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Abstract 
Forward osmosis (FO) and reverse osmosis (RO) membrane processes differ in their driving 
forces: osmotic pressure versus hydraulic pressure. Concentration polarization (CP) can 
adversely affect both performance and lifetime in such membrane systems.  In order to mitigate 
against CP, the extent and severity of it need to be predicted more accurately through advanced 
online monitoring methodologies. Whilst a variety of monitoring techniques have been used to 
study the CP mechanism, there is still a pressing need to develop and apply non-invasive, in 
situ techniques able to produce quantitative, spatially resolved measurements of heterogeneous 
solute concentration in, and adjacent to, the membrane assembly as caused by the CP 
mechanism. To this end, 23Na magnetic resonance imaging (MRI) is used to image the sodium 
ion concentration within, and near to, both FO and RO composite membranes for the first time; 
this is also coupled with 1H MRI mapping of the corresponding water distribution. As such, it 
is possible to directly image salt accumulation due to CP processes during desalination. This 
was consistent with literature expectations and serves to confirm the suitability of 23Na MRI as 
a novel non-invasive technique for CP studies.   
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1. Introduction 

Forward osmosis (FO) is an emerging membrane-based technique which is being 
explored as a potential option for low cost desalination and wastewater treatment membranes. 
This osmotically-driven process comprises two steps: permeate from a saline feed solution (FS) 
initially transverses a semi-permeable membrane via osmosis to a concentrated draw solution 
(DS); this water is then recovered from the DS via the application of an additional separation 
process [1-3]. If the DS regeneration, which is energy-intensive, can be adequately managed, 
FO can potentially offer lower energy consumption compared to pressure-driven membrane 
processes such as reverse osmosis (RO), ultrafiltration, and nanofiltration that require 
significant hydraulic pressures to force water through the membranes. FO is also argued to 
offer lower fouling propensity (which is more reversible) and can be applied to a wide range 
of solutes and contaminants [1-5]. Similar to RO membranes, a significant limitation with 
respect to FO application is the occurrence of concentration polarization (CP). CP is the 
elevated concentration of either solutes or particles, relative to the bulk concentrations, either 
inside or on the surface of the membrane assembly. This serves to both reduce the osmotic 
driving force (and hence adversely affect membrane performance) and in the longer term, 
reduce membranes durability [6-8]. Local elevations in solute concentration can potentially 
result in local crystallization on the membrane surface; these also serve to change the 
concentration gradient of solutes across the membrane which usually serves to reduce the 
osmotic pressure driving force, and hence permeate flux declines [9-11]. The magnitude of the 
CP effect is reduced by increased cross-flow over the membrane surface and/or the application 
of turbulence promoters or spacers; these hydrodynamic effects are however significantly 
influenced by the geometry of the membrane assembly [8].   
 

In general, CP in membranes has two forms: external concentration polarization (ECP), 
which happens on the outer surface of membranes and internal concentration polarization (ICP) 
that happens within the porous support layer of the membranes [11] – this is schematically 
shown in Figure 1. During FO, water permeates from the feed solution to the draw solution due 
to osmosis; the membrane configuration can either have the active membrane layer facing the 
feed solution (AL-FS) or the active membrane layer facing the draw solution (AL-DS); the 
latter is also referred to as pressure retarded osmosis (PRO). Both orientations are 
schematically shown in Figure 1. During FO in the AL-FS configuration (Figure 1(a)), water 
permeation results in ECP on the active side of the membrane and dilutive ICP within the 
membrane support layer; whilst FO in the AL-DS configuration (Figure 1(b)) results in ICP in 
the membrane support later and dilutive ECP on the external active membrane layer [12, 13]. 
In both configurations, the net osmotic force decreases hence reducing membrane performance 
[11, 12, 14]. ECP, as discussed above, can be reduced via cross-flow; however, ICP is much 
more challenging to control resulting in a potentially greater negative impact on membrane 
performance [15-18].    
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Fig.1 Schematic illustration of solute concentration profile and concentration polarization (CP) 
mechanism in the vicinity and within the support layer of a thin film composite (TFC) FO membrane 
configured in a) AL-FS mode, and b) PRO mode, where Jw is water flux, Js is solute flux, Δπeff is the 
effective osmotic pressure difference, and Cfeed and Cdraw are the solute concentrations in the feed and 
draw solutions respectively [13].  

 

A variety of measurement techniques have been applied to investigate CP in membranes 
[e.g. 19-22]. In-situ monitoring techniques that have been applied to evaluate CP in filtration 
membranes include light deflection methods (shadowgraphy and refractometry), both of which 
require optical access and some optical property (e.g. refractive index) to quantitatively depend 
on the solute concentration. Other CP analysis techniques include radioisotope labeling, 
electron diode array microscopy, and direct pressure measurement [19, 20, 23]. However, all 
these techniques have some limitations which make the in-situ accurate quantification of solute 
concentration difficult [19, 20]. For example, Vilker et al. [19] used shadowgraphy to predict 
bovine serum albumin (BSA) concentration profiles in a membrane polarization layer in the 
absence of gel/cake formation. Although their experimental BSA concentration results showed 
reasonably good agreement with theoretical predictions, their experimental BSA diffusivity 
values were one order of magnitude different from their theoretical predictions. Zhang and 
Ethier [23] measured the pressure distribution profile within a concentration polarization layer 
with the aid of a miniature sensor. Whilst innovative, the technique is inevitably invasive and 
potentially perturbs the polarization layer. In particular, measurements of any ICP are difficult. 
Hence, the application of a non-destructive, non-invasive approach that can directly quantify 
the spatial distribution of solute or colloidal material during CP on and in an active membrane 
is highly desirable.   

Magnetic Resonance Imaging (MRI) is a versatile non-destructive technique that can 
be used to study the structural and transport properties of membranes [e.g., 24]. In conventional 
MRI, the signal detected reflects the proton (1H) concentration; this signal can also be 
moderated by either longitudinal (T1) or transversal (T2) relaxation in order to reflect local 
confinement of the relevant fluid. Other contrast mechanisms include the use of chemical shift 
(to differentiate between oil and water for example) and diffusion or flow. In this broad context, 
MRI has been widely applied to monitor filtration membranes in terms of their structure, 
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fouling, and transport properties [e.g. 24-33]. This includes the use of low field bench-top MRI 
systems capable of imaging fouling development in RO desalination membranes [24, 27, 30]. 
Fouling and its effect on the local flow field have also been studied using MRI for multichannel 
hollow fiber membranes [25]. In the context of membrane CP, 1H MRI has been used by Pope 
et al. to explore the accumulation of polarized layers adjacent to the membrane surface during 
cross-flow filtration of both colloidal silica material and oil-in-water emulsions [e.g., 26, 34, 
35]. They used chemical shift selective micro-imaging to directly visualize the creation and 
development of oil polarization layers during the filtration of the oil-in-water emulsions, 
enabling determination of the oil layer thickness and spatially localized resistance [34] as well 
as the axial flowrate [35].  

In the current work, a custom-built cross-flow planar membrane module was 
constructed which was compatible with high field MRI equipment. This was able to 
accommodate either a FO or RO membrane; the thicker RO membrane was used primarily for 
validation purposes. Both 1H and 23Na two-dimensional (2D) MRI were performed 
perpendicular to the membrane allowing both the water and NaCl concentration to be 
determined as a function of distance from, and into, the membrane at a spatial resolution of 10 
µm. Imaging was thus performed on systems relevant to desalination, with images acquired 
mainly immediately after the cessation of cross-flow. The FO membranes were investigated in 
both AL-FS and AL-DS configurations. To the best of our knowledge, this is the first attempt 
to apply 23Na MRI to directly measure NaCl concentration polarization in a membrane system. 

 

2. Materials and Methods 

FO membranes were purchased from HTI (Albany, OR, USA) and Porifera (Hayward, 
CA, USA) respectively and the thin film composite (TFC) RO membranes were obtained from 
Dow FILMTEC (Minneapolis, MN, USA). The HTI, Porifera and Filmtec membranes used 
were 115, 50, and 300 µm thick, respectively. The 2D membrane module used was an 
adaptation of the membrane fouling simulator used for early detection of membrane fouling 
[28, 29, 36]. This included two separate channels for delivery and removal of the feed and draw 
solutions respectively. The membrane was positioned between these channels, clamped in 
place mechanically and supported on both sides via two 28 mil (711 µm) thick spacers. The 
resultant module was made of PVC (delivering no NMR signal) and had inner flow chamber 
dimensions of 2×200×216 mm3. Figure 2(a) presents a schematic of the module. Sodium 
chloride (99.7% purity, Chem-Supply, SA, Australia) and DI water (conductivity <1 μS/cm, 
Ibis Technology, WA, Australia) were used to prepare the feed (0.1 M NaCl) and draw (2 M 
NaCl) solutions.  

High-resolution magnetic resonance images were obtained using a horizontal bore 
Bruker BioSpec MRI scanner (Figure 2(b)) with a magnetic field of 9.4 T and a dual radio-
frequency (RF) coil (diameter of 154 mm) tuned to the 1H (ω = 400.1 MHz) and 23Na (ω = 
105.8 MHz) resonance frequencies respectively. A maximum gradient strength of 0.33 T/m 
was used. Spin-echo 2D images (with an axial (z) slice thickness of 1 mm) and with an in-plane 
resolution of 0.01 mm (y) by 1 mm (x) for the RO membrane and 0.01 mm (y) by 1.7 mm (x) 
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for the FO membranes, were acquired separately using both 1H and 23Na detection. The 
membrane module was placed in the dual RF coil inside the magnet and connected to a flow 
line as schematically illustrated in Figure 2(c); in this configuration water at different salinities 
is simply flowed on either side of the membrane (the feed side (FS) and draw side (DS) 
respectively) in two discrete flow loops at flowrates of 1.08 L/h. 1H images were used to 
determine the water content in, and adjacent, to the membranes, whilst 23Na images were used 
to determine the respective salt distribution. The signal to noise ratio (SNR) of the 23Na images 
is inevitable poorer [37] than that of the 1H images. SNR is proportional to ω7/4 [38] meaning 
that an equivalent number of 23Na nuclei delivers only 10 % of the SNR of 1H nuclei. In our 
case, the density of 23Na will also be significantly smaller. Nevertheless, it was possible to 
acquire a full 2D 23Na image in 8 minutes with a y-direction spatial resolution of 10 microns. 
For both 1H and 23Na imaging, 8 signal averages were used. This is made possible via the use 
of a 9.4 T magnet and exploitation of the short T1 of the 23Na (less than 50 ms) meaning that a 
recycle time of only 200 ms could be used between 23Na signal acquisitions; in the case of 1H 
detection the recycle time was increased to 2 s. The T2 of 23Na in bulk solution was measured 
to be 25 ms using a standard CPMG pulse sequence; given an echo time of 2 ms, no significant 
T2 relaxation weighting is expected in the acquired images for bulk solution 23Na; greater T2 
relaxation is however possible in the membrane assembly itself as discussed below. For the 
case of 1H signal detection (from the water content), the T2 value was 2 s in the bulk and 42 ms 
in the membrane assembly; however, exchange of water molecules between the bulk and the 
membrane would have occurred over the measurement timeframe and hence these values thus 
need to be treated cautiously.           
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Fig. 2 a) The schematic illustration of a) the custom-made FO membrane fouling simulator cell, b) 
Bruker Biospec 9.4 T MRI animal imaging system, and c) the experimental setup. 
 
 
 
1. Results and Discussion  

Imaging was performed with the aforementioned FO or RO membranes individually 
sandwiched between two spacer sheets in the membrane cell (shown in Figure 2(a)). In all 
cases, brine solution at 2 M was present on one side of the membrane whilst dilute brine 
solution (0.1 M NaCl) was present on the other. Figure 3(a) and (b) show the 1H and 23Na MRI 
images for the 300 micron thick TFC-RO membrane in the Al-DS orientation. The image 
intensity indicates the concentration of 23Na and 1H (and hence water) respectively. As 
expected, water is evident on both sides of the membrane, whereas sodium is predominately 
evident on the feed side. The 2D 23Na and 1H images were averaged in the x-direction to 
produce the 1D 23Na and 1H y-direction profiles shown in Figure 3(c) and magnified in Figure 
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3(d). The presence of the spacers (which deliver no NMR signal) is reflected in the 1H profile 
shape with elevated 1H concentrations at either end. Elevated Na concentration within both the 
active and support membrane layers is immediately evident and there is some evidence (Figure 
3(d) where the 23Na signal exceeds that of the 1H)) for elevated sodium concentration adjacent 
to the membrane and hence ECP. However, different regions of the membrane assembly have 
different microstructures and thus potentially different NMR T2 relaxation properties [39] and 
hence minor variations in signal intensity need to be treated with caution. The active layer (AL) 
is dense while the support layer (SL) has a multi-layer, heterogeneous structure. The support 
layer in TFC membranes consists of a microporous polymer with a tighter skin on the top to 
support the AL and a fabric layer on the bottom with an open-pore structure. This is reflected 
in the 1H profile where elevated signal is received from the bottom of the support structure.  
The results in Figure 3 confirm the ability of MRI to detect sodium in such, admittedly, thicker 
RO membrane systems; we now turn our attention to the detection of sodium in thinner FO 
membrane assemblies. 

    

 
Fig. 3 a) 1H 2D MRI and b) 23Na 2D MRI of a flat sheet TFC-RO membrane module containing two 
spacers at the membrane feed and permeate side (0.01 mm (Y) by 1 mm (X) in-plane resolution), c) 1H 
and 23Na profiles of the membrane following averaging across the x-direction and d) a magnified profile 
of the membrane with the active and support layers (AL and SL) shown. The penetration of the Na 
signal into the support later is evident through the magnified profile presented in Figure 3 (d).   

Figures 4(a) and (b) show 2D 1H and 23Na images of the HTI FO membrane in the AL-
FS orientation in the membrane cell. The combined membrane active and support layers in this 
case have a thickness of 115 µm. This comparative thinness and hence flexibility of the 
membrane meant that a completely flat membrane profile was not possible, as is immediately 
evident in Figure 4(a and b). Similarly to Figure 3, the 23Na and 1H concentrations are averaged 
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across the x-direction resulting in Figure 4(c). In this case each y-axis profile was adjusted such 
that all the profiles lined up with the membrane in the same position. The 1H profile is broadly 
consistent with Figure 3(c); the elevated apparent concentration adjacent to the membrane 
surface must reflect reduced signal relaxation in this region due to greater restricted diffusion 
of the water molecules in addition to the presence of the spacers on both sides of the membrane. 
The 23Na profile shows a gradual reduction towards the outer edge of the draw solution side. 
The reason for this is unclear at present but could reflect the effect of spacer compression and 
system hydrodynamics. The membrane area is expanded in Figure 4(d) to evaluate the CP 
mechanism. 

 ECP is characterized by the mass transfer coefficient, k, which can be improved by 
increasing the cross-flow velocity or spacer design [8]. On the other hand, ICP is characterized 
via solute diffusivity in water, D, and the structural parameter of the membrane support layer, 
S= τm · lm/εm, where τm, lm, and εm are the support layer tortuosity, thickness, and porosity, 
respectively. In FO systems, a smaller value of S is more desirable as it leads to a smaller ICP 
and higher osmotic driving force [21]. Here, there is a significant accumulation of sodium 
within the membrane support structure (dilutive ICP) due to the relatively high structural 
parameter of this membrane (≈ 700 µm). Further, significant accumulation of sodium and hence 
concentrative ECP is present on the FS side of the membrane due to the boundary layer 
resistance to solute diffusion [40-42]. This data is broadly consistent with the expected profile 
shape as schematically shown in Figure 1 and as reported in the literature [42-45]. 
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Fig. 4 a) 2D 1H MRI b) 2D 23Na MRI images of the FO membrane module sitting inside the 
module in a AL-FS configuration (with two spacers on the membrane feed and permeate side) with an 
in-plane resolution of 0.01 mm (y) by 1.7 mm (x), c) y-direction proton and sodium signal intensity 
profiles and sodium concentration in the whole channel and d) the profiles within the membrane 
showing the penetration of the Na signal into the support and active layers.    

Next we turn our attention to the much more fragile Porifera FO membrane which is 
significantly thinner (50 µm) – an AL-DS orientation was used (as schematically shown in 
Figure 5(a)). In this case, 23Na imaging was performed on the system with the FS flowing with 
a linear flow velocity corresponding to 1.08 L/h whilst the DS was stationary (but not contained 
with room for expansion due to being connected to the DS reservoir); a rapid imaging technique 
(Flash MRI imaging with an in-plane resolution of 25 µm [38, 46]) was applied enabling the 
2D images to be acquired at an interval of 90 s. The time series of the resultant images are 
shown in Figure 5(b). Dilution of the DS salt concentration is evident over time as water 
migrates across the membrane under osmotic pressure differences – the kinetics of this are 
shown in Figure 5(c) by the red line, which presents the total 23Na signal averaged across the 
whole image. Considering the channel and spacer dimensions as detailed in Figure 2(a) and 
Figure 5(b), a 3.6 ml volume is occupied by the feed and draw solutions on each side of the 
membrane. For the Porifera membrane with a calculated water flux of 15.7 LMH and a surface 
area of 43.2 cm2, 1.9 ml of water permeates across the membrane every 100 s gradually diluting 
the DS. This dilution is shown by the blue crosses in Figure 5(c), which assumes a well-mixed 
system. This theoretical prediction is very consistent with the experimental data (red line in 
Figure 5(c)). This serves to prove that rapid imaging of the FO membrane filtration process is 
possible albeit not at a spatial resolution that enables any CP to be imaged.  

 

Fig. 5 a) Membrane configuration for Flash 23Na MRI tests on the Porifera membrane operating with 
AL-DS mode under a dynamic flow condition, b) 2D Flash 23Na MRI images of the whole channel at 
90 s intervals and (c) temporal sodium concentration profile – as measured and as predicted from theory. 
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The qualitative consistency of our MRI results with theoretical predictions and 
literature indicates the unique insights possible with 23Na MRI regards membrane 
concentration polarization. In particular, the use of 23Na NMR allows the salt accumulation to 
be directly imaged both within and adjacent to the membrane assembly. Future work will focus 
on rendering the measurement more quantitative by a detailed consideration of T2 relaxation 
processes; this is complicated by the effect of restricted diffusion in and adjacent to the 
membrane surface, an effect which was immediately obvious for the 1H profiles in Figure 4. 
To this end, we will determine the diffusion coefficient of both water and Na using NMR pulsed 
field gradient (PFG) techniques; this will be spatially resolved in combination with MRI.   

 
2. Conclusion 

An RO and two FO membranes were tested individually in a custom-made effectively 2D 
desalination unit in AL-FS or AL-DS modes with both proton and sodium MRI imaging 
successfully applied to determine the water and Na ion concentrations both in and adjacent to 
the membrane assembly. Imaging was performed immediately after the cessation of cross-flow. 
Concentration polarization was evident in both membrane structures via the accumulation of 
sodium in the support layer of the membrane assembly. Comparatively rapid 23Na MRI 
detection was also shown to be able to determine the dilution of a static draw solution in a 
dynamic FO scenario, the rate of which was consistent with expected membrane performance. 
These proof of concept results point to the significant potential of 23Na MRI to provide a unique 
insight into concentration polarization processes occurring during desalination.      
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