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Abstract: Fe-based metallic glasses have been demonstrated as effective heterogeneous catalysts in
Fenton-like processes for dye degradation. Yet, currently corresponding studies have limitations due
to the limited study object (dyes) and the correlation between metallic glasses and dye pollutants
in Fenton-like processes is still not comprehensively studied. Accordingly, this work intensively
investigated the thermal catalytic behavior correlations between two Fe-based metallic glasses
(Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3) and eight different dyes. Results indicated a lower activation
energy in the more active metallic glass and a dependence of the activation energy of Fe-based metallic
glasses in dye solutions. In addition, a high H2O2 concentration led to a declined catalytic efficiency
but a photo-enhanced Fenton-like process overcame this limitation at high concentration of H2O2

due to the decrease of pH and enhancement of irradiation. Furthermore, the average mineralization
rates of Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 have been measured to be 42.7% and 12.6%, respectively,
and the correlation between decolorization and mineralization revealed that a faster decolorization in
a Fenton-like process contributed to a higher mineralization rate. This work provides an intrinsic
viewpoint of the correlation between Fe-based metallic glasses and dyes in Fenton-like processes and
holds the promise to further promote the industrial value of metallic glasses.

Keywords: metallic glasses; dyes; Fenton-like processes; activation energy; mineralization

1. Introduction

In recent years, metallic glasses with long-range disordered atomic configurations have been
extensively investigated as novel functional catalysts in environmental and energy science [1–4].
Compared to catalysts with highly ordered crystalline structures, their uniquely amorphous structures
fabricated by rapid solidification processes endow metallic glasses with many fascinating catalytic
properties, such as high surface active sites induced by unsaturated coordination of atomic numbers [5],
fast electron transfer [6], low thermal activation energy barriers [7], self-stabilizing nature [8] and
structural stability [9,10]. Particularly, low-cost Fe-based metallic glasses with their easily modified
chemical composition, good glass-forming ability and environmentally friendly nature have attracted
increasing interest as catalysts in renewable energy conversion. For example, Fe40Co40Se20 supported
on carbon fiber paper [11], Fe40Ni40P20 [5,12] and Fe40Co40P13C7 [13] metallic glass ribbons were directly
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employed as electrocatalysts for efficient hydrogen/oxygen evolution reactions; a comparative study
between metallic glasses and their crystalline counterparts also suggests that the amorphous structure
easily induces a much higher active catalytic activity [12] and the functionality of amorphous structures
with active sites and reduced energy barriers has been demonstrated [14]. Recently, stimulated by
global environmental pressure, the attractive catalytic properties in Fe-based metallic glasses have
become tremendous advantages for the treatment of environmental pollutants [15].

Advanced oxidation processes (AOPs) have been considered as effective methods to purify
organic contaminants [16], which cannot be achieved by conventional chemical, physical and biological
methods [17–20]. The major contribution to effective pollutant degradation from AOPs is usually
attributed to the formation of reactive species with high redox potential, such as hydroxyl radical
(•OH, E0 = 2.7 V) [21]. Fenton/Fenton-like processes are one type of effective AOPs to generate •OH
by hydrogen peroxide (H2O2) and iron-containing materials under acidic conditions. Given the fact
that the amorphous nature facilitates Fe-based metallic glasses to have better catalytic properties than
crystalline catalysts, they have been applied as a superior alternative of crystalline iron catalysts in
Fenton-like processes. It has been reported that Fe78Si9Si13 metallic glass ribbons presented 5–10
times faster of •OH production rate than other Fe-based crystalline catalysts in methylene blue and
methyl orange dye degradation [22]; Fe50Ni30P13C7 metallic glass ribbons displayed a 2-fold enhanced
catalytic efficiency by surface reactivation in a Fenton-like process [23]; Fe80P13C7 metallic glass
ribbons showed self-renewing and ultra-strong catalytic reusability in dye decomposition [24,25]. Very
recently, our research group has also demonstrated that Fe78Si9B13 metallic glass ribbons could be
effective environmental catalysts not only for the aforementioned degradation of organic pollutants,
but also for remediation of inorganic pollutants (arsenic and nitrate) [26], showing a high promise of
industrial value.

Due to the development of economy and the increased demand of market, synthetic dyes are
currently widely applied in many industries, especially in the textile industry as coloring agents [27].
According to their chemical structures and functional groups, dyes with chromophore and auxochrome
groups are classified into azo dyes, triarylmethane dyes, xanthene dyes, etc. [28]. Chromophore groups
determine the presence of color by absorbing light within the visible spectrum while auxochrome
groups determine the color intensity [29]. Functional groups such as amino, hydroxyl, nitro and
carbonyl groups can further alter the light absorbance capability of chromophore groups [30]. However,
dye molecules not only contain genotoxic and carcinogenic substances but also have chemically stable
structures of a recalcitrant nature [31], which will cause detrimental effects on the aquatic environment
if a dye solution is discharged without effective treatment. In addition, the synthesis methods of dyes
make their chemical structures more and more complicated, which also greatly increases the difficulty
for degrading dyes into harmless substances. It is thus urgent to identify and exploit effective methods
to alleviate the environmental pressure.

Although Fe-based metallic glasses used in Fenton-like processes have been investigated for
effective dye degradation in recent years, these studies mostly focused on specific dye degradation
leading to a significant limitation. In addition, the correlation between metallic glasses and dyes
is not yet fully understood. Therefore, motivated by these limitations, our research group focused
on two Fe-based metallic glasses (Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3) in Fenton-like processes to
degrade eight dyes with different classifications (i.e., azo dyes, thiazine dye, triarylmethane dyes and
nitroso dye), aiming to understand the intrinsic correlation of Fe-based metallic glasses and dyes in
Fenton-like processes.

2. Results and Discussion

2.1. Dye Characteristics and Properties

The ultraviolet (UV)-visible (Vis) spectra of the eight different dyes are shown in Figure 1. In order
to distinguish the functional groups in their chemical structures, the UV-Vis spectra have been divided
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into the Vis and UV region (Figure 1a,b, respectively). As shown in Figure 1a, the intensities and
absorbance peaks of different dyes with the same concentration (20 ppm) are apparently different,
where the peak intensity of methylene blue (MB) is stronger than that of the other dyes. Cibacron
brilliant yellow 3G-P (BY), cibacron brilliant red 3B-A (BR) and naphthol green B (NG) dyes have
the lowest peak intensity among all eight dyes. According to the characteristic peaks of dyes in the
Vis spectra, Table 1 summarizes their absorbance peak positions (λmax), which generally dominate
the reflection of their colors by light absorbance. In addition, all the dye structures are shown in
Table 1, where their functional groups and state of charge are clearly indicated for their classification.
Accordingly, methyl orange (MO), bright black BN (BB), BY and BR dyes can be classified as azo dyes
due to the presence of a nitrogen double bond (–N=N–) functional group with an anionic charge and
they have been widely studied in recent years [22,32–34]. MB dye with a four-carbon ring, one nitrogen
and one sulfur atom is classified as a thiazine dye and it is commonly used in medications [24,35].
Nowadays many researchers tend to employ MB dye as a classical organic pollutant example, since
it is relatively stable at different pH values and solution temperatures, so as to investigate effect of
AOPs using different catalysts [9,36–38]. With triphenylmethane backbones, both crystal violet (CV)
and malachite green (MG) dyes can be grouped as triarylmethane dyes with cationic charges and
usually present intense color [39]. It should be noted that MG dye has a self-conversion between the
MG molecule and MG leucocarbinol [40]. NG dye with a –N=O functional group can be classified as a
nitroso dye.
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Figure 1. (a) Visible spectra of eight dyes (i.e., MO, MB, BB, BY, BR, CV, MG and NG) as organic
pollutants ([Dye]0 = 20 ppm, pH = 3.0). (b) Corresponding ultraviolet spectra of the eight dyes under
the same conditions.

It should be mentioned that in addition to chromophore groups, most dye molecules are attached
to benzene rings or/and heterocyclic aromatic molecules, leading to additional absorbance peaks
located at the UV region of UV-Vis spectra, as demonstrated in Figure 1b. All the dye absorbance
spectra in the UV region contain more than one peak, indicating that the intrinsic aromatic structures
are more complicated than just the chromophore groups. It is also interesting to find that some azo dyes
(e.g., BR and BY) with a large molecular weight and a low peak intensity in the Vis region, however,
have a high peak intensity in the UV region. In contrast, the peak intensities of triarylmethane dyes
(i.e., CV and MG) in the UV region are relatively lower than the peaks in the Vis region. Although
hydroxyl radicals (•OH) produced by Fenton-like processes have strong and non-selective oxidation
properties towards organic pollutants [41], the intrinsically distinguishable chemical structures of dyes
in fact may lead to side reactions during their degradation, and the degradation effect of dyes may be
even closely related to the type of catalysts used, which is still not fully understood in the Fenton-like
processes catalyzed by Fe-based metallic glasses.
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Table 1. Characteristics of the dyes.

Dye Classification Empirical
Formula

Molecular
Weight (g/mol) λmax (nm) Structure Ref.

Methyl
Orange (MO) Azo-anionic C14H14N3NaO3S 327.33 498
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the catalysts facilitates the occurrence of degradation processes [7,51,52]. The ∆E of metallic glasses
are generally lower than 60 kJ/mol [9]. However, this fact does not indicate that the ∆E of the same
metallic glass will be constant toward reactions in the different dyes since the reaction temperature
environment may also affect degradation of dye with variation of structure so as to influence the whole
process of degradation by the metallic glass, which is not fully understood. As such, Fe78Si9B13 and
Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons have been employed to investigate their thermal catalytic
behavior with the eight different dyes. In this work, the ∆E of specific metallic glass ribbons with dyes
is measured from the corresponding first-order reaction rate constant (k) under reaction temperatures
of 25, 30, 35 and 40 ◦C. The ∆E is obtained by the Arrhenius equation: ln kobs = −∆E/RT + ln A,
where k is first-order reaction rate constant, R is the gas constant (8.314 J/(mol·K)), T is the absolute
temperature (K), and A is a pre-exponential factor.

Figure 2a–h show the degradation performance of Fe78Si9B13 metallic glass ribbons on the eight
different dyes from 25 to 40 ◦C. It can be seen that almost all the dye decolorizations reach completion
within 10 min at 25 ◦C, showing the outstanding catalytic performance of Fe78Si9B13 metallic glass
ribbons in the Fenton-like process due to their fast electron transfer ability and relatively strong surface
stability, which have been intrinsically investigated in recent years [6,9]. However, two dyes (BY and
NG) present exceptional decolorization performance, where BY reaches a 90% decolorization and
the NG decolorization rate is about 80% within 10 min at the same temperature (25 ◦C). In addition,
compared to our previous work [50], the NG decolorization rate in the Fenton-like process in this
work is slightly lower than that in the photo-enhanced sulfate radical-based AOPs (about 95%) in
previous work using the same Fe78Si9B13 metallic glass ribbons. The higher decolorization rate of
NG in the photo-enhanced sulfate radical-based AOPs may be attributed to the effect of the external
UV-Vis irradiation effect and the different AOPs system used. Both BY and NG show negligible
enhancement effect upon full completion of dye decolorization although the reaction rate is enhanced
at high temperatures. This enhanced reaction rate has also been observed in the other six dyes (MO,
MB, BB, BR, CV and MG) when the reaction temperature is increased. In fact, the temperature also
has a similar effect as UV-Vis irradiation, which facilitates completion of faster reactions due to the
supplementary activation by the external energy [33].
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Figure 2. Decolorization of (a) MO, (b) MB, (c) BY, (d) BB, (e) BR, (f) CV, (g) MG and (h) NG by
Fe78Si9B13 metallic glass ribbons under 25–40 ◦C without UV-Vis irradiation (dye concentration: 20
ppm, catalyst dosage: 0.5 g/L, H2O2 concentration: 1 mM, pH 3.0). Decolorization rates were measured
from the λmax of corresponding UV-Vis spectra with reaction time.

On the other hand, the decolorization behaviors of Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons
against the dyes at 25 to 40 ◦C are shown in Figure 3a–h. The decolorization efficiencies of
Fe73.5Si13.5B9Cu1Nb3 are apparently lower than those of Fe78Si9B13 seen in Figure 2 due to the lower
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surface adsorption ability and stronger surface protection in Fe73.5Si13.5B9Cu1Nb3 [22,47]. The inclusion
of Cu and Nb will also contribute to a lower electron transfer ability [53]. In this work, most of dye
decolorization by Fe73.5Si13.5B9Cu1Nb3 reached completion within 60 min and the decolorization rates
also increase with the reaction temperatures. However, the decolorization of the two triarylmethane
dyes (CV and MG) seemed to be inhibited when using Fe73.5Si13.5B9Cu1Nb3 as a catalyst (Figure 3f,g).
In particular, CV dye can only be decolorized by less than 40% within 45 min and under 40 ◦C. The CV
and MG dye molecules have the same cationic charge in solution, which makes them different from
the other dye molecules with anionic charges. It should be noted that the decolorization performance
of Fe73.5Si13.5B9Cu1Nb3 on the cationic dye MB does not show any inhibitory behavior, which may
be attributed to a combination of the thiazine dye structure and a molecular charge favorable to the
degradation in Fenton-like processes by Fe-based metallic glasses. The inhibited decolorization in CV
and MG is possibly attributed to their triarylmethane structures when Cu or/and Nb are present in
metallic glasses. In fact, the molecule charge affects the dye absorption on the ribbon surface and further
affects the degradation during the processes. Considering the aforementioned catalytic degradation of
both two metallic glass ribbons in Figures 2 and 3, the decolorization of dyes in Fenton-like processes
can be affected by their molecular charge, and dye and catalyst structures.
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Figure 3. Decolorization of (a) MO, (b) MB, (c) BY, (d) BB, (e) BR, (f) CV, (g) MG and (h) NG
by Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons under 25–40 ◦C without UV-Vis irradiation (dye
concentration: 20 ppm, catalyst dosage: 0.5 g/L, H2O2 concentration: 1 mM, pH 3.0). Decolorization
rates were measured from the λmax of the corresponding UV-Vis spectra with reaction time.

Accordingly, the reaction rate constants for different reaction temperatures measured from
Figures 2 and 3 have been summarized in Table 2. In addition to the Arrhenius equation, all the ∆E for
different dyes can be obtained by the slope of fitting curve of −ln k as a function of 1000/RT. As shown
in Figure 4, the fitting of Arrhenius curve is classified by used dyes and all the obtained ∆E values
have been shown based on metallic glass ribbons. It should be noted that the fitting of NG dye using
Fe78Si9B13 only includes 25–35 ◦C due to the extremely fast decolorization at 40 ◦C. In order to make it
clearer, Figure 5 summarizes all the ∆E values according to dyes and metallic glass ribbons. It is clear
that ∆E of Fe73.5Si13.5B9Cu1Nb3 is always higher than that of Fe78Si9B13, confirming that Fe78Si9B13

metallic glass ribbons are always easier to activate than Fe73.5Si13.5B9Cu1Nb3 in a Fenton-like process.
A range of ~10–30 kJ/mol of ∆E of difference between Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 can be
estimated from Figure 5. In BR dye, ∆E presents the closest value for the two metallic glasses and
MB dye shows the biggest difference. However, ∆E of the same metallic glass in the degradation of
different dyes varies, indicating that ∆E of a metallic glass also depends on the reaction environment
(dyes in this work) and it is not always consistent for the same material. This fact also indicates that
any comparison of ∆E values for different catalysts should also consider if the reaction environment
is consistent.
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Table 2. Reaction rate constants (k) of dye degradation by Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 metallic
glass ribbons under different reaction temperatures. All the k values were obtained from Figures 2
and 3 with fixed catalyst dosage (0.5 g/L).

Catalyst
Reaction

Temperature (◦C)
Dye Reaction Rate Constant k (min−1)

MO MB BY BB BR CV MG NG

Fe78Si9B13

25 0.548 0.692 0.336 0.377 0.346 0.285 0.413 0.341
30 0.711 0.760 0.335 0.487 0.430 0.352 0.569 0.416
35 1.070 0.856 0.386 0.588 0.560 0.407 0.709 0.434
40 1.410 0.961 0.494 0.709 0.662 0.455 0.931 -

Fe73.5Si13.5B9Cu1Nb3

25 0.061 0.099 0.051 0.051 0.038 0.003 0.010 0.022
30 0.074 0.152 0.066 0.085 0.055 0.004 0.018 0.026
35 0.120 0.235 0.088 0.110 0.065 0.006 0.025 0.036
40 0.211 0.313 0.118 0.128 0.090 0.007 0.033 0.051
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(FeSiBCuNb) metallic glass ribbons for MO, MB, BY, BB, BR, CV, MG and NG dyes. Arrhenius curve
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2.3. Correlation between Metallic Glasses and H2O2 in Different pH

Generally, reaction parameters such as catalyst dosage, pH, dye concentration, and H2O2

concentration dominate the reaction efficiency in Fenton-like processes and an effective degradation
of a dye solution usually involves the investigation of optimized parameters. For catalyst (metallic
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glass ribbons) dosage, most of studies have demonstrated that a higher dosage of catalyst generally
contributes to a higher catalytic efficiency in AOPs [24,37,53,54]. Due to the heterogeneous catalyst
nature, the use of excess metallic glass ribbons only results in supplementary additional surface active
sites and the release of Fe2+ from the ribbon surface by corrosion can be effectively controlled, which is
different from the use of homogeneous Fe2+ as catalyst leading to a scavenging effect on the produced
radicals [41]. As for dye concentration, from empirical rules, the higher concentration usually results
in an inhibitory effect on the catalytic activity owing to a large amount of dye molecules covering the
catalyst surface [24]. As a result, the contact between catalyst and peroxide tends to become weaker.
Given the fact that most of studies only focus on a limited range of the reaction parameters (e.g.,
1 mM to 10 mM H2O2), recently it was found that H2O2 concentration seems to be available in a wide
allowable range (e.g., a few moles) [33]. As such, this may raise a question that what would be the
practical effect regarding a much wider range of H2O2 concentrations?

In this work, MO was selected for the investigation of the H2O2 effect by Fe78Si9B13 and
Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons (Figure 6). As shown in Figure 6a, Fe78Si9B13 and a wide
range of H2O2 concentrations from 1 mM to 0.5 M have been applied as the main Fenton reagents.
When the H2O2 concentration increases from 1 mM to 5 mM, an apparent increase of catalytic efficiency
results in full decolorization within 5 min. Consistent with many previous reports however, a further
increase of H2O2 concentration (>5 mM) has an inhibitory effect on the catalytic efficiency due to
scavenging effect of H2O2 on the •OH radicals produced, which leads to a declined catalytic activity [31].
Within the range of 1 mM to 50 mM, the decolorization of MO still reaches almost completion within 10
min. The decay of catalytic efficiency has been further enhanced using a H2O2 concentration of 0.5 M
but the decolorization can reach more than 80% in 20 min. In comparison, the variation of H2O2 shows
a stronger inhibitory effect on the catalytic efficiency using Fe73.5Si13.5B9Cu1Nb3 as a catalyst and the
range of feasible concentrations is very limited (Figure 6b). Only 1 and 2 mM H2O2 present optimized
efficiency for the full MO decolorization in 45 min. From 5 mM to 20 mM, the inhibitory effect of H2O2

on decolorization is apparent. Further increasing the H2O2 concentration from 50 mM to 0.5 M results
in negligible MO decolorization within 45 min. In both ribbons, a high H2O2 concentration has a
detrimental effect on catalytic efficiency.

Catalysts 2020, 10, x FOR PEER REVIEW 8 of 17 

 

2.3. Correlation between Metallic Glasses and H2O2 in Different pH 

Generally, reaction parameters such as catalyst dosage, pH, dye concentration, and H2O2 

concentration dominate the reaction efficiency in Fenton-like processes and an effective degradation 
of a dye solution usually involves the investigation of optimized parameters. For catalyst (metallic 
glass ribbons) dosage, most of studies have demonstrated that a higher dosage of catalyst generally 
contributes to a higher catalytic efficiency in AOPs [24,37,53,54]. Due to the heterogeneous catalyst 
nature, the use of excess metallic glass ribbons only results in supplementary additional surface active 
sites and the release of Fe2+ from the ribbon surface by corrosion can be effectively controlled, which 
is different from the use of homogeneous Fe2+ as catalyst leading to a scavenging effect on the 
produced radicals [41]. As for dye concentration, from empirical rules, the higher concentration 
usually results in an inhibitory effect on the catalytic activity owing to a large amount of dye 
molecules covering the catalyst surface [24]. As a result, the contact between catalyst and peroxide 
tends to become weaker. Given the fact that most of studies only focus on a limited range of the 
reaction parameters (e.g., 1 mM to 10 mM H2O2), recently it was found that H2O2 concentration seems 
to be available in a wide allowable range (e.g., a few moles) [33]. As such, this may raise a question 
that what would be the practical effect regarding a much wider range of H2O2 concentrations? 

In this work, MO was selected for the investigation of the H2O2 effect by Fe78Si9B13 and 
Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons (Figure 6). As shown in Figure 6a, Fe78Si9B13 and a wide 
range of H2O2 concentrations from 1 mM to 0.5 M have been applied as the main Fenton reagents. 
When the H2O2 concentration increases from 1 mM to 5 mM, an apparent increase of catalytic 
efficiency results in full decolorization within 5 min. Consistent with many previous reports however, 
a further increase of H2O2 concentration (>5 mM) has an inhibitory effect on the catalytic efficiency 
due to scavenging effect of H2O2 on the •OH radicals produced, which leads to a declined catalytic 
activity [31]. Within the range of 1 mM to 50 mM, the decolorization of MO still reaches almost 
completion within 10 min. The decay of catalytic efficiency has been further enhanced using a H2O2 
concentration of 0.5 M but the decolorization can reach more than 80% in 20 min. In comparison, the 
variation of H2O2 shows a stronger inhibitory effect on the catalytic efficiency using 
Fe73.5Si13.5B9Cu1Nb3 as a catalyst and the range of feasible concentrations is very limited (Figure 6b). 
Only 1 and 2 mM H2O2 present optimized efficiency for the full MO decolorization in 45 min. From 
5 mM to 20 mM, the inhibitory effect of H2O2 on decolorization is apparent. Further increasing the 
H2O2 concentration from 50 mM to 0.5 M results in negligible MO decolorization within 45 min. In 
both ribbons, a high H2O2 concentration has a detrimental effect on catalytic efficiency. 

 
Figure 6. Effect of H2O2 concentrations from 1 mM to 0.5 M using (a) Fe78Si9B13 (FeSiB) and (b) 
Fe73.5Si13.5B9Cu1Nb3 (FeSiBCuNb) metallic glass ribbons at acidic condition (MO dye concentration: 20 
ppm, catalyst dosage: 0.5 g/L, pH 3.0, 25 °C). Decolorization rates were measured from the λmax of the 
corresponding UV-Vis spectra with reaction time. 

The aforementioned results also indicate that the effect of H2O2 concentration depends on the 
type of catalysts and a catalyst with low catalytic ability (i.e., Fe73.5Si13.5B9Cu1Nb3) is more sensitive to 

Figure 6. Effect of H2O2 concentrations from 1 mM to 0.5 M using (a) Fe78Si9B13 (FeSiB) and
(b) Fe73.5Si13.5B9Cu1Nb3 (FeSiBCuNb) metallic glass ribbons at acidic condition (MO dye concentration:
20 ppm, catalyst dosage: 0.5 g/L, pH 3.0, 25 ◦C). Decolorization rates were measured from the λmax of
the corresponding UV-Vis spectra with reaction time.

The aforementioned results also indicate that the effect of H2O2 concentration depends on
the type of catalysts and a catalyst with low catalytic ability (i.e., Fe73.5Si13.5B9Cu1Nb3) is more
sensitive to the variation of H2O2 concentration. Figure 7 has shown the corresponding reaction rate
constant (k) of Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons as a function of initial H2O2
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concentration ([H2O2]0). The k of Fe78Si9B13 are almost one order of magnitude higher than that of
Fe73.5Si13.5B9Cu1Nb3, and Fe78Si9B13 can perform a better catalytic efficiency at a wider range of H2O2

concentration. However, both of them have an inhibitory catalytic effect at a H2O2 concentration
higher than 5 mM.
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Figure 7. Reaction rate constants (k) of Fe78Si9B13 (FeSiB) and Fe73.5Si13.5B9Cu1Nb3 (FeSiBCuNb)
metallic glass ribbons as a function of initial H2O2 concentration ([H2O2]0) ranging from 1 mM to
500 mM (or 0.5 M) in the degradation of MO dye (dye concentration: 20 ppm, catalyst dosage: 0.5 g/L,
pH 3.0, 25 ◦C).

It should be noticed that Fenton-like processes usually rely on acidic conditions to maintain a
reliable catalytic performance. pH 3.0 is typically used for most iron-containing catalysts, including the
Fe-based metallic glasses used in this work. Under weaker acidic conditions (e.g., pH 4.0), the catalytic
efficiency will decline and it will be further inhibited under neutral conditions. Figure 8a,b show the
catalytic performance of the two metallic glass ribbons used under neutral conditions (pH 6.2± 0.1) with
different H2O2 concentrations. Both of them exhibit unapparent decolorization of MO dye, indicating
that the neutral condition is unfavorable for Fenton-like processes using metallic glass ribbons [24].
At a high concentration of H2O2 (0.5 M), the catalytic efficiency is also very low, with 15% and 0%
of decolorization rate for Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3, respectively, after 60 min (Figure 8c).
However, it has been reported that Fenton-like processes with UV-Vis irradiation can highly enhance
their color removal rates under neutral conditions [33]. Accordingly, Figure 9a,b suggest that a low
concentration of H2O2 (50 mM) with UV-Vis irradiation does not effectively promote the decolorization
rate but the combination of high H2O2 concentration and UV-Vis irradiation effectively enhances the
decolorization rate. At 1.0 M H2O2, both metallic glass ribbons do not exhibit a big difference in MO
decolorization, which reaches up to 94% and 90% for Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3, respectively,
within 60 min. Increasing the H2O2 concentration under UV-Vis irradiation leading to promoted
dye degradation rate reveals that the combination of high concentration of H2O2 and irradiation can
overcome the catalytic efficiency limitation under neutral conditions.

Further investigation indicates that in addition to a photo-enhancement effect, the improved
efficiency is also attributable to the effective optimization of pH conditions with increasing H2O2

concentration (Figure 9c,d). Accordingly, this behavior provides a novel strategy to overcome the
limitation of Fenton-like processes under neutral conditions.
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Figure 8. Effect of H2O2 concentration from 1 mM to 0.5 M using (a) Fe78Si9B13 (FeSiB) and
(b) Fe73.5Si13.5B9Cu1Nb3 (FeSiBCuNb) metallic glass ribbons under neutral conditions. (c) Comparison
of MO degradation by Fe78Si9B13 (FeSiB) and Fe73.5Si13.5B9Cu1Nb3 (FeSiBCuNb) at 0.5 M H2O2

and neutral condition (MO dye concentration: 20 ppm, catalyst dosage: 0.5 g/L, pH 6.2 (±0.1),
25 ◦C). Decolorization rates were measured from the λmax of the corresponding UV-Vis spectra with
reaction time.
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Figure 9. Effect of H2O2 concentrations by (a) Fe78Si9B13 (FeSiB) and (b) Fe73.5Si13.5B9Cu1Nb3

(FeSiBCuNb) metallic glass ribbons (0.5 g/L) under neutral conditions (pH 6.2 ± 0.1) and UV-Vis
irradiation (7.7 µW/cm2). (c,d) pH variation along reaction time corresponding to (a,b), respectively.
Decolorization rates were measured from the λmax of the corresponding UV-Vis spectra with
reaction time.

2.4. Correlation between Decolorization and Mineralization

Figure 10a–h show the decolorization processes of the eight dyes using Fe78Si9B13 metallic glass
ribbons during 5 min. The full wavelength UV-Vis spectra (190–800 nm) clearly indicate that most of
dyes have experienced an effective destruction of their chromophore groups by the Fe78Si9B13-activated
Fenton-like process [42]. It should be noted that the initial absorbance peak of NG is located at 714 nm
but it has shifted to 408 nm after the Fenton-like process is activated, which is also reported by sulfate
radical-based AOPs [50]. After 5 min, the intensities of the characteristic absorbance peaks of the
dyes become weaker and then disappear, except for CV and MG dyes. Both CV and MG dyes have
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a slower decolorization efficiency than the other dyes, which becomes more apparent when using
Fe73.5Si13.5B9Cu1Nb3 metallic glass. Figure 10i–p also show the decolorization processes of the eight
dyes using Fe73.5Si13.5B9Cu1Nb3 metallic glass. The decolorization efficiencies are slower and the peaks
disappear after 30 min. The decay of the characteristic absorbance peaks is even slower regarding CV
and MG dyes (Figure 10n,o). Considering the dye structure, it can be concluded that triarylmethane
dyes are unfavorable in the Fenton-like system with Fe-based metallic glass ribbons.
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Figure 10. UV-Vis spectra of (a) MO, (b) MB, (c) BY, (d) BB, (e) BR (f) CV, (g) MG and (h) NG dye
degradation by Fe78Si9B13 (FeSiB) within 5 min. UV-Vis spectra of (i) MO, (j) MB, (k) BY, (l) BB, (m) BR
(n) CV, (o) MG and (p) NG dye degradation by Fe73.5Si13.5B9Cu1Nb3 (FeSiBCuNb) within 30 min.
(dye concentration: 20 ppm, catalyst dosage: 0.5 g/L, H2O2 concentration: 1 mM, pH 3.0).

Although the decolorization efficiencies of dyes in the Vis spectra provide an important clue about
the catalytic ability by catalysts or the catalytic efficiency of the reaction system, they only include the
destruction of chromophore group in dye molecules. To fully convert organic pollutants into harmless
substances (CO2, H2O, etc.), the degradation pathway is much more complicated. In Figure 10, it can be
seen that the absorbance peaks at UV region also become inapparent along with peaks at the Vis region.
The disappearance of UV peaks reveals that the Fenton-like process not only effectively destroys
the chromophore groups in the dye structures, but only involves catalytic oxidation of the aromatic
structure [55]. This behavior can be further confirmed by the TOC removal rate ([TOC]/[TOC]0), which
is usually employed to evaluate the mineralization rate in AOPs [16,42].

Figure 11 shows that most of dye mineralization rates reach about 40% within 15 min when using
Fe78Si9B13 metallic glass ribbons while for Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons, a much lower
TOC removal rate can be seen. Both Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 have a relatively higher TOC



Catalysts 2020, 10, 48 12 of 17

removal rate for MO and have a relatively lower TOC removal rate for MG. The lowest TOC removal
rate occurs for CV and MG dyes using Fe73.5Si13.5B9Cu1Nb3. According to the TOC removal rates of the
eight dyes, the average values of Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 metallic glasses are calculated as
42.7% and 12.6%, respectively, indicating most of dye degradations can achieve TOC removal rates
close to average value using specific metallic glass ribbons. In addition, the mineralization rate is
apparently closely related to decolorization, where most of time, a fast decolorization usually leads to
a higher mineralization rate, corresponding to the decolorization efficiency shown in Figures 2 and 3 .
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The dominant reactive species in Fe-based metallic glasses-activated Fenton-like processes have
been reported to be •OH [33,56–58]. The effective decolorization and mineralization in this work suggest
that part of the dye molecules involved with •OH have experienced degradation pathways including
cleavage of chromophore groups, formation of intermediates, further oxidation of intermediates to
become CO2, H2O and inorganic substances [59]. For example, the main degradation mechanism
of MG dye (a triarylmethane dye) in the Fenton-like process probably involves the cleavage of the
conjugated chromophore structure by attack of •OH, followed by N-demethylation reactions and
opening of phenyl rings to become smaller molecules [49,60], although different reaction routes may
still vary according to the specific reaction conditions; the main degradation mechanism of MO dye
(an azo dye) goes through the initial destruction of the azo chromophore group (–N=N–) to form
smaller intermediates with functional amine (–N(CH3)2) and sulfonate (–SO3

−) groups leading to fast
decolorization, followed by the demethylation of intermediates, the hydroxylation of aromatic rings,
and further ring opening [61,62]. Given the fact that a low dosage of metallic glass ribbons is used
in this work, their structure and surface may have a minor direct effect on dye degradation but their
catalytic activation toward H2O2 directly affects the decolorization and further mineralization rate of
dyes due to the production rate of •OH when using different metallic glass ribbons [16,22]. The intrinsic
catalytic activity of the metallic glass dominates the dye degradation efficiency in this work.

3. Materials and Methods

3.1. Materials and Chemicals

Metallic glass ribbons with nominal chemical compositions of Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3

were supplied by Qingdao Yunlu Energy Technology Co., Ltd. (Qingdao, China), and were
manufactured by the melt spinning technique. For the preparation procedures of as-spun metallic
glass ribbons readers may refer to a previous report [53]. The produced ribbons generally have a
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thickness of 30–40 µm and were cut into pieces of 10 × 20 mm (width and length), respectively, for
the following catalytic analysis with dyes. BB, BY and BR, hydrochloric acid (HCl, 37% w/w) were
purchased from Sigma-Aldrich (Sydney, Australia). MO and MB were supplied by Xilong Chemical
Co., Ltd. (Shantou, China). CV and NG were supplied by Wenzhou Huaqiao Chemical Reagent Co.,
Ltd. (Wenzhou, China). MG was purchased from Ji’an Haomai Fine Chemical Industry Co., Ltd. (Ji’an,
China). Hydrogen peroxide (H2O2, 30 wt%) and sodium hydroxide (NaOH, 40% w/v) were purchased
from Rowe Scientific Pty Ltd. (Perth, Australia). Milli-Q water with 18.2 MΩ•cm was used for catalytic
processes, dilution and cleaning.

3.2. Characterization

The internal structure of as-spun Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 metallic glass ribbons
have been well characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and
transmission electron microscopy (TEM) in our previous work [53], which demonstrated their fully
amorphous nature.

3.3. Catalytic Analysis

The catalytic oxidation of dyes by Fenton-like processes was investigated with involvement of two
as-spun Fe-based metallic glass ribbons and different concentrations of H2O2 in a thermostatic water
bath. The catalytic thermal behavior of Fe-based metallic glass ribbons therefore could be studied
under controlled temperatures (i.e., 25, 30, 35, 40 ◦C). Before each experiment, 20 ppm dye solution was
freshly prepared by submitting 2 mL of pre-prepared 1000 ppm dye to dilution to 100 mL. The stirring
rate was fixed at 300 rpm throughout this work. Except for the initial pH 6.2 (±0.1) of as-prepared MO
dye solution, all other pH values were controlled at 3.0 as initial pH by adding diluted HCl solution.
The pH values in Figure 9c,d were measured after addition of specific concentration of H2O2 without
Fe-based metallic glasses and irradiation. The measurement was obtained by monitoring of a pH meter
after extracting a specific volume of solution at that time. The effect of H2O2 concentration on the
Fenton-like process was analyzed over a wide range (1 mM–1 M). of UV-Vis irradiation using a 300 W
xenon simulated solar light lamp (Perfectlight Scientific Pty Ltd., Beijing, China) applied to enhance
the catalytic behavior of the Fe-based metallic glass ribbons. According to the specific absorbance
peak (λmax) of dyes in the visible spectrum, the decolorization of dyes could be quantified by UV-Vis
spectrometry (Lambda 35, Perkin Elmer, Shelton, CT, USA), where each sample (3.5 mL) was extracted
from reacting solution and characterized immediately at predetermined time intervals. Total organic
carbon (TOC) removal rates before and after the Fenton-like process were measured by a TOC analyzer
(TOC-LCPH, Shimadzu, Sydney, Australia).

4. Conclusions

In summary, a wide range of dyes including azo dyes (i.e., MO, BB, BY and BR), a thiazine dye
(i.e., MB), triarylmethane dyes (i.e., MG and CV) and a nitroso dye (i.e., NG) have been selected to
investigate their degradation by two Fe-based (Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3) metallic glasses
activated Fenton-like processes, which aims to get a systematic understanding of the correlation of the
metallic glasses with dye degradation, focusing on the thermal catalytic behavior, H2O2 concentration
at different pH values, decolorization and mineralization. The following points shed light on the
significance in this work:

• The correlation of the thermal catalytic behavior between metallic glasses and dyes has been
revealed, where Fe78Si9B13 metallic glass ribbons with active catalytic ability have a lower
activation energy (∆E) than that of Fe73.5Si13.5B9Cu1Nb3 in all dye degradations, and the ∆E of
the metallic glass depends on the reaction environment (dyes).

• Under acidic conditions, a high H2O2 concentration is unfavorable to catalytic activity. However,
under neutral conditions, a photo-enhanced Fenton-like process catalyzed by Fe-based metallic
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glasses facilitates dye degradation at higher concentrations of H2O2 due to the decrease of pH
and enhancement of irradiation.

• Fe78Si9B13 metallic glass ribbons achieve an average TOC removal rate of 42.7% dye degradation
in 15 min, which is higher than Fe73.5Si13.5B9Cu1Nb3 (12.6%). The decolorization rate is closely
related to the mineralization rate.
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