
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Post 2013

1-1-2019

A statistical approach to provide explainable convolutional neural A statistical approach to provide explainable convolutional neural

network parameter optimization network parameter optimization

Saman Akbarzadeh
Edith Cowan University, akbarzadeh.saman@gmail.com

Selam Ahderom
Edith Cowan University, s.ahderom@ecu.edu.au

Kamal Alameh
Edith Cowan University, k.alameh@ecu.edu.au

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

 Part of the Engineering Commons

10.2991/ijcis.d.191219.001
Akbarzadeh, S., Ahderom, S., & Alameh, K. (2019). A statistical approach to provide explainable convolutional neural
network parameter optimization. International Journal of Computational Intelligence Systems, 12(2), 1635-1648.
https://doi.org/10.2991/ijcis.d.191219.001
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworkspost2013/7516

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F7516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F7516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.2991/ijcis.d.191219.001
https://doi.org/10.2991/ijcis.d.191219.001

International Journal of Computational Intelligence Systems
Vol. 12(2), 2019, pp. 1635–1648

DOI: https://doi.org/10.2991/ijcis.d.191219.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

A Statistical Approach to Provide Explainable Convolutional
Neural Network Parameter Optimization

Saman Akbarzadeh*, Selam Ahderom, Kamal Alameh

Electron Science Research Institute, Edith Cowan University, JO23.241, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia

ART I C L E I N FO
Article History

Received 27 May 2019
Accepted 16 Dec 2019

Keywords

Optimization
Convolutional neural network
Hyperparameter
Design of experiment
Taguchi
Deep learning

ABSTRACT
Algorithms based on convolutional neural networks (CNNs) have been great attention in image processing due to their ability to
find patterns and recognize objects in a wide range of scientific and industrial applications. Finding the best network and opti-
mizing its hyperparameters for a specific application are central challenges for CNNs. Most state-of-the-art CNNs are manually
designed, while techniques for automatically finding the best architecture and hyperparameters are computationally intensive,
and hence, there is a need to severely limit their search space. This paper proposes a fast statistical method for CNN parameter
optimization, which can be applied in many CNN applications and provides more explainable results. The authors specifically
applied Taguchi based experimental designs for network optimization in a basic network, a simplified Inception network and
a simplified Resnet network, and conducted a comparison analysis to assess their respective performance and then to select
the hyperparameters and networks that facilitate faster training and provide better accuracy. The results show that up to a 6%
increase in classification accuracy can be achieved after parameter optimization.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Convolutional neural networks (CNNs) have been widely used
for image recognition [1], including hyperspectral data classifi-
cation [2] and video classification [3]. Reducing the architecture
size of CNNs, in term of their particular task and dataset, makes
them more attractive for use in mobile phones and embedded sys-
tems, where less power consumption and overall cost reduction
are crucial factors [4–8]. To date, designing state-of-the-art CNN
algorithms for specific datasets, such as images, has been time-
consuming (manually engineered) and computationally intensive
[8–13]. Some techniques have been proposed for automatically
designing CNNs, however, these techniques either require huge
computational resources or do not match manually-engineered
accuracies [14–18]. In addition, for many applications, the com-
plexity of automatically designed CNN algorithms render them
neither interpretable nor explainable enough to be used safely
[19,20]. Using a statistical approach to optimize the performance
of CNN models not only helps build optimum networks accord-
ing to required criteria, but also makes models more explainable.
Statistical experimental designs have been widely applied to vari-
ous optimization problems [21–23] including parameter optimiza-
tion of perceptron neural networks [24–26]. However, for proper
optimization of the hyperparameters of deep learning networks,
the design of experiment (DOE) is powerful technique, and, to

*Corresponding author. Email: s.akbarzadeh@ecu.edu.au

our knowledge, this has never been investigated. In this paper,
we propose DOE algorithms based on applying Taguchi statistical
methods [27] for optimizing CNN parameters, whereby spectral
agricultural data is evaluated using three simplified CNN architec-
tures. Finally, to validate our new approach the results are compared
with award-winning CNN architectures.

2. EXPERIMENTAL METHODS

The proposed primitive cells that are the building blocks of the
proposed CNN network, are described and compared with those
used in current state-of-the-art conventional CNN network archi-
tectures. Next, the Taguchi method is introduced with four exper-
iments conducted to optimize the various parameters of the CNN
network.

2.1. The Convolutional Neural Network
Primitives

Most CNNs require huge memory and computational resources.
Therefore, the size of the CNN becomes important for applica-
tions running on limited resources (e.g., limited speed andmemory
of mobile phones). In this study, in order to build up an efficient
CNN network, primitive blocks from well-known CNN architec-
tures have been adapted and used, namely, the VGG network, the
Inception network, and the Resnet network [10,11,13].

https://doi.org/10.2991/ijcis.d.191219.001
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/

1636 S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648

2.1.1. Simple primitive block

The simple primitive block of the proposed CNN was designed
to include a convolutional layer with batch normalization, Recti-
fied Linear Unit (ReLu) function, and max pooling. The advantage
of using ReLu instead of traditional neural network functions, like
sigmoid or hyperbolic functions, is that training is typically faster.
The ReLu formula is f(x) = max (0, x) [27]. The batch normal-
ization, which is normalization of the network’s weights in each
layer, has many advantages, including faster learning rate conver-
gence, efficient weight initialization, and additional regularization,
all of which result in faster training with lower overfitting [28]. Max
pooling reduces the computation by extracting the most impor-
tant features from a kernel, thereby producing a smaller feature
representation [29,30].

2.1.2. The Inception primitive blocks

The Inception network is based on the concept that many activa-
tions in deep convolution layers are either excessive (zero value) or
redundant (highly correlated). Therefore, instead of going deeper
in the CNN network, the balance between network width and
depth should be maintained in order to provide optimal per-
formance. The necessity of having efficient dimension reduc-
tion leads to a sparse network with various filter sizes. As a
result, the required computational reduction leads to bottleneck
convolution [31] Szegedy, Vanhoucke [13] have suggested that
replacing n×n convolution by asymmetric convolutions with lower
kernels and having generally n × 1 convolution after 1 × n convo-
lution can significantly reduce computational costs. They have also
noted that applying such factorization on early layers is not very
effective. Therefore, to build Inception networks, we first used two
simple primitive blocks (described in Section 2.1.1) as the CNN
base followed by one of the five asymmetric Inception blocks shown
in Figure 1.

2.1.3. The Resnet primitive blocks

The Resnet network was designed to address the challenge of over-
coming the vanishing gradient problem in order to build deeper
CNNs [11]. Instead of simply stacking layers, themiddle layer learns
the residual mapping of the input. This is done by adding a residual
block as the identity connection from previous layers, thus allowing
the residual mapping to be trained [11] as illustrated in Figure 2.

2.2. Taguchi Method

The Taguchi method is a statistically robust technique, proposed by
Geninchi Taguchi [32], which fulfils two main roles, namely, find-
ing factors that provide more variation in responses and finding
the best levels of these factors that optimize CNN response. In the
Taguchimethod, initially a decision ismade onwhich factors can be
effective for the required response. Then, the levels of those factors
are set. In Figure 3, the Taguchi process block diagram is shown,
where the initial process of finding the effective factors is depicted
as the preparation block.

The next step in the Taguchi procedure is designing the experiment.
This is based on the orthogonalmatrix, determining in each run the
levels of the control factors that must be taken. In statistical exper-
imental design, orthogonality involves providing a matrix of runs
that have statistically independent factors in their columns, where
the levels in the columns of the independent factors are orthogonal
to one another. Consequently, if the factor levels are considered as a
vector, the inner product of mutual factor vectors in an orthogonal
array must be zero [33].

Another property of the orthogonal matrix is that all the levels in
each column must appear the same number of times. The above-
mentioned two properties effectively reduce the number of exper-
iments from full factorial design into a minimal number of runs,
which still can provide enough knowledge in describing the effect of
factors on the CNN performance. The minimum number of exper-
iments needed to conduct the Taguchi method can be calculated
based on the following equation:

N =
Number of variables

∑
i=1

(Levi – 1) + 1. (1)

where N is the number of experiments and Levi is the number of
levels in the ith factor.

The orthogonal matrices in a standard Taguchi design are pre-
defined based on the number of controlling factors and levels.
Consequently, the experiment is run according to the defined
orthogonal array in order to determine and prepare the CNN
responses for analysis. This step is shown as “design a new exper-
iment” in Figure 3. The relative percentage difference (RPD) in
accuracy was used as the CNN response indicator that enables bet-
ter understanding of the impact of the factors on the performance

Figure 1 Five asymmetric configurations used Inception blocks for primitive blocks.

S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648 1637

Figure 2 Illustration of a residual
block where the middle layer learns
the residual mapping of the input,
thus allowing the residual mapping
to be trained [11].

of the CNN architecture. For the generated results, the RPD was
calculated as follows:

RPD = xi – xmin
xmin

× 100. (2)

where xi is the responses obtained from the ith run of the experi-
ment and xmin is the minimum response obtained.

The results were analysed by comparing the mean controlling fac-
tors and signal-to-noise ratios, as well as evaluating the analysis of
variance (ANOVA), in order to investigate the significant factors.
The preliminary design of the experimentwas slightly changed after
analysing the results mainly to determine the best controlling factor
or the best levels of the controlling factors. After obtaining accept-
able RPD results, the optimum level of each factor was implemented
to obtain the best CNN according to defined objectives.

2.3. Design of Experiment

Before determining the factors and levels for designing the CNNs,
a few preliminary designs were run to evaluate some hyperparam-
eters. Two controlling factors, namely batch size with level values
8, 16, 32, and number of epochs with level values 5, 10, 20, were
examined. It was found that neither the batch size nor the number
of epochs affected the RPD accuracy. Their p-values in the ANOVA
were 0.23 and 0.71, respectively. However, it was necessary to define
their values in the network. As the larger batch size resulted in
faster training and less over fitting, the selected batch size value was
32. Smaller values for the number of epochs typically led to faster
running of the whole procedure of learning. Therefore, the chosen
number of epochs was 5.

The following hyperparameters were selected as the factors in our
search space: learning rate, augmentation types, number of filters,
and size of kernel.

Learning rate: In order to have fast network convergence during
training, the optimum selection of the learning rate was essential.

When the chosen learning rate was too small, training took too
long to converge or the optimizer became trapped in local minima,
hence the loss function could not be updated to generalize the net-
work.When the chosen learning rate was too large, the network did
not always converge as it might have overpassed the minimum loss
function, and hence, made the loss function worse.

Augmentation: Large data in deep learning normally yields better
performance; however, it is not always possible to have large data.
As neural networks have invariance characteristics, data augmen-
tation can generate more data without the need for additional data
collection. In order to select the type of data augmentation, it is nec-
essary to consider the nature of the data. In the proposed study,
the implemented data was linear spectrum reflectance. Accord-
ing to the nature of the data, flipping (horizontal and vertical)
and normalization were the most suitable transformations for data
augmentation.

Number of filters and kernel sizes: In the first two layers of the
first design, two simple primitive blocks were used. In the first layer,
lower levels for the number of filters were used (4, 8, 16, 32), since
the network typically extracts basic features in this layer. The larger
levels for the number of filters were selected in the second layer (32,
64, 128, 256), because this layer combines the basic features and
produces more complex features for classification. The next factors
investigated in the proposed study were the kernel sizes. The levels
of 3 and 5 were selected for the investigation.

Four experiments were designed, based on (i) simplified primitive
cells, (ii) modified Inception cells, (iii) modified Resnet cells, and
(iv) an experiment comparing the performances of all three prim-
itive cells. The pytorch deep learning library [34] was used for all
trainings. GeForceGTX 1080TiNvidia GPUwas the hardware plat-
form for data processing, which has a 11 GB memory, a 352-bit
interface used in conjunction with an Intel Ⓡ CoreTM i7-7800X X-
series Processor.

2.3.1. First design of experiment

Two simple structures were suggested for the first design, as shown
in Figure 4. The first structure had one fully connected classification
output layer with soft max activation. The second structure had an
extra fully connected layer with a ReLu activation.

The effect plot and accuracy versus the size of themiddle connected
layer, which are the results of the preliminary experiment that was
designed to choose the number of nodes in the extra fully connected
layer, are shown in Figure 5.

According to the Bonferroni post-hoc test, which measures the sig-
nificance of the pairwise differences between factor levels, there was
no significant difference between the levels with values of 32, 64,
128, and 256 (Table 1). Therefore the 128 value was selected based
on the best signal-to-noise-ratio performance. With this result, the
first DOE was designed as illustrated in Table 2.

2.3.2. Second design of experiment

The next DOEs were designed to examine the effect of using vari-
ous Inception networks. The same controlling factors were selected
for the Inception networks, however, they were chosen in three

1638 S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648

Figure 3 The process of implementation of Taguchi design.

Figure 4 Two different convolutional neural networks (CNN) structures comprising simple primitive blocks.

Figure 5 Preliminary experiment results for determining the value of middle fully connected layer in the first design. A) Effect and
B) accuracy versus the size of the middle connected layer.

Table 1 Analysis of variance for comparing the different number of
nodes in the middle fully connected layer, the response was the relative
percentage difference in accuracy.

Df Sum Sq Mean Sq F value Pr(>F)
Fully connected size 1 2388.6 2388.6 10.803 0.001457**
Residuals 88 19457.7 221.11
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

levels, except the type of network, which was selected according to
the various Inception design. These levels are shown in Table 3.

2.3.3. Third design of experiment

Another design introduced here, was based on the Resnet net-
work. This included two simple primitive blocks following two
primitive residual layers. Each residual layer can downsample from

its previous layer and produce the required number of residual
blocks. The learning rate was used in exactly the same way as the
previous design, where there were two residual layers. In each resid-
ual layer, the number of blocks and the number of filters in each
block and its kernel size were investigated to determine how effec-
tive they are and what are their optimum values for the current
network and dataset. Various types of augmentation were also
investigated, namely horizontal, vertical, and vertical and normal-
ized augmentation, as illustrated in Table 4.

2.3.4. Fourth design of experiment

The last DOE was designed to compare the simple network,
the Inception network, and Resnet. According to our previous
investigation, the most effective levels for the learning rate were

S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648 1639

Table 2 The design of experiment for the simple convolution network.

Control Factor Learning
Rate

Type of Augmentation Filters in
the First
Layer

Filters in
the

Second
Layer

Kernel Size
in Layer 1

Kernel
Size in
Layer 2

Type of Network

Level 1 0.00001 No Augmentation 4 32 3 3 Without intermediate
fully connected layer

Level 2 0.0001 Horizontal 8 64 5 5
Level 3 0.001 Vertical 16 128
Level 4 0.01 Horizontal and Vertical 32 256 With intermediate fully

connected layer

Table 3 The design of experiment for the Inception convolution networks.

Control Factor Learning
Rate

Type of Augmentation Filters in
the First
Layer

Filters in
the

Second
Layer

Kernel Size
in Layer 1

Kernel Size
in Layer 2

Type of Network

Level 1 0.00001 Horizontal and vertical 4 32 3 3 Inception A
Level 2 0.0001 Vertical 8 64 5 5 Inception B
Level 3 0.001 Vertical and normalize 16 128 7 7 Inception C
Level 4 Inception D
Level 5 Inception E

Table 4 The design of experiment for the residual convolution network.

Control Factor Learning
Rate

Resnet Blocks
Used in Both
Resnet Layers

Type of Augmentation Filters in the
First Resnet

Layer

Filters in the
Second
Resnet
Layer

Kernel Size
in Layer 1

Kernel Size
in Layer 2

Level 1 0.00001 1 Horizontal 8 32 3 3
Level 2 0.0001 2 Vertical 16 64 5 5
Level 3 0.001 3 Horizontal and vertical 32 128 7 7
Level 4 4
Level 5 5
Level 6 6

chosen to be (0.01, 0.001, 0.0001). Additionally, the appropriate
number of filters in each layer and kernel sizes were selected accord-
ingly. All types of augmentation introduced in the previous designs
were researched in this design as well. All the factors that lead to the
design are shown in Table 5.

According to the number of factors and levels, the orthogonal array
L16was chosen for the first Design since it has four factors with four
levels, and three factors with two levels. The orthogonal array L18
was chosen for the following designs because it has six factors with
one three levels and one factor with six levels. In order to signifi-
cantly reduce the possibility of random results, all the designs were
run with five replications. The replication was produced by using a
random seed to ensure the same results are produced in future runs.
All the DOEs and results were designed and analysed in Software R,
Version 3.5.1 (2018-07-02).

3. RESULTS AND DISCUSSIONS

3.1. Evaluation Metrics

Since for an orthogonal array the design is balanced, the factor lev-
els are weighed equally, making the effects of factors independent
from one another. Therefore, each factor can be assessed indepen-
dently, hence reducing the time and cost of the experiment. This
characteristic helps to easily compare the mean of each level in a

particular factor to determine how effective each level is in chang-
ing the response. This characteristic can typically be displayed
through the mean in the effect plot. Similarly, the signal-to-noise
ratio is another metric that can evaluate the factor levels. In the
current study, the aim was not to only determine which factor lev-
els were effective in producing better accuracy, but also to ensure
stable factor levels in order to generalize these factors for future
classification problems. Therefore, the nominal-the-best approach
was chosen to measure the signal-to-noise ratio as it evaluates
the levels around the mean and considers changing other factors
according to the orthogonal array. The signal-to-noise ratio can be
calculated as follows:

If we consider the data to be y1, y2, … , yn then:

S
N = 10 ∗ log

y2

s2
, (3)

where y and s are the average and standard deviation of the data,
respectively.

Finally, ANOVAwas used to analyse the results. Since the aim of the
proposed studywas to reduce the computational cost while improv-
ing the accuracy, if a factor was significantly important, the level
that produced the best accuracy was selected. Similarly, if the factor
was not statistically significant, the optimum level of the factor was
selected from the effect plots in order to reduce the computational
cost.

1640 S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648

Table 5 Design of experiment for comparison of Resnet, Inception, and simple network.

Control Factor Learning
Rate

Type of Augmentation Filters in the
First Layer

Filters in the
Second Layer

Kernel Size
in Layer 1

Kernel Size
in Layer 2

Type of Network

Level 1 0.00001 Horizontal 8 32 3 3 Simple Net
Level 2 0.0001 Vertical 16 64 5 5 Inception Net
Level 3 0.001 Vertical and normalize 32 128 7 7 ResNet
Level 4 Horizontal and normalize
Level 5 Horizontal and vertical
Level 6 Horizontal and vertical and

normalize

3.2. Designs Evaluation

3.2.1. Design 1

Figure 6 shows the effect plots of mean and signal-to-noise ratio
of controlling variables introduced in the first design (DOE for the
simple CNN). The first controlling factor was the learning rate.
Since the aim of learning rate is to control and adjust the network
weights to reduce network loss, having appropriate initial learning
rate helps the network to converge faster, hence reducing the com-
putation time. According to the ANOVA, the effect of the learning
rate was significant. Similarly, the effect plots demonstrated that the
best level of learning rate was 0.0001. For the rest of the DOEs, the
best obtained leaning rate was still 0.0001.

The next factor investigated was the augmentation type. In the first
design, four types of augmentation were selected; vertical, horizon-
tal, vertical and horizontal, and no augmentation. These augmen-
tations were chosen according to the nature of the data. The data
applied in the current study were three spectral laser reflectance
values (at three different wavelengths) collected by the plant
discrimination unit (PDU), PDU collects linearly three laser
reflectance values [35]. Accumulation of these linear responses
resulted in three layers of two-dimensional inputs. Wild leaf plants
(Canola and Radish) were considered as two input classes. Two
hundred plants were grown. 2400 spectral data were collected for
each plant stage. Data were collected in five different stages, three
days after early germination for five consecutive weeks. A total of
12000 data were generated for each class. Sixty percent of the data
set was kept for training and the rest was equally divided for val-
idation and testing. Training, validation, and testing plants were
kept strictly separated to ensure the generalization of the study.
A sample data set used for training is shown in Figure 7. Vertical
augmentation changed the order of the laser beams from end to
beginning. The horizontal augmentation changed the direction of
2D arrays of data. The results show that the combination of hor-
izontal and vertical augmentation significantly changed the value
RPD accuracy.

The role of filters in the first layer was to help learning the basic
features and in the following layer and combine these features to
produce deep learning according to more complex features. When
there were not much basic features in the data, the number of filters
in the first layer could be reduced to minimize the computational
cost. Results showed that with 16 or 32 filters in the first layer and
128 or 256 filters in the second layer, better RPD accuracy could
be obtained. While the difference between the number of filters in
the first layer and second layer were not statistically significant, the
interaction between the filters in these two layers provided signifi-
cant differences in RPD accuracy.

The next two controlling factors introduced were the kernel sizes.
According to effect plots, there was slight improvement using 5 × 5
kernel rather than 3 × 3 kernel, due to nature of the data. As can be
seen fromFigure 7, there is gap between laser reflectance responses.
This is because at the end of each block there was a max pooling
layer which returned the maximum of a 2×2 kernel, where this gap
did not provide much information for the network. Therefore, 5×5
kernels were able to provide slightly better accuracy than the 3 × 3
kernels, however, this difference was not significant.

In the last controlling factor, the two simple CNNs shown in
Figure 4 were compared. One CNN was with two simple blocks
and a fully connected layer for classification, while the other CNN
with an extra middle fully connected layer, to be able to combine all
the extracted feature for classification following ReLu function. The
results show that there was no significant difference between these
factors, with theCNNwithout themiddle fully connected layer pro-
viding better RPD accuracy. This is due to the low number of fea-
tures in our selected dataset, meaning that when a dataset is simpler
according to its number of features, there is no need to make the
network more complex and increase the computational expenses.

3.2.2. Design 2

Figure 8 shows effect plots of the means and signal-to-noise ratios
for the factors of the second design. As can be seen from Figure 8,
the 0.0001 value was still the best for initialization of learning
rate. In this design, three types of augmentation were investigated,
namely vertical, vertical and normalized, and horizontal and verti-
cal augmentation. Figure 8 clearly shows that using horizontal and
vertical augmentation still provided significantly better RPD accu-
racy in terms of both mean plot and signal-to-noise ratio.

Note that while only the number of filters used in the first layer
significantly changed the RPD accuracy, the results show that the
interaction of the number of filters used in the first layer and the
number of filters used in the second were significantly important in
the second design based on the use of Inception primitive blocks.
This shows that in the second DOE, the combination of features
made the second layer more effective in achieving higher accu-
racy. The optimum number of filters in the first and second layers
according to effect plot were 16 and 64, respectively.

According to the mean of effect plots, the best kernel size was 5×5.
The kernel size in the first layer significantly changed the value of
RPD accuracy, while in the second layer, the change was not statis-
tically significant. This is attributed to the asymmetry property of
the Inception blocks used after the second layer, which automati-
cally combines the various kernels and does not need to particularly
fix their size in the second layer.

S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648 1641

Figure 6 Effect plots of mean and signal-to-noise ratio for seven controlling factors of the simple convolutional neural network (CNN) used
in the first design. Each plot is for one of the controlling factors, namely: A) Learning rate, B) Type of augmentation, C) Number of filters in
the first simple primitive block, D) Number of filters in the second simple primitive block, E) Convolution kernel size in the first block, F)
Convolution kernel size in the second block, G) Type of network (Net1 represent the simple CNN without middle fully connected layer and
Net2 represent simple CNN with middle fully connected layer).

1642 S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648

Figure 7 A sample data used as combination of three-layer
laser spectral reflectance.

The best RPD accuracy was obtained by the network that used
the Inception B block (shown in Table 1), which had the simplest
Inception block structure with minimum combination of 3 × 3
kernels. High accuracy was attained in this case because replac-
ing 5 × 5 convolution by asymmetric convolutions with lower
kernels and having 3×1 convolution after 3×3 convolution signifi-
cantly reduced the computational costs. Similarly, the worst results
occurred in CNNwith Inception C block, which went deeper in the
network (up to five layers after the base layer) and used more com-
plex combinations of kernels with 1 × 7 sizes and 7 × 1 sizes. This
result could be because applying more complex kernel sizes such as
1 × 7 and 7 × 1 to extract more complex features were not appar-
ently suitable for the dataset used in the proposed research.

3.2.3. Design 3

Figure 9 shows effect plots of the means and signal-to-noise ratios
for the factors of the third design. Consistent with previous results,
the best learning rate in the third designed network was 0.0001. The
augmentation types selected were horizontal, vertical, and horizon-
tal and vertical augmentation. The combination of horizontal and
vertical augmentation provided significantly better RPD accuracy
since it provided more scenarios for the network learning process.

In each residual layer, the effects of using various numbers of resid-
ual blocks were investigated to determine the importance of going
deeper for classification. The results showed that the best mean
RPD accuracy was obtained by using four blocks, while the differ-
ence of using various blocks were not statistically significant. The
other insignificant parameters here were the number of filters and
kernel sizes. As can be seen from Figure 9, the difference between
the means of RPD accuracy was insignificant. This is because when
the residual layer can learn from the previous layer and possesses a
low number of features, it does not required more filters. Instead,
one can go deeper and use the residual layers, whichmake the effect
of number of filters and kernel sizes less important for a dataset of
low features. Therefore, in this case, the minimum level of filters
can be selected to reduce the computational cost.

3.2.4. Design 4

Figure 10 shows effect plots of the means and signal-to-noise ratios
for the factors of the comparison design. In the last DOE, three
designed CNNs were compared. The best learning rate obtained
was 0.0001, which was in accordance with the previous results. The
variations between using various augmentations were slight, while
the vertical and horizontal augmentation resulted in an acceptable

signal-to-noise ratio and a mean effect plot. According to the effect
plots, a suitable number of filter size can be chosen, 16 for the
first layer and 64 for the second layer. While the impact of each
filter was not statistically significant, the interaction between them
showed that in order to have proper feature extraction, the interac-
tion between filters is important. Based on the effect plots, the opti-
mum kernel sizes was 5 × 5 kernel, which was the result of the type
of the used data. In comparing the three CNNs, the simple designed
CNN showed significantly better effect plot of RPD accuracy and
lower computational cost since the number of parameters in this
CNN is lower than those in the other CNNs.

3.3. Comparison of CNNs with and without
Optimizations

The aim of the last investigation was to introduce an approach that
determines the simplest network that could be classified as efficient
as the manually-engineered network. The previously-discussed
agricultural dataset was also chosen to evaluate the optimization
procedure. The designed CNNs were compared based on their test-
ing accuracies before and after parameter optimization. In order to
have better comparison, the network was activated with five vari-
ous seeds, namely cuda and pytorch random seeds. Figure 11 shows
the average testing accuracies of the investigated CNNs activated
with five different random seeds. The comparison results show that,
for all the cases, there were improvements in the testing accuracy.
Generally, there was a correlation between the number of
significant controlling factors in the optimization process and the
amount of improvement in accuracy. The Inception network had
five significant controlling factors, resulting in the highest improve-
ment in accuracy, while the Resnet network had only three sig-
nificant factors, displaying the lowest improvement in accuracy
Tables 6–9.

4. CONCLUSION

In this paper, four main DOE have been proposed and investi-
gated to determine and optimize the significant factors that affect
the performance of three simplified CNN architectures, namely,
the VGG network, the Inception network, and the Resnet network.
DOE algorithms based on utilizing Taguchi statisticalmethods have
been developed for optimizing CNN parameters, and then tested
using spectral agricultural data. Results have shown that, for all
investigated CNN architectures, there was measurable improve-
ment in accuracy in comparison with un-optimized CNNs, and

S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648 1643

Figure 8 The effect plot of mean and signal-to-noise ratio for the second design. The effect plot of seven variable investigated in here. A)
Learning rate, B) Type of augmentation, C) Number of filters used in the first layer, D) Number of filters use in the second layer, E)
Convolution kernel size in the first layer, F) Convolution kernel size in the second layer, G) Type of Inception block used in the Inception layer.

1644 S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648

Figure 9 The effect plot of mean and signal-to-noise ratio for the third design. The variable investigated were A) Learning rate, B) Number
of blocks used in the Resnet layers, C) Type of augmentation, D) Number of filters used in the first Resnet layer, E) Number of filters used in
the second Resnet layer, F) Convolution kernel size in the first Resnet layer, G) Convolution kernel size in the second Resnet layer.

S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648 1645

Figure 10 The effect plots of mean and signal-to-noise ratio of the fourth design for comparison of designed simple convolutional neural
network (CNN), designed Inception net, and designed Resnet. Each plot belong to one of the controlling variable namely: A) Learning rate, B)
Type of augmentation, C) Number of filters in the first primitive block, D) Number of filters in the second primitive block, E) Convolution
kernel size in the first block, F) Convolution kernel size in the second block, G) Type of network (designed Inception, designed Resnet,
designed simple net).

1646 S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648

Figure 11 Average testing accuracies of the convolutional neural networks (CNNs)
activated with five different random seed.

Table 6 Analysis of variance for comparing factors according to the first DOE, the response was the relative percentage difference
in accuracy.

Df Sum Sq Mean Sq F value Pr(>F)
Learning rate 1 21387.0 21387.0 240.3860 < 2.2e–16 ***
Augmentation 1 1201.2 400.4 4.5005 0.006079 **
Number of filters in the first block 1 524.0 524.0 5.8902 0.017841 *
Number of filters in the second block 1 33.1 33.1 0.3722 0.543827
Kernel size in block 1 1 8.0 8.0 0.0895 0.765775
Kernel size in block 2 1 100.4 100.4 1.1282 0.291857
Type of network 1 2.3 2.3 0.0264 0.871462
Interaction between filters 1 556.4 556.4 6.2541 0.014769 *
Residuals 69 6138.9 88.96
DOE = design of experiment; Signif. codes; 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 7 Analysis of variance for comparing factors according to the second DOE, the response was the relative percentage
difference in accuracy.

Df Sum Sq Mean Sq F value Pr(>F)
Learning rate 1 24.53 24.53 1.5470 0.217459
Augmentation 2 123.43 61.71 3.8914 0.024664 *
Number of filters in the first block 1 175.63 175.63 11.0742 0.001358 **
Number of filters in the second block 1 14.73 14.73 0.9290 0.338209
Kernel size in block 1 1 71.95 71.95 4.5366 0.036458 *
Kernel size in block 2 1 6.71 6.71 0.4231 0.5173687
Type of network 1 221.46 44.29 2.7928 0.022859 *
Interaction between filters 1 120.34 120.34 7.5881 0.007369 **
Residuals 75 1189.45 15.86
DOE = design of experiment; Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 8 Analysis of variance for comparing factors according to the third DOE, the relative percentage difference in accuracy was
considered as response.

Df Sum Sq Mean Sq F value Pr(>F)
Learning rate 1 5655.7 5655.7 50.4665 4.245e-10 ***
Augmentation 2 974.0 487.0 4.3456 0.01612 *
Number of filters in the first block 1 12.0 12.0 0.1067 0.74481
Number of filters in the second block 1 72.9 72.9 0.6504 0.42232
Kernel size in block 1 1 22.2 22.2 0.1978 0.65772
Kernel size in block 2 1 361.8 361.8 3.2281 0.07611
Resnet blocks 1 20.0 20.0 0.1783 0.67392
Residuals 81 9077.5 112.1
DOE = design of experiment; Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

that the Inception network yields the highest improvement (∼ 6%)
in accuracy compared to simple CNN (∼ 5%) and Resnet CNN
counterparts (∼ 2%). Generally, based on the proposed Taguchi

experimental designs, the optimum hyperparameter of a CNN can
be determined in order to provide a simpler and faster trainable net-
work with performance improvements.

S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648 1647

Table 9 Analysis of variance for comparing factors according to the fourth DOE, the relative percentage difference in accuracy was
considered as response.

Df Sum Sq Mean Sq F value Pr(>F)
Learning rate 1 689.74 689.74 22.4571 9.973e-06 ***
Augmentation 5 1234.51 246.90 8.0388 4.122e-06 ***
Number of filters in the first block 1 57.39 57.39 1.8685 0.175736
Number of filters in the second block 1 3.45 3.45 0.1123 0.738422
Kernel size in block 1 1 43.93 43.93 1.4304 0.234546
Kernel size in block 2 1 30.04 30.04 0.9780 0.325866
Type of network 2 439.45 219.72 7.1539 0.001434 **
Interaction between filters 1 250.80 250.80 8.1659 0.005522 **
Residuals 75 2303.52 30.71
DOE = design of experiment; Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

CONFLICT OF INTEREST

Authors have no conflict of interest to declare.

ACKNOWLEDGMENTS

The research is supported by Edith Cowan University, the Grains Research
and Development Corporation (GRDC), Australian Research Council,
Photonic Detection Systems Pty. Ltd, Australia, and Pawsey Supercomput-
ing Centre.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification
with deep convolutional neural networks, Commun. ACM. 60
(2017), 84–90.

[2] W. Hu, et al., Deep convolutional neural networks for hyperspec-
tral image classification, J. Sens. 2015 (2015), 1–12.

[3] A. Karpathy, et al., Large-scale video classification with convolu-
tional neural networks, in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, Columbus, 2014.

[4] Y. Wang, et al., Low power convolutional neural networks on a
chip, in 2016 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), IEEE, Montreal, 2016.

[5] C. Zhang, et al., Optimizing fpga-based accelerator design for
deep convolutional neural networks, in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ACM, Monterey, 2015.

[6] J. Jin, et al., An efficient implementation of deep convolu-
tional neural networks on a mobile coprocessor, in 2014 IEEE
57th International Midwest Symposium on Circuits and Systems
(MWSCAS), IEEE, Austin, 2014.

[7] V. Sze, et al., Hardware for machine learning: challenges and
opportunities, in 2017 IEEE Custom Integrated Circuits Confer-
ence (CICC), IEEE, Austin, 2017.

[8] F.N. Iandola, et al., Squeezenet: alexnet-level accuracy with
50x fewer parameters and <0.5 mb model size, arXiv preprint
arXiv:1602.07360, 2016.

[9] A. Krizhevsky, One weird trick for parallelizing convolutional
neural networks, arXiv preprint arXiv:1404.5997, 2014.

[10] K. Simonyan, A. Zisserman, Very deep convolutional networks
for large-scale image recognition, arXiv preprint arXiv:1409.1556,
2014.

[11] K. He, et al., Deep residual learning for image recognition, in Pro-
ceedings of the IEEEConference onComputer Vision and Pattern
Recognition, Honolulu, 2016.

[12] G. Huang, et al., Densely connected convolutional networks, in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, 2017.

[13] C. Szegedy, et al., Rethinking the inception architecture for com-
puter vision. in Proceedings of the IEEEConference onComputer
Vision and Pattern Recognition, Las Vegas, 2016.

[14] B. Baker, et al., Designing neural network architectures using rein-
forcement learning, arXiv preprint arXiv:1611.02167, 2016.

[15] E. Real, et al., Large-scale evolution of image classifiers, arXiv
preprint arXiv:1703.01041, 2017.

[16] P. Verbancsics, J. Harguess, Generative neuroevolution for deep
learning, arXiv preprint arXiv:1312.5355, 2013.

[17] P. Verbancsics, J. Harguess, Image classification using genera-
tive neuro evolution for deep learning, in 2015 IEEE Winter
Conference on Applications of Computer Vision (WACV),IEEE,
Waikoloa, 2015.

[18] B. Zoph, Q.V. Le, Neural architecture search with reinforcement
learning, arXiv preprint arXiv:1611.01578, 2016.

[19] R. Goebel, et al., Explainable AI: the new 42?, in: A. Holzinger,
P. Kieseberg, A. Tjoa, E. Weippl (Eds.), International Cross-
Domain Conference for Machine Learning and Knowledge
Extraction, Springer, Cham, 2018.

[20] A. Holzinger, et al., What do we need to build explainable AI sys-
tems for the medical domain?, arXiv preprint arXiv:1712.09923,
2017.

[21] M. Mamourian, et al., Optimization of mixed convection heat
transfer with entropy generation in a wavy surface square lid-
driven cavity by means of Taguchi approach, Int. J. Heat Mass
Transfer. 102 (2016), 544–554.

[22] M.K. Balki, C. Sayin, M. Sarikaya, Optimization of the operating
parameters based on Taguchi method in an SI engine used pure
gasoline, ethanol and methanol, Fuel. 180 (2016), 630–637.

[23] W.C. Chen, et al., Optimization of the plastic injection molding
process using the Taguchimethod, RSM, and hybridGA-PSO, Int.
J. Adv. Manuf. Technol. 83 (2016), 1873–1886.

[24] A. Tsiolikas, et al., Optimization of neural network parameters
using Taguchi robust design: application in plasma arc cutting
process, in 2017 Fourth International Conference onMathematics
and Computers in Sciences and in Industry (MCSI), Corfu, 2017.

[25] M. Peker, A new approach for automatic sleep scoring: combin-
ing Taguchi based complex-valued neural network and complex
wavelet transform, Comput. Methods Prog. Biomed. 129 (2016),
203–216.

[26] T.M. Patel, N.M.J.A.I. Bhatt, Optimizing neural network parame-
ters using Taguchi’s design of experiments approach: an applica-
tion for equivalent stress prediction model of automobile chassis,
Auto. Innov. 1 (2018), 381–389.

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1155/2015/258619
https://doi.org/10.1155/2015/258619
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/ISCAS.2016.7527187
https://doi.org/10.1109/ISCAS.2016.7527187
https://doi.org/10.1109/ISCAS.2016.7527187
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/MWSCAS.2014.6908370
https://doi.org/10.1109/MWSCAS.2014.6908370
https://doi.org/10.1109/MWSCAS.2014.6908370
https://doi.org/10.1109/MWSCAS.2014.6908370
https://doi.org/10.1109/CICC.2017.7993626
https://doi.org/10.1109/CICC.2017.7993626
https://doi.org/10.1109/CICC.2017.7993626
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/WACV.2015.71
https://doi.org/10.1109/WACV.2015.71
https://doi.org/10.1109/WACV.2015.71
https://doi.org/10.1109/WACV.2015.71
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.056
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.056
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.056
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.056
https://doi.org/10.1016/j.fuel.2016.04.098
https://doi.org/10.1016/j.fuel.2016.04.098
https://doi.org/10.1016/j.fuel.2016.04.098
https://doi.org/10.1007/s00170-015-7683-0
https://doi.org/10.1007/s00170-015-7683-0
https://doi.org/10.1007/s00170-015-7683-0
https://doi.org/10.1109/MCSI.2017.19
https://doi.org/10.1109/MCSI.2017.19
https://doi.org/10.1109/MCSI.2017.19
https://doi.org/10.1109/MCSI.2017.19
https://doi.org/10.1016/j.cmpb.2016.01.001
https://doi.org/10.1016/j.cmpb.2016.01.001
https://doi.org/10.1016/j.cmpb.2016.01.001
https://doi.org/10.1016/j.cmpb.2016.01.001
https://doi.org/10.1007/s42154-018-0045-5
https://doi.org/10.1007/s42154-018-0045-5
https://doi.org/10.1007/s42154-018-0045-5
https://doi.org/10.1007/s42154-018-0045-5

1648 S. Akbarzadeh et al. / International Journal of Computational Intelligence Systems 12(2) 1635–1648

[27] G.J.Q.R. Taguchi, Taguchi Techniques for Quality Engineering,
McGraw-Hill, New York, 1987.

[28] V. Nair, G.E. Hinton, Rectified linear units improve restricted
boltzmann machines, in Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Haifa, 2010.

[29] S. Ioffe, C.J.a.p.a. Szegedy, Batch normalization: accelerating deep
network training by reducing internal covariate shift, in Proceed-
ings of the 32nd International Conference on Machine Learning,
Lille, 2015.

[30] J.T. Springenberg, et al., Striving for simplicity: the all convolu-
tional net, arXiv preprint arXiv:1412.6806, 2014.

[31] H. Lee, et al., Convolutional deep belief networks for scal-
able unsupervised learning of hierarchical representations, in

Proceedings of the 26th Annual International Conference on
Machine Learning, ACM, Montreal, 2009.

[32] C. Szegedy, et al., Going deeper with convolutions, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition, Boston, 2015.

[33] U. Grömping, H. Xu, Generalized resolution for orthogonal
arrays, Annu. Stat. 42 (2014), 918–939.

[34] A. Paszke, et al., Automatic differentiation in PyTorch, in NIPS
2017 Workshop Autodiff Homepage, 2017.

[35] S. Akbarzadeh, et al., Plant discrimination by support vector
machine classifier based on spectral reflectance, Comput. Elec-
tron. Agric. 148 (2018), 250–258.

https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1214/14-AOS1205
https://doi.org/10.1214/14-AOS1205
https://doi.org/10.1016/j.compag.2018.03.026
https://doi.org/10.1016/j.compag.2018.03.026
https://doi.org/10.1016/j.compag.2018.03.026

	A statistical approach to provide explainable convolutional neural network parameter optimization
	A Statistical Approach to Provide Explainable Convolutional Neural Network Parameter Optimization
	1 INTRODUCTION
	2 EXPERIMENTAL METHODS
	2.1 The Convolutional Neural Network Primitives
	2.1.1 Simple primitive block
	2.1.2 The Inception primitive blocks
	2.1.3 The Resnet primitive blocks

	2.2 Taguchi Method
	2.3 Design of Experiment
	2.3.1 First design of experiment
	2.3.2 Second design of experiment
	2.3.3 Third design of experiment
	2.3.4 Fourth design of experiment

	3 RESULTS AND DISCUSSIONS
	3.1 Evaluation Metrics
	3.2 Designs Evaluation
	3.2.1 Design 1
	3.2.2 Design 2
	3.2.3 Design 3
	3.2.4 Design 4

	3.3 Comparison of CNNs with and without Optimizations

	4 CONCLUSION

