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Abstract

Microbial eukaryotes are key components of the ocean plankton. Yet, our understanding of their community composition
and activity in different water layers of the ocean is limited, particularly for picoeukaryotes (0.2-3 um cell size). Here,
we examined the picoeukaryotic communities inhabiting different vertical zones of the tropical and subtropical global
ocean: surface, deep chlorophyll maximum, mesopelagic (including the deep scattering layer and oxygen minimum
zones), and bathypelagic. Communities were analysed by high-tthroughput sequencing of the 18S rRNA gene (V4
region) as represented by DNA (community structure) and RNA (metabolism), followed by delineation of Operational
Taxonomic Units (OTUs) at 99% similarity. We found a stratification of the picoeukaryotic communities along the water
column, with assemblages corresponding to the sunlit and dark ocean. Specific taxonomic groups either increased (e.g.,
Chrysophyceae or Bicosoecida) or decreased (e.g., Dinoflagellata or MAST-3) in abundance with depth. We used the
rRNA:rDNA ratio of each OTU as a proxy of metabolic activity. The highest relative activity was found in the
mesopelagic layer for most taxonomic groups, and the lowest in the bathypelagic. Altogether, we characterize the change
in community structure and metabolic activity of picoeukaryotes with depth in the global ocean, suggesting a hotspot of
activity in the mesopelagic.

Introduction

Protists are key components of marine microbial com-
munities, playing a central role in marine food webs [1],
particularly in carbon cycling [2]. Despite their impor-
tance, the distribution and activity of protists in the global
ocean is still poorly understood. In particular, little is
known about protists communities in the dark ocean, as
most efforts have focused in protists populating the photic
layer. Yet, the deep ocean (>1000 m depth) is a huge
biome, being the largest reservoir of organic carbon in the
ocean [3], and containing about 70% of the ocean’s pro-
karyotic cells [2].

The water column is divided into the epipelagic (0-200
m depth), mesopelagic (200—1000 m), and bathypelagic
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(10004000 m) layers [2]. The sunlit epipelagic zone
harbors photosynthetic microbes and is the scenario of the
classic oceanic food web, whereas the dark ocean (i.e.,
mesopelagic and bathypelagic regions) is characterized by
no light, high pressure, low temperature, and high inor-
ganic nutrient content [2]. A global survey indicated that
the distribution of protists in the upper ocean is

SPRINGER NATURE
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predominantly structured by oceanographic basin, point-
ing to dispersal limitation [4, 5], while in the bathypelagic
layer, protist assemblages appear to be structured by
water masses [6]. Previous studies on the distribution
of protists along the water column are limited to a
few specific oceanic regions and indicate a clear
differentiation between epipelagic and deep ocean com-
munities [7-14].

The mesopelagic layer represents ~20% of the global
ocean and is an area of intense remineralization [2],
believed to sustain a large fish biomass [15]. It includes a
layer few hundred meters thick known as the ‘deep scat-
tering layer’ (DSL), characterized by the accumulation of
large stocks of mesopelagic fish and migrant zooplankton
[15], leading to intense biological activity. Furthermore, in
regions like the eastern tropical Pacific Ocean and the tro-
pical Indian Ocean, the mesopelagic zone contains layers
with very low oxygen concentration, known as oxygen
minimum zones (OMZs), which play a key role in the
nitrogen cycle and contain specific microbial communities
[16]. However, protist communities in OMZ or anoxic
basins have received less attention than those in oxygenated
mesopelagic waters [17-20] and changes in protist relative
activity in the DSL or OMZ at the global scale remain
unknown.

DNA-based analyses have contributed greatly to elu-
cidate global protist community structure in the sunlit [4]
and dark ocean [6]. Yet, sequences obtained using DNA
include metabolically inactive or dead cells, while
sequences obtained from RNA extracts derive from the
actual ribosomes and therefore from living cells. In
addition, as the ribosomal content is regulated to match
the protein synthesis needs during population growth and
acclimation [21], the rRNA:rDNA ratio for a given taxon
has been used as a proxy for their relative activity. This
approach has been applied to microbial eukaryotes in a
few epipelagic [7, 22, 23] and vertical profile [8, 12]
regional studies, but it has not yet been applied at the
global scale.

Here, we present the first global survey investigating
vertical changes in picoeukaryote community composition
and relative activity using Illumina sequencing of 18S
rRNA genes amplified from DNA and RNA extracts. We
analyzed samples from 7 depths (from surface to 4000 m) in
13 stations encompassing the Atlantic, Indian and Pacific
Oceans sampled during the Malaspina-2010 Circumnavi-
gation expedition [24], targeting protists <3 um in size
(picoeukaryotes). Specifically, we analysed changes in
picoeukaryotic community structure and relative activity
along the ocean water column, assessing environmental
factors driving these changes. Furthermore, we tested
whether picoeukaryote community structure and relative
activity differ in the OMZ and DSL zones.

SPRINGER NATURE

Materials and methods
Sample collection and nucleic acid extraction

During the Malaspina-2010 Circumnavigation expedition
(December 2010-July 2011), a total of 91 water samples
were collected in 13 stations distributed across the world’s
oceans (Fig. S1, Table S1). Each station was sampled at
seven different depths with Niskin bottles attached to a
CTD profiler that had sensors for conductivity, temperature,
salinity, and oxygen. Each vertical profile included samples
at surface (3 m), deep chlorophyll maximum (DCM), and
2-3 depths in mesopelagic (200-1000 m) and bathypelagic
(10004000 m) waters. Samples for inorganic nutrients
(NOs— NO,—, PO,*", and SiO,) were collected from the
Niskin bottles, kept frozen, and measured spectro-
photometrically using an Alliance Evolution II autoanalyzer
[25]. Along the cruise, different deep-water masses were
sampled. The proportion of the different deep-water masses
in each sample was inferred from its temperature, salinity,
and oxygen concentration [26].

For each sample, about 12 liters of seawater was pre-
filtered through a 200 pm nylon mesh to remove large
plankton and then sequentially filtered using a peristaltic
pump through a 20 ym nylon mesh and then through 3 and
0.2 um pore-size polycarbonate filters of 142 mm diameter
(Isopore, Millipore). Filtration time was about 15-20 min.
The filters were flash frozen in liquid nitrogen and stored at
—80°C until DNA and RNA extraction. Polycarbonate
filters containing the 0.2-3 um size fraction were cut into
small pieces and cryogrinded with a Freezer-Mill 6770
(Spex) using three cycles of 1 min. Then, RNA and DNA
were extracted simultaneously using the Nucleospin RNA
kit (Macherey-Nagel) plus the NucleoSpin RNA/DNA
Buffer Set (Macherey-Nagel) procedures. The presence of
residual DNA in RNA extracts was checked by PCR with
universal eukaryotic primers and, if detected, was removed
using the Turbo DNA-free kit (Applied Biosystems). RNA
was reverse transcribed to cDNA using the SuperScript III
reverse Transcriptase (Invitrogen) and random hexamers.
DNA and cDNA extracts were quantified with a Qubit 1.0
(Thermo Fisher Scientific) and kept at —80 °C.

Sequencing and processing of picoeukaryotic
community

Picoeukaryotic diversity was assessed by amplicon
sequencing of the V4 region of the 18 S rDNA gene (~380
bp) using the Illumina MiSeq platform and paired-end reads
(2x250bp). PCR amplifications with the eukaryotic uni-
versal primers TAReukFWD1 and TAReukREV3 [27] and
amplicon sequencing were carried out at the Research and
Testing Laboratory (Lubbock, USA; http://www.researcha
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ndtesting.com). Illumina reads obtained from DNA and
cDNA extracts (rDNA and rRNA sets, respectively) were
processed together following an in-house pipeline [28] at
the Marine Bioinformatics Service (MARBITS) of the
Institut de Ciencies del Mar. Briefly, raw reads were cor-
rected using BayesHammer [29] as indicated by Schirmer
et al. [30]. Corrected paired-end reads were subsequently
merged with PEAR [31] and sequences longer than 200 bp
were quality-checked and dereplicated using USEARCH
[32]. OTU (Operational Taxonomic Unit) clustering at 99%
similarity was done using UPARSE v8 [33]. Chimera check
and removal was performed both de novo and using the
SILVA reference database [34]. Taxonomic assignment was
done by BLAST searches against PR2 [35] and two in-
house marine protist databases (available at https://github.
com/ramalok) based on a collection of Sanger sequences
from environmental surveys [36] and of 454 reads from the
BioMarKs project [23]. Metazoan, Charophyta, and
nucleomorphs OTUs were removed. The final OTU table
contained 79 rDNA samples and 90 rRNA samples (some
samples were excluded due to suboptimal PCR or sequen-
cing) accounting for 11,570,044 reads clustered into 45,115
OTUs. To enable comparisons between samples, the OTU
table was randomly subsampled down to the minimum
number of reads per sample (22,379 reads) using the rrarefy
function in the Vegan package [37]. This turned into a final
table including 38,300 OTUs and 3,782,051 reads.
Sequences are available at the European Nucleotide Archive
with Accession number PRJEB23771 (http://www.ebi.ac.
uk/ena).

Statistical analyses

Statistical analyses were performed in R (R Core Team
[38]) using the package Vegan [37]. Bray—Curtis dissim-
ilarities were used as an estimator of beta diversity, which
were then clustered using non-metric multidimensional
scaling (NMDS). In NMDS, the differences between pre-
defined groups were statistically tested with ANOSIM using
1,000 permutations. PERMANOVA analyses were per-
formed to determine the proportion of the variation in
community composition that was explained by the mea-
sured environmental variables. The Shannon index (H') and
richness (number of OTUs) were calculated as estimators of
alpha diversity.

To assess the relative activity of taxonomic groups,
rRNA:rDNA ratios were calculated for each OTU in each
sample by dividing the relative abundance of the OTU in
the RNA between their relative abundance in the DNA.
OTUs occurring in only one of the two datasets were not
considered. Each individual ratio provided an indication of
the relative activity of a given OTU in a given sample.
Ratios from the same taxonomic group and water layer were

analyzed together. Specifically, ratios >1 indicated meta-
bolically “hyperactive” taxa, ratios <1 indicated metaboli-
cally “hypoactive” taxa, while ratios ~1 pointed to taxa with
“average” activity levels. Differences in rRNA:rDNA ratios
by water layer were evaluated using a Wilcoxon test.

OTUs present in the four layers and showing preferential
activity in one layer (200 OTUs) were aligned with MAFFT
[39]. A phylogenetic tree was inferred with RAXML [40]
using the generalized time reversible (GTR) model of
nucleotide substitution considering a CAT/Gamma-dis-
tributed rate of variation across sites (including 20 rate cate-
gories). The best topology out of 1,000 pseudoreplicates was
kept. The amount of branch length associated to the different
water layers as estimated by gUniFrac [41], was used as an
estimate of the amount of phylogenetic diversity associated to
them. gUniFrac was run with an alpha value of 0.5.

Some mesopelagic samples were taken in the OMZ or in
the DSL. For specific analyses, DSL samples ( 9 samples)
were compared with the remaining mesopelagic samples
(22 samples). DSL was identified by acoustic data [15], and
DSL samples were selected within the mesopelagic samples
according to the scattering profile. OMZ samples ( 8 sam-
ples) were considered as those where oxygen concentration
was <2mg O, L! [42], and were also compared with the
remaining oxygenated mesopelagic samples (23 samples).

Results
Community structure along the water column

The diversity of picoeukaryotic assemblages decreased sig-
nificantly with depth in both rRNA and rDNA datasets
(Wilcoxon test p<0.05, Fig. S2). This trend was
also observed when analyzing the Atlantic, Indian, and Pacific
oceans separately (Fig. S3), but higher diversity was found in
the Pacific rRNA mesopelagic layer compared with that in
other oceans. Comparing community structure of all samples
in NMDS revealed different clusters for IDNA and rRNA,
also separating photic and aphotic communities within each
one (Fig. S4). Specific NMDS for rDNA and tRNA datasets
supported a significant differentiation between photic and
aphotic communities (ANOSIM: R*=0.52, p<0.001 for
RNA and R>=0.72, p <0.001 for rDNA, Fig. 1a, b). Within
the photic zone, surface and DCM communities formed two
groups (ANOSIM: R*=0.39 for rRNA and R*=0.60 for
rDNA, p <0.001), while the mesopelagic and bathypelagic
communities did not constitute different groups (ANOSIM:
R*=0.14 and R*=0.35, p<0.004, Fig. 1). Picoeukaryotic
communities from the Indian and Pacific oceans formed dif-
ferentiated clusters within each water layer, while Atlantic
communities were intermixed among the Indian and Pacific
communities (Fig. 1c, d, Fig. S5).

SPRINGER NATURE
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Fig. 1 Comparison of picoeukaryotic community structure derived
from the rRNA (a, ¢) and rDNA (b, d) datasets based on a non-metric
multidimensional scaling analysis (NMDS). Each sample is colored
according to the depth layer (a, b) and has a different symbol shape

Environmental parameters changed markedly along the
water column (Fig. S6, Table S1), likely exerting environ-
mental selection. The variance in community structure
explained by the measured environmental variables was
analyzed with PERMANOVA. Light (taken as presence or
absence) was the most important environmental factor
structuring picoeukaryotic community, accounting for about
15% of community variance in both rRNA and rDNA
datasets, while temperature, oxygen, the ocean basin
(Atlantic, Indian, or Pacific), and depth explained each
3-7% of community variance along the water column.
About 55-60% of the variance remained unexplained by the

SPRINGER NATURE

according to the ocean where it comes from (¢, d). Samples from the
photic and aphotic layers are shadowed (a, b). Samples from the Indian
and the Pacific oceans in the photic and aphotic layers were grouped in
separate polygons (c, d).

measured parameters (Table S2). Individual PERMANOVA
tests for the photic and aphotic zone indicated that envir-
onmental factors explained 65% of the variance in com-
munity structure in the photic zone, whereas water mass
explained about 25% of community structure variance in
the dark ocean (Table S2).

Horizontal community structure
We analysed the change in community composition within

specific depth layers, which provides an indication of the
connectivity between communities. We compared one
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sample of each water layer (i.e., six layers in rRNA and five
in rDNA, as mesopelagic and bathypelagic samples were
divided into two sublayers) among all stations (13 stations
in rRNA and 10 in rDNA). Communities within the photic
zone were more similar among stations (Bray—Curtis dis-
tance 0.7, Fig. 2a, c) than those in the dark ocean, with
those in the deepest bathypelagic layer being the most
dissimilar among stations (median Bray—Curtis values
~0.9). Interestingly, community composition in the bath-
ypelagic was highly heterogeneous, as shown by the wide
range of Bray—Curtis dissimilarities (ranging from 0.1 to
1.0). In addition, most of the OTUs within each layer were
found in a single station (Fig. 2b, d), with a decline in the
number of OTUs with increasing prevalence (number of
stations where a given OTU was present). This OTU decline
was not equal for all layers, being steepest in the bath-
ypelagic. For instance, 3.3% of surface-OTUs were present
in at least 80% of the samples, but this was ten times lower
(0.23% of OTUs) for the bathylepagic zone. This pattern of
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decreasing prevalence with depth is consistent with the
higher Bray—Curtis dissimilarity of bathypelagic commu-
nities. The most prevalent OTUs were also the most
abundant ones (data not shown).

We also evaluated the potential vertical dispersal of
OTUs in the water column. A total of 13% of OTUs
(considering only those represented by >5 reads) in the
rRNA dataset were restricted to the mesopelagic layer,
compared with 4-6% of unique OTUs in the remaining
depth layers (Table S3). A similar pattern was observed in
the rDNA dataset, including a larger fraction of unique
OTUs in the mesopelagic. Most shared OTUs were shared
within the dark ocean (i.e., mesopelagic and bathypelagic
layers) or the photic zone (i.e., surface and DCM).

Taxonomic change with depth

In general, there was a good correlation in the relative
abundances of picoeukaryotic groups observed in the IDNA

SPRINGER NATURE
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and rRNA datasets (Fig. S7). Exceptions were MALV-I and
MALV-II (Marine Alveolate groups I and II) and Poly-
cystinea, highly overrepresented in the rDNA (altogether
64.9% of rDNA reads but only 6.9% of rRNA reads).
Mamiellophyceae and Basidiomycota were also over-
represented in the rDNA dataset. Ciliophora was highly
overrepresented in the rRNA survey (11.6% of rRNA reads
versus 0.2% of rDNA reads), together with MOCH-5
(Marine Ochrophyta group 5), Ancyromonadida and
MAST-12 (Marine Stramenopile group 12, Fig. S7).

We observed four patterns of taxonomic change with
depth: (i) groups that increased their abundance with depth
(Chrysophyceae, Bicosoecida, and RAD-B [Radiolaria
group B]), (ii) groups that decreased their abundance with
depth (Dinoflagellata, Ciliophora, and all MAST and
MOCH clades), (iii) groups that peaked in the mesopelagic
(Labyrinthulomycetes, RAD-C, and MALV-IV), and (iv)
groups that peaked at the DCM (Pelagophyceae, Mamiel-
lophyceae, Telonema, and Cryptomonadales) (Fig. 3). This
resulted in-group depth-dependent differences, with Cilio-
phora and Dinoflagellata dominating in surface waters (42%
of reads), Pelagophyceae and Dinoflagellata at the DCM
(44% of reads), and Chrysophyceae and Bicosoecida in the
dark ocean (40% of reads in the mesopelagic and 73% in the
bathypelagic).

Among the different ocean basins all groups followed the
same pattern of vertical changes (Fig. S8), except two
groups: MALV-III peaks in the mesopelagic in the Pacific
Ocean, whereas in the other two oceans it decreases with
depth, and RAD-B shows opposite trends between Atlantic
and Indian oceans (increasing and decreasing their abun-
dance with depth, respectively). Chrysophyceae was the
most abundant group in all deep basins, representing 28%
of reads in Atlantic, 56% of the reads in the Indian and 19%
of the reads in the Pacific oceans. The second most abun-
dant taxonomic group was Bicosoecida for the Indian and
Atlantic Ocean and Ciliophora in the Pacific.

Changes in the relative activity with depth

To determine changes in the relative activity, we calculated
the ratio of rRNA vs. rDNA reads for all OTUs (31,866
ratios). The photic (surface, DCM) and mesopelagic layers
had a median rRNA:rDNA ~1 for all OTUs, pointing to no
deviations in relative activity (Fig. S9). In contrast the
median rRNA:rDNA was <1 in the bathypelagic zone
(Fig. S9), pointing to a lower fraction of metabolically
active cells in deeper waters when compared with overlying
waters. This lower relative activity in the bathypelagic was
observed in the majority of the taxonomic groups (Fig. 4),
which in general displayed the lowest activity in the bath-
ypelagic (except MALV-I, Cercozoa, Labyrinthulomycetes,
RAD-B, and Telonema that showed the lowest activity at

the photic zone). Many groups displayed higher
relative activity in the mesopelagic (MALV-I, MALV-III,
MALV-II, Cercozoa, Labyrinthulomycetes, among others,
Fig. 4). Most phototrophic groups showed the higher rela-
tive activity at the DCM layer, except for Trebouxiophyceae
that displayed higher relative activity in the mesopelagic
(Fig. 4). No major differences were found in relative
activity among ocean basins, although activities
tended to be higher in the Pacific Ocean than in the Indian
Ocean for the aphotic layers (Fig. S10). Overall, relative
activities were more variable with depth than among ocean
basins.

Further exploration was done in 200 OTUs present at the
4 depths, which represented 2.2% of the analyzed OTUs
and 48.8% of the reads. Out of these 200 OTUs,
121 showed their highest activity in the mesopelagic
(Fig. 5) being most of them classified as Dinoflagellata and
MALV-I (25 and 20% of the OTUs active in the mesope-
lagic, respectively). We individually analyzed the OTUs of
the four most abundant groups, Chrysophyceae, MALV-I,
Dinoflagellata, and Bicosoecida (Fig. S11). Interestingly
whereas most of the OTUs of Chrysophyceae and MALV-I
showed their highest activity in the mesopelagic, there was
a high variability in Dinoflagellata and Bicosoecida OTUs.
The phylogenetic tree of the 200 OTUs showed that the
different clades did not contain exclusively OTUs active in
a particular depth, OTUs from the same taxonomic group
but having their maximum of activity in different depths
were closely related in the tree. In addition, we analysed the
phylogenetic diversity between the different water layers.
OTUs from surface and DCM were the most phylogeneti-
cally similar (UniFrac distance 0.5), whereas bathypelagic
OTUs were the most phylogenetically different (UniFrac
0.7, Fig. S12).

Patterns in OMZ and DSL

We sampled the OMZ and DSL in specific stations (eight
samples of three Pacific Ocean stations were sampled in the
OMZ, and DSL was sampled in nine of the 13 stations).
Whereas no clear differentiation was observed between
DSL and the non-DSL mesopelagic communities
(Fig. S13a), OMZ communities were more similar among
them and differed significantly from the oxygenated
mesopelagic samples (Fig. S13b). No differences in rich-
ness were found between the DSL and the non-DSL com-
munities, while the OMZ had a higher richness than the
oxygenated mesopelagic samples (Fig. S14).

We explored which taxonomic groups preferred the
OMZ as compared with the fully oxygenated mesopelagic
waters (Fig. 6a). Groups accounting for the 47% of the
total mesopelagic reads showed a preference for the OMZ.
This groups include: Ciliophora, Dinoflagellata, MALV-
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Fig. 4 Distribution of the activity ratios (rRNA:rDNA) for all OTUs
within major taxonomic groups in the four investigated depth layers.
The red line indicates a ratio of 1. For each group, the layers with
significantly higher or lower values between them, according to

III, MALV-II, and Acantharia. Groups enriched in the
OMZ tended to have higher activities (rRNA:rDNA ratio)
in that region, except for Chrysophyceae and Bicosoecida,
which were more active but less abundant in the OMZ
(Fig. 6a). Two OTUs of Crysophyceae with contrasting
behavior explained this difference in the Chrysophyceae,
one being very abundant in the OMZ and the other in the
oxygenated mesopelagic, whereas no clear pattern was
found for Bicosoecida. The group formed by unclassified
OTUs (IncertaeSedis Eukaryota), which could potentially
include new species within high-rank taxa, showed a
higher abundance and relative activity in the OMZ,
pointing to potential taxonomic novelty. A similar ana-
lysis of DSL samples yielded inconclusive results
(Fig. 6b). Some taxonomic groups were enriched in the
DSL (MALV-I, Pelagophyeae, MAST-9), but the relative
abundance ratio was, in general, smaller for most groups,
indicating no clear DSL preference. Surprisingly, most
groups showed lower activities at the DSL, suggesting
that the DSL is not a specific and selective habitat for
picoeukaryotes, in contrast with the OMZ that influences

SPRINGER NATURE

Wilcoxon tests, are colored in red or blue, respectively. Groups with
no boxplot color (e.g., MAST-3), indicate no significant differences
among layers. Note that the taxonomic groups are listed according to
their main trophic mode (mixotrophic, heterotrophic or phototrophic)

picoeukaryotic community structure and induces changes
in their relative activity.

Discussion

Our work provides the first global assessment of the change
in community structure and relative activity of picoeukar-
yotes from surface down to 4000 m. The Malaspina expe-
dition was taking samples during 7 months and the cruise
was organized so that most regions were sampled at similar
meteorological seasons. We found clear patterns of diversity
and relative activity change along the water column, with
clear differences in picoeukaryotic assemblages at the
community level between the photic and aphotic regions
across the different oceans, which is consistent with the
results obtained from previous regional surveys [11, 14].
Overall, epipelagic communities were more similar among
themselves than communities in the dark ocean, suggesting
a higher dispersal in surface and DCM layers, likely due to
faster currents in the upper ocean (Villarino et al. [43])



Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean 445
Fig. 5 Activity of the OTUs a. Surface
present in the 4 water layers
classified according to the layer Surface A o3 ot 28 s o
where they present the highest g
activity. a OTUs more active in A
surface, b at DCM, c at the g J .
mesopelagic, and d at the DCM{ 775 ¢ et ] P/ e
bathypelagic. Colors indicate
different taxonomic groups |
Mesopeplagic { * AU B Y
Bathypelagic{ ¢ %4 .'3 ¢
0.1 1 10 100 0.1 1.0 10.0 100
c. Mesopelagic d. Bathypelagic
Surface 1 o o Wl A e i’ -:
DCM 1 ee W UWLE LT S
Mesopeplagic 1 EEIER LN
Bathypelagic 1 L LA ,',:' :
0.01 0.1 1.0 10 100 0.1 1.0 10

when compared with the deep ocean. Bathypelagic assem-
blages, which were the most different across the ocean
(Fig. 2), seemed to be structured by water masses, which
explained 25% of the variability in their community struc-
ture. Thus, two distinct water masses, even geographically
close, may contain different communities and viceversa [6].
Furthermore, more OTUs were shared between the two
deep-ocean layers than between the two epipelagic.

The abundance of the different taxonomic groups chan-
ged with depth, with Chrysophyceae, Bicosoecida, Radi-
olaria, and Colpodellida increasing in relative abundance
with depth, as reported in earlier regional studies done in the
North Pacific and North Atlantic ocean [7, 10, 11, 14, 44].
RAD-C (Radiolaria group C) was an important component
of twilight and dark ocean communities, showing a peak in
relative abundance in the mesopelagic layer. Radiolaria are
typically very large in terms of cell size, so, they were not
expected to be relevant in our picoplankton dataset. Yet,
Radiolaria can be fragile, so they can break during size
fractionation, and can also produce swarmers of

log Ratio rRNA:rDNA

picoplankton size, so their detection in picoplanktonic stu-
dies is still controversial. On the other hand, most photo-
synthetic groups (e.g., Pelagophyceae, and green algae)
declined in abundance with depth, similarly to several het-
erotrophic lineages such as MAST clades or Picozoa. The
occasional detection of metabolically active phototrophic
groups in the deep ocean (e.g., Diatoms), which have
already been detected sometimes at significant abundances
in the dark ocean [12, 45], could be due to their attachment
to rapidly sinking particles (e.g., aggregates, faecal pellets
[45], although some of the detected taxa may be mixotrophs
(e.g., Dinoflagellata, Chrysophyceae), as this lifestyle is
more common in the global ocean than currently
acknowledged [46, 47].

Even though a moderate correlation of rDNA and rRNA
relative abundances was found for most taxonomic groups,
some groups were overrepresented in the rRNA dataset,
whereas others like MALV-I, MALV-II, Polycystinea, and
Acantharia were overrepresented in the rDNA dataset. It is
known that MALV-I and MALV-II are usually dominant
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Fig. 6 Comparison of relative abundance of taxonomic groups and
their relative activity in the communities sampled within the Oxygen

Minimum Zone (a) and DSL (b) with respect to the rest of mesope-

(only groups with an abundance >0.05% in the total mesopelagic
realm are shown). Note that bars or dots in the OMZ zone of the plot
mean higher abundance or activity in that zone. Group colors represent

lagic samples. Bars represent the ratio between the abundance of

the relative abundance of the group in the total mesopelagic: abun-

dance >10% in green, 1-10% in orange, and 0.5-1% in blue

specific groups among the two regions, while dots represent the ratio

of the relative activity (RNA:rDNA). Groups are ordered by their
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groups in rDNA surveys [4, 6, 9, 23, 48], whereas they may
be up to ten times less abundant in rRNA surveys [23].
They likely have many rDNA operon copies [49] indicating
that, in most cases, TDNA-based assessments may over-
estimate their abundance. The large variation in the rDNA
copy number in eukaryotes, roughly related to cell size [50]
and genome size [51], plus the reads that might be derived
from dissolved extracellular DNA could affect the relative
abundance observed in rDNA surveys, whereas rRNA is
assumed to be absent from the extracellular pool [21]. In a
previous study, we showed that sequencing surveys based
on DNA and RNA extracts provide reasonable views of
relative abundance, with different results depending on the
taxonomic group [52]. However, since the rDNA operon
copy number is an intrinsic feature of each taxa, we
assumed that it was maintained within the whole taxonomic
group and decided to focus on the changes of the rRNA:
rDNA ratios of each group among the four water layers,
aiming to identify a peak of activity for each group. This is
an innovative aspect of the research presented here since
only few studies have also included rRNA extracts
[7, 12,22, 23, 53]. Interestingly, many heterotrophic groups
showed their highest relative activity in the mesopelagic
layer across the three ocean basins, where oxyclines may
promote hotspots of metabolic activity [54], and large car-
bon transfer by vertical migratory fish and invertebrates
may promote relatively high microbial prey abundance to
be grazed by metabolically active communities of Ciliates,
Dinoflagellates, and Cercozoans, which were some of the
most active groups in the mesopelagic layer (Fig. 6). Fur-
thermore, it has been observed that the clearance rates of
heterotrophic nanoflagellates were higher in mesopelagic
than in epipelagic samples [55]. Relative activities of Cer-
cozoa, MALV-I, and MALV-II were also high in the
mesopelagic, in agreement with observations by Xu et al.
[12]. Also, Hu et al. [7] found higher metabolic activity of
Ciliophora at those depths. On the other hand, as expected,
the majority of taxa were less active in the bathypelagic.
Interestingly, some phototrophic groups showed activity in
aphotic depths, indicating that they may be ingesting prey
(i.e., mixotrophy). It has been shown that increases in the
relative activity of some photosynthetic groups (e.g., pela-
gophytes, dinoflagellates) in the absence of light may
indicate grazing activity (mixotrophy); some mixotrophic
algae conduct phagotrophy when the availability of light or
inorganic nutrients is reduced (Stoecker et al. [47], 56). Our
analysis found depth-related patterns in the relative
activity of most of the picoeukaryote groups and shed
light on poorly known groups, such as MALV-III, high-
lighting the potential importance of protists in the
deep ocean.

The mesopelagic layer contained the highest number of
unique picoeukaryotic OTUs, in agreement with previous

regional observations [11], but despite this, the mesopelagic
was not the most diverse layer, as richness was higher in
surface waters and decreased with depth, also coincident
with previous studies [11, 14]. The larger number of OTUs
exclusively present in the mesopelagic could be partially
attributable to the existence of waters with specific condi-
tions, such as the OMZ. Oxygen concentration has a
strong influence on microbial distributions, and can affect
the community structure of protists with only a subset
of taxa able to adapt to anoxic or microoxic conditions
[17-19, 57, 58]. Our results indicated that the richness
found in OMZ in the Pacific Ocean is similar to that of
epipelagic waters, as observed by Jing et al. [17], indicating
a relatively high diversity in hypoxic waters. The most
abundant groups in the OMZ retrieved with the rRNA were
Chrysophyceae, Ciliates and Dinoflagellates. The presence
of Chrysophyceae in the OMZ has been reported before
[17], together with that of anaerobic Ciliates (e.g., meso-
diniids) and Dinoflagellates [18, 19, 58]. The OMZ contains
a diverse community of picoeukaryotes, with 25 different
taxonomic groups present, most of them showing higher
relative abundances (Fig. 6). Furthermore, the fact that most
of the taxonomic groups were metabolically active could be
explained by the high bacterivory activity of mixotrophic
and heterotrophic groups, as bacterial abundance is typi-
cally high below the oxycline ([17], Fenchel and Finlay
[59]), where ciliates are recognized as important grazers
[19]. Besides, species richness was higher in the OMZ than
in the mesopelagic zone, a pattern previously observed by
Parris et al. [19] but that differs from other reports [18]. Yet,
contrary to what we expected, we did not find conspicuous
picoeukaryotic assemblages in the DSL as compared with
the rest of mesopelagic samples, and intriguing observation
that deserves further explorations.

In conclusion, this study provides the first insights on the
changes in diversity and relative activity of picoeukaryotes
along the whole water column at a global scale. Picoeu-
karyotic community structure was strongly differentiated in
the water column, with two main communities corre-
sponding to the epipelagic and the dark ocean. Our analysis
identified the mesopelagic layer as an activity hotspot for
picoeukaryotes, indicating also differentiated communities
within OMZs.
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