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Optimal Sizing Design and Operation of Electrical and Thermal

Energy Storage Systems in Smart Buildings

Ali Baniasadi1,, Daryoush Habibi1, Waleed Al-Saedi1, Mohammad A.S. Masoum1, Choton
K. Das1, Navid Mousavi1

aSchool of Engineering, Edith Cowan University (ECU), 270 Joondalup Drive, Joondalup, Perth, WA
6027, Australia

bDepartment of Engineering, Utah Valley University, Orem, UT 84058, USA

Abstract

Photovoltaic (PV) systems in residential buildings require energy storage to enhance their
productivity; however, in present technology, battery storage systems (BSSs) are not the
most cost-effective solutions. Comparatively, thermal storage systems (TSSs) can provide
opportunities to enhance PV self-consumption while reducing life cycle costs. This paper
proposes a new framework for optimal sizing design and real-time operation of energy storage
systems in a residential building equipped with a PV system, heat pump (HP), thermal
and electrical energy storage systems. For simultaneous optimal sizing of BSS and TSS, a
particle swarm optimization (PSO) algorithm is applied to minimize daily electricity and life
cycle costs of the smart building. A model predictive controller is then developed to manage
energy flow of storage systems to minimize electricity costs for end-users. The main objective
of the controller is to optimally control HP operation and battery charge/discharge actions
based on a demand response program. The controller regulates the flow of water in the
storage tank to meet designated thermal energy requirements by controlling HP operation.
Furthermore, the power flow of battery is controlled to supply all loads during peak-load
hours to minimize electricity costs. The results of this paper demonstrate to rooftop PV
system owners that investment in combined TSS and BSS can be more profitable as this
system can minimize life cycle costs. The proposed methods for optimal sizing and operation
of electrical and thermal storage system can reduce the annual electricity cost by more than
80% with over 42% reduction in the life cycle cost. Simulation and experimental results are
presented to validate the effectiveness of the proposed framework and controller.

Keywords: Demand response, PV self-consumption, residential building,

battery storage, thermal storage, storage sizing.

Nomenclature

Acronyms

ṁHP Mass water flow rate of HP (L/min).

ṁtd Mass water flow rate through the building
(L/min).

Cg Cost of electricity purchased from grid ($).
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cp Specific heat capacity of water (J/(g/oC)).

CBSS Capital, replacement, and maintenance costs
of BSS ($).

Cbatt Capacity of BSS (kWh).

CHP Cost of HP power consumption ($).

CTSS Capital and maintenance costs of TSS ($).

Is Solar radiation (W/m2).

Ig Internal heat gain (kW).

mTSS,0 Initial chilled/hot water volume stored in
TSS (L).

mTSS TSS stored chilled/hot water volume (L).

Pch Battery charging power (kW).

Pdch Battery discharging power (kW).

Pg Power purchased from grid (kW).

Phl Power usage of base load (kW).

PHP Power consumption of HP (kW).

Rin Thermal resistance between building and
ambient (◦C/W).

Rio Thermal resistance between building and
thermal mass (◦C/W).

Cl Thermal capacity of the thermal mass
(J/◦C).

Cin Thermal capacity of the building (J/◦C).

λ Solar radiation absorption factor.

PPV PV output Power (kW).

SOC0 Initial SOC of BSS (%).

Tl Building’s lumped thermal mass tempera-
ture (◦C).

To Ambient temperature (◦C).

Tin Indoor temperature (◦C).

Treturn Temperature of return water from building
(◦C).

TTSS Chilled/hot water temperature stored in TSS
(◦C).

QHP Thermal energy generated by HP (kW).

Qtd Thermal energy demand (kW).

QTSS Thermal energy stored in TSS (kW).

Y Planned project lifetime.

BSS Battery storage system.

COP Coefficient of performance.

DR Demand response.

DRP Demand response program.

HP Heat pump.

HVAC Heating, ventilating, and air conditioning.

MPC Model predictive control.

OBTS Optimal BSS and TSS sizing.

PSO Particle swarm optimization.

RES Renewable energy resources.

RTP Real-time pricing.

SBEMS Smart building energy management system.

SOC Battery state of charge.

TOU Time-of-use.

TSS Thermal storage system.

LCC Life cycle cost.

1. Introduction

Worldwide, the installed capacity of photovoltaics (PVs) has significantly increased in
recent years. The PV system is one of the top-ranked renewable resources in many countries
including USA, China, Japan, India, and Australia. In 2017, the global installed (on-grid
and off-grid) PV capacity reached 98 GW which was nearly one-third of the total 402 GW
load [1]. However, the renewable energy buyback rate is expected to significantly drop in
the near future. This buyback price reduction is due to power system challenges, such as
frequency regulation, reverse power and voltage imbalance issues which are caused by high
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PV penetration. A potential solution that may be beneficial for both end-users and utilities
is to increase PV self-consumption. This can be efficiently achieved using energy storage
systems and residential flexible loads such as heat pumps (HPs) and electric vehicles (EVs)
[2, 3]. Energy storage systems are frequently being applied to minimize various issues of
RES-penetrated power networks. A comprehensive review of various energy storage systems
is presented in [4].

Accordingly, residential customers can reduce their electricity costs by capitalizing their
dispatched power. This can be done by i) optimizing the capacities of renewable energy
resources (RESs) and energy storage systems, ii) utilizing HPs and heating, ventilation,
and air conditioning (HVAC) systems coupled with thermal energy storage systems and,
iii) implementing demand response programs (DRPs) to spread the HP load throughout
the day based on electricity price tariffs and the availability of RESs [5, 6]. In Australia,
residential end-users have moved to install rooftop PV systems to reduce electricity bills.
However, they still have to pay for electricity due to high electricity prices during peak-load
hours when PV production is not sufficient. A practical solution is to implement demand
response programs, flexible loads, and energy storage systems to take full advantage of PV
power production.

Electrical storage systems (e.g., Lead-acid and Li-ion batteries) have limitations including
short lifespan, limited number of cycles, and high initial cost that make them unaffordable for
most applications [7, 8]. Comparatively, thermal storage systems (TSSs) [4] and pumped-
hydro storage systems [8, 9] are eco-friendly options that can provide more sustainable
solutions. More importantly, TSSs make HVAC systems flexible with suitable responses to
time-varying electricity prices. Hence, a combination of TSSs and electrical storage systems
could provide a more economical and eco-friendly solution compared to utilization of only
electrical storage systems. Therefore, the motivation of this study is to provide a low-cost
solution to end-users with a low environmental impact using TSSs and battery storage
systems (BSSs) for energy management applications.

Many researchers have focused on finding optimal component sizes of RES and storage
systems for smart buildings. Some papers have applied flat electricity tariffs or average load
as input data to find optimal sizes of RESs and electrical energy storage [1, 1]. Most pub-
lications rely on simple charging algorithms [1, 1]. Recent research has considered optimal
battery charging and discharging in their sizing strategies. However, the effect of flexible
loads such as HPs and HVAC systems on RES and BSS sizes as well as PV self-consumption
have not been investigated.

In [1], a stochastic approach based on a Monte Carlo simulation (MCS) and particle swarm
optimization (PSO) was proposed for sizing a smart household energy system, taking into
account the demand uncertainty. A convex programming method for finding optimal size
and control of energy in smart homes, with PV generation and battery storage has been
introduced in [1]. This structure is employed for three different buildings in California and
Texas. The optimal size and control are investigated over several time horizons, considering
maximum power exportation to the grid, BSS cost, and load demand patterns. In [1],
the authors used a mixed integer nonlinear programming method to perform optimal size
and operation of the battery storage system for a smart home. In [1], mixed-integer linear
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programming (MILP) was implemented to find the optimal battery and PV sizes for a
determined location considering both demand and time-of-use (TOU) tariff. Another MILP
was also applied to optimally schedule the PV-battery system, with the aim of reducing
electricity bills. However, the effect of flexible loads such as HPs and HVAC systems on
RES and BSS sizes were not considered in the aforementioned studies.

In [1], a MILP framework was applied to quantify the required battery capacity. How-
ever, the solution depends on different DR-based load patterns. The sizing and analysis
of renewable energy and BSSs were introduced in [1]. A hybrid model was proposed us-
ing MILP to maximize the use of renewable energy and reduce load demand on the grid.
Weather prediction was used to determine the optimal size of the wind turbine as well as
the thermal load and PV profiles for a residential building. The aforementioned literature
presents useful backgrounds; however, the effect of thermal energy storage sizing on battery
size in smart buildings has not been considered in these publications.

The effects of different electricity pricing tariffs on PV and electrical energy storage sys-
tems are investigated in [2]. In their work, the profitability and sizing of a PV system with
a battery are analyzed from an economic perspective for residential buildings. However,
the effect of DRPs is not considered in the sizing of components. The authors [2] have
developed a MILP model for the optimal sizing and operation of HP based building energy
systems. Their analysis demonstrated that the size of the HP is slightly affected by the
scenario assumptions, while the optimal sizing of PV significantly depends on load profiles.
However, the effect of flexible HP coupled with TSS on the dimension of BSS has not been
considered. A MILP algorithm is introduced in [2]. This algorithm is presented to find the
optimal size and operation of electric boiler and thermal storage in combination with a PV
system. A considerable storage size was only obtained during the large fluctuation in elec-
tricity prices or by using the large PV size. The authors [2] investigate the parameters that
affect the optimal size of BSS for grid-connected PV systems. The subject was to improve
the self-consumption of PV systems by determining the battery size based on electricity
tariffs, and battery performance and price. The battery size was largely affected by feed-in
electricity price. Similarly, the pricing structure is applied to find the optimal size of PV
and BSS systems of a smart house in [2].

Boeckl et al., [2] have presented a technical consideration sizing method to design PV
and battery systems for different households. This paper considers different household load
profiles based on a behavior model and life patterns of different end-users in a stochastic
method. However, considering DR is crucial to design a PV battery system which has been
ignored in aforementioned paper. Another work [2] presented an analytical strategy for sizing
battery storage based on minimizing energy cost for a battery storage owner. This paper
developed a simple analytical method to size battery for peak-load shaving. However, DRPs
are already practical by developing smart meters. Therefore, controlling HVAC systems as
the devices that consume the most power in residential buildings is important to consider
for designing a battery. The sizing of rooftop PV systems with HPs and BSS with the
focus on changing economics and regulatory is evaluated in [2]. In [2], the authors presented
an optimization model to investigate the effect of HPs on the size of a PV system with
BSS. The results showed that HPs as shiftable loads are required to avoid under-sizing of
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PV systems. However, the effect of HPs coupled with TSS on BSS size has been ignored.
An interesting research on electrical and heating components sizing is presented in [2]. The
authors have applied forecast-based operation approaches for PV-battery and power-to-heat
systems to improve economics of the house. The results show reduction in levelized costs
of electricity compared to a self-consumption maximizing strategy. In [3], the authors have
investigated the effects of thermal and electrical loads, TSS, EV, and power sharing among
neighbors on PV system sizing for residential buildings. A genetic algorithm is adapted to
optimize: i) the quantity of PV capacity installed on each facade of the building, and ii)
the size of electric storage to increase PV self-consumption when the system is profitable.
An optimization design strategy is provided in [3] for implementing building-integrated PV
with electricity storage in the early conceptual and preliminary design process of a building.
The method optimizes the size and positions of the PV panels and size of the BSS to
enhance the net present value of the whole system during the project lifetime. However, the
effects of load management and thermal storage have not been considered to attain high PV
self-consumption rates. Furthermore, the impacts of HP load management on the capacity
design of TSS and BSS are not included in the aforementioned studies.

Accordingly, there is a research gap in developing effective sizing strategies for HPs coupled
with TSS to respond to DRP while minimizing life cycle cost. Therefore, the key goals of
this paper are to first find the optimal sizes of TSS and BSS based on TOU tariff to increase
PV self-consumption. Then, after determining the optimal BSS and TSS sizes, developing
a smart management strategy to decrease the electricity cost of residential buildings is next
goal of this paper. The well-known heuristic PSO approach is applied for optimal thermal
and electrical storage component sizing. MCS is implemented to generate a set of random
inputs using their probability density functions. After determining optimal BSS and TSS
sizes, MPC is applied for real-time optimal operation of smart buildings.

The contributions of this study can be summarized as follows:

� A new optimal BSS and TSS sizing (OBTS) solution is proposed for thermal and
electrical storage systems to minimize annual electricity costs of smart buildings with
rooftop PVs while minimizing life cycle cost. Optimal BSS and TSS charging and
discharging are key elements of the proposed OBTS that is considered in the optimal
sizing. These elements have not been widely considered together by other researchers
for optimal TSS and BSS sizing studies. Furthermore, cost comparison for various
case studies is presented.

� A control scheme is developed for real-time smart building energy management system
(SBEMS) to increase PV self-consumption and reduce electricity costs. The real-time
charging and discharging of BSS and TSS are achieved by using the proposed SBEMS
based on RTP.

� The proposed SBEMS is validated experimentally in a real-time environment using
facilities available in the Smart Energy Laboratory at Edith Cowan University, Aus-
tralia. Furthermore, different sizes of BSS and TSS are applied to verify the results of
proposed OBTS.

The remaining part of this paper is divided into six sections. Section 2 describes the system
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model. The proposed OBTS and SBEMS are introduced in Section 3. Simulation results
and experimental verifications are presented in Sections 4 and 5, followed by conclusions in
Section 6.

2. System Model

In this paper, MCS is implemented in the proposed optimal BSS and TSS sizing (OBTS)
strategy, to consider uncertainties associated with weather data such as solar radiation and
ambient temperature. The uncertainties in weather prediction are described in MCS by
proper probability distribution functions (PDFs). The one-year weather data record is used
as the input data for MCS. The daily inputs with 10-min discrete time steps for optimization
are then generated based on the daily recorded data. These data sets are sent to PV and
building thermal models, to predict PV production and the thermal load profile of residential
buildings. Then, the system model is described in two parts, the electrical system model
and the thermal system model.

2.1. Electrical System Model

2.1.1. Battery Model

Battery models are mainly determined by their charging and discharging limitations. The
stored energy in battery for each time step can be calculated as:

Ebatt
t+1 = Ebatt

t + Pch,tηch −
Pdch,t
ηdch

(1)

where ηch and ηdch represent the efficiency during charging and discharging modes, respec-
tively. Then, the battery state of charge (SOC) can be expressed as:

SOCt+1 =
Ebatt
t+1

Ebatt
max

× 100 (2)

SOCmin < SOCt < SOCmax (3)

where Ebatt
max is the maximum stored energy (kWh). An additional constraint is added to

avoid that the charging and discharging occur simultaneously:

Pch,t · Pdch,t = 0 (4)

The depth of discharge (DOD) is modeled by [3]:

Ebatt
t ≥ Cbatt(1−DOD) (5)

where Cbatt represents the size of BSS.

2.1.2. PV Model

The PV output power is calculated based on the solar irradiation data (Is) [3].

PPV,t = Is,tAPVNPVηPV(1− 0.005(To,t − 25)) (6)

where APV and NPV represent the area and number of PV module, respectively. ηPV repre-
sents the efficiency of PV system.
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2.1.3. Electric Load Model

Electrical loads can be incorporated with the base and HP loads as shiftable loads. In
this paper: i) the household appliances such as lighting, refrigerators, freezers, ovens, stoves
and computers are considered as the base loads, ii) the input data for generating daily load
profile by MCS is provided in [3] and, iii) the SELAB building at Edith Cowan University
in Western Australia with an average daily power consumption of 18 kWh is selected as the
residential building.

2.2. Thermal System Model

In most buildings, air conditioners, radiators and fan coil units are employed to regulate
room temperature by using thermostats. The state of the on/off relay can be determined
by the hysteresis control rule in cooling mode as follow [3]:

Ut+1 =


0 if Tin,t ≤ T in
1 if Tin,t ≥ T in

Ut otherwise,

(7)

where Tin is the indoor temperature which is function of outdoor temperature, solar ra-
diation, internal heat gain, and building thermal mass. T in and T in are upper and lower
boundaries of temperature set-point. U is the discrete state of the relay which switches the
heat distributor on and off; according to the hysteresis control rule.

The Smart Energy laboratory (SELAB) building is modeled by the heat dynamic state-
space model of [3] and [3]:[

Ṫl
Ṫin

]
=

[
− 1
RinCl

1
RinCl

1
RinCin

−( 1
RioCin

+ 1
RinCin

)

] [
Tl
Tin

]
+

[
0
1
Cin

]
UQ̇td +

[
0 0 0
1

RioCin

λ
Cin

1
Cin

]ToIs
Ig

 (8)

where ideally TTSS = THP , thus, Q̇td = ṁtdcp(TTSS − Treturn). The model parameters are
identified utilizing a nonlinear regression algorithm by measuring Tin, To, Is, Ig, and Qtd [5].
The building model is presented and validated in [5].

The daily thermal demand is calculated based on the building model of equation 8. In
each time step, the updated indoor temperature (Ṫin) and building lumped thermal mass
temperature (Ṫl) are calculated based on the present temperatures, solar radiation, outdoor
temperature, and the heat gain. The calculated temperatures (equation 7) are used to
determine the ON/OFF state of the heat distributor switch. When the heat distributor is
ON, the required thermal energy is assumed to be Q̇td.

2.2.1. Heat Pump Model

The heating/cooling capacity of an HP (Q̇HP ) can be calculated based on the flow rates
and temperatures of water inlet and outlet of HP as well as the coefficient of performance
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(COP) [3].

Q̇HP = ṁHP cp(THP − Treturn), COP =
Q̇HP

PHP
(9)

The heat transfer of the HP is presented in A, in detail. In this paper, a minimum runtime of
10 minutes is considered for HP and the installed HP at the SELAB building is considered
for the proposed model. The HP is a ground source heat pump. Details of the HP are
presented in A.

2.2.2. Thermal Storage System (TSS) Model

TSS is modeled based on the stratified two-layer tank. Fig. 1 shows the scheme of thermal
system in cooling mode. As the TSS is involved to the closed-loop system, the sum of the
volume of return water (mreturn) and chilled/hot water (mTSS) is always constant and equal
to the volume of TSS (mtot):

mtot = mTSS +mreturn (10)

The dynamics of TSS system can be expressed by the change in volume (mTSS) and tem-
perature of the chilled/hot water layer of TSS (TTSS). This model can be simplified by
neglecting losses to the surrounding area. Therefore, based on the heat and mass flow
balance concept, the TSS model can be described by the following first-order non-linear
differential equation [5]:

dmTSS

dt
= ṁHP − ṁtd (11)

dQTSS

dt
(mTSS,TTSS) = Qin

TSS −Qout
TSS = ṁHP cpTHP − ṁtdcpTtd (12)

On the other hand, the product rule derivative of equation (12) is given by:

dQTSS

dt
(mTSS,TTSS) = cp(

dmTSS

dt
· TTSS +mTSS ·

dTTSS
dt

) (13)

In charging mode (ṁHP > ṁtd), a constant mass water flow rate is considered which is
ṁHP > ṁtd. Consequently, TSS is always charged and Ttd = THP since the HP is operating.
Therefore, the following equation can be derived from Eqs. (12) and (13):

dmTSS

dt
· TTSS +mTSS ·

dTTSS
dt

= (ṁHP − ṁtd)THP (14)

Subsequently, the derivative of temperature of the bottom layer water at each time step can
be expressed by substituting Eq. (11) into (14):

dTTSS
dt

=
(ṁHP − ṁtd)(THP − TTSS)

mTSS

(15)
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Heat 

pump

Heat distributor unit

ṁtd,TTSS

ṁtd,Treturn

ṁHP,THP

mTSS, TTSS

mreturn, Treturn

TSS

ṁHP,Treturn

Figure 1: Scheme of thermal system (in cooling mode).

3. Formulation of the optimum design problem

The system model presented in Section 2 is used to formulate and implement the proposed
OBTS and SBEMS.

The aim of this work is to design an optimal model for a smart home. This model
encompasses rooftop PV, battery and HP system coupled with TSS. The sizes of battery and
thermal storage tank are optimized considering the cost associated with initial investment of
each component, operation, maintenance, equipment replacement, and electricity purchase.
Then, the proposed SBEMS is employed to real-time manage the physical system composed
of the smart building based on the optimal sizes of TSS and BSS.

3.1. Formulation of Proposed OBTS

OBTS is presented with inner and main optimization loops. These two loops are described
in Sections 3.1.1 and 3.1.2.

3.1.1. Inner Optimization Loop

Inner optimization loop is proposed here to manage the thermal energy system, thus
minimizing operation costs, while controlling building temperature within thermal comfort
zone. The inner loop is also used to control the battery charging/discharging to enhance
the integration of the PV system with loads based on TOU tariff.

During the peak and flat periods, the battery is charged by the surplus PV output power.
Besides, the charging can also be performed over the night period to store enough energy.
The load is supposed to cover first by the PV system when it has a sufficient output power.
While the redundant power is used to charge the battery, or it can be sent to the utility
grid. Conversely, the battery is discharged when the PV power is not enough to meet the
load. The discharging continues until the minimum level of the SOC. Meanwhile, the power
shortage is covered by purchasing power from the grid.

The objective function is used to minimize electricity costs with the aim of the most
effective utilization of PV generation. In this study, the objective function is expressed as
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follows:

min
∑
m

Cg,m (16)

where

Cg,m = Cm · Pg,m (17)

Equation (16) is subject to:

mmin
TSS ≤ mTSS ≤ mmax

TSS (18)

Pg,m + PPV,m + Pdch,m − Pch,m − PHP,m − Phl,m = 0 (19)

QHP,m −QTSS,m −Qtd,m = 0 (20)

where Cm is the time-of-use electricity pricing tariff ($/kWh) as described in Table 1 [3].
QTSS,m represents the charging mode of TSS. The stored thermal energy is consumed on the
same day and mTSS reaches the initial stored thermal energy mTSS,0 at the end of day. Note
that the TSS model is simplified to reduce the complexity of solution. In proposed OBTS,
it is assumed the HP generates chilled/hot water at the required temperature. Therefore,
TSS is modeled based on inlet and outlet water of TSS based on equation (11).

Table 1: Time-of-use electricity pricing tariff for Western Australia.

Time of day Price ($)

7am-3pm 0.287

3pm-9pm 0.548

9pm-7am 0.151

3.1.2. Main Optimization Loop

The main optimization loop is incorporated to investigate the effect of the PV self-
consumption system on BSS and TSS sizes for residential buildings. Accordingly, BSS
and TSS sizes are determined by the end of this loop. The objective function of this loop
is proposed to calculate the LCC of the system. Thus, optimal sizes are determined for
minimum cost. The objective function of this loop is:

min
∑

LCC (21)

where

LCC = CCTSS + CCBSS +
Y∑
y=1

MCTSS +MCBSS +RCBSS + (1 + i)y
∑365

d=1Cg,d
(1 + l)y

(22)

In equation (LCC), y is the year of operation of the system, Y is the planned project lifetime,
i is the expected annual energy price increase (inflation) during the project lifetime, and l
is discount rate.
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Table 2: Number of full cycles based on depth of discharge [4].

DOD 10 20 30 40 50 60 70 80 90 100

Ntot 43000 35000 27500 20000 15000 10000 6250 3200 2700 2600

3.1.3. Constraints of Main Optimization Loop

Limitation of BSS and TSS. A fixed typical rooftop PV size of 5 kWp is used in this
work. The limitations of BSS and TSS depend on the physical parameters of the residential
building. Therefore, the battery and TSS are used as follows:

0 ≤ mTSS ≤ 3000 L (23)

0 ≤ Cbatt ≤ 10 kWh (24)

Life Cycle Cost of Thermal Storage System. The number of on/off HP cycles reduces
for higher TSS volumes. However, when the capacity of the tank is increased, the tank
thermal losses and the initial capital cost will also increase. Therefore, the thermal losses of
tank are compensated by energy-saving caused by the reduction of HP cycling losses. On
the other hand, the stored chilled/hot water in TSS is produced and consumed on the same
day. This constraint is to minimize thermal losses of TSS. Hence, the life cycle cost of TSS
is determined by the initial capital cost (CCTSS) and the maintenance cost (MCTSS). The
minimum lifetime of a water storage tank is 25 years. Therefore, the replacement cost of
TSS is not considered in this work.

Life Cycle Cost of Battery Storage System. The charging and discharging cycles
of the BSS is usually reduced due to battery degradation. The rate of this degradation
largely depends on battery (calendar and cycle) aging, as well as the current state of life
[4]. Therefore, the age of the battery is mainly determined by the number of cycles and
time. The expected number of cycles (before the end of battery life) is often mentioned by
manufacturers. The rain-flow-counting method is used to determine the number of cycles
and subsequently the lifetime of BSS. The lifetime of the battery based on DOD is described
by [4]:

LBSS =
DOD=0.8∑
DOD=0.1

Ncyc(DOD)

Ntot(DOD)
(25)

where Ncyc is the number of full cycles in the specified DOD, and Ntot is the maximum
number of full cycles based on DOD. The end of battery life with different DOD cycles is
when LBSS = 1. Table 2 shows the number of full cycles Ntot versus DOD [4].

This work considers battery degradation costs within the operational and maintenance
costs (MCBSS). A replacement cost of battery (RCBSS) should be considered in addition
to battery operation and maintenance costs. Table 3 shows the costs associated with initial
capital costs of BSS (CCBSS) and TSS, as well as replacement and maintenance costs.
CCBSS represents the capital cost associated with the battery and its inverter.
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Table 3: Costs associated with BSS and TSS.

CCTSS MCTSS CCBSS[4] RCBSS MCBSS

100 $/100L 1 $/100L 850 $/kWh 850 $/kWh 2% of CCBSS

3.1.4. Proposed Optimization Approach

Fig. 2 shows the proposed OBTS structure. The PSO algorithm is used as the main
optimization tool to minimize the LCC of the system. This heuristic approach is applied to
simultaneously determine the BSS and TSS sizes while optimizing the operations of battery
and HP. Integer variables such as HP on-off cannot be included in the convex optimization
problem. PSO is a well developed technique to deal with nonlinear and nonconvex con-
strained problems to find global optima [4]. PSO is a promising tool that does not require
the computation of derivatives. Therefore, PSO is applied in the inner loop to optimize
HP on-off and battery charging and discharging. In main optimization loop, PSO creates
a random population of possible solutions named particles. Each particle consists of the
random sizes of BSS and TSS. In each iteration, particles are sent to the inner optimization
loop. The objective of inner loop is to minimize the daily electricity cost and maximizes
the PV self-consumption. The annual electricity cost is then evaluated for each particle.
Particles then move toward global and local solutions by evaluating LCC. Consequently, the
optimal sizes of TSS and BSS are determined by minimizing LCC.

3.2. Formulation of Real-time Optimal Operation

The proposed SBEMS is employed to manage the physical system composed of the smart
building based on the optimal sizes of TSS and BSS. The building is equipped with PV
panels and BSS and connected to the grid. Total electrical base load is supplied by PV,
BSS, and the grid. While the thermal load is supposed to be supplied by the HP coupled
with TSS. In general, the daily HP input and electrical load can be met by the grid, PV
panels, and batteries. The objective is to propose an SBEMS that can achieve minimum
electricity cost and maximum PV self-consumption. The main advantage of the proposed
SBEMS is the possibility to simultaneously control the BSS and HP coupled with TSS.
After determining the optimal BSS and TSS sizes, MPC is used for the real-time optimal
operation of the smart building. The schematic diagram of the proposed SBEMS is shown
in Fig. 3. MPC uses the system model to predict the future evolution of the smart building
and perform real-time control actions [4]. The main objective of using MPC is to control the
HP (on/off), in order to shift HP load based on the DRP, by producing sufficient chilled/hot
water. Moreover, this controller is responsible to manage the charging and discharging of
BSS. The cost function for the MPC based on RTP tariffs is a trade-off between the minimum
cost of the total daily electricity and PV power exportation to the grid. At the same time,
producing enough chilled/hot water which is subject to the dynamic constraints as follows:

min
uk

k+N−1∑
j=k

Cg(j|k) (26)
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Figure 2: Flowchart of proposed OBTS.

subject to

x(j + 1|k) = f(x(j|k), u(j|k), d(j|k)), (27)

∀j = k, k + 1, . . . , k +N − 1

y(j|k) = g(x(j|k), u(j|k), d(j|k)), (28)

∀j = k, k + 1, . . . , k +N

where N is the prediction horizon, u is the binary decision variable, x is the state variable
which represents Tin, mTSS and SOC, y is the output which represents Pg, and d is the
disturbance. The model-based optimization problem is solved over a finite horizon. The
horizon prediction is N = 24 hours. The control sampling time is 5 minutes. The prediction
horizon is considered equal to the control horizon. In this paper, the MPC optimization
problem is defined as the problem of finding an optimal reference power for the heat pump
and a discharge/charge reference power for BSS to supply the load. This can be described as
follows: The electrical system dynamic equations (1)-(6) and the thermal system dynamic
equations (7)-(15) are the main dynamics of the MPC while equations (19)-(20) and Table
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4 correspond to the constraints of the system. Figure 4 presents an overview of the MPC is
implemented in the proposed SBEMS. An optimal control problem is formulated and solved
in each time step to obtain the control signal. The formulation is based on the current
system conditions, a prediction of external influences and the future system state. A model
of the system is used to evaluate the impacts of the controls on the state of the system and
to compute the optimal control solution. The first part of the computed solution is applied
to the system. The procedure continues to find a control trajectory of u that minimizes the
cost function (26).

4. Simulation Study of Proposed OBTS

In this paper, the SELAB building is considered as a residential building with an average
of 18 kWh daily power consumption in Western Australia. This building is equipped with
a 5-kWp rooftop PV system and a 10-kW water source HP system for space heating and
cooling. The project liftime is assumed to be 25 years. The simulations are performed with
operating constraints as presented in Table 4. The percentages of mTSS are associated with
the volume of TSS (mtot). In the grid-side, it is preferred for the renewable output power to
be consumed locally, to avoid the risk of causing rapid ramp generation on the conventional
generators. Furthermore, selling power price rates are appealing; therefore, the revenue of
selling PV power to the grid is not considered in this study. The main objective of OBTS
is to find optimal sizes of thermal and electrical systems, with the aim of decreasing LCC
and increasing PV self-consumption. Detailed simulations are performed for four cases.

4.1. Case I: Base Case

In this case, the SELAB building is simulated without BSS and TSS. The reason for this
is to use this base case results to evaluate and analyze other scenarios. Fig. 5 shows the
average hourly power consumption for four seasons. The base load and HP load are without
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Table 4: Operating constraints used in simulations.

SOC0 SOCmin SOCmax mmin
TSS mmax

TSS mTSS,0

50% 10% 90% 5% 100% 5%

any storage systems. The thermostatic control is utilized to determine the HP on-off signal,
thus to supply the thermal load. The demand is increased in the peak-load period due to
HP operation, in particular in summer and winter seasons.

4.2. Case II: TSS Only

The HP system is employed with a TSS. The optimal size/volume of TSS (determined by
the proposed strategy of Section III) is 2000 liters. The life cycle cost of TSS is considered
in this scenario. The HP system operates without an initial stored thermal energy in TSS,
at first time step in each day. In order to avoid TSS thermal losses, it is assumed that:
i) the TSS is covered with 100 mm insulation layer, and ii) the OBTS algorithm keeps the
TSS without stored chilled/hot water at the end of the day. Fig. 6 shows the base load and
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Figure 5: Case I: Average hourly power consumption for four seasons.

the shifted HP load by the OBTS algorithm for four seasons. The results show that most
of the HP load is shifted from peak-load hours (6pm-9pm) to periods with PV generation
or the periods with lower electricity prices.

4.3. Case III: BSS Only

The building is simulated with BSS and HP systems without any TSS. The optimal size of
BSS, considering the operating and economic constraints indicated in Table 5, is 6.5 kWh.
It is assumed the initial SOC is 50%. The SOC of the battery is also considered to be equal
to the initial SOC at the end of each day. The HP system is considered as nonshiftable
load due to the lack of TSS. A possible economic solution for cases without significant load
flexibility is to store PV generation in the BSS. However, this requires a larger battery size
which can subsequently raise capital cost and consequently, total life cycle cost. Fig. 7 shows
the simulation results of the average hourly power dispatch for four seasons. Note that the
grid power is purchased in low electricity tariff rates. However, in summer and winter, BSS
is unable to fully supply the total load during the peak-load period; consequently, some
power is imported from the grid.
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Figure 6: Case II: Average hourly power consumption for four seasons (TSS = 2000 liters).

4.4. Case IV: BSS and TSS

In this case, BSS and TSS are considered to find their optimal sizes in a residential building
with a 5-kWp PV system. Fig. 8 shows the average power dispatch for four seasons with
optimal sizes of BSS (4.7 kWh) and TSS (1800 liters). The simulation results prove that
adding TSS to the HVAC system acquires more flexibility to the system. The introduction
of TSS (with optimal size of 1800 liters) positively affects the BSS by reducing the size from
6.5 kWh to 4.7 kWh. This is done by shifting the HP load from the peak-load hours to
either the lower electricity tariff or the mid-day hours when PV generation is available.

4.5. Comparison of Simulation Results of Optimal Sizing

Simulation results and cost analysis of Cases I to IV are summarized and compared in
Table 5. This Table shows the optimal BSS and TSS sizes, annual PV self-consumption,
annual electricity cost, life cycle cost, payback period, and the percentage of return on
investment (ROI). The payback period is the time that it takes an option to have the same
LCC as the base case. The payback periods of Cases II, III and IV are calculated based
on the initial investment divided by the annual net cash flow. ROI is the ratio of gain to
investment. ROI is defined over a life cycle of the system as follows [4]:

ROI =
Return− Investment

Investment
=
Avoided Cost

Investment
− 1 (29)
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Figure 7: Case III: Average hourly power dispatch for four seasons (BSS = 6.5 kWh).

However, ROI does not include the project lifetime. Thus, annualized return on investment
(AROI) is necessary to amortize the full investment cost over the lifetime of the system.
AROI is described as

AROI = [(1 +ROI)1/Y − 1]× 100% (30)

AROI is useful to compare the returns on Cases as investment opportunities. The total
average annual PV generation is 8150 kWh. In Case I, the results show that the annual PV
self-consumption is only 37.1% due to the lack of any storage systems. In this case, 62.9%
of the total PV power is exported to the grid. In Case II, the introduction of TSS with the
optimal volume of 2000 liters has decreased the annual electricity cost by 26.2% while PV
self-consumption increased to 43.5%. As expected, this case is associated with a relatively
short payback time of 5.1 years and a relatively high AROI of 6.5% over 25 years of project
lifetime. In Case III, the annual electricity cost is reduced by 69.8% by adding a battery with
an optimal size of 6.5 kWh to Case I; while the PV self-consumption increased to 53.3%.
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Figure 8: Case IV: Average hourly power dispatch for four seasons (TSS = 1800 liters and BSS =
4.7 kWh).

Moreover, LCC is improved by only 4.7% from Case II. However, the payback period and
AROI are 10 years and 3.7%, respectively. In Case IV (proposed cost-effective framework of
this paper), the introduction of TSS (with the new optimal volume of 1800 liters) to Case
III reduces the size of BSS to 4.7 kWh. In this case, the annual electricity cost is decreased
by 80.4%. Moreover, PV self-consumption is increased to 57.3%. Interestingly, the payback
period is dropped to 6.8 years while the AROI is increased to 5.3%. As a result, this case
has the lowest LCC in compared with other cases. Accordingly, the main advantages of
using the proposed OBTS model are as follows:

� Adding the TSS in Case II with the optimal volume of 2000 liters to the residential
HP system effectively increases the PV self-consumption by 17.1%, in compared with
Case I. Consequently, the flexible HP system reduces annual electricity cost to $1066
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Table 5: Comparison of results for Cases I-IV.

Cases
TSS
size

BSS
size

Annual PV
self-
consumption

Annual
electricity
cost

LCC
Payback
period∗ AROI∗∗

Liter kWh kWh % $ % $/year Year %

Case I (No BSS/TSS) - - 3028 37.1 1445.4 - 1445.4 - -

Case II (TSS only) 2000 - 3548 43.5 1066.4 26.2 1140.3 5.1 6.5

Case III (BSS only) - 6.5 4351 53.3 436.2 69.8 1086 10 3.7

Case IV (BSS and TSS) 1800 4.7 4678 57.3 282.7 80.4 832.6 6.8 5.3

∗ Payback period is calculated based on project lifetime (25 years) and without buyback.
∗∗ Annualized return on investment.

(73.7% of Case I). The main advantage of this option is the short payback period of
5.1 years along with the higher AROI of 6.5%.

� The results of Case III show the option of adding BSS significantly reduce the electric-
ity bill to $436.2 (30% of Case I). However, this solution may not be very attractive
for some consumers due to the low return on investment (3.7%) and the long payback
period (10 years).

� The proposed OBTS of Case IV reveals the significant economic impacts of introduc-
ing HP coupled with TSS to Case III. This is the most attractive solution for the
consumers since the battery size is reduced by 28% (from 6.5 kWh to 4.7 kWh) and
the annual electricity cost is reduced by 81% (from $1445.4 to only $282.7) with the
acceptable LCC.

5. Verification of Proposed OBTS and SBEMS

5.1. Verification of Proposed OBTS

In order to verify the optimal sizing solutions of Case IV, different sizes of BSS and
TSS are chosen and the corresponding costs are calculated. Sensitivity analysis results are
presented and compared in Figs. 9 - 12. Fig. 9 describes simulation results for the annual
electricity cost. As expected, the annual electricity cost decreases when BSS and TSS sizes
are increased. However, increasing storage sizes results in higher payback period (Fig. 10)
and lower AROI (Fig. 11) due to the increasing trend of capital cost. Figs. 10 and 11 show
that increasing the size of BSS without adding TSS to HVAC system remarkably increases
the payback period and subsequently decreases AROI. Therefore, the results of Figs. 9 - 12
verify that the captured optimal solution (marked in Fig. 12) corresponds to the lowest life
cycle cost. In order to the analysis of optimal TSS and BSS design for different sizes of PV
system, it is necessary to consider the whole costs of PV system within LCC. The average
cost of a PV system in Australia is about $1.09/W [4]. Two percent of the initial cost of PV
system is considered as the annual operational and maintenance costs. Four PV sizes are
chosen and results are presented in Table 6. The optimal BSS and TSS sizes for different
PV sizes show that increasing the size of PV increases the size of storage systems, while,
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Table 6: OBTS results for different PV sizes.

PV size kWp 2 4 6 8

TSS size Liter 1200 1700 2200 2200

BSS size kWh 3.4 4.2 5.0 5.2

Annual PV power kWh 3380 6760 10140 13520

PV self-consumption kWh 2984 4042 4708 4830

Annual electricity cost $ 958 396 233 195

LCC∗ $ 1464 1139 1206 1311

Payback period∗ year 6.6 6.9 8.6 10.2

AROI∗ % 5.4 5.2 4.2 3.4

∗ The life cycle cost of PV system is considered in LCC, payback period, and AROI.

the trend is not linear. The optimal sizes of TSS and BSS are required for taking advantage
of PV generation in the higher size of PV. It is not economical to increase the storage sizes
due to i) rising initial costs of PV, TSS and BSS which leads to increase the LCC, and ii)
the sizes of TSS and BSS are mostly limited by households load.

The seasonal performance factor (SPF) on the ground source heat pump is 4.4 in heating
mode and 4.8 in cooling mode for the optimal TSS size. In this work, increasing the tem-
perature of the TSS has not been considered to increase PV self-consumption. Additionally,
TSS is considered to be correctly insulated. OBTS optimizes the stored thermal energy in
TSS to supply daily thermal demand and avoid tank heat loss. Therefore, different sizes of
TSS do not significantly impact the SPF of HP. However, the higher sizes of TSS decreases
the SPF slightly due to the increasing tank heat loss.

5.2. Experimental Validation of SBEMS

Fig. 13 shows the SELAB at Edith Cowan University, Western Australia. Experimental
validations have been performed for the thermal and electrical energy systems installed at
the SELAB. The thermal system consists of 3 × 1000 liters stainless steel tank (100 mm
insulation layer), and ground source HP with 10.3 kW heating capacity and 7.1 kW cooling
capacity (the power consumption of the HP is between 1.5-2 kW). The electrical system
encompasses 12× 285 W series mono-crystalline PV modules (3.5 kWp), 6× 250 W series
poly-crystalline PV modules (1.5 kWp), and 4× 4× 12 V series lead-acid batteries modules
MP12200 GEL CELL with a nominal voltage of 48 V and total capacity of 4 × 4.8 kWh.
All home appliances, except the HP, are modeled as uncontrollable loads. The base load
is the data of a smart meter for a house in Perth, Australia, as shown in Fig. 15b. The
experiments are performed at SELAB with the operating constraints shown in Table 4. TSS
is set to mTSS = 0.1 m3 in the first time step. The stored chilled/hot water volume in TSS
is calculated by measuring the difference between the inlet and outlet water flow rates of the
TSS. The indoor temperature set-point is considered between 22 ◦C and 24 ◦C. Fig. 14 shows
the real-time pricing profile used in this study. This profile is based on wholesale electricity
market from the Australian energy market operator (AEMO) website [4]. The RTP is for
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Figure 14: Wholesale electricity market price for two days in Jan-2019 [4].

two typical days in January 2019. A horizon prediction of N = 24h and a control sampling
time of 5 min are chosen in this test. The proposed algorithm shifts the HP load based on
RTP tariff and availability of PV generation, taking into account the stored thermal energy
in the TSS (mTSS) and the battery SOC. To verify the SBEMS results by experimental
tests, TSS with the volume of 2000 liters and BSS with the capacity of 4.8 kWh are used
as installed in SELAB.

Fig. 15 shows SBEMS results of two days in summer which these results obtain based
on the actual system. Based on weather prediction, SBEMS calculates PV production and
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thermal demand over the prediction horizon. In each time step, the indoor temperature
is predicted and thermostat signal U determines the total required thermal demand of the
building for the next time step (Fig. 15f). The SBEMS optimizes to run HP at midnight
to directly supply thermal demand (Fig. 15c). Fig. 15d shows that SBEMS is applied to
import power from the grid during midnight to avoid deep BSS discharging in the early
morning. In second day, SBEMS runs the HP when the real-time price is negative. The
power is also imported from the grid when the price is negative. It is assumed the SOC
of battery is 50% in the first time step. Fig. 15e shows that the battery is charged by
the grid power during low electricity price-period, based on RTP which has shown in Fig.
14, to supply base load and HP load during midnight and early morning. Then, BSS is
fully charged by PV power to supply the load during peak-load hours (Fig. 15a). Fig. 15e
also demonstrates HP is operated to charge TSS in midnight and when PV generation is
sufficient to charge battery as well as supply the total load. The results show that according
to mTSS, the HP is run in the midday when the PV power is available; to increase stored
chilled water mTSS. The thermal demand is then supplied by TSS during peak-load hours.

To show the effectiveness of SBEMS, a test is done for the PV system without BSS and
TSS. Figs. 16 and 17 show the experimental results of power dispatch for the system without
the storage and with TSS and BSS, respectively. The HP load causes an increase in the
total load during peak-load hours when the electricity price is high. This is due to the lack
of storage systems. Thus, the total purchased grid power is 10.81 kWh in base case while it
is decreased to 3.16 kWh, in the presence of TSS and BSS. In addition, the electricity cost
is decreased by 84% from $8.4 to $1.3. The PV self-consumption is increased from 14.38
kWh (35.6 %) to 19.81 kWh (49.1 %).

Fig. 18 and Table 7 show the comparison between the model results and the experimental
measurements. Fig. 18 demonstrates that the experimental measurements of BSS power
and the grid power verify the simulation results with minor differences. Table 7 shows the
PV power, PV self-consumption, HP electrical load, and the grid power for the first day
for both simulations and measurements. The difference between the experimental results
and the simulation results is mainly due to the 5-min time step. It can be seen that the
results have verified the effectiveness of the proposed model. However, Table 7 shows 0.5
kWh difference in HP power consumption. This difference is due to the ground circulation
pump of the ground source heat pump. The ground circulation pump operates about 2 min
earlier than the HP and turns off 2 min after turning off the HP.

24



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

(a)

-5

0

5

P
o
w

e
r 

(k
W

)

PV Charging Discharging

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

(b)

0

2

4

B
a
s
e
 l

o
a
d
 (

k
W

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

(e)

0

50

100

%

SOC
BSS

m
TSS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

(c)

0

1

H
P

 s
ig

n
a
l

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

(d)

0
2
4
6

G
ri

d
 s

ig
n
a
l

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Time (h)

(f)     

20

25

30

35

40
Building temp. (oC)

Ambient temp. (oC)

Thermostat signal (U)

Figure 15: Power dispatch for a day in summer with the 4.8 kWh BSS and 2000 liters TSS. (a) PV
production and battery power flow. (b) Base load. (c) HP operation signal. (d) Signal of imported
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(f) Building temperature control result based on weather condition.
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Figure 18: Comparison of experimental measurements and simulation results. (a) BSS power. (b)
grid power.

Table 7: Comparison of experimental measurements and simulation results.

Simulation Experiment

PV power kWh 38.4 39.3

PV self-consumption kWh 19.6 20.1

HP load kWh 12.1 12.6

Grid power kWh 3.16 3.19

6. Conclusion

This paper presents a cost-effective framework for energy management of residential build-
ings with rooftop PVs, heat pumps (HPs), and thermal storage system (TSS) and battery
storage system (BSS). Two methods are proposed and tested: 1) optimal BSS and TSS
sizing (OBTS) to determine the optimal sizes of BSS and TSS, and 2) a smart building en-
ergy management system (SBEMS) to manage real-time operation of storage systems based
on the OBTS results. The performance of OBTS and SBEMS are verified using detailed
simulations and experimental tests. In addition, the cost benefits of the proposed OBTS
are demonstrated for different scenarios by oversizing and undersizing both TSS and BSS
components. The key outcomes of this study can be described as follows:

� The proposed OBTS reveals significant economic benefits in smart buildings with
rooftop PVs by introducing BSS and TSS systems coupled with the HP. The results
demonstrate that buildings with TSS only are a low investment solution in terms of
short payback period and reasonable AROI. However, buildings with either thermal
or battery storage (Table 5, Cases II and III) are not as cost-effective as the proposed
TSS+BSS systems of Case IV, in terms of low annual electricity and life cycle costs.
In particular, the control of residential HP coupled with TSS reduces building demand
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from peak-load hours. Consequently, the BSS size is decreased. Accordingly, thermal
and battery storage systems significantly increase PV self-consumption.

� With optimal sizing of BSS and TSS, the proposed SBEMS significantly reduces the
total electricity cost of the smart building by shifting the HP loads based on DRP.
This is done by charging the battery either during low-price electricity hours or when
PV power is available.

The results of this paper demonstrate that residential rooftop PV systems can rely on HPs
coupled with TSS systems as shifting technologies to avoid power system challenges caused
by exporting excess PV power to the grid. The enhanced system can significantly reduce the
burden of residential loads at peak hours by increasing rooftop PV self-consumption. Due
to the high initial investment and operating costs of BSS, adding TSS to air-conditioning
systems is more economical since end-users can take full advantage of rooftop PV systems
with a reasonable investment cost. Accordingly, distribution network operators can support
customers by introducing an incentive framework to foster HP systems. The proposed
framework can be modified to consider the power sharing within buildings. It can also be
applied in peer-to-peer trading with other types of HVAC systems and renewable energy
resources.

Appendix A.
HP heat transfer

Fig. 19 shows the schematic of heat transfer of the HP. The heat transfer equations in
heating and cooling are as follows:

Q̇HP = PHP + Q̇e (A.1)

Q̇HP + PHP = Q̇e (A.2)

where Q̇HP is determined by consumed power by the compressor and the heat taken
(given) from (to) the environment (Q̇e).

HP

T2

THP

Treturn

T1

PHP

QHPQe
HP

T2

THPT1

QHPQe

Cooling mode Heating mode

PHP

Treturn

Figure A.19: Heat transfer for HP system.

The COP depends on temperature difference between external source and internal source.
The characteristics of COP can be explained by ideal Carnot heat pump cycle [4].
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COPh = η · (Te − δT )

(THP + δT )− (Te − δT )
+ 1 (A.3)

where η = 0.55 is the Carnot efficiency, δT = 5oC is the temperature difference of the heat
exchangers, and Te is the ground temperature which is 16oC in WA.

The modeled HP is a single phase ground source heat pump from Mammoth [5]. The HP
model is MSR L024H. The HP technical data are taken from the manufacture’s datasheet
([5]) to evaluate the HP performance and power consumption.

Appendix B.
Particle Swarm Optimization

PSO is a heuristic algorithm for solving complex optimization problems by a population
(swarm) of named particles [5]. Each particle is a vector which consists of N decision
variables and defines a position of the search space. During the iterations, each particle
moves randomly based on the swarm’s experience and its own best knowledge. Note that
each particle moves toward the location of the current global best position (pbest) and the
group’s best experience (gbest). This process is repeated until the termination criterion is
reached. In each iteration (t), the updating pattern of particles is given by:

vj(t+ 1) = w(t)× vj(t) + c1 × r1(pbestj(t)− xj(t)) + c2 × r2(gbestj(t)− xj(t)) (B.1)

xj(t+ 1) = vj(t+ 1) + xj(t) (t = 1, 2, ..., tmax) (B.2)

where xj and vj are the position and the velocity of jth particle, respectively. j = 1, 2, ..., Np

is the index of particle, Np is the size of particle, r1 and r2 represent uniform random numbers
between 0 and 1 which are independently generated for each particle in each update, c1 and
c2 represent learning factors which are usually between 0 and 2, tmax is the maximum
iteration times and w is the inertia constant.
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