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On the density of rational points on rational elliptic surfaces

Julie DESJARDINS

Abstract

Let E → P1
Q be a non-trivial rational elliptic surface over Q with base P1

Q (with a section).
We conjecture that any non-trivial elliptic surface has a Zariski-dense set of Q-rational points.
In this paper we work on solving the conjecture in case E is rational by means of geometric
and analytic methods. First, we show that for E rational, the set E (Q) is Zariski-dense when
E is isotrivial with non-zero j-invariant and when E is non-isotrivial with a fiber of type II∗,
III∗, IV ∗ or I∗m (m ≥ 0). We also use the parity conjecture to prove analytically the density
on a certain family of isotrivial rational elliptic surfaces with j = 0, and specify cases for which
neither of our methods leads to the proof of our conjecture.

1 Introduction

Let E be an elliptic surface over P1
Q, i.e. a projective algebraic surface E defined over Q

endowed with a morphism π : E → P1
Q such that, for all t ∈ P1

Q except a finite number, the fiber

Et := π−1(t) is a smooth projective curve of genus 1. Moreover, we suppose that there exists a
section σ : P1

Q → E for π.

Such an elliptic surface can be written as the set of solutions in P2
Q × P1

Q of a Weierstrass
equation

E : y2z = x3 +A(T )xz2 +B(T )z3, (1)

with A(T ), B(T ) ∈ Z[T ]. We call generic fiber of E the elliptic curve over Q(T ), denoted by ET ,
whose model is given by the equation (1). We classify the elliptic surfaces according to their
j-invariant function:

1. E is non-isotrivial if j(T ) is non-constant,

2. E is isotrivial otherwise, and admits a Weierstrass equation of the form

(a) y2 = x3 + af(T )2x + bf(t)3 where a, b non-zero integers and f ∈ Q[T ], (if j(T ) ∈
Q\{0, 1728})

(b) y2 = x3 +A(T ) where A ∈ Q[T ] (if j(T ) = 0),

(c) y2 = x3 +B(T )x where B ∈ Q[T ] (if j(T ) = 1728).

For almost every t ∈ P1
Q, the fiber Et = π−1(t) is an elliptic curve over Q and the set Et(Q)

admits a group structure. By Mordell-Weil’s theorem, this group decomposes as the sum of a
finitely generated free group (isomorphic to Zr) and a finite group (the torsion points). The
integer r = rk(Et) is called the Mordell-Weil rank (or simply the rank) of Et over Q.

We put forward the following conjecture, a variant of a conjecture of Mazur [Maz92, Conjec-
ture 4], where "real density" is replaced by "Zariski density". This conjecture is already implicit
in the literature, particularly in [CCH05].

Conjecture 1.1. Let E → P1
Q be a non-trivial elliptic surface over Q. Then E (Q) is Zariski-

dense in E .
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Remark 1. In case E is a trivial surface, i.e. there exists a curve E0 such that E ≃ E0 × P1
Q

over Q. One has E (Q) = E0(Q)× P1
Q(Q), and this can be dense or not dense depending on the

number of points of E0(Q).

There is two approaches to solve this conjecture. We can either prove that the rank is non-
zero by means of geometric arguments, or we can use the parity conjecture (a weaker version of
the Birch and Swinnerton-Dyer conjecture) which links the root number of an elliptic curve E
to the parity of its rank :

W (E) = (−1)rkE .

We already have evidence (see [Man95, Hel03, Des16b]) that the rational points should be
dense when the elliptic surface is non-isotrivial, because of the variation of the root number of
the fibers. The articles mentioned above additionally use two conjectures of analytic number
theory, the squarefree conjecture and Chowla’s conjecture, which are known only for polynomials
of low degree.

In this article, we work on proving the conjecture in case E is a rational elliptic surface, i.e.
Q-birational to P2. This is the class of elliptic surfaces with the simplest geometry, and thus a
good starting point. It is also interesting to observe that it leads to results on Del Pezzo surfaces,
due to the relation between those classes of surfaces. In certain cases, we can even prove the
stronger property of unirationality : a surface S over a field k is unirational if there is a dominant
rational map P2

99K E over k. Note that if a projective surface S is Q-unirational, one has in
particular that the set of its rational points S(Q) is Zariski-dense in S.

Finally, note that in section 7.1, we state on which rational elliptic surfaces the results of
[Hel03] unconditionnally imply the variation of the root number.

We prove the following theorem :

Theorem 1.2. Let E be a rational elliptic surface.

1. Suppose E is isotrivial with non-zero j-invariant.

(a) Then the set of rational points E (Q) is Zariski-dense in E .

(b) Moreover, if the j-invariant is not 1728, the surface E is Q-unirational.

2. Suppose E has a fiber of type II∗, III∗, IV ∗ or I∗m (m ≥ 0). Then E is Q-unirational.

When E is isotrivial with j(T ) = 0, this theorem says nothing on the Zariski-density of the
rational points. Such surfaces are given by a Weierstrass equation of the form y2 = x3 + g(T ),
where g(T ) ∈ Z[T ] is a polynomial of degree at most 6. According to Várilly-Alvarado [VA11],
the root number of the fibers of one of these surfaces always takes infinitely many negative
values, except possibly when all Pi irreducible factors of g are such that

µ3 ⊆ Q[t]/Pi(t).

However, it may happen that the polynomial g does not respect this condition, in particular
g(T ) = AT 6 + B, where A,B ∈ Z are such that 3A

B is a rational square. Theorem 6.1, gives
precise conditions on the integers A and B for the surface

EA,B,C : y2 = x3 +AT 6 +B

to have a constant root number of the fibers always +1. This gives a description of surfaces for
which our methods does not allow to prove Conjecture 1.1.

We also study in Section 6.2 the variation of the root number on a specific family of rational
elliptic surfaces with j(T ) = 1728. It is interesting to note that in the case we study the proof
of Theorem 1.2 gives a section of finite order. In Theorem 6.2, give the conditions under which
there can be a constant root number on the fibers of an elliptic surface FA,B,C given by the
following Weierstrass equation:

FA,B,C : y2 = x3 + C(A2T 4 +B2)x, A,B,C ∈ Z and A,B coprime.
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1.1 Previous results

Various geometric arguments allow one to prove unconditionnally the density of rational
points on rational elliptic surfaces (or its associated del Pezzo surface).

Rohrlich [Roh93, Theorem 3] shows the Zariski-density on

f(t)y2 = x2 + ax+ b

where f is a quadratic polynomial and a, b are non-zero integer, under the additional assumption
that there exists a fiber of positive rank.

In [Sal12], Salgado studies the problem of comparing the rank of the special fibers over a
number field k with that of the generic fiber over k(P1). She proves for a large class of rational
elliptic surfaces the existence of infinitely many fibers whose rank exceeds the generic rank of at
least 2.

In [Ula08] and [Ula07], Ulas proves the density of rational points on certain families of
isotrivial rational elliptic surfaces with j-invariant 0 and 1728 by constructing a multisection
with infinitely many points on those families. Jabara generalizes one of Ulas’ work in [Jab12,
Theorems C and D] and proves the density when B(t, 1) is monic and the pair of coefficients
(A,B) is sufficiently general. An article of Salgado and Van Luijk [SvL14] improves Ulas con-
struction, and proves the Zariski-density of set of rational points of a del Pezzo surface of degree
1 satisfying certain conditions. For instance it suffices to suppose that the elliptic surface ob-
tained by the blowup of the anticanonical point has a fiber of type II over a certain k-rational
point of P1.

The approach of Bettin, David and Delaunay [BDD16] is another way to find whether or not
a rational elliptic surface has a section over Q. They study specifically the elliptic surfaces given
by a Weierstrass equation y2 = x3 + a2(T )x

2 + a4(T )x+ a6(T ) where a2, a4, a6 ∈ Z[X] wih no
place of multiplicative reduction except possibly at infinity. They find different classes of such
families such that deg ai(t) ≤ 2 for i = 2, 4, 6 and on each of them compute the generic rank. In
particular, this proves the density of rational points on those of them with a non-zero generic
rank.

Rohrlich pioneered the study of variations of root numbers on algebraic families of elliptic
curves in [Roh93]. Many authors followed: see, for example, [Man95, GM91, Riz03, CCH05,
Hel03, VA11]. Some authors (notably [CS82],[VA11]) remarked that it can happen that the
root number of the fibers might all be of the same value, when the elliptic surface considered is
isotrivial, i.e. its modular invariant j(E) has no T -dependence.

1.2 Outline of the paper

In Section 2, we give a few reminders on rational elliptic surfaces and del Pezzo surfaces. In
Section 3, we recall the definition and the properties of the root number.

In Section 4, we prove the unirationality of rational elliptic surfaces with j-invariant different
from 0 or 1728 (the second point of Theorem 1.2). In Section 5, we exhibit a section on a rational
elliptic surface with j-invariant equal to 1728 and from this deduce the density of its rational
points. This section is not always of infinite order, but its existence completes the proof of the
statement on isotrivial rational elliptic surfaces of Theorem 1.2.

In Section 6.1, we find conditions on the coefficients of an rational elliptic surface with zero
j-invariant give by the equation y2 = x3 +AT 6 +B (with A,B ∈ Z) so that the root number of
the fibers always takes the value +1. In Section 6.2, we find conditions on the coefficients of some
rational elliptic surfaces with j-invariant 1728 given by the equation y2 = x3 + xC(A2T 4 +B2)
(where A,B,C ∈ Z) so that the root number of the fibers always takes the value +1.

We end the article in Section 7 with the completion of the proof of Theorem 1.2. We also
give various small results on non-isotrivial elliptic surfaces.
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2 Rational elliptic surfaces

Let E → P1
Q be an elliptic surface over Q given by a minimal Weierstrass equation

E : y2 = x3 +A(T )x+B(T ),

where A,B ∈ Z[T ]. The discriminant is the homogeneous polynomial defined as

∆E (X,Y ) = Y 12k−deg∆∆(X/Y )

where ∆(T ) = 4A(T )3+27B(T )2, and k is the smallest integer such that 12k ≥ deg∆(T ). Note
that one has thus deg∆E = 12k.

Proposition 2.1. (Criteria of rationality [Mir89])
An elliptic surface is rational, if and only if

0 < max{3 degA, 2 degB} ≤ 12

We observe thus that the discriminant ∆E actually gives the following classification of elliptic
surfaces:

deg∆E =























0 E is trivial

12 E is rational

24 E is a K3-surface

... ...

Rational elliptic surfaces are the (non-trivial) elliptic surfaces with discriminant of lowest
degree, and studying the density on them is a first step towards the resolution of Conjecture 1.1.

2.1 Minimal model of a rational elliptic surface

The following theorem due to Iskovskikh links rational elliptic surfaces to Del Pezzo surfaces.

Theorem 2.2. [Isk79, Thm. 1]
Let E be a rational elliptic surface defined over Q.
Then, it has a minimal model X/Q that is :

1. either a conic bundle of degree ≥ 1,

2. or a Del Pezzo surface.

A del Pezzo surface X is a non-singular projective algebraic surface whose anticanonical
divisor is ample. Its degree is the integer d ∈ {1, . . . , 9} corresponding to the self-intersection
number (KX ,KX) of the canonical divisor of X.

When X is a conic bundle, the work of Kollar and Mella [KM14] guarantees that the surface
is Q-unirational, i.e. it is dominated by the projective plane P2

99K X. In particular, the set of
rational points is dense.

Suppose that X is a del Pezzo surface of degree d. When d ≥ 3, one knows by the work of
Segre and Manin [Man74] that the existence of one rational point on X implies that the surface
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is Q-unirational. When d = 2, Salgado, Testa and Várilly-Alvarado [STVA14], based on a work
of Manin [Man74, Thm 29.4], showed that if X contains a rational point that does not lie on an
exceptional curve nor a certain quartic, then X(Q) is Zariski-dense. If d = 1, the surface X has
automatically a rational point: the base point of the anticanonical system. However, the results
concerning density of rational points are still partial (for instance [SvL14] and [VA11]).

2.2 Del Pezzo surfaces of degree one

If we blow up the anticanonical point on X, a del Pezzo surface of degree 1, we obtain a
rational elliptic surface E such that the image of the neutral section is the exceptional divisor.
Thus, the rational points of X are dense if and only if the rational points of E are dense.

By studying the singular points on rational elliptic surfaces, we obtain the following lemma:

Lemma 2.3. Let E be a minimal rational elliptic surface. We denote by X the surface obtained
from E by contracting its section at infinity. Then X is a del Pezzo surface of degree 1 if and
only if the only singular fibers of E have type II or I1.

Proof. A del Pezzo surface is smooth by definition. Therefore, the blow-up of its base point also
gives a smooth elliptic surface, meaning that the only singular fibers are irreducible (in other
words, those fibers have type I1 or II).

2.3 Isotrivial rational elliptic surfaces

An isotrivial rational elliptic surface takes one of the following forms:

1. y2 = x3 + aH(u, v)2x + bH(u, v)3 where a, b ∈ Q∗ are such that 4a3 + 27b2 6= 0 (if
j ∈ Q\{0, 1728});

2. y2 = x3 +A(u, v)x (if j = 0);

3. y2 = x3 +B(u, v) (if j = 1728),

for polynomial A,B,H ∈ Z[u, v] such that degH ≤ 2, degA ≤ 4 and degB ≤ 6. To avoid the
case where the surface is trivial, we suppose also that H is not a square, A is not a 4th-power
and B is not a 6th-power.

In each cases, the singular fibers have the following configuration:

1. Every singular fiber has type I∗0 .

2. The singular fibers have either type I∗0 , III or III∗.

3. The singular fibers have either type I∗0 , II, II∗, IV or IV ∗.

The only case where an isotrivial rational elliptic surface has a del Pezzo surface of degree
1 as a minimal model is the third one, when moreover the polynomial B is squarefree and has
degree ≥ 5.

3 Root number

3.1 Definition and motivation

The root number of an elliptic curve E is expressed as the product of the local factors

W (E) =
∏

p≤∞

Wp(E),

where p runs through the finite and infinite places of Q, Wp(E) ∈ {±1} and Wp(E) = +1 for
all p except a finite number of them. The local root number of E in p, Wp(E), is defined in
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terms of the epsilon factors of the Weil-Deligne representations of Qp (see [Del73] and [Tat77]).
Rohrlich [Roh93] gives an explicit formula for the local root numbers in terms of the reduction
of the elliptic curve E at a prime p 6= 2, 3 and at p = 2, 3 in case E is semi-stable. Halberstadt
[Hal98] gives tables (completed by Rizzo [Riz03]) for the local root number at p = 2, 3 according
to the coefficients of E. Moreover we always have W∞(E) = −1.

The root number is hypothetically equal to the sign W (E) ∈ {±1} of the conjectural func-
tional equation of L(E, s) the L-function of E :

N
(2−s)/2
E (2π)s−2Γ(2− s)L(E, 2− s) = W (E)N

s/2
E (2π)−sΓ(s)L(E, s).

When we work on elliptic curves over Q, such a functional equation always exists (by Wiles’
work [Wil95] and its generalisation by Breuil, Conrad, Diamond and Taylor [BCDT01]) and the
values of the root number and the sign of the functional equation are indeed the same.

The Birch and Swinnerton-Dyer conjecture implies that the root number is related to the
rank of the elliptic curve:

Conjecture 3.1 (Parity Conjecture). For all elliptic curve E over Q, we have

W (E) = (−1)rank E(Q).

As a consequence of this equality, it suffices that W (E) = −1 for the rank of E(Q) not to be
zero and in particular for E(Q) to be infinite.

Let E be a rational elliptic surface over P1
Q. The elliptic surface can be seen as a family of

elliptic curves, and admits a Weierstrass equation of the form

E : y2 = x3 +A(T )x+B(T ),

with A(T ), B(T ) ∈ Z[T ] have respectively degree less than or equal to 4 and 6.
We denote by ∆(T ) = 4A(T )3−27B(T )2 the discriminant and the corresponding homogenous

polynomial
∆E (X,Y ) = Y 12−deg∆∆(X/Y ).

Let also ME (X,Y ) the product of the polynomials associated to the places of multiplicative
reduction, that is to say, polynomials dividing ∆E , but not Y 4−degAA(X/Y ).

We consider the sets W+ and W− given by

W±(E ) = {t ∈ Q : Et is an elliptic curve and W (Et) = ±1}.

As a consequence of the parity conjecture, if #W−(E ) = ∞, then there exist infinitely many
fibers of E that are non singular elliptic curves with positive rank, and this guarantees the
density of the rational points on E .

When the surface is isotrivial, it can happen that one of the set W− or W+ is finite or empty.
In [CS82], Cassels and Schinzel find a family of elliptic curves, such that j(T ) = 1728, on which
the sign of the fibers always takes the value −1:

ET : y2 = x3 − (7 + 7T 4)2x.

Varilly-Alvarado gives more examples of elliptic surfaces with constant root number in [VA11],
among them the following elliptic surface with j = 0, given by the Weierstrass equation

y2 = x3 + 6(27T 6 + 1),

whose fibers always have a root number of value +1.
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3.2 Local root number at 2 and 3 of y2 = x3 + αx and y2 = x3 + α

We give here some formulas for the local root number at 2 and 3 of the elliptic curves
y2 = x3 + αx and y2 = x3 + α for α ∈ Q.

Lemma 3.2. [VA11, Lemme 4.7]
Let t be a non-zero integer and let be the elliptic curve Et : y2 = x3 + tx. We denote

by W2(t) and W3(t) its local root numbers at 2 and 3. Put t2 and t3 the integers such that
t = 2v2(t)t2 = 3v3(t)t3. Then

W2(t) =























−1 if v2(t) ≡ 1 or 3 mod 4 and t2 ≡ 1 or 3 mod 8;

or if v2(t) ≡ 0 mod 4 and t2 ≡ 1, 5, 9, 11, 13 or 15 mod 16;

or if v2(t) ≡ 2 mod 4 and t2 ≡ 1, 3, 5, 7, 11, or 15 mod 16;

+1 otherwise.

W3(t) =

{

−1 if v3(t) ≡ 2 mod 4;

+1 otherwise.

Lemma 3.3. [VA11, Lemme 4.1]
Let t be a non-zero integer and the elliptic curve Et : y

2 = x3 + t. We denote by W2(t) and
W3(t) its local root numbers at 2 and 3. Put t2 and t3 the integers such that t = 2v2(t)t2 = 3v3(t)t3.
Then

W2(t) =











−1 if v2(t) ≡ 0 or 2 mod 6;

or if v2(t) ≡ 1, 3, 4 or 5 mod 6 and t2 ≡ 3 mod 4;

+1, otherwise.

W3(t) =































−1 if v3(t) ≡ 1 or 2 mod 6 and t3 ≡ 1 mod 3;

or if v3(t) ≡ 4 or 5 mod 6 and t3 ≡ 2 mod 3;

or if v3(t) ≡ 0 mod 6 and t3 ≡ 5 or 7 mod 9;

or if v3(t) ≡ 3 mod 6 and t3 ≡ 2 or 4 mod 9;

+1, otherwise.

4 Isotrivial rational elliptic surfaces with j(T ) 6= 0, 1728

4.1 A theorem of Kollar and Mella

Theorem 4.1. [KM14, Thm. 1] Let K be any field of characteristic 6= 2 and a0(t), . . . , a3(t) ∈
K[t] polynomials of degree 2 giving a nontrivial family of elliptic curves. Then the surface

S : y2 = a3(t)x
3 + a2(t)x

2 + a1(t)x+ a0(t) ⊂ A3
xyt

is unirational over K.

In a first version of the article of Kollár-Mella [KM14], Theorem 4.1 excluded the isotrivial
case. The author wanted to complete this result, and obtained Theorem 4.2. However, it had
been completed by Kollár and Mella themselves by the time she submitted her ph.D thesis.
Their technique is different from the one in this article.

4.2 A non-isotrivial elliptic fibration

Theorem 4.2. Let E be a isotrivial rational elliptic surface given by the equation

E : Y 2 = X3 + aH(T )2X + bH(T )3,
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where a, b ∈ Z\{0} and H(T ) is a degree ≤ 2 polynomial that is not a square. Then the surface
E is Q-unirational. In particular, its rational points are dense for Zariski topology.

Remark 2. This result is proven by Rohrlich [Roh93, Theorem 3] under the a priori restrictive
assumption that there exists a fiber of positive rank. This assumption is removed here.

Proof. Observe that the surface E is endowed with many fibrations.

E : H(T )Y 2 = X3 + aX + b✱
ϕ1

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧ ❴

ϕ2

��

✒
ϕ3

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

x y t

The last two, ϕ2 and ϕ3, are elliptic fibration (with section). Even if the fibration defined
by ϕ3 is isotrivial, the one defined by ϕ2 is not. Indeed, if we write H(T ) = α2T

2 + α1T + α0

for the appropriate coefficients αi, the fibration ϕ2 has the fiber

Ey := α2y
2T 2 + α1y

2T = X3 + aX + b− α0y
2

which can after a change of variables (first T ′ = α2
2yT and x = α2X, then t = T ′ + α1α2y

2 ) be
written

Ey : t2 = x3 − 27c4(y)x− 54c6(y)

where c4(y) = α2
2a and c6(y) = (α3

2α0 +
α2
1α

2
2

4 )y2 + α3
2b. By computing the j-invariant, one

sees that this curve is not isotrivial, except in the case where a = 0 (c4(y) is zero) and α0 =
α3
2α0 +

1
4α

2
1α

2
2, in other words when H is the square of a linear polynomial (in that case, E is

trivial). These cases are excluded by our hypotheses. Hence, we can apply Theorem 4.1. This
proves the unirationality of E endowed with the elliptic fibration ϕ2.

Remark 3. Another way to prove Theorem 4.2 would have been the use the work of Colliot-
Thélène [CT90]. The second theorem of this article shows that for X, a conic bundle of degree
4, the Brauer-Manin obstruction to the Hasse principle is the only obstruction. To deduce from
this Theorem 4.2, one would have to check that the Brauer group of the surfaces that we consider
(whose equation is h(t)y2 = x3 − ax where deg h = 2) is the Brauer-group of Q.

5 Isotrivial rational elliptic surfaces with j(T ) = 1728

5.1 A section of infinite order

We study now the isotrivial rational elliptic surfaces of the form y2 = x3 + xA(T ) where
A ∈ Z[T ] is such that degA ≤ 4. The density of rational point is proven in the case where
degA ≤ 3 by Ulas in [Ula07]. For this reason, we concentrate on surfaces such that degA = 4.
Let a4, a3, a2, a1, a0 ∈ Z be the coefficients such that

A(T ) = a4T
4 + a3T

3 + a2T
2 + a1T + a0.

First observe that we have F (T ) = a4

(

(

T 2 + g1T + g0
)2

+ h1T + h0

)

, where

g0 =
4a2a4 − a23

8a24
, g1 =

a3
2a4

, h0 =
26a34(a0 + x2)− (4a2a4 − a23)

2

26a44

and

h1 =
23a1a

2
4 − a3(4a2a4 − a23)

23a34
.
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We make the change of variables T ′ = T − g1/2. Thus we can write

A(T ) = a4(T
′4 + (

−g21
2

+ 2g0)T
2 + (

−g31
2

+ 2g1g0)T + (
−g41
24

+ g20 + h0)).

Replacing T 2 and T by their expressions in terms of T ′, we obtain the following equation:

y2 = x3 + a4x(T
′4 +A2T

′2 +A1T
′ +A0),

where

A2 = (g0 −
g21
2
), A1 = (

g31
2

+ a2g1), and A0 = (−g41
24

+ g20 + h0).

Hence, one can assume that a3 = 0 (or else we do the change of variable previously explained).
The surface E has the following fibrations.

E : Y 2 = X3 +A(T )X✳
ϕ1

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥ ❴

ϕ2

��

✏
ϕ3

((PP
PPP

PPP
PPP

PPP

x y t

The initial fibration is ϕ3. The fiber ϕ1 : (x, y, t) 7→ x is a genus 1 curve, and this fibration
is a priori without section 1.

The equation of the fiber at x can be written as:

Cx : y2 = a4xt
4 + a2xt

2 + a1xt+ (a0x+ x3).

It is a genus 1 curve with two points at infinity, denoted by ∞+ and ∞−, which are rational
if and only if x ∈ a4Q

∗2.

Proposition 5.1. Let Px = cl((∞+)− (∞−)) ∈ Cx(Q) for x ∈ a4Q
∗2.

Then
— if a1 = 0, the point Px has order 2,
— if a1 6= 0, Px has infinite order (except for finitely many x).

Proof. Explicitely, putting u = 1
t and v = y

t2
, one has in coordinate (u, v) :

∞+ = (0, b), and ∞− = (0,−b).

Suppose that b2 = a4x for a certain rational number b. We write

Cx : y2 = b2t4 + a2xt
2 + a1xt+ a0x+ x3.

A well-chosen change of variables 2 gives the following general Weierstrass equation for Cx.

Cx : S2 +
h1
4
S = R3 − g0R

2 − h0
4
R, (2)

where

g0 =
a2
2a4

, h0 =
22a4(a0 + x2)− a22

22a24
and h1 =

a1
a4

.

1. To ensure the existence of a section to ϕ1 : (x, y, t) 7→ x, it would be necessary to check that every ϕ−1

1
(x) admits

a rational point.
2. We use here a very classical method, explained in particular in a book of Cassels’ [Cas91]. An interested reader

can also find the details of the change of variables in the author’s phD thesis [Des16a, Section 1.1.3]. Observe that the
coefficients g0, h0, h1 in the general Weierstrass equation (2) correspond to the quantities previously defined in this
Section.
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The two points at infinity are send to the two obvious points of (2). We have:

R(∞+) = ∞ and S(∞+) = ∞.

R(∞−) = 0 and S(∞−) = −h1
4

We put in a natural way the point obtain from ∞+ as marked point of the curve Cx, that
is as the identity element of the group law of the set of rational points. With this configuration
one has (0,−h1

4 ) = [−1](0, 0). We deduce of this that if h1 = a1
a4

= 0, then the point (0,−h1
4 )

has order 2.
In the case where h1 6= 0, let us find the order of Q = (0, 0). Its order will be the same as the

one obtained from ∞−. We use a result proven simultaneously by Lutz and Nagell which can
be found [Sil94, p.240]: if E/Q is an elliptic curve of Weierstrass equation y2 = x3 + Ax + B,
A,B ∈ Z and that P ∈ E(Q) is a torsion point different for the point at infinity, then the
following properties hold:

1. x(P ), y(P ) ∈ Z.

2. We have either [2]P = O or x([2]P ) ∈ Z.

To use this fact, we need to consider a curve with integer coefficients (denote these coefficients
by Ai). As the coefficients of Cx might not be integers, we will choose a certain integer α for
which the twist of the curve has integer coefficients. Let u and v be the coprime integers such
that x = u

v . If we put α = 2 · a4v, the coefficients of the curve are integers

C ′
x : S2 + α3h1

4
S = R3 − α2g0R

2 − α4h0
4
R.

(In fact, it is sufficient to put α = 2a4w where w is an integer such that v2 | w.) We now show
that if h1 6= 0, the point Q is not 2-torsion for infinitely many values of x. We first find the
condition for R([2]Q) to be an integer. We have:

R([2]Q) =
(4α4h0
4α3h1

)2
+ 4α2g0.

For this coordinate to be an integer, we need α3h1 to divide α4h0. Recall that x = u
v where

u, v ∈ Z are coprime. We have

α4h0 = A
(u

v

)2
+B,

where A = 24a34v
4 and B = 24a34a0u

4 − 22a24a
2
2v

4. As for the quantity α3h1, it is an integer of
value

α3h1 = 23a24a1v
3.

If α3h1 | α4h0 for every x ∈ Q2∗a4, then α3h1 divides B (we obtain this taking for instance
x = (α3h1)

2a4 ). Therefore, α3h1 divides Ax2 for any choice of x. Choose v prime to 2a4. In
this case, we have a contradiction since Ax2 = 23a24v

2(2a4u) should be divisible by 23a24a1v
3,

but v is assumed to be prime to 2a4 and to u. This contradiction shows that for every x ∈ Q2∗a4
whose denominator is prime to 2a4, the point Q is of infinite order on the curve Cx.

We conclude the proof by using Silverman’s specialization theorem (see [Sil83] and [Sil,
Theorem 11.4, Chapter III]). A priori, the fibration

ϕ2 : E → P1
Q

(x, y, t) 7→ x.

is not an elliptic surface over Q. However, let us consider the application

φ : P1
Q → P1

Q

z 7→ x = a4z
2.
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and the fibered product E ′ of E with respect to the fibration. By the previous argument, E ′

admits two sections ∞+ and ∞−. It is thus an elliptic surface over Q. Let us choose as the
canonic section ∞+.

If there exists a linear change of variable such that A = A4T
′4 + A2T

2 + A0, then ∞− is a
torsion point on every fiber at x = az2 of E . Therefore, the section ∞−(z) is torsion for every
z ∈ P1

Q (except finitely many, i.e. those defining a singular fiber).
If there is no such change of variable, then the point ∞− has infinite order for infinitely many

fibers of E . Therefore, Silverman’s specialization theorem guarantees that ∞−(z) has infinite
order on every fiber of E ′ except for finitely many z.

We directly deduce from this proposition the following theorem :

Theorem 5.2. Let E be a rational elliptic surface given by the equation

E : Y 2 = X3 +A(T )X,

where A(T ) is a polynomial of degree 4 with integer coefficients.
Suppose there exists no linear change of variable T → T ′ + b such that A is of the form

A(T ′) = A4T
′4 +A2T

′2 +A0,

where A4, A2, A0 ∈ Z.
Then the rational points of E are Zariski-dense.

Remark 4. The surfaces which are not treated by this theorem are of the form:

y2 = x3 + x(a4T
4 + 4ba4T

3 + (6b2a4 + a2)T
2 + (4b3 + 2ba2)T + a4b

4 + a2b
2 + a0)

for a certain b ∈ Q and a4, a2, a0 ∈ Z such that
√

a22 − 4a4a0 6∈ Q. 3 Suppose E is of that form,
then by Proposition 5.1 the points Px constructed previously is 2-torsion on Cx for almost every
x ∈ a4Q

∗2

Proof. We can assume that a1 = a3 = 0. For these surfaces, the application (x, y, t) 7→ x is a
fibration in genus 1 curves, infinitely many of which (in fact every fiber at x ∈ a4Q

∗2 except a
finite number of them)) admits a structure of group and a point of infinite order. This shows
the density of rational points of E (Q).

In the two next sections, we give other arguments showing the density of the rational points
in more generality.

5.2 A conic-bundle structure

Theorem 5.3. Let E be a rational elliptic surface of Weiestrass equation

y2 = x3 +A(T 2 − α)(T 2 − β)x,

where A,α, β ∈ Q. Then the rational points are Zariski-dense.

Proof. By changing variables X = (T 2 − α)x and Y = (T 2 − α)2y, one obtain the equation

Y 2 = (T 2 − α)X3 +A(T 2 − β)(T 2 − α)4X

which is isomorphic to
Y 2 = (T 2 − α)X3 +A(T 2 − β)X.

A reshuffle of the terms permits to obtain the following equation for E

Y 2 − T 2(X3 −AX) + (αX3 +XAβ) = 0

which is a conic bundle. This bundle has less than 6 singular fibers. Corollary 8 of the article
of Kollár and Mella [KM14] thus shows unirationnality of E . Therefore, the rational points are
dense.

3. Note that the case a22 = 4a4a0 is already excluded by assumption that E is non-trivial.
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5.3 Density on isotrivial elliptic surfaces with j = 1728

As a conclusion for this section, we show the density of rational points on every isotrivial
rational elliptic surfaces with j-invariant 1728.

Theorem 5.4. Let E be an isotrivial rational elliptic surface with j(T ) = 1728. Then the
rational points E (Q) are Zariski-dense.

Proof. Let E be an isotrivial rational elliptic surface with j-invariant j(T ) = 1728.
Recall Theorem 2.2 due to Iskovskikh that says that a rational elliptic surface has a minimal

model which is either a conic bundle of degree 1 or a del Pezzo surface.
Let X be a minimal model of E . As a corollary of Lemma 2.3, X is never a del Pezzo surface

of degree 1. Indeed, the discriminant of E is ∆(T ) = −26 · A(T )3 so every fiber at a factor of
A(T ) has a reduction of Kodaira type III, I∗0 or III∗, and such singular fibers are reducible.

In the case where X is a conic bundle of degree 1, [KM14] show unirationality of X, and
thus the density of its rational points. Therefore, it is also the case for E . In the case where X
is a del Pezzo surface of degree ≥ 3, [Man74] shows unirationality of X and E .

We only have to consider the case where X is a del Pezzo surface of degree 2. In this case,
we have the following sections on E :

1. The section of the points at infinity [0, y, 0, 0].

2. The section of Proposition 5.1 [x, −b
u2 ,

1
u , 1] where u = 0, b =

√
a4x and x ∈ a4Q

∗2.

3. The section [0, 0, t, 1].

If the contraction two of them gives a del Pezzo surface of degree 2, then the image of the
third is a rational curve. If it is an exceptional curve, we can contract is to obtain a del Pezzo
of degree 3, on which the rational point are dense. If the image is not an exceptional curve, it
allows all the same to find an infinity of points on X. Therefore, some of them are not on an
exceptional curve nor on a distinguished quartic. We can thus use the work of Salgado, Testa
and Várilly-Alvarado [STVA14] which shows unirationality and density of rational points on X
and E .

6 Root number on the fibers of isotrivial rational ellip-

tic surfaces

As seen in Section 3, the root number is conjecturally equal to the parity of the geometric
rank. It can thus be used as a substitute and becomes useful in the study of the density of
rational point, especially when no geometric argument is known.

Let E be an isotrivial elliptic surface 4. We study here the variation of the root number of
the fibers Et, more precisely the cardinality of the sets

W±(E ) = {t ∈ Q | W (Et) = ±1}.

If ♯W− = ∞, we can conclude the density of the rational points conditionally to the parity
conjecture.

We restrict ourselves to specific surfaces of quartic (j-invariant = 1728) and sextic twists
(j = 0), since the quadratic twist case is detailled in another paper [Des18].

4. The non-isotrivial case is already studied in [Des16b]
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6.1 Case j(T ) = 0

Let E be a rational elliptic surface described by the Weierstrass equation

E : y2 = x3 + f(T ),

where f ∈ Q[t] is such that deg f ≤ 6 and is sixth-power free.
A general geometric argument to show the density of the rational points, like those presented

in the previous sections, is still not known. However, there are partial results. In [Ula08] and
[Ula07], Ulas gives various conditions for the rational points on E f to be dense: 1) when E f is
related to a del Pezzo surface of degree 1 and that a certain section on E f is non-torsion, 2)
when f is a monic polynomial of degree six and f is not even. Jabara generalizes this second
Ulas’ work in [Jab12, Theorem C] and treats the case with f(T ) monic.

We chose to study a surface given by an equation of the form

y2 = x3 +AT 6 +B (3)

as a sequel of [VA11, Theorem 2.1] which shows that the variation of the root number of the
fibers of a rational elliptic surface of the form

y2 = x3 + F (T )

where F has a primitive factor fi such that µ3 6⊆ Q[T ]/fi where µ3 is the group of the third
roots of unity. A natural example of a polynomial not obeying this condition is

F (T ) = C(3A2T 6 +B2). (4)

Our Theorem 6.1 is thus the natural continuation of the work of Várilly-Alvarado, in particular
of [VA11, Theorem 1.1].

In broad terms, the proof used in Várilly-Alvarado’s article is based on the fact that the root
number of the fiber Et=m

n
, m,n ∈ Z coprime, is given by the formula ([VA11, Prop. 4.8]) :

W (Et) = −R(t)
∏

p2|F (m,n)
p≥5

{

1 if vp(F (m,n)) ≡ 0, 1, 3, 5 mod 6
(

−3
p

)

if vp(F (m,n)) ≡ 2, 4 mod 6
(5)

where

R(t) = W2(Et)

( −1

F (m,n)2

)

W3(Et)(−1)v2(F (m,n)),

where F (m,n) = F (mn )n
deg F . It relies essentially on making the product over p ≥ 5 vary.

Families of sextic twists with F (T ) of the form (4) have the property that whenever p | F (m,n)
and p ∤ C for p ≥ 5 then

F (m,n) = C(3A2m6 +B2n6) ≡ 0 mod p

and thus
(

Bn3

Am3

)2

≡ −3 mod p,

forcing the terms in the product in the formula (5) to be always equal to +1 except maybe for
p | C. This allows to prove the following:

Theorem 6.1. Let EA,B,C be an elliptic surface described by the Weierstrass equation

EA,B,C : y2 = x3 + aT 6 + b,

where a, b ∈ Z.
Then, the function of the root number of the fibers is constant, except for the surfaces of the

form EA,B,C : y2 = x3 +C(3A2T 6 +B2) such that the integers A,B coprime and C fulfill one of
the conditions of Lemma A.1, and one of Lemma A.2.
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Proof. Put C = pgcd(a, b). If 3a/b is not a rational square, then by [VA11, Thm 2.1] the two
sets

W± = {t ∈ P1 | W (Et) = ±1}
are both infinite, or in other words, the root number of the fibers of E is non-constant. Suppose
thus 3A/B is a rational square, that i.e. there exists A,B ∈ Z such that 3A2 = a

C and B2 = b
C .

For each t ∈ Q, let (m,n) be the pair of coprime integers such that t = m
n , and let Em,n

denote the elliptic curve Em,n : y2 = x3+C(3A2m6+B2n6), which is isomorphic to Et. Observe
that Em,n and Et must then have the same root number. Put P (m,n) = C(3A2m6 +B2n6).

Thereafter, we will use the following notations to put together similar terms in the formula
(5):

ω2(t) := W2(Et)

( −1

P (m,n)2

)

and ω3(t) := W3(Et)(−1)v3(P (m,n)).

and

P(t) :=
∏

p2|α
p≥5

{

1 if vp(P (m,n)) ≡ 0, 1, 3, 5 mod 6
(

−3
p

)

ifvp(P (m,n)) ≡ 2, 4

First, note that for any choice of A,B,C, the function P(t) is a constant. Indeed, for any
prime p dividing a certain value 3A2m6 +B2n6, one has

(

Bn3

Am3

)2

≡ −3 mod p.

We thus have P = (−1)σ, where

σ = #{p such that p2|C, vp(C) ≡ 2, 4 mod 6 and p ≡ 2 mod 3},

Moreover, note that the three functions are independent to each other namely:

the function ω2 depends on v2(P (m,n)) mod 4 and P (m,n)2 mod 4

the function ω3 depends on v3(P (m,n)) mod 6, and P (m,n)3 mod 9.

Therefore, if one of the values ω2 or ω3 non-constant, then the global root number is non-
constant.

This proves that the root number is non constant, except for the surfaces such that A,B,C
fulfill one of the conditions of Lemma A.2, and one of Lemma A.1.

Remark 5. The independance of ω2 and of ω3 is also given by the Helfgott’s formula for the
average root number [Hel03, Proposition 7.2].

This allows us to compute the value of the constant root number in each of the special cases.

Example 1. Suppose that A = B = 1. Let E1,1,C be the elliptic surface defined by the equation

E : y2 = x3 + C(T 6 + 1).

By looking at the tables 1, 2, 3 and 4, we have that the function ω3(t) is constant when t runs
through Q if and only if

1. (for ω3(t) = −1)

(a) v3(C) ≡ 0 mod 6 and C3 ≡ 1 mod 9,

(b) v3(C) ≡ 2 mod 6 and C3 ≡ 2 mod 9,

(c) or v3(C) ≡ 5 mod 6 and C3 ≡ 2, 8 mod 9,

2. (for ω3(t) = +1)
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(a) v3(C) ≡ 2 mod 6 and C3 ≡ 1, 7 mod 9

(b) v3(C) ≡ 3 mod 6 and C3 ≡ 8 mod 9

(c) v3(C) ≡ 5 mod 6 and C3 ≡ 7 mod 9

and that the function ω2(t) is constant when t runs through Q (and ω2(t) = +1) if and only if
v2(C) ≡ 1, 3, 5 mod 6.

If we suppose that C is less or equal to 100, we find only the following values for which the
root number is constant:
— if C = 10, 18, 46, 82 the root number is -1.
— if C = 90 the root number is +1.

When the surface has negative root number on every non-singular fiber, the parity conjecture
states that the rank of the fibers of this elliptic surface should be always positive. For the
surfaces on which the root number is +1, however, it is not possible to conclude anything about
the density of rational points from the study of the variation of the root number.

In the case of C = 90, the surface E1,1,90 has no section defined over Q, and so as far as we
know the density of the rational points is still an open question.

6.2 Case j(T ) = 1728

The density of rational points on certain elliptic surfaces of the form E : y2 = x3 + g(T )x is
garanteed by the construction of a section for E done in Section 5.1. However, there are surfaces
such that this section is not of infinite order. This happens in particular when g(T ) = AT 4+B.
This case fails as well to satisfy the hypotheses of [VA11, Theorem 2.3] and it is thus possible
that the root number is constant. By the parity conjecture, an elliptic surface with constant root
number always equal to +1 is such that every fiber has even rank, thus although the following
result doesn’t give new density result, it still give us some interesting (conditional) information
about the distribution of the rank in the family of the fibers.

Theorem 6.2. Let FA,B,C be an elliptic surface represented by the Weierstrass equation

FA,B,C : y2 = x3 + C(A2T 4 +B2)x,

where A,B,C ∈ Z and gcd(A,B) = 1.
Then, the function t → W (Et) of the root number of the fibers is constant, except for the

specific surfaces such that A,B,C fulfill one of the conditions of Lemma A.4, and one of Lemma
A.3.

Proof. Let A,B,C ∈ Z be such that gcd(A,B) = 1. Let us write F = FA,B,C . For each t ∈ Q,
let (m,n) be the pair of coprime integers such that t = m

n , and let Fm,n denote the elliptic curve
Fm,n : y2 = x3 + C(3A2m4 +B2n4)x, isomorphic to Ft.

Put P (m,n) = C(3A2m4 + B2n4). It is not very difficult to see that the root number is
given by the formula 5

W (Ft) = −W2(t)W3(t)

( −2

P (m,n)2

)

∏

p2|P (m,n)
p≥5

{

1 if vp(P (m,n)) ≡ 0, 1, 3, 5 mod 6
(

−1
p

)

ifvp(P (m,n)) ≡ 2, 4
.

Thereafter, we will use the following notations to congregate similar terms:

ω2(t) := W2(Fm,n)

( −2

P (m,n)2

)

and ω3(t) := W3(Fm,n)

5. This formula is shown in [Des18].
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and

P(t) :=
∏

p2|P (m,n)
p≥5

{

1 if vp(P (m,n)) ≡ 0, 1, 3, 5 mod 6
(

−1
p

)

if vp(P (m,n)) ≡ 2, 4 mod 6

First, note that for any choice of A,B,C, the function P(t) is a constant. Indeed, for any
prime p dividing a certain value A2m4 +B2n4, one has

(

Bn2

Am2

)2

≡ −1 mod p.

We have thus P = (−1)σ, where

σ = #{p such that p2|C, vp(C) ≡ 2, 4 and p ≡ 1 mod 4},

Moreover, note that the three functions depends on independent parameters, namely:

the function ω2 depends on v2(P (m,n)) mod 4 and P (m,n)2 mod 4

the function ω3 depends on v3(P (m,n)) mod 6, and P (m,n)3 mod 9.

Therefore, if one of the values ω2 or ω3 non-constant, then the global root number is non-
constant.

Therefore, the root number is non constant, except for the surfaces such that A,B,C fulfill
one of the conditions of Lemma A.2, and one of Lemma A.1.

Example 2. Suppose that A = B = 1. Let F1,1,C be the elliptic surface given by the equation

F1,1,C : y2 = x3 + C(T 4 + 1)x.

By looking at the formula of Lemma A.3 as well as Tables 5 and 6, we find that the function
ω3(t) = W3(t) is always constant when t runs through Q and its values is

1. W3(Et) = +1 if v3(C) ≡ 1, 2, 3 mod 4

2. W3(Et) = −1 if v3(C) ≡ 0 mod 4,

and the function ω2(t) is constant and equal to −1 if and only if

1. v2(C) ≡ 0 mod 4 and C2 ≡ 1, 7, 9, 11 mod 16

2. v2(C) ≡ 1 mod 4 and C2 ≡ 3 mod 8

3. v2(C) ≡ 2 mod 4 and C2 ≡ 5, 7, 9, 15 mod 16

4. v2(C) ≡ 3 mod 4 and C2 ≡ 5 mod 8

This makes quite a lot of possibilities for F1,1,C : for C ≤ 20 we have the following:

1. the root number of every fiber is +1 if C = 1, 6, 7, 11, 16, 17

2. the root number of every fiber is −1 if C = 9, 20.

However, the density of rational points holds all the same on every surface FA,B,C regardless of
the variation of the root number by Theorem 5.4.

7 Non-isotrivial rational elliptic surfaces

7.1 Known results

In the ph.D thesis of the author [Des16a] and in [Des16b], we prove the following theorem.
This work is based on a preprint of Helfgott [Hel03], revisited and completed with a different
approach.
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Theorem 7.1. Let E be a rational elliptic surface given by the equation

E : y2 = x3 + F (u, 1)x+G(u, 1),

where F and G are homogeneous polynomials of degree respectively 4 and 6 defining a minimal
model. We suppose that E is non-isotrivial, and thus in particular FG 6= 0. Define the two
following polynomials associated to E :
— ∆E (U, V ) = 4F (U, V )3 + 27G(U, V )2 =

∏s
i=0 P

mi

i (U, V ) (the homogeneous discriminant of
E )

— and ME (U, V ) =
∏

i∈ME
Pi(U, V ) where ME = {i such that Pi ∤ F} (the product of polyno-

mials coming from places of multiplicative reduction).
Suppose that every P | ∆E verifies the squarefree conjecture and every P | ME verifies

Chowla’s conjecture.
Then the sets W± are both infinite.

This means that ∆E needs to verify the squarefree conjecture, and that ME needs to verify
Chowla’s conjecture. Those conjectures are known to hold in the following cases:

Theorem 7.2. Let P ∈ Z[X,Y ] be a homogeneous polynomial.

1. (Greaves [Gre92]) The squarefree conjecture holds if degPi ≤ 6.

2. (Helfgott [Hel05], Lachand [Lac14]) Chowla’s conjecture holds if degP ≤ 3 or (Green-Tao
[GT10]) if P is a product of linear factors;

The following proposition classifies all the rational elliptic surfaces on which Theorem 7.1 is
unconditional.

Proposition 7.3. Let E be a non-isotrivial rational elliptic surface given by the equation:

E : y2 = x3 + F (T, 1)X +G(T, 1),

where F and G are homogeneous polynomials of degree respectively 4 and 6.
We suppose that E respects one of the following properties:

1. M = ∅;
2. the places in M are all rational;

3. M = {P} where P ∈ Z[T ] is a polynomial of degree 3;

4. M = {P1, P2} where P1, P2 ∈ Z[T ] are polynomials of degree respectively 1 and 2;

5. M = { 1
T , P2} where P2 ∈ Z[T ] is a polynomial of degree 2.

Then the sets W± are both infinite.

Remark 6. There are examples of rational elliptic surfaces of each of the case of the list.
When M = ∅, the surface obtained by the contraction of the canonical section never is a del

Pezzo surface of degree 1. Indeed, an elliptic surface with no place of multiplicative reduction
admits automatically a place of potentially multiplicative reduction. In this case, Corollary 2.3
gives us that E does not come from a degree 1 del Pezzo surface. Each of the four last classes
of rational elliptic surfaces contains del Pezzo surfaces of degree 1.

Remark 7. The geometric arguments presented in the section 7.3 prove the density in certain
cases on which it is not possible to apply unconditionnally the work of Helfgott. In particular,
Proposition 7.5 requires that there exists a rational place of type I∗m, II∗, III∗ IV ∗ or I∗0 .

Proof. (of Proposition 7.3)
Let BE and ME be the polynomials such that

1. BE is the product of the polynomials associated to the places of bad reduction of E that
are not of type I∗0 ,
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2. ME the product of the polynomials associated to the places of multiplicative reduction of
E .

Theorem 7.1 and the parity conjecture show the variation of the root number on the fibers
when E is a non-isotrivial surface whose polynomial BE and ME are such that

1. BE verifies the squarefree conjecture,

2. ME verifies Chowla’s conjecture.

If these exists no place of multiplicative reduction on E , we have ME = 1. Thus there is no
need to consider Chowla’s conjecture. Moreover, the irreducible factors of ∆ appear with the
exponent ≥ 2. They are of degree ≤ 6. Therefore, squarefree conjecture holds.

Suppose now that E admits a place of multiplcative reduction on E .
Let be the following minimal Weierstrass model for E :

y2 = x3 + F (T, 1)x +G(T, 1),

where F,G ∈ Z[U, V ] are homogeneous polynomials of degree 4 and 6 respectively. Let C, be the
largest primitive polynomial such that C | F and C2 | G. We write F = aCF1 and G = bC2G1

where F1 and G1 are primitive polynomial and a, b ∈ Z are constants. Let R := pgcd(F1, G1).
Observe that the polynomial R splits by construction. We write F = aCRF2 and G = bC2RG2

where F2, G2 ∈ Z[X,Y ] are suitable polynomials. The discriminant can be written

∆ = C3R2(4a3RF 3
2 + 27b2CG2

2).

When the surface is non-isotrivial, if there exists P a polynomial such that P 4 | F , then P 6 ∤ G,
and thus ordPC ≤ 3. Observe that R, C, F2 and G2 verify squarefree conjecture as their degrees
are ≤ 6.

We define Mo = (4RF 3
2 −27CG2

2) and we observe that ∆ = C2R3M0. The polynomial Mo is
a product of powers of polynomials associated to places of multiplicative or additive reduction.
It is possible that Mo is divisible by the polynomials associated to places of additive reduction:
the factors of C or R. For F = Pα1

1 . . . Pαr
r (the decomposition of F in irreducible factors) there

exist integers βi ∈ N such that

M1 =
Mo

P β1
1 . . . P βr

r

.

7.2 Rational elliptic surfaces with no place of multiplicative re-

duction

Proposition 7.4. Let X be a non-isotrivial rational elliptic surface with no place of reduction
of type Im. Then X can be described by one of the following equations:

E1 : y
2 = x3 + aL2

1Qx+ bL3
1QM, (6)

where Q =
cL2

1−27b2M2

4a3
; and

E2 : y
2 = x3 + aL2

1L2L3x+ bL3
1L

2
2L3, (7)

where L1 = 4a3L3 − 27b2L2. We have a, b ∈ Z, L1, L2, L3 and M linear polynomials and Q a
quadratic polynomial.

Remark 8. The homogeneous and one-variable versions of the conjectures hold on the surfaces
Ea and Eb. Indeed, Chowla’s conjecture is true since ME = 1, and as every irreducible factors of
the coefficients are linear, squarefree conjecture also holds.
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Remark 9. In the first case, the places of bad reduction are those associated to L1 (of type I∗2 ),
and those associated to the irreducible factors of Q (of type II).

In the second case, we have three rational places of bad reduction: the one associated to
4a3L2− 27b2L3 has type I∗1 , the one associated to L2 has type III and the one associated to L3

has type II.

Proof. Let E be the rational elliptic surface associated to X, given by the Weierstrass equation:

E : y2 = x3 − 27c4(T )x− 54c6(T ),

where c4(T ), c6(T ) ∈ Z[T ] have degree respectively less than or equal to 4 and 6. Let ∆ be the

discriminant of E . This surface has a place of reduction of type I∗m because the invariant j =
c34
∆

admits necessarily a pole (at a irreducible polynomial P ∈ Z[T ] or at 1
T ).

Each fiber at t = m
n is given by the equation :

Et = Em,n : y2 = x3 + n4−deg c4c4

(m

n

)

x+ n6−deg c6c6

(m

n

)

.

Suppose the P is the polynomial associated to a place of reduction type I∗m, then we write
F = P 2F1 and G = P 3G1 for F1, G1 polynomials. We have that P | (F 3

1 −G2
1). We need to have

degP = 1. Indeed, if degP = 2, then G1 and F1 are constant and thus E is isotrivial. The case
where degP > 2 is not possible because we would have degG > 6. Therefore, a non-isotrivial
rational elliptic surface with no place of type Im admits a rational place of reduction I∗m. We
have degP = 1, degF1 = 2 and degG1 = 3.

The case where (F1, G1) = 1 is not possible. Indeed, we would have P 6 | F 3
1 − G2

1 and the
surface would be isotrivial. Therefore, F1 and G1 have a common factor, that we will denote
by A. We write F1 = AF2 and G1 = AG2 for convenient polynomial F2 and G2. We have
∆ = P 6A2(AF 3

2 −G2
2). The reduction at A is thus additive.

Suppose degA = 2. In this case, if (A,G2) = 1, we have

A = γP 2 +G2
2.

If (A,G2) = A2 for a linear polynomial A2, then we have

P =
A1 −A2

γ
.

Suppose degA = 1. If A | G2, we must have

A =
F 3
2 − γP 3

G2
3

.

However, there exist no polynomial A,P,G2, F2 ∈ Z[T ] with this property. Indeed, by imposing
a linear change v = P (t), and puting ν = u

v , we are lead to solve

4a3F2(ν)
3 + 27b2A(ν)M(ν)2 = c.

As F2 6= P , F2(ν) is non-constant. Let u0 such that F2(u0) = 0. We have

27b2A(u0)G3(u0)
2 = c 6= 0.

By deriving at u0, we obtain :

2A(u0)G3(u0)G
′
3(u0) +A′(u0)G3(u0)

2 = 0.

When we derive another time, we have :

2A(u0)G
′
3(u0)

2 + 2A(u0) + 4A′(u0)G
′
3(u0)G3(u0) +A′′(u0)G3(u0)

2 = 0.
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We observe that G3 is linear. We have:

2A(u0)G
′
3(u0) + 4A′(u0)G3(u0) = 0.

Therefore, A is proportionnal to G3. For all P ∈ Z[T ] linear, the polynomial P (T )3 − c has no
double root. Thus, F2 has to be constant. Therefore G3, F2, A and P are proportional to each
other and the surface E is isotrivial.

If A ∤ G2, we must have the equality

A =
γP 4 +G2

2

F 3
2

.

By a similar argument as in the previous case, this is not possible either.

7.3 Geometric arguments

In this section we prove unconditionally the density on many more elliptic surfaces, not
necessarily isotrivial. Moreover Helfgott’s paper does not prove unconditionally the variation of
the root number for those surfaces.

Proposition 7.5. Let E be a elliptic surface given by the equation

E : y2 = x3 + L2Qx+ L3C, (8)

where L,Q,C ∈ Z[u, v] have respective degree 1, 2 and 3. Then the surface is Q-unirational. In
particular, E (Q) is Zariski-dense.

Remark 10. The polynomial L of the surface E in this proposition is such that L6 | ∆. As we
chose a minimal Weiestrass model for E , this means that the reduction at L has type I∗0 , II∗,
III∗, IV ∗ or I∗m. Conversly, if we consider a surface with a rational place of one of these types,
we can find an equation of the form (8). We deduce directly the following corollary:

Corollary 7.6. If a rational elliptic surface E has a rational place of type I∗0 , II
∗, III∗, IV ∗

or I∗m, then the rational points of X are Zariski-dense.
In particular, if E is a non-isotrivial elliptic surface with no place of multiplicative reduction,

then its rational points are dense.

Proof. Let S be an elliptic surface given by the equation

S : y2 = x3 + L(t, 1)2Q(t, 1)x+ L(t, 1)3C(t, 1),

where L,Q,C ∈ Z[u, v] have respective degree 1, 2 and 3. Note that this surface is rational. We
study the surface which is birational

( y

L3

)2
=

( x

L2

)3
+

Q

L2

( x

L2

)

+
( C

L3

)

. (9)

We can suppose that L(u, v) = v (otherwise, we do a linear change on u, v). Put t = u
v ,

x′ = x
v2

and y′ = y
v3

, whose inverse transformation is x = x′v2, y = y′v3, u = tv. By this change
of variables, (9) becomes

S′ : y′2 = x′3 + q(t)x′ + c(t) ⊂ P3,

with Q(t, 1) = q(t) and C(t, 1) = c(t), which is a cubic surface with a finite number of singular
points.

Note that on a cubic surface which is not a cone on a cubic curve, the existence of a rational
point is equivalent to the density of the rational points. This is shown by Kollar [Kol02],
generalizing the work of Segre and Manin [Man74].

From a geometric point of view, this surface is obtained by the contraction of two exceptional
curves. For a surface obtained by the successive blow-down of two disjoint exceptional curves
(which is the case of S′), we are guaranteed to have a rational point: the one associated to the
point [0, 0, 1, 1] (which is not singular).
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In the previous section, we show that a rational elliptic surface with no place of multiplicative
reduction has one of the two following forms:

E1 : y
2 = x3 + aL2

1Qx+ bL3
1QM (10)

and
E2 : y

2 = x3 + a(4a3L3 − 27b2L2)
2L2L3x+ b(4a3L3 − 27b2L2)

3L2
2L3, (11)

where a, b ∈ Z, L1, L2, L3 and M linear polynomials and Q a quadratic polynomial. In the first

case, we impose moreover that M is such that M2 =
(

L2
1−4a3Q
27b2

)

.

On surface E1, the places of bad reduction are those associated to L1, of type I∗2 , and those
associated to the irreducible factors of Q, of type II.

On surface E2, we have three rational places of bad reduction - the one associated to 4a3L2+
27b2L3 has type I∗1 , the one associated to L2 has type III and the one associated to L3 has II.

Therefore, the results previously presented prove the density of rational points on these
surfaces. The work of Helfgott proves in those cases the density of rational points although
under the parity conjecture which we are not using here.

There is a fourth method to show the density, at least for surface E2. Let E be an elliptic
surface and E its generic fiber (that is to say E seen as an elliptic curve over Q[T ]). By the
Shioda-Tate formula, we have

rgNS(EQ) = 2 + rgE(Q(T )) +
∑

v

(mv − 1).

The surfaces that we consider are obtained by blowing-up P2 at 9 points in general position, the
Néron-Severi rank is rgNS(E ) = 10.

In the first case, Shioda-Tate formula says that rgE(Q(T )) = 4. Unfortunately, although it
gives an interesting majoration: rg(E(Q(T ))) ≤ 4, this is not precise enough to conclude on the
density. There is indeed an uncertainty, except in the case where we can bound it this way :
rg(E(Q(T ))) ≥ 1. It is just what happen in the second case. Indeed the Shioda-Tate formula
gives rgE(Q(T )) = 1.

We have E (Q(T )) = Z · Po, for a certain point Po. Therefore there exists K a quadratic
extension of Q such that Po ∈ E (K(T )). Indeed, if for every σ ∈ Gal(Q/Q) = GQ we put
σPo := ε(σ) · Po where ε : GQ → ±1, then

1. either ε is trivial and Po ∈ E(Q(T )),

2. or ε is non-trivial and in this case, Q
Kerε

= K, the subfield of Q stabilised by ε, is a
quadratic field such that Po ∈ E(K(T )).

One can remark, similarly as in the proof of Proposition 7.5, that E2 is birational to a cubic
surface. We use the following proposition to end the argument :

Proposition 7.7. Let S be a non-singular cubic surface on a number field k. Suppose S is not
a cone on a cubic curve.

1. If S(k) 6= ∅, then S(k) is Zariski-dense.

2. Let k1 be a quadratic extension of k. If S(k1) 6= ∅ is Zariski-dense, then S(k) is Zariski-
dense.

Proof. The first statement of the proposition is shown by Segre and Manin [Man74] and by Kollár
[Kol02]. They actually prove a stronger result : if k is an arbitrary field and that S(k) 6= ∅,
then S est k-unirational. When k is infinite, this implies the Zariski-density of rational points.

We now show the second point of the proposition. Let P ∈ S(k1). If P ∈ S(k), then the
rational points are dense. Suppose the that P 6∈ S(k1). Consider D the line passing through P
and P σ where σ is the automorphism of k1 fixing k. If D ⊂ S, then D(k) ⊂ S(k) and thus the
set of rational points of S is not empty. Otherwise, the intersection D∩S contains three points:
P , P σ, and a third point which is necessarily in S(k).
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We end the section with a result concerning smooth rational elliptic surfaces, associated to
a del Pezzo surface of degree 1. Let X be a del Pezzo surface of degree 1. In general, if there
exists C1 and C2 a pair of exceptional curves defined over Q on X such that their intersection is
empty, one can contract those curves to obtain X3 a del Pezzo surface of degree 3. On X3, the
existence of a rational point garantees the Zariski-density of X(k). In what follows, we use this
idea to prove the density one some other surfaces on which we find two exceptional curves with
non empty intersection.

Proposition 7.8. Let X a del Pezzo surface of degree 1 on which lie C1 and C2 two distinct
exceptional curves defined over k with possibly points in common. Then X(k) is Zariski-dense.

Proof. The contraction of C gives X ′ a del Pezzo surface of degree 2. We know that on these
surfaces, the rational points of X ′ are dense if X ′(k) contains a point which is neither on an
exceptional curve nor on a distinguished quartic. Put E the union of the points of this quartic
and of the exceptional curves. The contraction sends C2 on a rational curve of X ′ that we will
denote by C . Note that C is not an exceptional curve on X ′ because it is the blow-down of a
curve which has a point in common with C1. In the case where C ∩ E is finite, one can find a
rational point outside of E , and this proves the density of the rational points.

A Local root number

Let Eα be the (sextic or quartic) twist by a non-zero α ∈ Q of an elliptic curve with j = 0
or j = 1728. In this appendix we study in more details the two functions ω2 and ω3 defined
in Section 6 appearing in the decomposition of the root number (of Equation 5). The values of
those functions depend only on α2 and v2(α) or respectively on α2 and v2(α). Remember our
notation: for any prime number p, αp is the integer such that t = pvp(α)αp.

As in section 6, we restrict our attention to:

α = C(3A2m6 +B2n6) (in case j = 0) and α = C(A2m4 +B2n4) (in case j = 1728)

and thus study the surfaces EA,B,C or FA,B,C given by the equations:

EA,B,C : y2 = x3 + C(3A2T 6 +B2) and FA,B,C : y2 = x3 + C(A2T 4 +B2)x (12)

because those are the natural cases where the root number is likely to be constant according to
[VA11]. In those equation A,B,C ∈ Z are such that gcd(A,B) = 1.

Let us briefly recapitulate what was done in Section 6 before we state the result. We use a
formula of Varilly-Alvarado splitting the root number into three functions, ω2(t), ω3(t), P(t)
corresponding to the contribution of respectively the prime numbers p = 2, p = 3 and p ≥ 5.

While P(t) is constant for a given surface of one of the forms of (12), the functions ω2 and
ω3 varies independently from each other, and hence each of them must be constant for the global
root number to take always the same value over the fibers of the surface.

A.1 The elliptic surface EA,B,C : y2 = x3 + C(3A2T 6 +B2)

Let E be an elliptic surface given by the Weierstrass equation

E : y2 = x3 + C(3A2T 6 +B2), (13)

where A,B,C ∈ Z and pgcd(A,B) = 1.
Put P (m,n) = C(3A2m6 +B2n6) and define the two functions, for p = 2 or 3,

ωp(t) : t =
m

n
∈ Qp → {−1,+1}
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as the following
ω3(t) = W3(Et)(−1)v3(P (m,n)).

Define the function

ω2(t) := W2(Et)

( −1

P2(m,n)

)

.

Lemma A.1. The function ω3 is constant if and only if one option is satisfied

1. A,B,C are in Table 1 (in which case ω3(t) = +1)

2. A,B,C are in Table 2 (in which case ω3(t) = −1)

Lemma A.2. The function ω2 is constant if and only if one option is satisfied:

1. A,B,C are in Table 3 (in which case ω2(t) = +1)

2. A,B,C are in Table 4 (in which case ω2(t) = −1)

v3(A)[3] v3(B)[3] v3(C)[6] Additional conditions

0 0 0 C3B
2
3 ≡ 1 mod 9

2 C3A
2
3 ≡ 2 mod 9

5 C3A
2
3 ≡ 2, 8 mod 9

1 0 0 C3A
2
3 ≡ 2, 4 mod 9, C3B

2
3 ≡ 1, 2, 4, 8 mod 9

1,4 C3 ≡ 1 mod 3
3 C3A

2
3 ≡ 1, 2, 4, 8 mod 9, C3B

2
3 ≡ 2, 4 mod 9

2,5 C3 ≡ 2 mod 3
2 0 0 C3B

2
3 ≡ 2, 8 mod 9

1 C3A
2
3 ≡ 1 mod 9

3 C3B
2
3 ≡ 2 mod 9

0 1 1 C3B
2
3 ≡ 2 mod 9

4 C3B
2
3 ≡ 2, 8 mod 9

5 C3A
2
3 ≡ 1 mod 9

0 2 0, 3 C3 ≡ 1 mod 3
1,4 C3 ≡ 2 mod 3
2 C3A

3
3 ≡ 2, 4 mod 9

5 C3B
2
3 ≡ 2, 4 mod 9

Table 1 – Cases where ω3(t) = +1 for every fiber Et of the surface 13.

Proof. of Lemma A.1. Let A,B,C be integers such that gcd(A,B) = 1. To ease the notation,
let us simply write E = EA,B,C . For each fiber Et, we study instead the curve Em,n : y2 =
x3 + C(A2m6 + B2n6) which is Q-isomorphic. Let P (m,n) = C(3A2m6 + B2n6). For every
(m,n) ∈ Z2 one has

P (m,n) = 3v3(C)C3

(

32v3(A)+6v3(m)+1A2
3m

6
3 + 32v3(B)+6v3(n)B2

3n
6
3

)

, .

Remark that according to the 3-valuations of A and B different situations occur. We will
treat in details the case where v3(A) = 0 and v3(B) = 0. In that case, v3(P (m,n)) is at least

v3(P (m,n)) = v3(C) + min
(

2v3(A) + 6v3(m) + 1, 2v3(B) + 6v3(n)
)

. (14)

We make the distinction between three properties for the coprime integers m,n:
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v3(A)[3] v3(B)[3] v3(C)[6] Additional conditions

0 0 2 C3A
2
3 ≡ 1, 7 mod 9

3 C3B
2
3 ≡ 8 mod 9

5 C3A
2
3 ≡ 7 mod 9

1 0 0 C3A
2
3 ≡ 1, 5, 7, 8 mod 9, C3B

2
3 ≡ 5, 7 mod 9

1,4 C3 ≡ 2 mod 3
2,5 C3 ≡ 1 mod 3
3 C3A

2
3 ≡ 2, 4 mod 9, C3B

2
3 ≡ 1, 5, 7, 8 mod 9

2 0 0 C3B
2
3 ≡ 7 mod 9

3 C3B
2
3 ≡ 1, 7 mod 9

4 C3A
2
3 ≡ 8 mod 9

0 1 1 C3B
2
3 ≡ 1, 7 mod 9

2 C3A
2
3 ≡ 8 mod 9

4 C3B
2
3 ≡ 7 mod 9

0 2 0, 3 C3 ≡ 2 mod 3
1, 4 C3 ≡ 1 mod 3
2 C3B

2
3 ≡ 5, 7 mod 9

5 C3A
2
3 ≡ 5, 7 mod 9

Table 2 – Cases where ω3(t) = −1 for every fiber Et of the surface 13.

(a) if 2v3(A) + 6v3(m) = 2v3(B) + 6v3(n),then v3(m,n) = a and P (m,n)3 ≡ C3(3A
2
3 + B2

3)
mod 9,

(b) if 2v3(A) + 6v3(m) < 2v3(B) + 6v3(n) then v3(m,n) = a and P (m,n)3 ≡ C3B
2
3 mod 9

(c) if 2v3(A) + 6v3(m) > 2v3(B) + 6v3(n),then v3(m,n) = a+ 1 and P (m,n)3 ≡ C3A
2
3

In those subcases, we obtain a different formula for the function ω3, as follows.
(a) Suppose that 2v3(A) + 6v3(m) = 2v3(B) + 6v3(n). One has

v3(P (m,n)) = 2v3(B) + 6v3(n) ≡ 2v3(B) mod 6 and P (m,n)3 ≡ C3(3A
2
3 +B2

3) mod 9.

By [VA11, Lemma 4.1], the local root number at 3 is equal to

W3(EP (m,n)) =































−1 if v3(C) ≡ 1, 2 mod 6 and C3 ≡ 1 mod 3

or if v3(C) ≡ 4, 5 mod 6 and C3 ≡ 2 mod 3

or if v3(C) ≡ 0 mod 6 and P (m,n)3 ≡ 5, 7 mod 9

or if v3(C) ≡ 3 mod 6 and P (m,n)3 ≡ 2, 4 mod 9

+1 otherwise.

(15)

and thus

ω3(t) =































+1 if v3(C) + 2v3(B) ≡ 1, 4 mod 6 and C3 ≡ 1 mod 3

or if v3(C) + 2v3(B) ≡ 2, 5 mod 6 and C3 ≡ 2 mod 3,

or si v3(C) + 2v3(B) ≡ 0 mod 6 and P (m,n)3 ≡ 1, 2, 4, 8 mod 9

or si v3(C) + 2v3(B) ≡ 3 mod 6 and P (m,n)3 ≡ 2, 4 mod 9

−1 otherwise.

(16)

(b) Suppose that the coprime integers (m,n) are such that 2v3(B)+6v3(n) < 2v2(A)+6v3(m).
One has

v3(P (m,n)) ≡ v3(C) mod 6 and P (m,n)3 ≡ C3B
2
3 mod 9
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v2(A) mod 3 v2(B) mod 3 v2(C) mod 6 Additional conditions

0 0 1,3,5

1 0 1,3,5

2 C2 ≡ 3 mod 4
4 C2 ≡ 1 mod 4

2 0 0 C2 ≡ 3 mod 4
1,3,5

4 C2 ≡ 1 mod 4
0 1 1,3,5

2 C2 ≡ 1 mod 4
4 C2 ≡ 3 mod 4

0 2 0 C2 ≡ 1 mod 4
1,3,5

4 C2 ≡ 3 mod 4

Table 3 – Cases where ω2(t) = +1 for every fiber Et of the surface 13.

v2(A) mod 3 v2(B) mod 3 v2(C) mod 6 Additional conditions

1 0 2 C2 ≡ 3 mod 4
2 0 0, 2 C2 ≡ 1 mod 4
0 1 0, 4 C2 ≡ 1 mod 4

Table 4 – Cases where ω2(t) = −1 for every fiber Et of the surface 13.

Note that B2
3 will take values among the congruence classes 1, 4, 7 mod 9, or 1 mod 3, and so

P (m,n)3 ≡ C3 mod 3. Moreover, in case v3(A) + 3v3(m) = v3(B) + 3v3(n), one has

P (m,n)3 ≡











4C3 if B2
3 ≡ 1 mod 9

7C3 if B2
3 ≡ 4 mod 9

C3 if B2
3 ≡ 7 mod 9.

Thus we have

ω3(t) =































+1 if v3(C) + 2v3(B) ≡ 1, 4 mod 6 and C3 ≡ 1 mod 3

or if v3(C) + 2v3(B) ≡ 2, 5 mod 6 and C3 ≡ 2 mod 3,

or if v3(C) + 2v3(B) ≡ 0 mod 6 and P (m,n)3 ≡ 1, 2, 4, 8 mod 9

or if v3(C) + 2v3(B) ≡ 3 mod 6 and P (m,n)3 ≡ 2, 4 mod 9

−1 otherwise.

(17)

(c) Suppose now that 6v3(n) + 2v3(B) > 2v3(A) + 6v3(m) + 1 (and that in particular, since
3 | n, then 3 ∤ m). In this case one has v3(P (m,n)) = v3(C)+2v2(A)+1 and P (m,n)3 ≡ C3A

2
3.

As previously, we find that with this choice of (m,n), the value of ω3 is

ω3(t) =































+1 if v3(C) + 2v2(A) ≡ 1, 4 mod 6 and C3 ≡ 2 mod 3

or if v3(C) + 2v2(A) ≡ 0, 3 mod 6 and C3 ≡ 1 mod 3,

or if v3(C) + 2v2(A) ≡ 5 mod 6 and P (m,n)3 ≡ 5, 7 mod 9

or if v3(C) + 2v2(A) ≡ 2 mod 6 and P (m,n)3 ≡ 2, 4 mod 9

−1 otherwise.

(18)

We deduce that the function ω3 is constant in the cases listed in the lemma (and only in
those cases). To achieve this, we compare the two formulas for each value of k mod 3.
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When v3(A) ≡ v3(B) ≡ 0 mod 3, then the equation 18 compared with 17 gives:

ω3(t) =



























































































+1 if v3(C) ≡ 0 mod 6 and P (m,n)3 ≡ 2, 8 mod 9

or if v3(C) ≡ 1, 4 mod 6 and C3 ≡ 1 mod 3,

or if v3(C) ≡ 2 mod 6 and P (m,n)3 ≡ 5, 8 mod 9

or if v3(C) ≡ 3 mod 6 and P (m,n)3 ≡ 2 mod 9

or if v3(C) ≡ 5 mod 6 and P (m,n)3 ≡ 5 mod 9

−1 if v3(C) ≡ 0 mod 6 and P (m,n)3 ≡ 7 mod 9

or if v3(C) ≡ 1, 4 mod 6 and P (m,n)3 ≡ 2 mod 3,

or if v3(C) ≡ 2 mod 6 and P (m,n)3 ≡ 1 mod 9

or if v3(C) ≡ 3 mod 6 and P (m,n)3 ≡ 1, 7 mod 9

or if v3(C) ≡ 5 mod 6 and C3A
2 ≡ 1, 4 mod 9

non-constant otherwise.

When v2(A) ≡ 1, 2 mod 3, we proceed in a similar way and obtain that the cases where the
root number is constant are those listed in the Tables. This is the same method for v2(A) = 0
and v2(B) ≡ 1, 2 mod 3. However, we have different subcases, for instance :

v3(A) = 0 and v3(B) = 1 1. if 3 ∤ m,n, then v3(m,n) = a+1 and P (m,n)3 ≡ C3(A
2
3 + 3B2

3)
mod 9,

2. if 3 ∤ m and 3 | n, then v3(m,n) = a+ 1 and P (m,n)3 ≡ C3A
2
3 mod 9

3. if 3 | m and 3 ∤ n, then v3(m,n) = a+ 2 and P (m,n)3 ≡ C3B
2
3

Proof. of Lemma A.2
There is only one of A or B at a time that may be divisible by 2. According to which of

them is (or isn’t), the formula for w(t) is different.
Let (m,n) ∈ Z× Z≤0 be a pair of coprime integers. We have

P (m,n) = 2v2(C)C2(2
2v2(A)+6v2(m) · 3A2

2m
6
2 + 26v2(n)+2v2(B) · B2

2n
6
2).

So, except if 2v2(A) + 6v2(m) = 2v2(B) + 6v2(n), we have that

v2(P (m,n)) = v2(C) + min(2v2(A) + 6v2(m), 2v2(B) + 6v2(n)).

a) If 2v2(B)+6v2(n) < 2v2(A)+6v2(m), then v2(P (m,n)) = v2(C)+6v2(n) ≡ v2(C) mod 6
and moreover P (m,n)2 ≡ B2

2C2 ≡ C2 mod 4. By [VA11, Lemma 4.1], we have

W2(Et) =











−1 v2(C) ≡ 0, 2 mod 6

v2(C) ≡ 1, 3, 4, 5 mod 6 and C2 ≡ 3 mod 4

+1 otherwise.

and thus

ω2(t) =











+1 if v2(C) + 2v2(B) ≡ 1, 3, 4, 5 mod 6

or if v2(C) + 2v2(B) ≡ 0, 2 mod 6 and C2 ≡ 3 mod 4

−1 if v2(C) + 2v2(B) ≡ 0, 2 mod 6 and C2 ≡ 1 mod 4

(19)

b) If 6v2(n) > 2v2(A), then in particular, 2 ∤ m. Hence, v2(P (m,n)) ≡ v2(C) + 2v2(A)
mod 6 and P (m,n)2 ≡ 3C2 mod 4. In this case we have

ω2(t) =











+1 if v2(C) + 2v2(A) ≡ 1, 3, 4, 5 mod 6

or if v2(C) + 2v2(A) ≡ 0, 2 mod 6 and C2 ≡ 1 mod 4

−1 if v2(C) + 2v2(A) ≡ 0, 2 mod 6 and C2 ≡ 3 mod 4.
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From these formulas, we now deduce the behavior of the function ω2(t) when 6v2(n) 6= 2v2(A).
For instance when v2(A) ≡ v2(B) ≡ 0 mod 3, then

ω2(t) =

{

+1 v2(C) ≡ 1, 3, 4, 5 mod 6

non-constant otherwise.
(20)

We proceed in a similar way for the case v2(A) ≡ 1, 2 mod 3.
c) If v2(A) ≡ v2(B) ≡ 0 mod 3, we need to proceed to a more raffined selection. Let (m,n)

be a pair such that 6v2(n) = 2v2(A). In this case, one has v2(P (m,n)) ≡ 2 mod 6 and

P (m,n)2 ≡
{

C2 mod 16 if A2
2m

6
2 ≡ B2

2n
6
2 mod 16

3C2 mod 16 otherwise
.

Observe moreover that replacing n2 by n′
2 such that n′ ≡ n2 + 8 mod 16, then the value of

P (m,n)2 mod 4 passes from C2 to 3C2 and vice-versa. Thus we get the formula

ω2(t) =

{

non-constant if v2(C) ≡ 0, 4 mod 6

+1 otherwise.
.

Therefore, comparing with the formula (20), we get that the function ω(t) is constant and equal
to +1 in the case where v2(C) ≡ 1, 3, 5 mod 6. The method is similar for the case v2(A) = 0
and v2(B) ≡ 1, 2 mod 3.

A.2 The elliptic surface FA,B,C : y2 = x3 + C(A2T 4 + B2)x

Let F be an elliptic surface given by the Weierstrass equation

FA,B,C : y2 = x3 + C(A2T 4 +B2)x, (21)

where A,B,C ∈ Z and gcd(A,B) = 1.

Lemma A.3. The local root number at 3 is

W3(Et) =























+1 if v3(C) ≡ 1, 3 mod 4

if v3(C) ≡ 2 mod 4 and v3(A), v3(B) even

−1 if v3(C) ≡ 0 mod 4 and v3(A), v3(B) even

non-constant otherwise.

Proof. Let A, B, C integers such that gcd(A,B) = 1. Let us write simply F = FA,B,C . For
any t ∈ Q consider the pair of coprime integers (m,n) ∈ Z × Z<0 such that t = m

n . For each
fiber Ft, let Fm,n be the curve given by the equation Fm,n : y2 = x3+C(A2m4+B2n4)x which
is Q-isomorphic to Ft and thus have the same local root number (at any prime p). Put

P (m,n) = C(A2m4 +B2n4).

The local root number at 3 of Fm,n only depends of v3(P (m,n)). For every m,n ∈ Z coprime,
we have

P (m,n) = 3v3(C)C3

(

32v3(A)+4v3(m)A2
3m

4
3 + 32v2(B)+4v3(n)B2

3n
4
3

)

,

and thus
v3(P (m,n)) = v3(C) + min(2v3(A) + 4v3(m), 2v3(B) + 4v3(n)).

In case where v3(A) + 2v3(m) < v3(B) + 2v3(n), we get the formula:

W3(Ft) =











−1 if v3(C) ≡ 0 mod 4 and v3(C) + 2v3(A) ≡ 2 ≡ 2 mod 4

or if v3(C) ≡ 2 mod 4 and v3(A) is odd,

+1 otherwise.

(22)
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The case v3(A) + 2v3(m) ≥ v3(B) + 2v3(n) is similar, but with the condition v3(C) + 2v3(B) ≡
2 ≡ 2 mod 4. Comparing those formulas, we obtain the conclusion of the Lemma.

Define the function ω2(t) := W2(Ft)
(

−2
P2(m,n)

)

.

Lemma A.4. The value of the function ω2(t) is constant when t ∈ Q varies if and only if one
option is satisfied:

1. A,B,C are in Table 5 (in which case ω2(t) = +1)

2. A,B,C are in Table 6 (in which case ω2(t) = −1).

v2(A)[2] v2(B)[2] v2(C)[4] Additional conditions

1 0 0 C2A
2
2 ≡ 5, 13, 15 mod 16, C2B

2
2 ≡ 5, 7, 15 mod 16

2 C2A
2
2 ≡ 5, 7, 15 mod 16, C2B

2
2 ≡ 5, 13, 15 mod 16

0 1 0 C2B
2
2 ≡ 5, 13, 15 mod 16, C2A

2
2 ≡ 5, 7, 15 mod 16

2 C2B
2
2 ≡ 5, 7, 15 mod 16, C2A

2
2 ≡ 5, 13, 15 mod 16

Table 5 – Cases where ω2(t) = +1 for every fiber at t ∈ Q of the surface FA,B,C .

v2(A)[2] v2(B)[2] v2(C)[4] Additional conditions

0 0 0 C2A
2
2, C2B

2
2 ≡ 1, 7, 9, 11 mod 16

1 C2 ≡ 3 mod 8
2 C2A

2
2, C2B

2
2 ≡ 5, 7, 9, 15 mod 16

3 C2 ≡ 5 mod 8
1 0 0 C2A

2
2 ≡ 5, 7, 9, 15 mod 16, C2B

2
2 ≡ 1, 7, 9, 11 mod 16

1,3

2 C2A
2
2 ≡ 5, 7, 9, 15 mod 16, C2B

2
2 ≡ 1, 7, 9, 11 mod 16

0 1 0 C2B
2
2 ≡ 5, 7, 9, 15 mod 16, C2A

2
2 ≡ 1, 7, 9, 11 mod 16

1,3

2 C2B
2
2 ≡ 1, 7, 9, 11 mod 16, C2A

2
2 ≡ 5, 7, 9, 15 mod 16

Table 6 – Cases where ω2(t) = −1 for every fiber Ft of the surface FA,B,C .

Proof. For every choice of m,n ∈ Z coprime, let Em,n : y2 = x3 + C(A2m4 + B2n4)x be an
elliptic curve Q-isomorphic to Em

n
. We know the formula of the local root number at 2 by

[VA11, Lemme 4.7] (that we recall at Lemma 3.2). Moreover, recall that if t is an odd integer,
one has

(−2

t

)

=

{

+1 if t ≡ 1, 3 mod 8,

−1 otherwise.

Put, for every m,n ∈ Z coprime integers, P (m,n) = C(A2m4 +B2n4). We have

P (m,n) = 2v2(C)C2

(

22v2(A)+4v2(m)A2
2m

4
2 + 22v2(B)+4v2(n)B2

2n
4
2

)

and thus, when v2(A) + 2v2(m) 6= v2(B) + 2v2(n), one has

v2(P (m,n)) = v2(C) + 2min(v2(A) + 2v2(m), v2(B) + 2v2(n)),
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and

P (m,n)2 ≡























C2(4A
2
2 +B2

2) mod 4 if v2(A)odd

C2(A
2
2 + 4B2

2) mod 4 if v2(B)odd

C2B
2
2 if v2(A) ≥ 2 and even

C2A
2
2 if v2(B) ≥ 2and even

When both v2(A) and v2(B) are even, it is possible that v2(A) + 2v2(m) = v2(B) + 2v2(n),
and in this case one has

v2(P (m,n)) = v2(C) + 2v2(A) + 4v2(m) + 2,

and

P (m,n)2 ≡ C2

(

A2
2 +B2

2

4

)

mod 16.

Suppose first v2(A) + 2v2(m) < v2(B) + 2v2(n). In this case, we have

v2(P (m,n)) = v2(C) + 2v2(A) + 4v2(n) ≡ v2(C) + 2v2(A) mod 4

and

P (m,n)2 ≡











B2
2C2 mod 16 if v2(A) even

5C2 if v2(A) odd and B2
2 ≡ 1 mod 16.

13C2 if v2(A) odd and B2
2 ≡ 9 mod 16.

. We have,

W2(Em,n) =























−1 if v2(C) + 2v2(A) ≡ 1, 3 mod 4 and P (m,n)2 ≡ 1, 3 mod 8,

or if v2(C) + 2v2(A) ≡ 0 mod 4 and P (m,n)2 ≡ 1, 5, 9, 11, 13, 15 mod 16,

or if v2(C) + 2v2(A) ≡ 2 mod 4 and P (m,n)2 ≡ 1, 3, 5, 7, 11, 15 mod 16,

+1 otherwise.

(23)
and thus

ω2(Et) =























−1 if v2(C) + 2v2(A) ≡ 1, 3 mod 4

or if v2(C) + 2v2(A) ≡ 2 mod 4 and P (m,n)2 ≡ 5, 7, 9, 15 mod 16

or if v2(C) + 2v2(A) ≡ 0 mod 4 and P (m,n)2 ≡ 1, 7, 9, 11 mod 8

+1 otherwise.

The equation for v2(A) + 2v2(m) > v2(B) + 2v2(n) is identical, with the role of A and B
swapped since the equation of the surface is symmetric.

Moreover, note that as we supposed that A and B are coprime, at most one of them is
divisible by 2.

Comparing formulas for v2(A) + 2v2(m) > v2(B) + 2v2(n) and v2(A) + 2v2(m) < v2(B) +
2v2(n), we get some of the entries in Tables 5 and 6. Observe moreover that, given that A2, B2 ≡
1, 9 mod 16, some cases describe by the conditions of one line of each formula are not possible.
The only work left is to study more into details the case where both v2(A) and v2(B) are both
even.

For these exceptions, we proceed to a more raffined sorting.
According to the values of A2m4, B2n4

2 (among 1, 9, 17, 25 mod 32), we find the possible
values of P (m,n)2. We always have in this case v2(P (m,n)) = v2(C) + 1 mod 4. Hence Thus
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we have

ω2(t) =



























−
(

−2
C2

)

if v2(C) ≡ 0, 2 mod 4 and P (m,n)2 ≡ 1, 3 mod 8

or if v2(C) ≡ 3 mod 4 and P (m,n)2 ≡ 1, 5, 9, 11, 13, 15 mod 16

or if v2(C) ≡ 1 mod 4 and P (m,n)2 ≡ 1, 3, 5, 7, 11, 15 mod 16
(

−2
C2

)

otherwise.

Observe that m4 and n4
2 can take the values 1, 17 mod 32. Therefore, choosing a value of

n′ such that n′4 ≡ 17n4 mod 32, we have P (m,n′) ≡ 9P (m,n)2 mod 16. Therefore, we have
P (m,n)2 ∈ {1, 9 mod 16} if A2 ≡ B2 mod 16, and P (m,n)2 ∈ {5, 13} if A2 6≡ B2 mod 16, .

This means that ω2(t) is non-constant when v2(C) ≡ 1 mod 4 and C2 ≡ 11, 15 mod 16,
and when v2(C) ≡ 3 mod 4 and C2 ≡ 1, 5 mod 16.

We obtain thus that in that case

ω2(t) =











































−1 if v2(C) ≡ 0, 2 mod 4

or if v2(C) ≡ 3 mod 4 and C2 ≡ 1 mod 8

or if v2(C) ≡ 1 mod 4 and C2 ≡ 3 mod 8

+1 if v2(C) ≡ 3 mod 4 and C2 ≡ 5 mod 8

or if v2(C) ≡ 1 mod 4 and C2 ≡ 7 mod 8

non-constant otherwise.

Comparing with the formula when v2(A) + 2v2(m) 6= v2(B) + 2v2(n), we complete the Tables 5
and 6. In particular, there is no cases were w2(t) = +1 for all t ∈ Q when v2(A) ≡ v2(B) ≡ 0
mod 2.
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