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Abstract 39 

Purpose: In this study, we assessed whether there are independent associations between dietary 40 

total flavonoid intake and major flavonoid classes with retinal arteriolar and venular calibre. 41 

Methods: Blue Mountains Eye Study participants aged 49+ years who had complete data on diet 42 

and retinal vessel measures were analyzed (n=2821). Dietary intake was assessed using a semi-43 

quantitative food-frequency questionnaire (FFQ). Flavonoid content of foods in the FFQ was 44 

estimated using the US Department of Agriculture Flavonoid, Isoflavone and Proanthocyanidin 45 

databases. Fundus photographs were taken and retinal vascular calibre was measured using 46 

validated computer-assisted techniques. The associations of intake of dietary flavonoids with retinal 47 

vessel calibre was examined in linear regression models and general linear model. 48 

Results: The highest quartile of intake was compared with the lowest quartile using multivariable 49 

adjustment models. Participants with the highest proanthocyanidin intake had narrower retinal 50 

venules (223.9±0.62 versus 226.5±0.63, respectively; Ptrend=0.01); and the highest isoflavone intake 51 

was associated with wider retinal arterioles (188.1±0.55 versus 186.3±0.56, respectively; 52 

Ptrend=0.01). The highest apple/pear consumption (a dietary source of catechin) was associated with 53 

narrower retinal venules (223.8±0.57 versus 226.1±0.52; Ptrend=0.01) and wider retinal arterioles 54 

(187.9±0.51 versus 186.2±0.51; Ptrend=0.02). Further, participants who were in the highest versus 55 

lowest quartile of chocolate consumption had ~2.1 m narrower retinal venules (multivariable-56 

adjusted p=0.03). 57 

Conclusions: This study shows that higher intakes of specific flavonoid subclasses are associated 58 

with a favourable retinal microvascular profile. Greater consumption of flavonoid-rich apples/pears 59 

and chocolate was also associated with beneficial variations in retinal vascular calibre.  60 

 61 

Keywords: Blue Mountains Eye Study; flavonoids; retinal vascular calibre. 62 

63 
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Introduction 64 

There is increasing evidence that measures of retinal microvascular health are associated with early 65 

stages of subclinical cardiovascular disease (CVD) and are predictive of clinical CVD events [1-3]. 66 

The retinal microvasculature may provide an integrated assessment of the microvascular 67 

consequences of exposure to vascular insults and may be a valuable prognostic tool in predicting 68 

future CVD risk [1,2,4]. A beneficial retinal microvascular profile is typically characterized by 69 

wider retinal arterioles and narrower retinal venules [1,2,4]. We previously showed that individual 70 

dietary factors associated with CVD risk factors and related events, such as dairy foods, 71 

carbohydrates and overall diet quality, were also independently related to characteristics of the 72 

retinal microvasculature [5-7].  73 

Flavonoids are bioactive compounds found in plant-based foods and beverages such as tea, 74 

chocolate, red wine, fruit, and vegetables [8]. Recent studies indicate that certain dietary flavonoids 75 

positively impact on cardiovascular health via effects on nitric oxide (NO) bioavailability, 76 

endothelial function, blood pressure and chronic inflammation [9-11]. Given that adverse retinal 77 

vascular calibre changes are proposed to reflect inflammation, endothelial dysfunction, and 78 

hypertension [4,12]; the beneficial role of dietary flavonoids may be partly mediated through their 79 

influence on the microvasculature. Further, flavonoids could influence the microvasculature via 80 

vascular endothelial growth factor (VEGF). VEGF has a significant role in the normal retina [13], 81 

for example, VEGF induces vessel dilation and hence, increases ocular blood flow via a mechanism 82 

involving nitric oxide [14]. There is data to suggest that flavonoid compounds e.g. quercetin, inhibit 83 

vascular endothelial growth factor (VEGF)-induced choroidal and retinal angiogenesis in vitro [15]. 84 

Moreover, flavonoid compounds have shown to protect against ocular conditions. Specifically, 85 

intake of anthocyanins was shown to be associated with vision improvement and quercetin intake 86 

was shown to protect against hydrogen peroxide-induced cataracts and diabetes-induced retinal 87 

lesions [16]. Our group also recently showed that intake of hesperidin protected against the 88 

development of late-stage age-related macular degeneration [17].  89 
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To our best knowledge, no prior epidemiological study has investigated the association 90 

between dietary flavonoids and retinal microvascular structure. Therefore, using a large 91 

representative cohort of adults aged 49+ years, we aimed to assess the cross-sectional associations 92 

between flavonoid intakes and retinal arteriolar and venular calibre. Associations were explored for 93 

total flavonoids and major flavonoid subclasses including flavonols, flavan-3-ols, 94 

proanthocyanidins, flavones, flavanones, anthocyanins, and isoflavones. We also explored 95 

associations of flavonoid-rich wholefoods and beverages including tea, apples/pears, oranges/ other 96 

citrus fruits and chocolate.   97 

 98 

Methods 99 

Study population 100 

The Blue Mountains Eye Study (BMES) is a population-based cohort study of common eye 101 

diseases and other health outcomes in a suburban Australian population located west of Sydney. 102 

Study methods and procedures have been described elsewhere [18]. Participants were non-103 

institutionalized residents aged 49 years or older invited to attend a detailed baseline eye 104 

examination after a door-to-door census of the study area. Selection bias at baseline was minimized 105 

after multiple call-back visits that included door-knocking, telephone reminders and letters at 106 

recruitment. During 1992-4, 3654 participants (participation rate of 82.4%) aged >49 years were 107 

examined. Of the 3654 examined at BMES, 3501 had data on retinal vessel calibre. Of these, 2821 108 

had complete dietary data and hence, were included for final cross-sectional analyses. The study 109 

was approved by the Human Research Ethics Committee of the University of Sydney and was 110 

conducted adhering to the tenets of the Helsinki Declaration. Signed informed consent was obtained 111 

from all participants.  112 

 113 

Assessment of flavonoid intake 114 



6 

 

Dietary data were collected using a 145-item self-administered food frequency questionnaire (FFQ). 115 

The FFQ was modified for Australian diet and vernacular from an early Willett FFQ [19] and 116 

includes reference portion sizes. Participants used a 9-category frequency scale to indicate the usual 117 

frequency of consuming individual food items during the past year. Foods listed in the FFQ were 118 

categorized into major food categories and subcategories similar to those used for the 1995 119 

Australian National Nutrition Survey [20]. Estimates of the flavonoid content of foods in the FFQ 120 

were derived from the US Department of Agriculture (USDA) Database for the Flavonoid Content 121 

of Selected Foods [21], USDA Database for the Isoflavone Content of Selected Foods [22, 23] and 122 

USDA Database for the Proanthocyanidin Content of Selected Foods Flavonoid-rich whole foods 123 

were decided upon by choosing the greatest dietary contributors to flavonoid intake for each class 124 

[24]. 125 

The method of computing the flavonoid content of foods was similar to that reported by Ivey 126 

et al. [8]. Specifically, for each food, we computed the intake of each individual flavonoid 127 

compound present in the food, the sum of assessed flavonoids for each flavonoid subclass, by 128 

summing the individual compounds of each flavonoid subclass, and the sum of all flavonoid 129 

intakes, by summing the flavonoid subclasses. A worked example of the flavonoid calculation 130 

(using tea as the example) is provided in the online supplementary material. The flavan-3-ol content 131 

of foods was considered to represent the average of total flavan-3-ol and proanthocyanidin 132 

monomer contents. For foods where only the flavan-3-ol or proanthocyanidin monomer content was 133 

available, the single value provided was used to represent the flavan-3-ol content. The 134 

proanthocyanidin content of foods was calculated by summing the proanthocyanidin dimers, 135 

trimers, 4–6mers, 7–10mers and polymers. Where multiple varieties of a food listed in the FFQ 136 

were reported in the databases, the average flavonoid content of all similar varieties was computed, 137 

consistent with the descriptors used in the FFQ output. Foods in the FFQ that were not in the 138 

flavonoid databases were assumed to contain no flavonoids. Intakes of flavonoid subclasses (in 139 

mg/d) were calculated by multiplying the estimated intake (g edible portion/d) from the FFQ, with 140 
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the flavonoid subclass content (mg/d edible portion) of each food item on the questionnaire. Some 141 

of the food items on the FFQ with multiple ingredients (e.g., pizza) were assigned a weighted value 142 

on the basis of a USDA standard recipe [17].  143 

 144 

Assessment of retinal vascular calibre 145 

Detailed methods for grading the calibre of retinal arterioles and venules are described elsewhere 146 

[25]. Briefly, at the baseline examination, 30° photographs of the macula, optic disc, and other 147 

retinal fields of both eyes were taken, after pupil dilation, using a Zeiss FF3 fundus camera (Zeiss, 148 

Oberkochen, Germany). Methods developed by the University of Wisconsin–Madison [26] were 149 

used to measure the internal calibre of retinal arterioles and venules from digitized photographs. 150 

These were then summarized using established formulas [27] to account for branching patterns and 151 

combine individual calibre measures into summary indices, and are presented as the central retinal 152 

artery equivalent (CRAE) or central retinal vein equivalent (CRVE), representing the mean calibre 153 

of these vessels (Online Supplementary Figure). Intra- and inter-grader reliability of this method 154 

was high [27], with quadratic weighted  values of 0.85 (CRAE) and 0.90 (CRVE) found for inter-155 

grader reliability and between 0.80 to 0.93 and 0.80 to 0.92 for intra-grader reliability of the two 156 

graders, respectively. Vessel diameters for right eyes were used in the analyses.  157 

 158 

Assessment of potential confounders 159 

At face-to-face interviews with trained interviewers, a comprehensive medical history that included 160 

information about demographic factors, socio-economic characteristics and lifestyle factors like 161 

smoking, was obtained from all participants. History of smoking was defined as never, past, or 162 

current smoking. Current smokers included those who had stopped smoking within the past year. 163 

Information on physician-diagnosed history of stroke was also obtained. Body mass index (BMI) 164 

was calculated as weight divided by height squared (kg/m2). Blood pressure was measured using 165 
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standard auscultatory methods. Mean arterial blood pressure (mm Hg) was defined as 0.33×systolic 166 

blood pressure + 0.67×diastolic blood pressure. 167 

 168 

Statistical analysis 169 

SAS statistical software (v9.4, SAS Institute, Cary NC) was used for analyses including t-tests, 2-170 

tests and linear regression. Analysis of covariance (general linear model, GLM) was used to assess 171 

associations between intakes of total flavonoids, flavonoid subclasses and major individual 172 

flavonoid compounds, as well as flavonoid-rich foods and beverages with adjusted means of retinal 173 

arteriolar and venular calibre. The associations of intake of dietary flavonoids with retinal vessel 174 

calibre was examined in linear regression models and GLM, initially adjusted for age and sex, and 175 

then further adjusted for BMI, mean arterial blood pressure, smoking, and history of diagnosed 176 

stroke. Additionally, to assess the retinal vessel calibre while avoiding collinearity between 177 

arteriolar and venular diameters [28], we adjusted arteriolar diameter for venular diameter, and 178 

venular diameter for arteriolar diameter, using the residual method suggested by Willett [29]. 179 

 180 

Results 181 

Study characteristics of the 2821 participants included in cross-sectional analyses are shown in 182 

Table 1. Participants in the lowest versus highest quartile of total flavonoid intake were more likely 183 

to be younger, smokers and have higher BMI and wider retinal venules (Table 1). Table 2 shows 184 

that after adjusting for all potential confounders, increasing isoflavone intake was associated with 185 

significantly wider retinal arterioles (~1.8 m difference; Ptrend=0.01). After multivariable 186 

adjustment, increasing dietary intake of proanthocyanidin (from the first to fourth quartile) was 187 

associated with smaller retinal venules: ~2.6 m difference (Ptrend=0.01). Further, the highest versus 188 

lowest quartile of anthocyanidin (multivariable-adjusted p=0.02) and flavone (multivariable-189 

adjusted p=0.05) intake was associated with significantly narrower retinal venules. Finally, when 190 
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comparing highest versus lowest quartile of isoflavone intake ~2.0 m wider retinal venules was 191 

observed (Ptrend=0.04; Table 3). 192 

Linear regression analyses showed that each mg/day higher dietary intake of 193 

proanthocyanidin was associated with 0.01±0.003 m narrower retinal venules (p=0.02). A 194 

marginally significant and inverse association (multivariable-adjusted p=0.05) was observed 195 

between each mg/day higher intake of anthocyanidin and retinal venular calibre. After 196 

multivariable-adjustment, each mg/day higher intake of isoflavone was associated with: 1) 197 

0.41±0.17 m wider retinal arteriolar calibre (multivariable-adjusted p=0.02); and 2) 0.51±0.19 m 198 

narrower retinal venular calibre (multivariable-adjusted p=0.01).  199 

Regarding key flavonoid compounds within each subclass, a significant association was 200 

observed between the intake of catechins and retinal venular calibre. Specifically, participants in the 201 

highest versus lowest quartile of total catechin intake (i.e. catechin plus epicatechin intake) had 202 

narrower retinal venules, but this was marginally significant: 223.6±0.62 versus 225.3±0.63 m, 203 

respectively (multivariable-adjusted p=0.05). We also investigated associations of the key dietary 204 

contributors to each flavonoid subclass with retinal vascular calibre (Table 4). After adjusting for 205 

potential confounders, participants in the highest versus lowest of tertile of apple/ pear consumption 206 

had: 1) narrower retinal venules: 226.1±0.52 versus 223.8±0.57 m (Ptrend=0.01); and 2) wider 207 

retinal arterioles: 186.2±0.51 versus 187.9±0.51 m (Ptrend=0.02). Participants who were in the 208 

highest versus lowest quartile of chocolate consumption had ~2.1 m narrower retinal venules 209 

(p=0.03; Table 4). No significant associations were observed between the other key flavonoid 210 

compounds within each subclass as well as the other flavonoid-rich foods (oranges/ other citrus) 211 

and beverages (tea, orange juice and red wine) with retinal vascular calibre (Table 4). 212 

 213 

Discussion 214 

This study provides novel epidemiological evidence of significant associations between specific 215 

flavonoid subclasses and retinal vascular calibre, independent of the confounding effects of age, 216 
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sex, body mass, blood pressure and history of stroke. Specifically, a high dietary intake of flavonoid 217 

subclasses including proanthocyanidin, anthocyanidin, and isoflavone in older adults was associated 218 

with beneficial structural variations in the retinal vessel calibre, that is, wider retinal arterioles and 219 

narrower retinal venules. Another unique observation was that higher consumption (≥150.1 g/day) 220 

of apples/pears, a source of catechin in the diet, was independently associated with wider retinal 221 

arterioles and narrower retinal venules in older adults. While chocolate consumption (source of 222 

epicatechin) was significantly and inversely associated with retinal venular caliber. 223 

In the BMES, ~74% of total flavonoid intake was attributed to the flavan-3-ol subclass and 224 

~15% came from the proanthocyanidin subclass, where tea and apples were the major dietary 225 

contributors, respectively [30]. While no significant associations were observed with intakes of 226 

flavan-3-ol and retinal vessel calibre, modest associations were observed with the intake of 227 

proanthocyanidins (catechin oligomers). Furthermore, a significant association was also observed 228 

with the intakes of isoflavone. Specifically, higher intake of these two flavonoid subclasses were 229 

associated with a beneficial retinal microvascular profile, characterized by wider retinal arterioles 230 

and narrower retinal venules. The differing structures and bioactivities of the various flavonoid 231 

subclasses, and the ability to accurately assess intakes from food frequency questionnaires could 232 

explain the varying associations observed between the individual flavonoid subclasses and retinal 233 

vessel calibre in the BMES [8,30]. Even a small structural difference in flavonoids can have a large 234 

impact on their bioavailability [31,32], which may explain why associations were observed with 235 

isoflavone and proanthocyanidin but not with the other flavonoid subclasses. Nevertheless, we 236 

caution that the observed findings could be due to chance. For instance, isoflavone intakes in this 237 

cohort were very low (mean intake of 1.29 mg/day) and soy intake (a major contributor to 238 

isoflavone intake) was likely to be underestimated in the BMES as there were no specific questions 239 

about soy products or tofu.  240 

The physiological influence of dietary parameters such as flavonoids and flavonoid-rich foods 241 

on the retinal microcirculation is likely to be cumulative, long-term and possibly complex [33]. 242 

https://www.sciencedirect.com/topics/medicine-and-dentistry/proanthocyanidin
https://www.sciencedirect.com/topics/nursing-and-health-professions/flavan-3-ol
https://www.sciencedirect.com/topics/medicine-and-dentistry/proanthocyanidin
https://www.sciencedirect.com/topics/nursing-and-health-professions/flavan-3-ol
https://www.sciencedirect.com/topics/medicine-and-dentistry/proanthocyanidin
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Several published studies have shown that following consumption, dietary flavonoids may 243 

contribute to a variety of salutary biological activities in humans [8]. For instance, there is 244 

increasing evidence showing that dietary flavonoids can preserve and enhance nitric oxide status 245 

and improve endothelial function [9-11]. Reduced oxidative stress and improved endothelial 246 

function have previously shown to elicit the dilation of retinal arterioles [34], and thus, could be a 247 

potential mechanism mediating the positive association between higher intakes of flavonoid 248 

subclasses and retinal arteriolar diameter. There is also evidence that dietary flavonoids can 249 

minimize oxidative damage and inflammation [35,36]. Prior studies have documented independent 250 

associations between systemic inflammatory markers (e.g. C-reactive protein and leukocyte count) 251 

and retinal venular calibre [37]. Hence, it is plausible that reduced inflammation is the mechanistic 252 

link between the dietary intake of flavonoid subclasses and retinal venular calibre in older adults. 253 

There is evidence that the cardioprotective effects of apples in the diet is due, at least in part, 254 

to their high flavonoid content [38]. Prior research has shown that higher apple consumption is 255 

associated with lower risk of coronary heart disease mortality and all-cause mortality [39]. 256 

Flavonoid-rich apples are likely to exert these beneficial effects on vascular health by improving 257 

endothelial function and lowering blood pressure, as shown in our prior research [38,40]. Given that 258 

lower blood pressure and reduced endothelial dysfunction are known to be associated with wider of 259 

retinal arterioles and narrower of retinal venules [12] (i.e. favourable structural changes); greater 260 

consumption of apples/ pears by BMES participants could have contributed to the observed 261 

differences in retinal vascular calibre through pathways that involve blood pressure and/or 262 

endothelial function. Chocolate which is another flavonoid-rich food was also significantly 263 

associated with retinal venular calibre (i.e. ~2.1 m narrower diameter) in the BMES. This is in line 264 

with the published literature [41,42] that showed chronic intake of chocolate was associated with 265 

beneficial effects on cardiovascular health - including BP and flow mediated dilatation. 266 

It is now known that retinal arteriolar and venular calibre are associated with clinical 267 

outcomes such as stroke and coronary heart disease, independent of blood pressure and other 268 

https://www.sciencedirect.com/topics/medicine-and-dentistry/apoplexy
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vascular risk factors [12,43]. For example, narrower retinal arteriolar calibre predicts clinical stroke 269 

particularly in people with diabetes, and coronary heart disease mortality in women [44]. While 270 

wider retinal venular calibre is associated with incident coronary heart disease [12]. Our study 271 

findings therefore suggest that the benefits of dietary flavonoids on risk of CVD and on other 272 

outcomes related to vascular health, including hypertension and hyperglycemia [45,46], could 273 

involve the microvasculature as an intermediate pathway. Further longitudinal cohort studies are 274 

warranted to further investigate this hypothesis.  275 

It is important to note that the difference in retinal vascular calibre across quartiles of 276 

flavonoid subclass intake was relatively modest (~2.0 m). However, even these modest reductions 277 

in retinal vessel diameter could still have clinical relevance. Previous studies indicated that even a 278 

1.1 m difference in retinal arteriolar diameter was associated with a 10-mm Hg higher systolic 279 

blood pressure [47]. Further, it is plausible that any measurable change to the retinal 280 

microvasculature (i.e. subtle retinal arteriolar widening) could result in meaningful differences in 281 

CVD risk, given the many studies showing a link between structural changes in retinal arterioles 282 

and CVD events and pathology [12]. Therefore, findings from the BMES provide further support 283 

for the development of health strategies focusing on increasing the intake of dietary flavonoids and 284 

flavonoid-rich foods such as apples and chocolate, which could have salutary effects on both the 285 

micro- and macro-vasculature.  286 

The key strengths of this study are its relatively large population-base sample; the availability 287 

of robust information on potential covariates; the use of a validated FFQ to establish dietary intakes; 288 

and a standardized protocol to obtain computer-assisted measurements of retinal vascular calibre 289 

from digitized fundus photographs. However, there are limitations that require discussion. First, the 290 

cross-sectional design of this study precludes the establishment of causality, although, the most 291 

likely direction of association is that dietary intakes of flavonoids influences the retinal 292 

microvasculature, because the reverse direction of effect (retinal vasculature changes influencing 293 

dietary intake of flavonoids) is unlikely. Second, the FFQ was not designed specifically for 294 
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polyphenols and the database used for the estimation of flavonoid content of foods is based on US 295 

data, thus, the regional variation in flavonoid content of foods was not able to considered in the 296 

present study [31]. Finally, we cannot discount the influence of unmeasured or inadequately 297 

measured confounding factors on observed associations.  298 

In summary, higher dietary intake of specific flavonoid subclasses and greater consumption of 299 

flavonoid-rich apple/pear was associated with a beneficial influence on the retinal microvascular 300 

health of older adults. These epidemiological data are important as changes to the retinal 301 

microvasculature is a marker of microcirculatory health [1,2,4], and the presence of these retinal 302 

microvascular signs would support future development of targeted interventions involving greater 303 

dietary intakes of flavonoids and flavonoid-rich foods.  304 
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TABLE 1 Study characteristics of Blue Mountains Eye Study participants (n=2821) stratified by 444 

intakes of dietary flavonoids. 445 

 Intake of total dietary flavonoid (mg/day)  

Characteristics 

1st quartile  

(≤317.9) 

n=704 

2nd quartile  

(318.2-

796.0) 

n=705 

3rd quartile 

(796.0-

1208.1) 

n=705 

4th quartile  

(≥1208.2) 

n=705 

P-value a 

 

Age 63.5 (8.9) 65.4 (9.4) 66.4 (9.4) 65.5 (8.8) <0.0001 

Male sex 329 (46.7) 308 (43.7) 320 (45.4) 285 (40.4) 0.09 

Current smoking 127 (18.8) 95 (13.8) 84 (12.2) 78 (11.3) 0.0003 

Body mass index, kg/m2 26.5 (4.7) 26.4 (4.6) 25.9 (4.2) 25.9 (4.3) 0.01 

Mean arterial BP, mm 

Hg 

103.3 (12.4) 

104.7 

(12.3) 

104.8 

(12.8) 

104.2 (11.4) 0.09 

History of diagnosed 

stroke 

41 (5.8) 34 (4.8) 31 (4.4) 20 (2.8) 0.05 

Retinal vascular calibre, 

m 

     

Arteriolar calibre 

188.4 (18.9) 

187.2 

(17.8) 

186.8 

(17.7) 

186.4 (18.9) 0.19 

Venular calibre 

227.0 (20.9) 

224.2 

(20.0) 

224.9 

(21.3) 

223.8 (21.2) 0.02 

 Data are presented as means ± SD or n (%).  446 
a Unadjusted p-values from test for heterogeneity across quartiles of intake. 447 
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TABLE 2 Cross-sectional association between tertiles of dietary flavonoid and retinal arteriolar 448 

calibre among study participants (n=2821)   449 

 Mean retinal arteriolar calibre (SE), m 

Dietary intake mg/day (range) Age-sex adjusted Multivariable-adjusted a 

Total flavonoids   

1st quartile (≤317.9), n=705 187.2 (0.55) 187.2 (0.56) 

2nd quartile (318.2-796.0), n=706 187.5 (0.55) 187.6 (0.55) 

3rd quartile (796.0-1208.1), n=706 186.9 (0.55) 186.9 (0.55) 

4th quartile (≥1208.2), n=705 186.8 (0.55) 186.8 (0.55) 

P for trend 0.62 0.59 

Flavonols   

1st quartile (≤18.0), n=705 187.4 (0.55) 187.2 (0.55) 

2nd quartile (18.0-34.2), n=706 187.7 (0.55) 187.7 (0.55) 

3rd quartile (34.2-46.6), n=706 186.9 (0.55) 187.0 (0.55) 

4th quartile (≥46.6), n=705 186.7 (0.55) 186.7 (0.55) 

P for trend 0.39 0.44 

Flavone   

1st quartile (≤0.57), n=705 187.2 (0.55) 186.7 (0.55) 

2nd quartile (0.58-1.03), n=706 187.1 (0.55) 187.1 (0.55) 

3rd quartile (1.03-1.52), n=706 187.3 (0.55) 187.5 (0.55) 

4th quartile (≥1.53), n=705 186.9 (0.55) 187.2 (0.55) 

P for trend 0.78 0.49 

Flavan-3-ol   

1st quartile (≤243.1), n=706 187.4 (0.55) 187.3 (0.56) 

2nd quartile (243.4-729.0), n=706 187.4 (0.55) 187.6 (0.55) 

3rd quartile (729.1-1149.6), n=706 186.8 (0.55) 186.9 (0.55) 
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4th quartile (≥1149.6), n=706 186.9 (0.55) 186.8 (0.55) 

P for trend 0.41 0.34 

Anthocyanidin    

1st quartile (≤2.97), n=705 187.5 (0.55) 187.3 (0.56) 

2nd quartile (2.98-5.58), n=706 188.3 (0.55) 188.5 (0.55) 

3rd quartile (5.58-12.32), n=706 186.1 (0.55) 186.2 (0.56) 

4th quartile (≥12.34), n=706 186.6 (0.55) 186.5 (0.55) 

P for trend 0.15 0.13 

Flavanone   

1st quartile (≤6.59), n=706 187.4 (0.55) 186.9 (0.55) 

2nd quartile (6.64-24.58), n=706 187.2 (0.55) 187.1 (0.55) 

3rd quartile (24.71-47.39), n=706 186.8 (0.55) 187.1 (0.55) 

4th quartile (≥47.42), n=706 187.0 (0.55) 187.4 (0.55) 

P for trend 0.57 0.62 

Isoflavone   

1st quartile (≤0.71), n=706 186.2 (0.55) 186.3 (0.56) 

2nd quartile (0.71-1.00), n=706 186.3 (0.55) 186.3 (0.55) 

3rd quartile (1.00-1.42), n=706 187.7 (0.55) 187.7 (0.55) 

4th quartile (≥1.42), n=706 188.2 (0.55) 188.1 (0.55) 

P for trend 0.003 0.01 

Proanthocyanidin   

1st quartile (≤69.5), n=706 187.1 (0.55) 186.8 (0.56) 

2nd quartile (69.6-117.6), n=706 186.9 (0.55) 187.1 (0.55) 

3rd quartile (117.6-175.4), n=706 186.7 (0.55) 186.6 (0.55) 

4th quartile (≥175.4), n=706 187.7 (0.55) 187.9 (0.55) 

P for trend 0.41 0.21 
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a Further adjusted for fellow retinal vascular calibre, body mass index, smoking, mean arterial blood 450 

pressure, and history of diagnosed stroke. 451 
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TABLE 3 Cross-sectional association between tertiles of dietary flavonoid intake and retinal 452 

venular calibre among study participants (n=2821)   453 

 Mean retinal venular calibre (SE), m 

Dietary intake (mg/day) Age-sex adjusted Multivariable-adjusted a 

Total flavonoids   

1st quartile (≤317.9) 225.6 (0.63) 225.3 (0.64) 

2nd quartile (318.2-796.0) 224.1 (0.63) 223.9 (0.62) 

3rd quartile (796.0-1208.1) 225.1 (0.63) 225.3 (0.63) 

4th quartile (≥1208.2) 224.3 (0.63) 224.6 (0.62) 

P for trend 0.16 0.47 

Flavonols   

1st quartile (≤18.0) 225.1 (0.63) 225.1 (0.63) 

2nd quartile (18.0-34.2) 224.8 (0.63) 224.8 (0.63) 

3rd quartile (34.2-46.6) 224.8 (0.63) 224.9 (0.63) 

4th quartile (≥46.6) 224.3 (0.63) 224.6 (0.63) 

P for trend 0.38 0.74 

Flavone   

1st quartile (≤0.57) 226.0 (0.63) 225.9 (0.63) 

2nd quartile (0.58-1.03) 224.7 (0.63) 224.7 (0.62) 

3rd quartile (1.03-1.52) 224.1 (0.62) 224.2 (0.63) 

4th quartile (≥1.53) 224.3 (0.63) 224.2 (0.63)b 

P for trend 0.07 0.07 

Flavan-3-ol   

1st quartile (≤243.1) 225.4 (0.63) 225.1 (0.64) 

2nd quartile (243.4-729.0) 224.8 (0.63) 224.4 (0.62) 

3rd quartile (729.1-1149.6) 224.3 (0.63) 224.4 (0.63) 
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4th quartile (≥1149.6) 224.6 (0.63) 225.0 (0.62) 

P for trend 0.33 0.93 

Anthocyanidin    

1st quartile (≤2.97) 226.4 (0.63) 225.1 (0.63) 

2nd quartile (2.98-5.58) 224.5 (0.63) 224.8 (0.63) 

3rd quartile (5.58-12.32) 224.3 (0.62) 225.3 (0.63) 

4th quartile (≥12.34) 223.9 (0.63) 223.8 (0.62)c 

P for trend 0.05 0.09 

Flavanone   

1st quartile (≤6.59) 225.5 (0.63) 225.5 (0.63) 

2nd quartile (6.64-24.58) 223.7 (0.63) 223.7 (0.62) 

3rd quartile (24.71-47.39) 224.8 (0.63) 224.8 (0.63) 

4th quartile (≥47.42) 225.0 (0.63) 225.1 (0.63) 

P for trend 0.87 0.74 

Isoflavone   

1st quartile (≤0.71) 225.5 (0.63) 225.6 (0.63) 

2nd quartile (0.71-1.00) 224.8 (0.63) 224.7 (0.63) 

3rd quartile (1.00-1.42) 225.2 (0.63) 225.1 (0.62) 

4th quartile (≥1.42) 223.7 (0.63) 223.6 (0.62) 

P for trend 0.06 0.04 

Proanthocyanidin   

1st quartile (≤69.5) 226.9 (0.62) 226.5 (0.63) 

2nd quartile (69.6-117.6) 224.8 (0.62) 224.6 (0.62) 

3rd quartile (117.6-175.4) 223.8 (0.62) 224.0 (0.63) 

4th quartile (≥175.4) 223.5 (0.62) 223.9 (0.62)  

P for trend 0.0001 0.01 
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a Further adjusted for fellow retinal vascular calibre, body mass index, smoking, mean arterial blood 454 

pressure, and history of diagnosed stroke. 455 
b Significantly different when compared to the 1st tertile of intake: p=0.05 456 
c Significantly different when compared to the 1st tertile of intake: p=0.02457 
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TABLE 4 Cross-sectional linear association between intakes of flavonoid-rich foods and 458 

retinal vascular calibre among study participants (n=2821)   459 

 Adjusted mean retinal vascular calibre (SE), m 

Dietary intake (g/day) Retinal arteriolar calibre a Retinal venular calibre a 

Apple/ Pear   

1st tertile (≤10.4) 186.2 (0.46) 226.1 (0.52) 

2nd tertile (21.1-64.7) 187.4 (0.47) 224.1 (0.54) 

3rd tertile (≥150.5) 187.9 (0.51) 223.8 (0.57) 

P for trend 0.02 0.01 

Oranges   

1st tertile (≤2.50) 186.7 (0.51) 225.1 (0.58) 

2nd tertile (8.75-53.75) 187.0 (0.43) 224.7 (0.48) 

3rd tertile (≥98.75) 187.8 (0.52) 224.5 (0.59) 

P for trend 0.12 0.59 

Orange juice   

1st tertile (≤2.50) 186.8 (0.42) 224.8 (0.48) 

2nd tertile (8.75-17.50) 187.2 (0.61) 224.5 (0.69) 

3rd tertile (≥53.75) 187.4 (0.46) 224.8 (0.52) 

P for trend 0.37 0.95 

Tea   

1st tertile (≤250.0) 187.3 (0.46) 224.8 (0.52) 

2nd tertile (625.0-625.0) 187.2 (0.48) 224.3 (0.54) 

3rd tertile (≥1000.0) 186.8 (0.51) 225.2 (0.58) 

P for trend 0.46 0.69 

Red wine   
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1st tertile (≤0.00) 187.5 (0.36) 225.0 (0.40)  

2nd tertile (2.40-2.40) 187.5 (0.48) 225.1 (0.50) 

3rd tertile (≥8.40) 186.5 (0.45) 224.3 (0.51) 

P for trend 0.07 0.26 

Chocolate   

1st quartile (≤0.00) 187.5 (0.63) 225.9 (0.72) 

2nd quartile (1.00-1.00) 186.9 (0.48) 224.9 (0.55) 

3rd quartile (3.50-3.50) 187.0 (0.62) 224.6 (0.70) 

4th quartile (≥7.00) 187.3 (0.52) 223.9 (0.59) b 

P for trend 0.78 0.06 

a Adjusted for age, sex, fellow retinal vascular calibre, body mass index, smoking, mean 460 

arterial blood pressure, and history of diagnosed stroke. 461 
b Significantly different when compared to the 1st tertile of intake: p=0.03 462 
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