
Title A note on higher spin symmetry in the IIB matrix model with
the operator interpretation

Author(s) Sakai, Katsuta

Citation Nuclear Physics B (2019), 949

Issue Date 2019-12

URL http://hdl.handle.net/2433/246194

Right

© 2019 The Author. Published by Elsevier B.V. This is an
open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by
SCOAP³.

Type Journal Article

Textversion publisher

Kyoto University



Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics B 949 (2019) 114801

www.elsevier.com/locate/nuclphysb

A note on higher spin symmetry in the IIB matrix model 

with the operator interpretation

Katsuta Sakai

Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Received 29 May 2019; received in revised form 7 October 2019; accepted 11 October 2019
Available online 14 October 2019

Editor: Stephan Stieberger

Abstract

We study the IIB matrix model in an interpretation where the matrices are differential operators defined 
on curved spacetimes. In this interpretation, coefficients of higher derivative operators formally appear to be 
massless higher spin fields. In this paper, we examine whether the unitary symmetry of the matrices includes 
appropriate higher spin gauge symmetries. We focus on fields that are bosonic and relatively simple in the 
viewpoint of the representation of Lorentz group. We find that the additional auxiliary fields need to be 
introduced in order to see the higher spin gauge symmetries explicitly. At the same time, we point out 
that a part of these extra fields are gauged-away, and the rest of part can be written in terms of a totally 
symmetric tensor field. The transformation to remove its longitudinal components exists as well. As a result, 
we observe that the independent physical DoF are the transverse components of that symmetric field, and 
that the theory describes the corresponding higher spin field. We also find that the field is not the Fronsdal 
field, rather the generalization of curvature.
© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

To construct the theory of quantum gravity is one of the most important and difficult issues 
in the high-energy physics. When one discuss the issue within the framework of quantum field 
theory, the main obstacle is that there seems a strong tension between the unitarity and renormal-
izability in gravitational degrees of freedom (DoF). There are many attempts to prove the hidden 
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healthiness of quantum gravity in field theory.1 On the other hand, the possibility that there is 
some UV completion of gravity other than ordinary field theory has been considered by numer-
ous physicists. As is well known, string theory is one of the most promising candidate of the 
theory which contains quantum gravity. It describes the quantum graviton interacting other par-
ticles consistently. The shortage of the theory is that the spacetime is regarded as a coherent state 
of the graviton on some background, and it does not completely explain the quantum dynamics 
of the spacetime. This problem is expected to be overcome by non-perturbative formulation of 
string theory.

The IIB matrix model [2,3] is one of the candidates. It can be a constructive formulation of 
type IIB string theory. The matrix model is defined without a spacetime, and the DoF in it are 
several matrices. Nevertheless, it contains abundant physics involving string theory and space-
times. The model correctly describes the force between parallel D-branes [2], and reproduces 
the light-cone Hamiltonian of string field theory [4]. The spacetime emerges from the matrices. 
The emergent spacetime and the symmetry is discussed in [5,6]. It was reported in [7,8] that a 
(3+1)-dimensional expanding universe appears from the path integral of the IIB matrix model, 
and the detailed feature about it has been studied [9–11]. As for the fermionic sector, chiral zero-
modes are induced with a particular backgrounds [12,13]. On the other hand, noncommutative
spacetimes can emerge as well. They are solutions of the equations of motion in the model, and 
one can regard some parts of the fluctuations on them as the emergent gravity [14–16].2

Despite these variety of results, there is a room for discussion about the physical interpre-
tation of the matrices. The most studies of the matrix model, like those mentioned above, treat 
the matrices as a “coordinate DoF.” It means that the expectation values or eigenvalues of the 
matrices are regarded as the coordinates in a flat spacetime, the existence of which is assumed. 
In this viewpoint, the distribution of such values forms some objects (strings, branes, universes, 
etc.) embedded in the flat spacetime. However, this interpretation is not the unique one with 
which one deals with the matrix model. Looking back on the form of the IIB matrix model, it is 
the large-N reduction of super Yang-Mills theory. Roughly speaking, it implies that the DoF of 
the gauge field absorb their momenta. Then another natural option is to interpret the matrices as 
“momenta DoF,” and treat them as derivatives defined on some manifold. We call it the operator 
interpretation.

This interpretation was originally proposed in [20,21]. One of its advantage is that one can 
obtain from the equations of motion curved spacetimes, on which the matrices as derivatives 
defined. Therefore it gives a background-independent formalism of emergent spacetimes in a 
self-consistent manner. Moreover, the U(N) symmetry of the matrices are translated into a lot of 
symmetries of local fields, including diffeomorphism and local Lorentz symmetry. These facts 
suggest that the matrix model in the operator interpretation contains the DoF to describe the 
spacetime and gravity. On the other hand, one has to introduce many DoF, which, written in 
terms of local fields, formally appears to be massless higher spin fields. Although the U(N)

symmetry of the matrix model allows terms which are translated into mass terms for those fields, 
the quantum correction does not induces them at least one-loop level in the IIB matrix model [22].

It is not clear whether these fields are actually physical DoF, and whether there are gauge 
symmetries which eliminate their potentially dangerous components, such as the longitudinal 
components of a vector field. In this paper, we investigate the symmetry of higher spin fields in 

1 For example, asymptotic safety of gravity has been studied since [1].
2 Some investigation of this scenario was made in [17] with the simplest background, i.e. noncommutative plane. Some 

other background provides more sophisticated dynamics [18,19].
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some class, and see that the auxiliary fields need to be introduced in order to close the gauge trans-
formation. There are gauge symmetries to remove the longitudinal components of the would-be 
spin-s field and parts of the auxiliary fields. In addition, we pose some generalization of torsion-
free conditions, which enable us to rewrite the rest parts of the auxiliary fields in terms of the 
physical field. As a result, we see that when we focus on the spin-s fields, the gauge symme-
tries and the torsion-free conditions leave the transverse components of the fields in the totally 
symmetric representation.

The paper is organized as follows. In Section 2, we have a review of the operator interpretation 
of the matrix model. Its properties and advantages are explained. In Section 3 we study the higher 
spin symmetry in the IIB matrix model. This is our main analysis and observation. In Section 4, 
we discuss the symmetry at the level of dynamics. Finally in Section 5, we summarize the work 
and give some discussion.

2. A review of the operator interpretation of the matrix model

In this section, we quickly review the operator interpretation. For the detail see [20,21].
In the operator interpretation, one defines matrices as operators which act on some functional 

space. They are written as integral kernels. One can formally expand them to get an infinite series 
of differential operators. For example, when one considers operators acting on C∞(Rd), a matrix 
K is represented as

K ∈ End(C∞(Rd)),

f (x) �→ (K · f )(x) =
∫

Rd

ddyK(x, y)f (y)

=
∫

Rd

ddy
[
k(y) + kμ(y)∂μ + kμν(y)∂μ∂ν + · · · ] δ(x − y)f (y)

= [
k(x) + kμ(x)∂μ + kμν(x)∂μ∂ν + · · · ]f (x). (1)

In this sense, we interpret matrices as differential operators. When one discuss the choice of the 
functional space, one has to consider the concrete model and be careful in the physical picture.

In this paper we consider the IIB matrix model, the action of which is defined as

SIIB = − 1

g2 Tr

(
1

4
[Aa,Ab]2 + 1

2
�̄�a[Aa,�]

)
. (2)

Here, Aa and � are N × N hermitian matrices with Lorentz and spinor indices, respectively. 
In this model, we attempt to treat them as differential operators with the indices, which act 
on the functional space defined on some curved spacetime manifold M. Naively, it appears to 
be realized by representing Aa and � as Eq. (1), with derivatives replaced by the covariant 
derivatives and the indices reinterpreted as those for the local Lorentz transformation:

Aa : f (x) �→ (Aa · f )(x)

=
[
aa(x) + 1

2
[aa

μ(x) i∇μ]h + 1

2
[aa

μν(x) i∇μ i∇ν]h + · · ·
]
f (x), (3)

where f (x) ∈ C∞(M), and [ ]h is an order-symmetrized product introduced to guarantee the 
hermicity of the matrix; [X1X2 · · ·Xn] := X1X2 · · ·Xn + Xn · · ·X2X1.
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However, the above treatment actually faces some obstacles. There are two problems involv-
ing the explicit indices of the matrices. First, the operation of the matrix adds to a function the 
Lorentz index, and changes their representation of Lorentz group. Thus the operation of a matrix 
is not closed on the functional space of the specific representation. Even when one considers the 
space of functions of all representation, one cannot consider invertible operators since acting a 
matrix is always increase the rank of representation. It means that we cannot interpret matrices 
as endmorphisms on the space, conflicting to the fact that the matrices themselves are so.

Another problem is that the operator in the right hand side of Eq. (3) should be a vectorial 
operator. On a curved manifold, components of a vector is first defined in each local coordinate 
patch, and is then glued with a transition function in the overlap regions, to form a vector consis-
tently. In contrast, each matrix such as A1, A2 or A3, is defined independently. This fact indicates 
that Aa should not be regarded as a vector.

In order to overcome these difficulty, we introduce the principal SO(d − 1, 1) bundle Eprin
the base space of which is the curved spacetime M.3 Locally, the bundle is written as the direct 
product of M and the Lorentz group G = SO(d − 1, 1). Then functions on it depend on the 
coordinates of spacetime x and those of Lorentz group g. They are in the regular representation 
of the Lorentz group:

f (x,g) ∈ Eprin, (4)

G � h : f (x,g) �→ (h · f )(x, g) = f (x,h−1g) (5)

The important property of the regular representation is that the tensor product of it and arbitrary 
irreducible representation is isomorphic to the direct sum of the regular representations. When
we denote the vector space for the regular representation and an irreducible representation as 
Vreg and Vr, respectively, the property is written as

Vr ⊗ Vreg 	 Vreg ⊕ · · · ⊕ Vreg. (6)

Here the number of Vreg in the right hand side is the same as the dimension of Vr. In terms of the 
functions on Eprin, this isomorphism is realized as below. When we denote the function in the 
product representation as fi(x, g), with i being the index for r-representation, its transformation 
law is written as

G � h : fi(x, g) �→ R
〈r〉j
i (h)fj (x,h−1g). (7)

Here, R〈r〉j
i (h) is the Lorentz group matrix in r-representation. Then, the isomorphism is realized 

by separating the matrix from the function:

fi(x, g) =: R〈r〉(j)
i (g)f ′

(j)(x, g) (8)

Here, f ′
(i) belongs to the regular representation, and R〈r〉(j)

i (g) plays a roll of Crebsh-Gordan 
coefficients. The components for index (i) do not mix by the Lorentz transformations. Indeed, 
since f ′

(i)(x, g) = R
〈r〉j
(i) (g−1)fj (x, g), its transformation law is given by

f ′
(i)(x, g) �→ (R〈r〉(g)−1)(i)

j (h · f )j (x, g)

= R
〈r〉 j

(i) (g−1)R
〈r〉k
j (h)fk(x,h−1g)

3 To be exact, one have to introduce Spin(d) bundle. In this paper, the difference is not important since we discuss the 
local property of the group only.
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= R
〈r〉 j

(i) ((h−1g)−1)fj (x,h−1g)

= f ′
(i)(x,h−1g). (9)

In the following, we represent indices that are not affected by the transformation with parenthe-
ses, such as (i).

With the above statement for the regular representation, it is easy to see that one can interpret 
matrices as differential operators acting on C∞(Eprin), with indices in parentheses. We rewrite 
Aa in the matrix model Eq. (2) as Â(a),

SIIB = − 1

g2 Tr

(
1

4
[Â(a), Â(b)]2 + 1

2
�̄�a[Â(a),�]

)
, (10)

and the matrices take the form of

Â(a) = R
〈v〉 b
(a) (g−1)Ab(x, g), (11)

Ab(x, g) = ab(x, g) + 1

2
[ab

μ(x, g) i∇μ]h + 1

2
[aa

μν(x, g) i∇μ i∇ν]h + · · · . (12)

With R〈v〉 b
(a) is the matrix of the vector representation. This operator does not change the represen-

tation of functions (from the regular representation to itself). Therefore Â(a) ∈ End(C∞(Eprin)). 
Furthermore, each component of Â(a) is a scalar operator, in the sense that they do not mix under 
the Lorentz transformation, and hence under the operation of the transition function. Thus each 
of the operators Â(1), Â(2), · · · is independently defined, as each matrices should be.

Once we adopt such a interpretation, it is natural that we extend the class of operators to 
that of the general derivative operators defined on Eprin. It means that we deal with operators 
involving the derivatives with respect both to the spacetime and Lorentz group coordinates. The 
latter is equivalent to the Lorentz generators for the regular representation Ocd . Then we identify 
Ab(x, g) in Eq. (12) to the operators of the following form:

Ab(x, g) =ab(x, g) + 1

2
[ab

μ(x, g) i∇μ]h + 1

2
[aa

μν(x, g) i∇μ i∇ν]h + · · ·

+ 1

2
[ab

cd(x, g)Ocd ]h + 1

2
[ab

μcd(x, g)Ocd i∇μ]h + · · ·

+ 1

2
[ab

cc′dd ′
(x, g)Ocd Oc′d ′ ]h + · · · . (13)

Moreover, it is notable that each field such as ab(x, g) and ab
μ(x, g) is decomposed to the infinite 

series of the field in the representation that is the product of irreducible ones and their conjugates:

ab(x, g) =
∑

r:irreducible

R
〈r〉 j
i (g)abj

i(x) (14)

As a result, we obtain a numerous infinite number of fields in various representation.
The advantage of the operator interpretation is that we can describe curved spaces in a 

background-independent manner. In the following, we focus on the bosonic part of the IIB matrix 
model Eq. (10), i.e. we restrict the analysis with the condition � = 0. When we take an ansatz 
Aa(x, g) = i∇a , the equations of motion is rewritten as

[Â(b), [Â(b), Â
(a)]] = 0

⇔ [Ab, [Ab,A
a]] = 0
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⇔ [∇b, [∇b,∇a]] = 0

⇔ ∇cRdaOcd − Raμ∇μ = 0

⇔ Rab = 0. (15)

Here Rab is the Ricci tensor, and thus we have obtained the vacuum solutions of Einstein 
equation. This solution settles the base spacetime of Eprin self-consistently. If we add to the 
ansatz a field in the vector representation, Aa(x, g) = aa(x) + i∇a , we can show that the EOM 
for aa(x) is Maxwell equation on the base spacetime.

Another important advantage of the interpretation is that the model possesses the manifest 
symmetries including those of the diffeomorphism and local Lorentz. Eq. (10) has U(N) sym-
metry, δÂ(a) = i[Â(a), �] with � being an hermitian matrix. Rewriting it in terms of operators 
and choosing the specific form of �, we obtain such symmetries. For example, let us treat the 
spacetime DoF with the parametrization

Aa(x, g) = i∇a = iea
μ(∂μ + iωμ

cdOcd). (16)

When we choose the transformation parameter as λ = (1/2)[λμ(x) i∂μ]h, then the transformation 
laws for each field are given by

δea
μ = −λν∂νea

μ + ea
ν∂νλ

μ, (17)

δωμ
cd = −λν∂νωμ

cd . (18)

On the other hand, another choice of the parameter λ = λc′d ′
(x)Oc′d ′ yields the transformation 

laws below:

δea
μ = −λa

beb
μ, (19)

δωμ
cd = ∂μλcd + 2λ[c

eωμ
d]e. (20)

The square bracket represents anti-symmetrization of the indices. These transformation laws al-
low us to identify ea

μ and ωμ
cd to the vielbein and spin connection, respectively. At the same 

time, the transformations are diffeomorphism and local Lorentz transformation, respectively. 
When one consider the vector field aa(x), it transforms as an U(1) gauge field δaa = −∂aλ

with the gauge parameter � = λ(x).
The two advantages suggest that we can describe the spacetime and gravity DoF by the IIB 

matrix model in the operator interpretation. In this interpretation, the effective action takes the 
form of a polynomial of what we usually treat as an action [23]. That unusual effective action 
is supposed to yield the solution of fine-tuning problem [24–26]. Note that the matrix model 
contains infinitely many fields. They are generically of higher-rank representation, and are all 
massless at the tree level or in the presence of the supersymmetry [22]. Therefore, we expect 
them to be massless higher-spin fields with appropriate gauge symmetry.

3. Higher spin gauge symmetries in the IIB matrix model

Although the IIB matrix model is likely to contain higher spin fields, it remains to be jus-
tified that they describe physically healthy DoF. More concretely, it is unclear so far whether 
there are abundant gauge DoF in U(N) transformation of matrices to eliminate the longitudinal 
components of the fields. In this section, we investigate such aspect of the matrix model. In the 
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following, we focus on a restricted class of the fields, namely the bosonic fields that are inde-
pendent of group coordinates g. Thus they are not in the product representation of the tensor one 
and the regular one.

In our analysis, we treat operators in the “semi-classical limit.” Namely, we replace the deriva-
tives with some c-numbers and define a Poisson bracket corresponding the commutator:

∂μ → pμ, Oab → tab, (21)

i[·, ·] → {·, ·},
{pμ,xν} = δν

μ,

{tab, gij } = i(Mabg)ij , {tab, ta′b′ } = ifab,a′b′,cd tcd . (22)

Here Mab denotes the Lorentz generator in the fundamental representation, and fab,a′b′,cd tcd is 
the structure constant. This limit enables us to ignore the order of the derivatives and coordinates 
in the expansion of Aa(x, g), and simplifies the analysis.

In the ordinary field theory, a massless spin-s field is described by a rank-s symmetric double-
traceless tensor field [27]:

aμ(s)(x) s.t. a
ν1ν2

ν1ν2μ(s−4) = 0, (23)

where μ(s) denotes the symmetrized indices (μ1 · · ·μs).4 The gauge transformation of it is writ-
ten as

δaμ(s) = ∂μλμ(s−1) (24)

with λμ(s−1) is a rank-(s − 1) symmetric traceless tensor parameter. We formally express the 
symmetrized indices the same letter.

Naively, it seems natural that a spin-s field in the flat spacetime background is described in 
the operator interpretation as

Aa = pa + aaμ(s−1)(x)pμ(s−1), (25)

where pμ(s−1) := p(μ1 · · ·pμs−1). The first term in Eq. (25) is for the background. We attempt to 
find the appropriate gauge transformation for the field. First, the most simple gauge parameter 
we have is the following form:

� = λμ(s−1)(x)pμ(s−1), (26)

which realizes the transformation

δÂ(a) = {Â(a),�}
⇔ δaaμ(s−1) = ∂aλμ(s−1) + O(a × λ). (27)

In the analysis, we will ignore the second term in the right hand side of Eq. (27). Although the 
validity of it needs to be analyzed, in this paper we assume that the discussion around the elim-
ination of the DoF can be held focusing only on the inhomogeneous term. Of course, Eq. (27)
is not sufficient for the elimination of the longitudinal components of aaμ(s−1), because it in-
cludes non-totally symmetric tensor components. It comes from the fact that aaμ(s−1) behave 

4 In the spin-3 case, any tracelessness is not imposed.



8 K. Sakai / Nuclear Physics B 949 (2019) 114801

Fig. 1. The representational structure of the field. The bar between the indices in the field denotes the tensor product, 
as mentioned below. The field is of a tensor product of vector representation and rank-(s − 1) symmetric one. It is 
decomposed into rank-s symmetric representation and the rest “hook-type” one. Note that all the representations contain 
the trace part, and they are reducible.

as the product representation of the vector one (having the index a) and rank-(s − 1) symmet-
ric tensor one (μ(s − 1)). The representation is decomposed into two representations and their 
traces (Fig. 1). The extra components are the two-row representation tensor, characterized by the 
second tableaux in Fig. 1.

In terms of the field, we rewrite aaμ(s−1) as aa|μ(s−1) and the decomposition as

aa|μ(s−1) = haμ(s−1) + ba,μ(s−1). (28)

From now on, we separate the indices for tensor products by bars, and for different rows in the 
Young tableaux by commas. The sequence of indices without commas or bars are symmetric.

The problem is whether there is any gauge transformation to remove ba,μ(s−1). We take a new 
gauge parameter in the following form:

� = λμ(s−1)pμ(s−1) + λc,dμ(s−2)tcd pμ(s−2). (29)

With this parameter we get the transformation law as below:

δAa = ∂aλμ(s−1)pμ(s−1) − 1

2
(λa,μ(s−1) − λμ,aμ(s−2))pμ(s−1) + ∂aλc,dμ(s−2)tcd pμ(s−2).

(30)

In terms of the fields this is written as

δhaμ(s−1) = ∂(aλμ(s−1)), (31)

δba,μ(s−1) = − s

2(s − 1)
λa,μ(s−1) + (∂aλμ(s−1))P (s−1,1). (32)

In the above equations, P (m, n) represents the projection into the representation for the Young 
tableaux which consists of an m-boxes row and an n-boxes row. The coefficient s/(s−1) appears 
from the normalization of the projection, (λa,μ(s−1))P (s−1,1) = λa,μ(s−1). Eq. (32) indicates that 
we can remove all the components of ba,μ(s−1) by this transformation. Furthermore, we can 
remove the longitudinal components of totally symmetric tensor aaμ(s−1) with ba,μ(s−1) kept 
zero by choosing λa,μ(s−1) appropriately.

However, Eq. (30) includes the extra change of Aa , i.e. the third term on the right hand side. 
In order to close the transformation law, it is necessary to introduce new DoF. Therefore we are 
forced to consider the operator of the following form:

Aa = pa + aa|μ(s−1)(x)pμ(s−1) + ωa|c,dμ(s−2)tcd pμ(s−2), (33)

where ωa|c,dμ(s−2) is an additional field. Then we have again the problem of whether ωa|c,dμ(s−2)

can be removed by any gauge transformation.
Before discussing the gauge transformation, note that ωa|c,μ(s−1) is seen as a higher spin 

counterpart for the spin connection. In the spin-2 case, the spin connection ωa|b,c is written in 
terms of vielbein through the torsion-free condition
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T a|bc = ∂bec|a − ∂ceb|a + ωc|d,aed|b − ωb|d,aed|c = 0. (34)

Keeping this fact in mind, we shall pose the generalized torsion-free condition:

2(s − 1)

s
(∂bac|μ(s−1) − ∂cab|μ(s−1)) + ωb|c,μ(s−1) − ωc|b,μ(s−1) = 0. (35)

In spin 2 case, this coincides with Eq. (34) with the vielbein being small fluctuation around the 
flat space. The general solution of Eq. (35) is written as

ωa|b,μ(s−1) = s − 1

s

(
∂baa|μ(s−1) − ∂aab|μ(s−1) + ∂baμ|aμ(s−2) − ∂μab|aμ(s−2)

+ ∂aaμ|bμ(s−2) − ∂μaa|bμ(s−2)
)

+ ζ ab,μ(s−1), (36)

where ζ ab,μ(s−1) is an arbitrary tensor corresponding to the Young tableaux whose two rows 
consist of (s − 1) and 2 boxes, respectively. Therefore the additional field ωa|b,μ(s−1) is written 
with aa|μ(s−1) through the above equation, except for components of ζ ab,μ(s−1).

Fortunately, it is possible to eliminate ζ ab,μ(s−1) by another gauge transformation, we choose 
a gauge parameter of the form below:

� = λμ(s−1)pμ(s−1) + λc,dμ(s−2)tcd pμ(s−2) + λc(2),d(2)μ(s−3)t2
cd pμ(s−3), (37)

with the notations are defined as

tncd := tc1d1 · · · tcndn . (38)

The gauge transformation of Aa is then

δAa = ∂aλμ(s−1)pμ(s−1) − 1

2
(λa,μ(s−1) − λμ,aμ(s−2))pμ(s−1)

+ ∂aλc,dμ(s−1)tcd pμ(s−2) − 1

2
(λac,dμ(s−2) − λμc,adμ(s−3)

+ λca,dμ(s−2) − λcμ,daμ(s−3))tcd pμ(s−2)

+ ∂aλc(2),d(2)μ(s−3)t2
cd pμ(s−3), (39)

hence

δaa|μ(s−1) = ∂aλμ(s−1) − s

2(s − 1)
λa,μ(s−1), (40)

δωa|c,dμ(s−2) = ∂aλc,dμ(s−2) − s

4(s − 2)
λac,dμ(s−2). (41)

Eq. (40) is equivalent to Eqs. (32), while Eq. (41) is consistent with the imposed condition 
Eq. (35). As a result, a part of ωa|c,dμ(s−2) can be removed by the second term in Eq. (41), 
and the rest part is written in terms of aa|μ(s−1). Therefore, there is no independent DoF in 
ωa|c,dμ(s−2).

Due to the last term in Eq. (39), we have to introduce further additional field in order to close 
the gauge transformation. Remarkably, the present discussion is somewhat similar to that of the 
higher spin gauge theory in form language [28].5 In the viewpoint of the gauge transformation, 
we find that the present analysis can be done almost in parallel with the study in [30], although 

5 For a review see [29].
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the generalized torsion-free conditions are different. Therefore, we state the discussion briefly. In 
order to close gauge transformation completely, we have to consider the operator of the following 
form:

Aa = pa + aa|μ(s−1)pμ(s−1) +
s−1∑
n=1

ωa|c(n),d(n)μ(s−1−n)t n
cd pμ(s−1−n) (42)

Appropriate gauge parameter is given by

� = λμ(s−1)pμ(s−1) +
s−1∑
n=1

λc(n),d(n)μ(s−1−n) t n
cd pμ(s−1−n), (43)

which leads to the transformation laws

δaa|μ(s−1) = ∂aλμ(s−1) − s

2(s − 1)
λa,μ(s−1), (44)

δωa|c(n),d(n)μ(s−1−n) = ∂aλc(n),d(n)μ(s−1−n)

− s

2n(s − 1 − n)
λac(n),d(n)μ(s−1−n). (1 ≤ n ≤ s − 2), (45)

δωa|c(s−1),d(s−1) = ∂aλc(n),d(n). (46)

Now we impose a set of generalized torsion-free conditions

2n(s − 1 − n)

s
(∂aωb|c(n),d(n)μ(s−1−n) − ∂bωa|c(n),d(n)μ(s−1−n))

+ ωa|bc(n),d(n)μ(s−1−n) − ωb|ac(n),d(n)μ(s−1−n) = 0. (1 ≤ n ≤ s − 2) (47)

Due to this equations, a part of each extra fields ωa|c(n),d(n)μ(s−1−n) is written in terms of the 
“lower” extra fields recursively. At the same time, the rest part of ωa|c(n),d(n)μ(s−1−n) can be 
removed with the gauge transformation, in particular with the second term in Eq. (45). As for 
the highest extra field ωa|c(s−1),d(s−1), there is no gauge parameter with which we can eliminate 
the DoF of the field. However, the generalized torsion-free condition for it can be solved and the 
whole part of it is expressed with ωa|c(s−2),d(s−2)μ without ambiguity:

ωa|bc(s−2),d(s−1) = −1

2

[
∂aωb|c(s−2),d(s−1) − ∂bωa|c(s−2),d(s−1)

− (s − 1)
(
∂dωa|c(s−2),bd(s−2) − ∂aωd|c(s−2),bd(s−2)

− ∂bωd|c(s−2),ad(s−2) − ∂dωb|c(s−2),ad(s−2)

+ ∂dωa|bc(s−3),cd(s−2) − ∂aωd|bc(s−3),cd(s−2)
)]

(48)

In the derivation of the above equation, we have made use of the Bianchi identity

ωa|c(s−1),cd(s−2) = ωa|dc(s−2),d(s−1) = 0, (49)

and a relation which is derived from it,

ωa|dc(s−2),bd(s−2) = − 1

s − 1
ωa|bc(s−2),d(s−1). (50)
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The fact that the ωa|c(s−1),d(s−1) can be solved is on the same foot as that the spin connection 
can be solved in terms of the vielbein.

According to these discussion, we can conclude that ba,μ(s−1) and all the extra fields 
ωa|c(n),d(n)μ(s−1−n) are eliminated either with gauge transformation or with generalized torsion-
free condition. In this sense, the extra fields are auxiliary fields. Furthermore, we can still 
remove the longitudinal component of haμ(s−1) by an appropriate gauge transformation. It is 
driven both by the parameter λμ(s−1) and the higher rank parameters λc(n),d(n)μ(s−1−n). The 
former removes the longitudinal components directly, while the latter compensate the change 
in ωa|c(n),d(n)μ(s−1−n) and keep them zero. Therefore, we are left the transverse component of 
haμ(s−1) as the only physical DoF.

After gauge-fixing and eliminating fields except haμ(s−1), the matrices take the following 
form:

Aa = pa +
s−1∑
n=0

1

n!∂
c(n)hd(n)aμ(s−1−n)tncd pμ(s−1−n). (51)

On the other hand, the explicit form of the residual gauge degrees of freedom which remove the 
longitudinal components of haμ(s−1) is written as

� =
s−1∑
n=0

s − n

n! ∂c(n)λd(n)μ(s−1−n)tncd pμ(s−1−n). (52)

Then we find that the unitary transformation of matrices is equivalent of a higher spin gauge 
transformation:

δAa = {Aa,�} ⇔ δhaμ(s−1) = ∂(aλμ(s−1)). (53)

Here haμ(s−1) does not belong to an irreducible representation, since it contains the trace part. 
In this respect, there is some difference between the field and the ordinary higher spin fields, 
which satisfies the double-traceless condition Eq. (23). In the ordinary case, the condition is 
required to make the theory gauge-invariant, with the gauge parameter being traceless. As for 
our case, we already have gauge invariance with the traceful field haμ(s−1) and the parameter 
λμ(s−1). Thus we need no further condition. The longitudinal traceless part is removed by gauge 
transformation, since λμ(s−1) is traceful. Therefore, we have no positivity-violating component, 
though it is unclear whether the lower spin fields as the trace parts can be eliminated.

4. Equations of motion for higher spin fields

In the previous section, we have discussed the higher spin symmetry in the kinematical as-
pect. In other words, what we have shown is that the unitary transformation of the matrices, 
when translated into terms of derivative operators, includes gauge transformations, and that they 
remove components of fields except the transverse ones of totally symmetric part.

However, the transformation law for the totally symmetric field is somewhat different from the 
Fronsdal theory, due to absence of traceless conditions both for the field and for gauge parameter. 
Therefore there emerges one question: in what form the equations of motion are. Even in the free 
part, we do not expect it to be the Fronsdal operator. Apparently it conflicts with the existence of 
higher spin symmetry. In this section we explicitly write down the equations of motions for the 
field and discuss their structure.
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In this paper we truncate the interaction part. It is still worth analyzing since the ordinary 
higher spin field theory is established rigorously as free field theory.

We shall expand the equations of motion for matrices by substituting Eq. (51):

0 ={pb + Ab, {pb + Ab,pa + Aa}}
∼{pb, {pb,Aa}}
=

[
∂c(s−2)

(�haμd(s−2) − 2∂b∂(ahb
μ)d(s−2) + ∂a∂μh̄d(s−2)

)]
t s−2
cd pμ

+
[
∂c(s−1)

(
∂b∂ahb

d(s−1) − �had(s−1)
)]

t s−1
cd , (54)

where h̄d(s−2) = hb
bs(s−2). It is remarkable that the coefficients of tncdpμ(s − 1 − n) (0 ≤ n ≤

s − 3) vanish, leaving the two equations (neglecting the interaction):

∂c(s−2)
(�haμd(s−2) − 2∂b∂(ahb

μ)d(s−2) + ∂a∂μh̄d(s−2)
)

= 0, (55)

∂c(s−1)
(
∂b∂ahb

d(s−1) − �had(s−1)
)

= 0. (56)

Here we emphasize that the indices of c’s and d’s are symmetrized respectively, while the two 
types of indices are antisymmetrized. Note that Eq. (56) is obtained from Eq. (55) by taking a 
derivative ∂ν and antisymmetrizing μ and ν. Therefore, we have derived a single equation of 
motion for the higher spion field.

Eq. (55) is different from the Fronsdal equation, or equivalently, from the vanishing condition 
of the Fronsdal operator:

�haμd(s−2) − 2∂b∂(ahb
μd(s−2)) + ∂(a∂μh̄d(s−2)) = 0. (57)

Rather, Eq. (55) can be understood as a vanishing condition of a kind of curvature, the equation 
can be written as

ηccR
c(s),d(s) = 0, Rc(s),d(s) = ∂c(s)hd(s). (58)

In the viewpoint of symmetry, Rc(s),d(s) corresponds to the Young tableaux of two rows, both 
of which consist of s boxes. This quantity is the generalization of the (linearized) Riemann 
curvature, that was discussed in [31]. It is the only gauge-invariant quantity without the traceless 
conditions. Thus the appearance of the generalized curvature in the equations of motion is consis-
tent, since we have higher spin symmetry without traceless conditions. Moreover, in s = 2 case, 
the above equation is nothing but the Rich-flat condition obtained in Eq. (15). This coincidence 
is reasonable because we need neither double-tracelessness for the field, nor the tracelessness for 
the gauge parameter, in the higher spin case, we conclude that the higher spin field is not the 
Fronsdal field, but the generalized curvature field.

On the other hand, once we take the interaction into account, the analysis will get far com-
plicated. In the free part of the equations of motion, we obtained the vanishing condition of a 
derivative operator of degree-(s − 1). However, in the presence of the interaction terms coming 
from products of the second term in Eq. (51), the degree of the derivative operator increases, to 
2s − 3 at most. In that case, we have many independent equations since all the coefficients of a 
degree-(2s − 3) derivative operator must vanish. Moreover, as long as we consider a single field 
of spin s only, most of those equations should be regarded as some constraints on the interaction 
terms. One way to avoid it is to introduce new fields and to make each equation contain free 
kinetic terms for the field. It is likely that a true consistent description is obtained only when 
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we take into account fields of all spin at the same time, it is equivalent to considering the most 
general derivative operators of infinite degree, without any truncation.

5. Summary and discussion

In this paper, we have studied whether the IIB matrix model contains higher spin fields in 
its DoF. In particular, we have analyzed the matrix model with the operator interpretation, and 
have investigated the gauge transformations which emerges from the U(N) transformation of the 
matrices. Although the class of fields discussed in this paper has been limited, we have found that 
there is higher spin gauge transformations for them. In order to close the gauge symmetries, we 
have had to introduce many additional DoF. We can, however, remove the parts of unnecessary 
and positivity-violating components by suitable gauge transformations. As for the rest parts, 
we can rewrite them in terms of the totally symmetric part of the original field, haμ(s−1). This 
field is the sole independent DoF of spin-s. Furthermore, there is another gauge transformation 
that removes its longitudinal components. As a result, we have the appropriate spin-s field with 
transverse components. We also have shown that the field is not Fronsdal field, but the generalized 
curvature.

There are many aspects that remain to be analyzed. Our present study has been rather qual-
itative and more concrete analysis is needed. First, the structure of interaction terms has to be 
analyzed. As we have stated in the last of the previous section, the interaction terms generate nu-
merous term as a derivative operator in the equations of motion, all of which have to vanish at the 
same time. Although it is desirable to include fields of arbitrary spin and their interactions in the 
formulation (otherwise there emerge many constraints in the interaction, and they probably leads 
to inconsistency). Such formulation is too complicated to study by directly expanding matrices 
as derivative operators. A new method to investigate needs to be established. Related to this is-
sue, it is remarkable that the higher spin gauge transformation in the matrix model includes both 
homogeneous and inhomogeneous terms. Our study has focused on the inhomogeneous term 
only, since we have examined whether there are sufficient gauge parameters to eliminate un-
wanted components. The exact gauge symmetries are far complicated, and it enables the model 
to include interaction terms. The relationship to the various no-go theorems that prohibit the ex-
istence of interacting higher-spin particles needs to be analyzed as well. Further investigation 
is required. The analysis of higher spin symmetries for a general class of fields is another open 
question. As reviewed in Section 2, the essential part of the operator interpretation is actually 
the introduction of the principal bundle. Although we have dealt with the zero modes in the fiber
direction, aa|μ(s−1)(x, g×), the study on symmetries of general fields are a future work. The sta-
bility, which seems to be put in danger by higher derivative term in the equations of motions (58), 
is also an open question.
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