B. ther-
mophilus and B. azoricus are phylogenetically closely
related [1, 2], and their thiotrophic symbionts, too, show
close phylogenetic proximity [11, 12].

Recently, we reported a number of physiological inter-
actions between host and symbionts in B. azoricus that
provide metabolic integrity to the symbiosis as a whole
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[13]. However, little is known about these interactions in
other Bathymodiolus host—symbiont combinations. Our
current study therefore aims to identify similarities and
specific differences in metabolic and physical interactions in
the two geographically distant Bathymodiolus species B.
thermophilus and B. azoricus.

Methods

All methods are described in detail in the Supplementary
Material. Briefly, for proteomic analyses, three B. thermo-
philus individuals were collected from the Tica vent field on
the EPR at 9°50.39'N, 104°17.49’W in 2511 m water depth,
and three B. azoricus specimens were collected from the
Menez Gwen vent field on the MAR at 37°50°41"'N, 31°31’
10”"W in 860 m water depth. The bivalves were dissected
on board, and gills and foot tissue samples were separately
frozen immediately. In addition, symbiont and host frac-
tions were enriched from gill homogenate by differential
centrifugation and/or gradient centrifugation [14] and
enrichment was confirmed by CARD-FISH analyses. The
soluble proteome was extracted from all sample types. To
enhance identification of symbiont membrane proteins,
which could be involved in host interactions, we addition-
ally extracted the membrane proteome of gill samples (both
hosts) and enriched symbiont samples (B. azoricus). Sup-
plementary Table Sla shows an overview of all sample
types and replicate numbers analyzed in this study. Mass
spectrometric analyses were performed using an LTQ-
Orbitrap Velos mass spectrometer and/or an LTQ-Orbitrap
Classic mass spectrometer (both Thermo Fisher, Bremen,
Germany). MS/MS spectra were searched against an in-
house compiled comprehensive target-decoy database con-
taining protein sequences of Bathymodiolus symbionts and
host. Normalized spectral abundance factors were calcu-
lated as a measure of relative protein abundance in each
sample (%NSAF) and for each organism (%OrgNSAF).
Significant abundance differences between (a) thiotrophic
symbiont protein orthologs in B. thermophilus and B.
azoricus, and (b) different B. thermophilus sample types
were determined using a Welch’s #-test with permutation-
based false discovery rate of 5%. To support our proteomic
observations, we conducted comparative genome analyses,
which included four thiotrophic Bathymodiolus symbionts
(of B. thermophilus, B. azoricus, B. septemdierum, and
Bathymodiolus. sp.), two thiotrophic clam symbionts
(“Candidatus Ruthia magnifica” and “Candidatus Vesico-
myosocius okutanii”) and two free-living SOX bacteria
(“Candidatus Thioglobus autotrophicus” and “Candidatus
Thioglobus singularis”), whose genomes were obtained
from GenBank and IMG (Supplementary Table S1b). The
protein sequence database and all proteome raw data are
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available via PRIDE [15] with the dataset identifier
PXD011639.

Results and discussion

Our metaproteome analysis of two Bathymodiolus sym-
bioses provided a detailed picture of individual metabolic
processes and hitherto unknown interactions between all
symbiotic partners (Fig. 1). The most prominent similarities
and differences observed between B. azoricus and B. ther-
mophilus are outlined below (for an overview of total pro-
tein identifications in all sample types see Supplementary
Results I).

(1) Total symbiont biomass was substantially higher in
B. thermophilus than in B. azoricus (Fig. 2). While the SOX
symbiont population of B. thermophilus contributed 60% of
total gill biomass, the total symbiont population of B.
azoricus contributed only 25.3% (SOX: 16.4%, MOX:
8.9%, calculated based on protein abundance [16], Sup-
plementary Table S8). This suggests that B. thermophilus
may acquire a higher proportion of its nutrition through its
symbionts than B. azoricus, in which filter-feeding might
play a more prominent role. Previous findings based on the
degree of convolution in the digestive tract in both mussels
[17] and on the incorporation of dissolved and particulate
organic matter in B. azoricus [18] support this idea. B.
thermophilus specimens in our study were sampled in
notably greater water depth (2511 m) and thus probably had
access to less sinking biomass for filter-feeding than B.
azoricus specimens (860 m depth). As thiotrophic and
methanotrophic symbionts supposedly contribute equally to
B. azoricus’ nutrition (as suggested for Bathymodiolus sp.
[19]), the presence of the methanotroph likely does not
counterbalance the lower total symbiont biomass, indicating
that B. azoricus may indeed receive less nutrients from its
symbiont population than B. thermophilus. The relative
contributions of symbiont-derived nutrition and filter-
feeding in B. azoricus appear to vary with season and
physiological host factors such as mussel size [20-22]. We
can therefore not rule out that dissimilar specimen sizes and
sampling dates for B. thermophilus and B. azoricus (see
Supplementary Methods) may have influenced our results,
but we assume that this potential effect is negligible.

(2) Both Bathymodiolus hosts appear to oxidize sulfide
and provide a thiosulfate reservoir for their symbionts. We
identified a host sulfide:quinone reductase (Sqr) homolog
(BAGILS_015482, 61% sequence identity to mitochondrial
sulfide:quinone oxidoreductase of the copepod Eurytemora
affinis) in B. thermophilus, and a host sulfurtransferase
(BAGILS_000284, 53.8% identity to sulfurtransferase of
the Pacific oyster Crassostrea gigas) in B. thermophilus and
B. azoricus (Fig. 1, Supplementary Tables S2 and S3). Both
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are involved in the mitochondrial oxidation of sulfide to symbiont-free foot samples, indicating that mitochondrial
thiosulfate (Fig. 3a). They were enriched or exclusively sulfide oxidation is particularly relevant near the symbionts.
detected in symbiont-containing samples compared with ~ As an inhibitor of aerobic respiration, hydrogen sulfide is
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<« Fig. 1 Relative abundance of proteins in major metabolic categories in

B. thermophilus (Bth) and B. azoricus (Baz). Bubble size corresponds
to protein abundance in %OrgNSAF (average values, for replicate
numbers see Supplementary Table Sla; see Supplementary Tables S2
and S3 for a complete list of all identified proteins). Sample types: we
analyzed the soluble proteome of symbiont-containing whole gill tis-
sue (Gill) and symbiont-free foot tissue (Foot). In addition, we
selectively enriched symbiont fractions (symbiont cell pellet, Sym) and
host proteins (host-enriched supernatant, Host, Baz only) from gill
tissue using gradient centrifugation, and analyzed their soluble pro-
teome. For enhanced identification of membrane-associated symbiont
proteins, we additionally analyzed the membrane proteome of whole
gill tissue samples (gill membrane fraction, GM) and enriched sym-
bionts (symbiont membrane fraction, SM, Baz only). Baz Sym samples
were analyzed in an LTQ-Orbitrap Velos (V) mass spectrometer and in
an LTQ-Orbitrap Classic (O) mass spectrometer. The heat map in the
center shows ratios of symbiont protein abundance in B. thermophilus
and B. azoricus Gill and Sym samples (Velos measurements only).
Ratios were calculated from CLR-transformed %OrgNSAF values (see
Supplementary Methods). Negative ratios (red cells) indicate higher
abundance in B. thermophilus, while positive ratios (blue cells) indi-
cate higher abundance in B. azoricus. Gray cells (NA) indicate pro-
teins that were either not compared, or that lacked the minimum
number of valid values for reliable ratio calculations (see also Sup-
plementary Table S4). Major metabolic categories are indicated on the
right. H hydrogen oxidation, P phage defense
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Fig. 2 Biomass contributions of symbionts in B. thermophilus and B.
azoricus. Total symbiont biomass was substantially higher in B.
thermophilus than in B. azoricus in whole gill tissue as well as in
enriched symbiont fractions and in gill membrane fractions. Biomass
contributions were calculated from the total number of spectra recor-
ded for each organism during MS/MS analyses [16]. Error bars indi-
cate standard deviations (all B. thermophilus samples: n=3; B.
azoricus enriched symbiont fraction and whole gill tissue: n=2; B.
azoricus gill membrane fraction: two biological replicates were pooled
for MS analysis). SOX sulfur-oxidizing symbiont, MOX methane-
oxidizing symbiont

toxic to aerobic organisms [23]. Invertebrate hosts of thio-
trophic bacteria have therefore developed various strategies
to shield their tissues from sulfide toxicity [24, 25],
including the oxidation of sulfide into less harmful sulfur
forms [26]. Our results strongly support the idea that B.
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thermophilus turns toxic sulfide into the less toxic thio-
sulfate by mitochondrial sufide oxidation, which may
effectively function as a means of sulfide detoxification.
This concept was first described for the thiotrophic
symbiont-hosting clam Solemya reidi [27], but has since
been reported for various other symbiotic and nonsymbiotic
animals, including Bathymodiolus species [28-30].

The thiotrophic symbionts of B. thermophilus and B.
azoricus use thiosulfate as an energy source [13, 31]. Pro-
teins required for this thiosulfate oxidation process, i.e., the
Sox multienzyme complex, showed quite similar total
abundances in both thiotrophic symbionts in this study, with
2.03 %OrgNSAF in gill tissue in B. azoricus and 1.98% in
B. thermophilus (Fig. 1, Supplementary Tables S2-S4).
This suggests that both symbionts experience comparable
thiosulfate levels in their microhabitat, the gill tissue,
although their macro-environments differ with respect to
host species and geographic location. As previously sug-
gested [31, 32], mitochondrial sulfide oxidation in Bath-
ymodiolus gills may thus create a pool of thiosulfate, which
provides a stable energy source for the thiotrophic
symbionts.

(3) We identified several copies of the host enzyme
carbonic anhydrase (CA) with significantly higher abun-
dances in symbiont-containing samples than in foot tissue
samples in both Bathymodiolus hosts, indicating the invol-
vement of these enzymes in symbiosis-related processes
(Fig. 1, Supplementary Fig. S2). CAs interconvert HCO; ™~
and CO,, turning the diffusible gas CO, into a nondiffusible
form (and back). The two CA homologs BAGILS_000922
and BAGILS_000924 were the most abundant proteins in B.
azoricus gill samples (5.2 %OrgNSAF) and host-enriched
gill supernatant samples (6.9 %OrgNSAF; Supplementary
Table S3, Fig. 1). In contrast, while three CAs were
detected in B. thermophilus symbiont-containing samples
(BAGILS_000922, BAGILS_000924. BAGILS_003177),
their total abundance was about 100-fold lower (0.052 %
OrgNSAF in gills, 0.066 %OrgNSAF in enriched symbiont
samples, Supplementary Table S2) than in B. azoricus. We
hypothesize that the high expression of host CA in B.
azoricus may be a response to CO, released by the
methanotrophic symbiont as end-product of methane oxi-
dation. Possibly, CA in gill tissue may convert this
methanotroph-derived CO, to HCO;™, thus immobilizing
and concentrating it for efficient fixation by the thiotroph. A
function of abundant host CA in providing chemoauto-
trophic symbionts with inorganic carbon has been suggested
for several marine invertebrates, including various Bath-
ymodiolus species, Calyptogena species, and Riftia
pachyptila [33-35]. In B. thermophilus, which lacks a
methanotrophic symbiont, CO, concentrations might be
lower, which would require lower CA abundance, com-
pared with B. azoricus. Both hosts thus appear to regulate
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their enzyme repertoire according to the specific require-
ments of their respective symbionts (Supplementary Dis-
cussion II, Supplementary Fig. S2).

(4) An amino acid cycling mechanism could provide
Bathymodiolus hosts with symbiont-derived amino acids
and appears to be particularly relevant in B. thermophilus.
We detected a broad specificity r-amino acid ABC
transporter (AapJQMP) in both Bathymodiolus SOX
symbiont proteomes, which could be involved in selective
“leakage” of symbiont amino acids to the host (Fig. 3b).
Aap has a preference for polar amino acids and acts not
only as an uptake transporter, but—in the presence of
extracellular amino acids—also as an efflux transporter
[36, 37]. In the well-studied Rhizobium symbiosis, Aap
was shown to enable the cycling of amino acids between
the plant host and root bacteroids [38, 39]. The glutamate-
generating host enzymes ornithine aminotransferase
(OatA: BAGILS_006873, BAGIiLS_004723) and alanine

and thiotrophic symbionts in Bathymodiolus. The symbiont’s general
L-amino acid ABC transporter Aap imports host glutamate and exports
aspartate (and presumably other amino acids) synthesized by the
symbiont. Red arrows indicate amino acid biosynthetic routes that are
shared between host and symbiont, whereas black indicates routes that
are exclusive to the host or the symbiont. Arrows with flat ends sug-
gest an inhibitory action. OatA: host ornithine aminotransferase,
AgxT: host alanine aminotransferase, AspC: symbiont aspartate
transaminase, GItBD: symbiont glutamate synthase, CitT: symbiont
citrate transporter, Dct: symbiont tripartite ATP-independent peri-
plasmic transporter. Lys, Thr, Arg, Gln, Asp: lysin, threonine, argi-
nine, glutamine, aspartate; G5S: L-glutamate 5-semialdehyde

aminotransferase (AgxT: BAGIiLS_022026) were notably
more abundant or even exclusively detected in symbiont-
containing samples compared with foot tissue in both
Bathymodiolus hosts (Supplementary Tables S2 and S3).
All identified peptides were unique to the host proteins
and were not shared with any symbiont proteins. These
proteins could produce glutamate in the direct vicinity of
the symbionts for uptake by the bacterial Aap transporter.
After import through Aap, glutamate could be transami-
nated in the bacterial cytoplasm by the symbiont's aspar-
tate aminotransferase (AspC: OIR24744.1, SEH69114.1),
which we identified in both thiotrophic symbionts, and the
resulting aspartate could be recycled into the Bath-
ymodiolus bacteriocyte. A similar amino acid cycling
strategy was described in the Buchnera-aphid symbiosis
[40]. Other amino acids besides aspartate and glutamate
might also be cycled, as proposed for Rhizobium [38].
This mechanism would allow the Bathymodiolus host to
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compensate for its previously proposed inability to syn-
thesize aspartate and many other amino acids autono-
mously ([13], Supplementary Table S5) by harnessing the
symbiont’s biosynthetic machinery (see also Supplemen-
tary Discussion III). Simultaneously, both B. azoricus and
B. thermophilus seem to supply their respective thio-
trophic symbionts with oxaloacetate, an essential inter-
mediate the bacteria cannot synthesize on their own ([13],
this study; Fig. 3b). Close metabolic interdependency thus
seems to be a typical feature of Bathymodiolus symbioses.

Interestingly, Aap was considerably more abundant in
the B. thermophilus symbiont (the periplasmic solute-
binding subunit AapJ, OIR25769.1, alone contributed
~1% of the entire symbiont proteome, Fig. 1), than in the B.
azoricus thiotroph (SEH78249.1, <0.1 %OrgNSAF in the
symbiont fraction). Possibly, this may be because B. ther-
mophilus obtains a relatively larger part of its nutrition from
its symbionts than B. azoricus (see above).

(5) Symbiont attachment-related proteins (ARPs) were
highly abundant in B. thermophilus and may be involved in
interactions with the host. We detected a large set of 129 B.
thermophilus symbiont proteins involved in surface-binding
and cell-cell adhesion, which together made up 23.9% of
the symbiont’s proteome in gill tissue (Supplementary
Table S6b). Most of these proteins (126) are predicted to be
either attached to the symbiont cell surface or secreted into
the surrounding host vacuole, and 127 were more abundant
in gill samples (gill and/or gill membrane) than in symbiont-
enriched fractions. The B. azoricus thiotroph, on the other
hand, expressed only 16 ARPs, accounting for 3.5 %
OrgNSAF in gill samples (Supplementary Table Sé6c). To
judge whether the high number of ARPs observed in the B.
thermophilus thiotroph poses an exception or rather a
common feature of thiotrophic Bathymodiolus symbionts,
we compared the B. thermophilus symbiont’s genome to the
genomes of three other thiotrophic Bathymodiolus sym-
bionts, two thiotrophic clam symbionts, and two free-living
thiotrophs. This screening showed that ARP-encoding
genes are comparatively rare in the related bacteria, but
occur in exceptionally high numbers in the B. thermophilus
symbiont (see Supplementary Discussion IV, Supplemen-
tary Table S6a, Supplementary Figs. S1 and S5). While the
exact function of ARPs in Bathymodiolus thiotrophs is
unknown, several possible scenarios are conceivable (see
Supplementary Discussion V for details): (a) ARPs might
be involved in symbiont colonization of host tissue, because
most of them were adhesins, invasins, cadherins, integrins,
intimins, and other proteins known to play crucial roles in
pathogenic bacteria during host colonization and persistence
[41-44]. (b) Their extraordinarily high abundance in B.
thermophilus may additionally suggest a role in attachment
of symbiont cells to each other, i.e., the formation of a
biofilm-like structure, or some kind of extracellular
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proteinaceous matrix around the symbiont cells. This matrix
could, for example, serve as proteinaceous substrate that is
leaked from the symbionts to the host. As B. thermophilus
presumably relies relatively more on its symbiont for
nutrition than B. azoricus (see above), higher abundances of
leaked symbiont proteins (e.g., ARPs) might be required.
(c) Several of the symbiont ARPs contained domains
known to bind and interact with phages (e.g., Ig-like,
fibronectin Type 3, immunoglobulin superfamily and C-
type lectins [45, 46]), which may indicate that the proposed
ARP matrix could protect the symbionts from phages
(Supplementary Fig. S4, Supplementary Table S7). More-
over, as previously suggested for pathogens [47, 48], ARPs
could enable the symbionts to interact with host phagocytes,
potentially enabling them to circumvent host-induced
apoptosis (Supplementary Fig. S3). Further in-depth stu-
dies will be required to verify these hypotheses.

Conclusion

Although B. thermophilus and B. azoricus holobionts are
phylogenetically closely related, many of their
host—symbiont interactions differ distinctly on the mole-
cular level. Further studies are required to disentangle the
respective influence of habitat conditions, biological host
parameters (e.g., age, reproductive status), and of individual
host—symbiont constellations. However, our results imply
that a high degree of variability, even between closely
related species, needs to be taken into account when
studying host—microbe associations in model systems.
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