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We study the Higgs mode of superfluid Bose gases in a three-dimensional optical lattice, which emerges near
the quantum phase transition to the Mott insulator at commensurate fillings. Specifically, we consider responses of
the Higgs mode to temporal modulations of the onsite interaction and the hopping energy. In order to calculate the
response functions including the effects of quantum and thermal fluctuations, we map the Bose-Hubbard model
onto an effective pseudospin-1 model and use a perturbative expansion based on the imaginary-time Green’s
function theory. We also include the effects of an inhomogeneous trapping potential by means of a local density
approximation. We find that the response function for the hopping modulation is equal to that for the interaction
modulation within our approximation. At the unit filling rate and in the absence of a trapping potential, we show
that the Higgs mode can exist as a sharp resonance peak in the dynamical susceptibilities at typical temperatures.
However, the resonance peak is significantly broadened due to the trapping potential when the modulations are
applied globally to the entire system. We suggest that the Higgs mode can be detected as a sharp resonance peak
by partial modulations around the trap center.

DOI: 10.1103/PhysRevA.97.043628

I. INTRODUCTION

The Higgs amplitude mode is one of the universal quasi-
particle excitations of thermodynamic phases with a particle-
hole symmetry and spontaneous breaking of a continuous
symmetry [1,2]. In an intuitive picture, this mode corresponds
to a massive fluctuation mode of the amplitude of the order
parameter. Moreover, the Higgs mode is an analog of the
Higgs boson in particle physics [3]. The ubiquity of the Higgs
mode in quantum many-body systems has attracted particular
attention from many experimental research fields of condensed
matter and ultracold gases [2]. The examples known so far
include superconductors NbSe2 [4–8] and Nb1−xTixN [9–12],
quantum antiferromagnets TlCuCl3 [13,14] and KCuCl3 [15],
charge density wave materials K0.3MoO3 [16,17] and TbTe3

[18,19], superfluid 3He B phase [20,21], and superfluid Bose
gases in optical lattices [22,23].

In the case of Bose gases in optical lattices, the Higgs mode
is expected to appear in the superfluid phase at commensurate
filling rates and near a critical value of the lattice depth at which
the superfluid to Mott-insulator transition occurs [2,22,23].
The Max-Planck group has experimentally explored the Higgs
mode of Bose gases in a two-dimensional (2D) optical lattice
by utilizing the lattice-amplitude modulation and the quantum-
gas microscope technique [23]. They observed the energy gap
of the Higgs mode by measuring a response of the system to the
temporal modulation of the lattice amplitude as a function of
the frequency. Although the measured energy gap agrees with
the Higgs gap computed theoretically, the response versus the
frequency exhibits a broad continuum above the gap energy
rather than a sharp peak. In this sense, it remains as an open
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issue whether the Higgs mode in the optical-lattice system can
exist as a well-defined quasiparticle.

The Max-Planck experiment [23] has stimulated detailed
studies addressing the issue, in particular, theoretical calcu-
lations in the 2D relativistic O(N ) scalar model [24–29] or
the 2D Bose-Hubbard model [30–32]. The quantum Monte
Carlo simulations [30,31] in the presence of a trapping po-
tential and at finite temperatures have shown that the linear
response function to the lattice amplitude modulation exhibits
no resonance peak at the Higgs energy gap. This result
implies that the Higgs mode becomes unstable due to the
combined effects of the quantum and thermal fluctuations and
the spatial inhomogeneity of the trapping potential. Thus, it
may be difficult to observe the Higgs mode as a well-defined
quasiparticle excitation in the 2D optical-lattice systems.

In superfluid Bose gases in a three-dimensional (3D) optical
lattice, in contrast to the 2D systems, we expect the existence
of more stable Higgs modes because of the general fact that
the long-range order of the systems becomes more robust
against fluctuations as the spatial dimension increases. One
of quantities characterizing the stability of the Higgs mode is
its damping rate [33,34]. Altman and Auerbach have calcu-
lated the damping rate at zero temperature by means of the
mapping of the Bose-Hubbard model at large filling rates to
the effective pseudospin-1 model [33]. Thereafter, the current
authors have generalized their zero-temperature analysis to
the finite-temperature case by applying the finite-temperature
Green’s function theory for the effective model [34]. The latter
result revealed that the Higgs modes are underdamped even at
typical experimental temperatures.

While the damping rate is a useful quantity for char-
acterizing theoretically the stability of the Higgs mode, it
is rather difficult to measure directly the damping rate in
cold-atom experiments. In typical experiments, such as the
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Max-Planck experiment [23], some response functions to a
temporal modulation of an external field have been measured.
In Ref. [35], a response function of the 3D Bose-Hubbard
model in the presence of a parabolic trapping potential to the
lattice-amplitude modulation has been theoretically analyzed
by means of the mapping to the modified effective pseudospin-
1 model at lower filling rates, linear response theory, and
local density approximation. It has been shown that within an
approximation ignoring any fluctuation effects there exists a
sharp resonance peak at the Higgs energy gap in a response
function of the superfluid phase. There the broadening of
the peak width stems only from the spatial inhomogeneity.
As a next step toward understanding the detectability of
the Higgs mode in the 3D systems, we should evaluate
quantum and thermal fluctuation effects on the response
functions.

In this work, we study effects of the lowest order correction
with respect to the fluctuations to some response functions of
the 3D Bose-Hubbard model in the presence of a parabolic
trapping potential. In order to take into account fluctuation
effects at lower filling rates, we apply the field theoretical
approach developed in our previous work at a large filling
limit [34] for the modified effective pseudospin-1 model [35].
In particular, we concentrate on the case where the mean
density at the trap center is equal to unity. In addition, we
include the trapping-potential effect by using the local density
approximation. At the unit filling rate and in the absence of
the trapping potential, the dynamical susceptibilities show
that the Higgs mode can exist as a sharp resonance peak at
typical temperatures. In contrast, when we take into account
the trapping potential and modulate the system globally, the
resonance peak turns to be broadened significantly due to
the inhomogeneity. To obtain a sharp peak in the presence
of the trapping potential, we discuss partial modulations around
the trap center, which have been analyzed also in the previous
work [31] for 2D systems. We suggest that the Higgs mode
is detectable as a sharp resonance peak in the presence of
the trapping potential when we modulate the system with a
modulation radius Rmod < 0.5RTF, where RTF is the Thomas-
Fermi radius of the trapped condensate.

The organization of this paper is as follows. In Sec. II,
we introduce the tight-binding Bose-Hubbard model and
formulate a linear response theory. In Sec. IV, we explain a
method approximately describing the low-energy properties
of the superfluid near the Mott-insulator transition on the
basis of the mapping of the Bose-Hubbard model into the
effective pseudospin-one model. In Sec. V, we discuss how to
compute the response functions within the method developed
in Sec. IV. In particular, we calculate the response functions by
using the framework of the imaginary-time Green’s function
theory. In Sec. VI, we show the frequency dependence of
the imaginary part of the susceptibilities both in the absence
and in the presence of the trapping potential. We discuss
whether the Higgs mode can exist as a well-defined sharp
resonance peak in the quantities. In addition, we also discuss
the finite-temperature effects on the results at zero temperature.
In Sec. VII, we summarize the results and describe our outlook.
Throughout this paper, we set the reduced Planck constant h̄,
the lattice spacing dlat , and the Boltzmann constant kB as units:
h̄ = dlat = kB = 1.

II. BOSE-HUBBARD MODEL

In this paper, we investigate the collective fluctuation modes
of superfluid Bose gases in a cubic optical lattice in the presence
of a parabolic trapping potential. When the lattice depth is
sufficiently deep, the system can be described by the tight-
binding Bose-Hubbard model [36,37]

HBH = −J
∑
〈ij〉

a
†
i aj + U

2

∑
i

(ni − n0)2 −
∑

i

μi(ni − n0),

where ai and a
†
i are boson annihilation and creation operators

at site i of the cubic lattice, 〈ij 〉 denotes a summation over
all possible nearest-neighbor pairs of the sites, ni = a

†
i ai

is the density operator at site i, and n0 is a nonzero and
positive integer. This notation for the Bose-Hubbard model is
suitable for our approximation around the n0th Mott-insulator
region (see Sec. IV A). The parameters J , U , and μi are
the hopping strength, onsite-interaction strength, and local
chemical potential. When the trapping potential is Vtrap(r), and
the chemical potential at the center of the potential is μ, the
local chemical potential is given by μi = μ − Vtrap(r). Now r

is the radial distance measured from the center.
In this section and the subsequent sections from Secs. IV

to VI A, we confine ourselves to the spatially homogeneous
case for simplicity; i.e., we concentrate on studying the bulk
properties. Effects of the trapping potential will be discussed
within the local density approximation in Sec. VI B.

At an integer (or commensurate) filling rate, the Bose-
Hubbard model has two different ground states, i.e., superfluid
and Mott-insulator states [36,38,39]. The phase boundary
corresponds to a critical value of the dimensionless ratio
Jz/U , where z = 2d = 6 is the coordination number. For
d = 3, the superfluid to Mott-insulator transition is of second
order [36,38,39]. Its universality class belongs to that of the
(d + 1)-dimensional classical XY model [36].

In the vicinity of the critical point with an integer filling
rate, the dynamical critical exponent becomes zdyn = 1 [36].
There, the corresponding effective action has the form of
the relativistic O(2) field theory [40,41]. Because of the
second-order time derivative term, the phase and amplitude
fluctuations are no longer canonical conjugate with each other.
Thus, the amplitude fluctuation and its conjugate momentum
(not the phase fluctuation) form one collective mode, i.e.,
the gapped Higgs amplitude mode, which is independent of
the phase fluctuation. In a similar way, the phase fluctuation
and its conjugate momentum also form the gapless Nambu-
Goldstone (NG) phase mode independently. This is in contrast
to the nonrelativistic Gross-Pitaevskii case, where the phase
fluctuation is canonical conjugate with the amplitude one. In
this case, these degrees of freedom form only one collective
mode, namely the gapless Bogoliubov mode. For more detailed
discussion, see Ref. [42].

III. EXTERNAL PERTURBATIONS

In this section, we discuss external perturbations that are
time dependent and coupled with the Higgs mode in the optical-
lattice system. We formulate the responses to the perturbations
within the linear response theory.
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The basic idea for exciting the Higgs mode is to modulate
the condensate density |�|2 with a small amplitude of vibration
[2]. For the Bose-Hubbard model, this can be performed by
modulating a dimensionless ratio J/U , which determines the
order-parameter amplitude of a ground state. A typical method
utilized in experiments to modulate it is the optical-lattice
amplitude modulation technique [23,43], which leads to a
modulation of the hopping strength J (detailed discussions
can be found in some literature [2,31,44]). The experiment
of Ref. [23] has achieved periodic modulations of the lattice
depth with a sufficiently small vibrational amplitude (3% of
the initial depth) to the extent that the resulting response is in
a linear response region.

A. Modulations of the kinetic energy

The response to the J modulation can be formulated by
the linear response theory as follows: Let us assume that the
system is in the thermal equilibrium state with the inverse
temperature β = T −1 at t → −∞. When we add a small
and periodic modulation to the hopping strength J slowly
such that J → [1 + �J (t)]J, where �J (t) = δJ cos(ωt) and
δJ is sufficiently small, the Hamiltonian describing the weak
perturbation reads

HBH → HBH + �J (t)K,

where K ≡ −J
∑

〈ij〉 a
†
i aj is the kinematic energy. The second

term on the right-hand side denotes the weak perturbation
term. The instantaneous change of the total energy to the small
and periodic modulations is proportional to the instantaneous
quantum mechanical average of the kinetic energy [2,44].
Therefore, the response of the system to the modulations is
characterized only by the response of the kinetic energy and
described by the K-to-K response function [30,31]

DR
KK (t − t ′) = −i�(t − t ′)〈[K(t),K(t ′)]〉eq, (1)

where �(t) is the step function, which outputs 1 for t > 0 and
0 for t < 0. Here, K(t) = eiHBHtKe−iHBHt . The bracket 〈· · · 〉eq

means the normalized ensemble average of the thermal equilib-
rium state at t → −∞: 〈· · · 〉eq ≡ Tr(e−βHBH . . . )/Tr e−βHBH .
The imaginary part of the dynamical susceptibility

χKK (ω) =
∫ ∞

−∞
DR

KK (t)eiωtdt, (2)

is the spectral function SKK (ω) = −Im[χKK (ω)], which is
proportional to the external energy absorbed by the system
for a finite-time period of the modulation [2,23]. The response
function or its susceptibility characterizes the resonance of the
Higgs mode in experimental systems [23,30]. The Max-Planck
experiment [23] has obtained SKK (ω) at low frequencies by
measuring the temperature increase of the system after the
lattice-amplitude modulation with a fixed modulation time.

B. Modulations of the onsite-interaction energy

In Sec. III A, we briefly reviewed the conventional J

modulations and consequent response. On the other hand,
one can also modulate the onsite interaction U to oscillate
J/U . To our knowledge, this kind of modulation has not
been discussed thus far as a probe of the Higgs mode. In

this section, we explain what types of response function
characterize the response to the U modulations and how
one can realize that modulation in experiments with high
controllability. Moreover, we will show in detail the relation
between the response function and energy absorbed by the
system for a period of the U modulation in Appendix A.

Let us consider a linear response problem to the U mod-
ulation in a similar way to the J modulation. When we
turn on a small and periodic modulation U → [1 + �U (t)]U
where �U (t) = δU cos(ωt) and δU is sufficiently small, the
Hamiltonian becomes

HBH → HBH + �U (t)O,

where O ≡ U
2

∑
i(n − n0)2 is the onsite-interaction energy.

In a manner similar to the J modulations, the instantaneous
change rate of the total energy is proportional to the quantum
mechanical average of the onsite energy (for details, see
Appendix A). Thus, within the linear response theory, the
consequent response can be described by the O-to-O response
function

DR
OO(t − t ′) = −i�(t − t ′)〈[O(t),O(t ′)]〉eq, (3)

where O(t) = eiHBHtOe−iHBHt . The imaginary part of the
dynamical susceptibility

χOO(ω) =
∫ ∞

−∞
DR

OO(t)eiωtdt, (4)

is the spectral function SOO(ω) = −Im[χOO(ω)], which is
proportional to the external energy absorbed by the system
for a finite-time period of the modulation (see Appendix A).
We expect that this response function or its susceptibility also
characterizes the resonance of the Higgs mode. The difference
with χKK (ω) will be discussed in Sec. VI B.

Recent experimental developments in the fields of ultracold
gases enable one to control the onsite interaction by using
highly controlled optical techniques, such as the optical Fes-
hbach resonance [45–47] and the optically induced Feshbach
resonance [48,49]. In contrast to the conventional magnetic
Feshbach resonance, these techniques allow for fast temporal
modulation of U with a frequency on the order of 1 to 10 kHz,
which is supposed to be comparable to a typical resonance
frequency of the Higgs mode.

IV. METHODS

In order to analyze the Higgs mode, we use the mapping
of the Bose-Hubbard model onto an effective pseudospin-one
model [33,35] and field theoretical method based on the
imaginary-time Green’s function. This section is devoted to
explaining how to describe collective modes of the superfluid
phase beginning with the effective pseudospin-1 model. The
application of the field theoretical method for computing the
response functions of the system will be discussed in Sec. V.

A. Effective pseudospin-1 model near
the Mott-insulator transition

Let us discuss an effective description of the superfluid
state with a commensurate filling rate n0. In the vicinity of the
Mott-insulator transition, the local fluctuations of ni from the
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mean density 〈ni〉 = n0 are sufficiently suppressed. Therefore,
low-energy properties of the system can be described by an
effective model

Hn0
eff = Pn0HBHP−1

n0
, (5)

where Pn0 is a projection operator eliminating high-energy
Fock states |n0 + α〉 for |α| > 1 from the complete Hilbert
space. The remaining states, which describe the low-energy
phenomena effectively, can be represented by three Schwinger
bosons [33,35]

|n0 + α〉i ≡ t
†
α,i |vac〉, for α = −1,0,1,

where |vac〉 is the vacuum of new bosons. The commutation
relations are [tα,i ,t

†
α′,j ] = δα,α′δi,j and [tα,i ,tα′,j ] =

[t†α,i ,t
†
α′,j ] = 0. In order to eliminate the unphysical states such

as t
†
1,i t

†
0,i |vac〉, we assume that these operators obey a constraint

1∑
α=−1

t
†
α,i tα,i = 1̂, (6)

where 1̂ on the right-hand side is the identity operator in the
reduced Hilbert subspace.

For sufficiently large filling rates (n0 � 1), the effective
model becomes a simple pseudospin-1 model [33]

Hn0�1
eff = −Jn0

2

∑
〈ij〉

S+
i S−

j + U

2

∑
i

(Sz
i )2 − B

∑
i

Sz
i , (7)

where B = μ is the uniform magnetic field coupling with the
z component of the pseudospins. The pseudospin-1 operators
are defined by

S+
i =

√
2(t†1,i t0,i + t

†
0,i t−1,i),

S−
i =

√
2(t†0,i t1,i + t

†
−1,i t0,i),

Sz
i = t

†
1,i t1,i − t

†
−1,i t−1,i ,

and satisfy the SU(2) commutation relations [S+
i ,S−

j ] =
2Sz

i δi,j and [Sz
i ,S

±
j ] = ±S±

i δi,j . Note that the XY spin ex-
change, onsite single-ion anisotropy, and magnetic coupling
terms in the effective model correspond to the hopping, onsite
interaction, and chemical potential terms in the Bose-Hubbard
model, respectively. The effective model (7) has a particle-hole
symmetry at a commensurate filling rate corresponding to
B = μ = 0. We will find later that this particle-hole symmetry
forbids interactions associated with an odd number of the NG
mode. For details, see Sec. IV E.

The large-filling model (7) is not adequate for quantitatively
describing typical experimental situations with lower filling
rates. In fact, the mean filling rate at the center of the trap in
the Max-Planck experiment [23] was tuned to be unity. For
lower commensurate filling rates (n0 ∼ 1), we need to modify
the spin exchange term [35] such that

Hn0
eff = − Jn0

2

∑
〈ij〉

(
1 + δνSz

i

)
S+

i S−
j

(
1 + δνSz

j

)

+ U

2

∑
i

(
Sz

i

)2 − B
∑

i

Sz
i , (8)

where δν = √
1 + 1/n0 − 1. The modified model (8) has no

longer the particle-hole symmetry even at a commensurate

filling rate. Nevertheless, the Higgs mode can exist as an
independent collective mode even at low filling rates as long as
the system is near the transition to the Mott insulating phase.
This happens because an effective particle-hole symmetry
emerges in such a region.

The absence of the particle-hole symmetry makes it com-
plicated to compute the fluctuation correction of the response
functions because no constraint forbids interactions associated
with an odd number of the NG modes. For details, see Sec. IV E.
Note that δν measures the deviation from the particle-hole
symmetric point. Obviously, if δν → 0, the effective model
then approaches the particle-hole symmetric model (7).

In this paper, in order to obtain the response functions
corresponding to typical experiments, we mainly use the latter
model at the unit filling rate. The former model will be used for
calculating the large-filling response functions in the absence
of the trapping potential and at zero temperature. In Sec. VI A,
we compare two limiting results of the unit filling rate and a
large filling rate in such a situation.

B. Mean-field ground state in the truncated Hilbert subspace

In this subsection, we make an ansatz of the ground-state
wave function of the effective pseudospin-1 model, which is
essentially equivalent to a mean-field approximation of the
ground state in the truncated Hilbert subspace, according to
Refs. [33,35].

We define a variational wave function of the ground state as

|�(θ,η,ϕ,χ )〉 =
∏

i

{
cos

(
θ

2

)
t
†
0,i + eiηsin

(
θ

2

)

×
[
eiϕsin

(χ

2

)
t
†
1,i + e−iϕcos

(χ

2

)
t
†
−1,i

]}
|vac〉,

(9)

where θ ∈ [0,π ], η ∈ [−π/2,π/2], ϕ ∈ [0,2π ], and χ ∈
[0,π ] are the variational parameters. Note that this wave
function at θ = 0 describes the Mott-insulating state of n0

filling factor with no fluctuation, i.e.,
∏

i t
†
0,i |vac〉. In the

superfluid phase, θ �= 0 mixes the mean filling state t
†
0,i with

the particle and hole fluctuations t
†
1,i and t

†
−1,i . Hence, it plays

a role of the order parameter strength.
In the superfluid phase (θ �= 0), the variational parameters

are determined from minimizing the mean energy density
EMF = 〈�|Hn0

eff |�〉/N with respect to the variational param-
eters. Here, N is the total number of the lattice point. A
specific representation of EMF for the ground state is shown in
Appendix C.

From the Ginzburg-Landau expansion of EMF of the ground
state with respect to the order parameter � = 〈�|ai |�〉,
we can determine the phase boundary of the superfluid to
insulator transition [35]. Now we introduce a dimensionless
parameter u = U/(4Jn0z) measuring the distance from the
critical point at the commensurate filling rate. The critical value
of the superfluid to insulator transition within the mean-field
approximation [35] is

uc = 1

4n0
(
√

n0 + 1 + √
n0)2. (10)

At n0 → ∞, the critical value uc approaches 1. At the unit
filling rate n0 = 1, uc = (

√
2 + 1)2/4 ≈ 1.457. Note that the
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same result can be obtained from the site-decoupling mean-
field approximation of the Bose-Hubbard model [38]. The
exact critical value at the unit filling rate has been numeri-
cally computed as uc = 1.22(2) by the quantum Monte Carlo
method of the 3D Bose-Hubbard model in Ref. [39]. In this
paper, we mainly use the mean-field result of Eq. (10) to be
consistent with our analysis on the mean-field ground state.

C. Fluctuations from the mean-field ground state

In Sec. IV B, we have discussed the ground-state properties
of the effective pseudospin-1 model within the mean-field
approximation. In this subsection, we turn to consider fluc-
tuations arising on the mean-field superfluid state.

Based on the variational ansatz of the ground-state wave
function, we can formulate the collective excitations on the
superfluid phase as fluctuations around the mean-field state
[33,35]. Let us introduce the creation operators of the mean-
field ground state of the superfluid |�〉 ≡ ∏

i b
†
0,i |vac〉 and

define a canonical transformation

b
†
0,i = c1t

†
0,i + s1[s2t

†
1,i + c2t

†
−1,i],

b
†
1,i = s1t

†
0,i − c1[s2t

†
1,i + c2t

†
−1,i],

b
†
2,i = c2t

†
1,i − s2t

†
−1,i , (11)

where the coefficients are s1 = sin(θmf/2), c1 = cos(θmf/2),
s2 = sin(χ (θmf)/2), and c2 = cos(χ (θmf)/2). θmf denotes the
value of the variational parameter θ for the ground state. b

†
1,i

describes the amplitude fluctuation of the order parameter on
the ground state while b

†
2,i describes the phase fluctuation.

These new operators fulfill the same commutation relations
as the old operators tα,i . In addition, the transformation retains
the constraint (6) so that

2∑
m=0

b
†
m,ibm,i = 1̂. (12)

Substituting the canonical transformation (11) into the
effective model (8), we obtain the Hamiltonian describing the
collective fluctuations around the mean-field ground state. The
resulting Hamiltonian consists of five successive parts:

Heff = H(0)
eff + H(1)

eff + H(2)
eff + H(3)

eff + H(4)
eff , (13)

where each term contained in H(l)
eff (l = 0,1,2,3,4) has l

numbers of the fluctuation operator b
†
m,i,bm,i (m = 1,2). The

explicit form of H(l)
eff is given by

H(0)
eff =

∑
〈ij〉

1

z
A0b

†
0,ib0,ib

†
0,j b0,j +

∑
i

Ã0b
†
0,ib0,i ,

H(1)
eff =

∑
〈ij〉

1

z
A1b

†
0,ib0,ib

†
1,j b0,j +

∑
〈ij〉

1

z
B1b

†
0,ib0,ib

†
2,j b0,j +

∑
i

Ã1b
†
1,ib0,i +

∑
i

B̃1b
†
2,ib0,i + H.c.,

H(2)
eff =

∑
〈ij〉

1

2z
A2b

†
0,ib0,ib

†
1,j b1,j +

∑
〈ij〉

1

z
B2b

†
0,ib0,ib

†
1,j b2,j +

∑
〈ij〉

1

z
D2b

†
1,ib0,ib

†
1,j b0,j +

∑
〈ij〉

1

2z
E2b

†
1,ib0,ib

†
0,j b1,j

+
∑
〈ij〉

1

z
F2b

†
1,ib0,ib

†
0,j b2,j +

∑
〈ij〉

1

z
G2b

†
1,ib0,ib

†
2,j b0,j +

∑
〈ij〉

1

z
H2b

†
0,ib2,ib

†
0,j b2,j +

∑
〈ij〉

1

2z
I2b

†
0,ib2,ib

†
2,j b0,j

+
∑

i

1

2
Ã2b

†
1,ib1,i +

∑
i

B̃2b
†
1,ib2,i +

∑
i

1

2
C̃2b

†
2,ib2,i + H.c.,

H(3)
eff =

∑
〈ij〉

1

z
A3b

†
1,ib1,ib

†
1,j b0,j +

∑
〈ij〉

1

z
B3b

†
1,ib1,ib

†
2,j b0,j +

∑
〈ij〉

1

z
C3b

†
1,ib0,ib

†
2,j b1,j +

∑
〈ij〉

1

z
D3b

†
1,ib0,ib

†
1,j b2,j

+
∑
〈ij〉

1

z
E3b

†
0,ib2,ib

†
2,j b1,j +

∑
〈ij〉

1

z
F3b

†
0,ib2,ib

†
1,j b2,j + H.c.,

H(4)
eff =

∑
〈ij〉

1

2z
A4b

†
1,ib1,ib

†
1,j b1,j +

∑
〈ij〉

1

z
B4b

†
1,ib2,ib

†
1,j b2,j +

∑
〈ij〉

1

z
C4b

†
1,ib2,ib

†
1,j b1,j +

∑
〈ij〉

1

2z
D4b

†
1,ib2,ib

†
2,j b1,j + H.c.,

where the coefficients such as A0,Ã0,A1,B1, . . . depend on J

and μ via the variational parameter θmf . The explicit forms are
summarized in Appendix D.

D. Holstein-Primakoff expansion

In Sec. IV C, we have discussed the fluctuations on the
mean-field ground state. In this subsection, we derive the

spin-wave Hamiltonian describing interactions between the
Higgs-amplitude and NG-phase modes.

Let us assume that the mean-field approximation is adequate
for describing the superfluid state near the Mott-insulator
transition. Then we can simplify the Hamiltonian (13) by
means of the Holstein-Primakoff expansion [50]. Since the
mean-field ground state can be regarded as a Bose-Einstein
condensate of the constrained boson b0,i , we can eliminate b0,i
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by an expansion with respect to the fluctuations (spin waves)
b1,i and b2,i :

b
†
m,ib0,j = b

†
m,i

√
1 − b

†
1,j b1,j − b

†
2,j b2,j ,

≈ b
†
m,i − 1

2
b
†
m,ib

†
1,j b1,j − 1

2
b
†
m,ib

†
2,j b2,j + · · · .

(14)

Eliminating b
†
0,ib0,i in the Hamiltonian (13) by using the con-

straint (12), and substituting the Holstein-Primakoff expansion
(14) into the Hamiltonian (13), we obtain the following series:

Heff ≈ H(0)
SW + H(1)

SW + H(2)
SW + H(3)

SW + H(4)
SW . . . , (15)

where each term H(l)
SW (for l = 0,1,2,3,4, . . . ) describes pro-

cesses involving l collective-mode operators. The control
parameter of the Holstein-Primakoff expansion is character-
ized by the inverse of the spin magnitude S. In fact, each
term H(l)

SW is of order O(S2−l/2). In this work, in order to
evaluate the lowest order effects on the response to the J

and U modulations, we deal with fluctuation effects on the
response functions up to order O(S0). Hence, the expansion
(15) is stopped at l = 4. A similar analysis of another quantum
spin system has been made in Ref. [51].

1. Subsequent terms of the Holstein-Primakoff expansion

Let us explain details of the terms H(0)
SW, H(1)

SW, H(2)
SW, and

H(3)
SW in the Holstein-Primakoff expansion (15), respectively.

First of all, the zeroth-order term H(0)
SW is equal to the ground-

state energy with no fluctuation

H(0)
SW = N (A0 + Ã0)

= NEMF(θmf),

where EMF(θmf) is the mean-field energy (C1) of the ground
state (see Sec. IV B).

Next, the linear term H(1)
SW = O(S3/2) is given by

H(1)
SW =

√
N (A1 + Ã1)(b†1,0 + b1,0)

+
√

N (B1 + B̃1)(b†2,0 + b2,0), (16)

where we have introduced the Fourier transformation of the
fluctuation operators b1,i and b2,i

b
†
m,i = 1√

N

∑
k∈�0

b
†
m,ke

−ik·ri , m ∈ {1,2}.

The notation
∑

k∈�0
denotes that the momentum k runs over

the cubic-shaped first Brillouin zone �0 ≡ [−π,π ]3. For the
mean-field ground state, we can easily verify that H(1)

SW = 0.
The quadratic term H(2)

SW = O(S) can be written as a matrix
form

H(2)
SW = δE2 +

4∑
λ=1

4∑
ν=1

∑
k∈�0

b
†
λ,k(Hk)λνbν,k, (17)

where �bk = (b1,k,b2,k,b3,k,b4,k)T and (b3,k,b4,k) =
(b†1,−k,b

†
2,−k). The four-dimensional square matrix Hk is

Hk =

⎛
⎜⎝

f11(k) f12(k) g11(k) g12(k)
f21(k) f22(k) g21(k) g22(k)
g11(k) g12(k) f11(k) f12(k)
g21(k) g22(k) f21(k) f22(k)

⎞
⎟⎠. (18)

The matrix elements of Hk are given by

f11(k) = (A2 + Ã2 − 2A0 − Ã0 + E2γk)/2,

f12(k) = f21(k) = (B2 + B̃2 + F2γk)/2,

f22(k) = (C̃2 − 2A0 − Ã0 + I2γk)/2,

g11(k) = D2γk,

g12(k) = g21(k) = G2γk/2,

g22(k) = H2γk,

where γk = (coskx + cosky + coskz)/3 is the band structure
of a single particle in the cubic lattice. At n0 � 1, f12(k) =
f21(k) = g12(k) = g21(k) = 0. Thus,H(2)

SW has no mixing term
such as b

†
1,kb2,k, and we can treat each part labeled by 1 or 2 as

an independent branch on each other. This feature stems from
the particle-hole symmetry of the effective pseudospin-1 model
for n0 � 1. In practice, terms with an odd number of b2,k are
forbidden by the particle-hole symmetry because an exchange
between a particle t1,i and hole t−1,i leads to a change of the
sign of b2,k while such a transformation remains the sign of
b1,k. On the other hand, at lower filling rates, there is no reason
that the mixing terms disappear.

Note that we can regard the constant part δE2 =
−∑

k∈�0
[f11(k) + f22(k)] as a quantum fluctuation cor-

rection to the mean-field energy of the ground state
H(0)

SW(θmf ,χmf). The detailed discussion will be presented
in Sec. IV F.

The cubic term H(3)
SW can be also written as a simple

form

H(3)
SW = 1√

N

3∏
i=1

4∑
λi=1

∑
ki∈�0

C(λ1λ2λ3)
pλ1 k1,pλ2 k2,pλ3 k3

× δk1+k2+k3,0 bλ1,k1bλ2,k2 bλ3,k3 , (19)

where pλ = 1 (for λ = 1,2) or pλ = −1 (for λ = 3,4).
In addition, δk1+k2+k3,0 is the momentum conservation law
satisfied under scattering processes among the three spin
waves. The coefficients of the vertices C(λ1λ2λ3)

k1,k2,k3
which char-

acterize properties of the scattering of the spin wave are
given by

C(331)
k1,k2,k3

= C(131)
k1,k2,k3

= (A3 − A1)γk1 ,

C(342)
k1,k2,k3

= C(142)
k1,k2,k3

= −A1γk1 ,

C(431)
k1,k2,k3

= C(231)
k1,k2,k3

= (B3 − B1)γk1,

C(442)
k1,k2,k3

= C(242)
k1,k2,k3

= −B1γk1 ,

C(341)
k1,k2,k3

= C(132)
k1,k2,k3

= C3γk1 ,

C(332)
k1,k2,k3

= C(141)
k1,k2,k3

= D3γk1 ,
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C(432)
k1,k2,k3

= C(241)
k1,k2,k3

= E3γk1 ,

C(441)
k1,k2,k3

= C(232)
k1,k2,k3

= F3γk1 ,

and the others are identically zero. At n0 � 1, C(431)
k1,k2,k3

=
C(231)

k1,k2,k3
= C(442)

k1,k2,k3
= C(242)

k1,k2,k3
= C(341)

k1,k2,k3
= C(132)

k1,k2,k3
=

C(332)
k1,k2,k3

= C(141)
k1,k2,k3

= 0 because each vertex characterized by
the corresponding coefficient has an odd number of b2,k.

Finally, we mention a note on the quartic term H(4)
SW. In this

work, the quartic term does not enter into the practical analysis
of the response functions. The reason is explained in Sec. IV F.

E. Bogoliubov transformation

In the previous section, we have performed the Holstein-
Primakoff expansion of the Hamiltonian (13) and discussed
properties of each part H(l)

SW. In this section, we discuss a Bo-
goliubov transformation of the quadratic part of the spin-wave
Hamiltonian H(2)

SW and consider the resulting transformation of
H(3)

SW.
Let us define a Bogoliubov transformation

�bk = Wk �βk, �βk = W−1
k

�bλ,k, (20)

where �βk = (β1,k,β2,k,β3,k,β4,k)T, β3,k ≡ β
†
1,−k, β4,k ≡

β
†
2,−k, [βm,k,β

†
n,k′ ] = δm,nδk,k′ (for m,n = 1,2), and

[βm,k,βn,k′ ] = [β†
m,k,β

†
n,k′ ] = 0. In general, the matrix

elements of Wk can be written as

Wk =

⎛
⎜⎝

u11(k) u12(k) v11(k) v12(k)
u21(k) u22(k) v21(k) v22(k)

v∗
11(−k) v∗

12(−k) u∗
11(−k) u∗

12(−k)
v∗

21(−k) v∗
22(−k) u∗

21(−k) u∗
22(−k)

⎞
⎟⎠. (21)

The transformation Wk fulfills a condition

WkgW†
k = W†

kgWk = g, (22)

where g = diag(1,1,−1,−1) is the metric tensor in the
Minkowski space M2⊗2, because of the Bose statistics of the
new operators. In addition, in order to diagonalize H(2)

SW so that

H(2)
SW = δE2 +

4∑
λ=1

4∑
ν=1

∑
k∈�0

β
†
λ,k(Dk)λνβν,k, (23)

where Dk = diag(e1(k),e2(k),e3(k),e4(k)) is a diagonal ma-
trix, we impose on the matrix Wk a condition

W−1
k (gHk)Wk = gDk. (24)

Solving the eigenvalue problem of the non-Hermite matrix gHk
defined by Eqs (22) and (24), we obtain the specific form of
Wk and dispersion relations E1,k = e1(k) + e3(k) of β1,k and
E2,k = e2(k) + e4(k) of β2,k. Notice that the dispersions E1,k
and E2,k correspond to the Higgs and NG modes, respectively.
For more details of the eigenvalue problem of gHk, see
Ref. [35].

At n0 � 1, the different sectors labeled by 1 or 2 are
completely decoupled, so that we can easily diagonalize gHk

and obtain the dispersion relations of the collective modes and
coefficient matrix Wk as analytical forms. In Appendix E, we

will demonstrate it in practice. On the other hand, at lower
filling rates, to compute Wk and the dispersion relations is
possible but more complicated than the large filling case. In
this paper, we calculate them by a numerical diagonalization
of the non-Hermite matrix gHk. The analytic expressions of
the dispersion relations in the superfluid phase at an arbitrary
filling rate have been obtained in Ref. [35].

After the Bogoliubov transformation of the quadratic part
H(2)

SW, the cubic term H(3)
SW becomes

H(3)
SW = 1√

N

3∏
i=1

4∑
λi=1

∑
ki∈�0

M(λ1λ2λ3)
pλ1 k1,pλ2 k2,pλ3 k3

× δk1+k2+k3,0 βλ1,k1βλ2,k2βλ3,k3 . (25)

Here, the new coefficients M(λ1λ2λ3)
k1,k2,k3

are related to C(λ1λ2λ3)
k1,k2,k3

by
a relation

M(λ1λ2λ3)
pλ1 k1,pλ2 k2,pλ3 k3

=
4∑

ν1,ν2,ν3=1

C(ν1ν2ν3)
pν1 k1,pν2 k2,pν3 k3

× (
Wk1

) λ1

ν1

(
Wk2

) λ2

ν2

(
Wk3

) λ3

ν3
. (26)

The coefficients M(λ1λ2λ3)
k1,k2,k3

characterize the interactions
among the three collective modes of the diagonalized basis.
For n0 � 1, processes with an odd number of the NG modes
are prohibited due to the particle-hole symmetry of the effective
pseudospin-1 model (7). On the other hand, the effective model
at lower filling rates has no longer such a symmetry and thus
permits not only the even-NG processes but also the odd-NG
processes. As we will see in Sec. V C, in contrast to the large
filling case, new types of contribution to the response properties
emerge due to the physical background.

F. Normal ordering

So far we have discussed the Bogoliubov transformation
of the spin-wave Hamiltonian HSW. Obviously, the resulting
Hamiltonian after the Bogoliubov transformation is not nor-
mally ordered with respect to the Bogoliubov operators βm,k.
In Sec. V, we will apply the field theoretical methods for
the spin-wave Hamiltonian in order to calculate the response
functions. Therefore, it is necessary to obtain a normally
ordered form of HSW.

Let us consider the normal ordering of the quadratic part of
the spin-wave Hamiltonian, H(2)

SW. In the following discussion,
a notation : · : represents a normally ordered operator with
respect to the Bogoliubov operators. In the quadratic Hamilto-
nian, each out of normally ordered terms produces a constant
shift after permutations between the canonical operators βm,k

and β
†
m,k. Thus, the quadratic Hamiltonian can be rewritten as

H(2)
SW = δE2 + δẼ2+ : H̃(2)

SW : ,

where δẼ2 is the resulting constant shift arising after H̃(2)
SW

is normally ordered. In a similar way, the cubic and quartic
Hamiltonians, H(3)

SW and H(4)
SW, become

H(3)
SW =: H(3)

SW : +δH(1)
SW,

H(4)
SW = δE4+ : δH(2)

SW : + : H(4)
SW : ,
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where δH(1)
SW, δE4, and : δH(2)

SW : are the resulting linear,
constant, and quadratic shifts arising after making the cubic
and quartic Hamiltonians normally ordered.

The total shift δE2 + δẼ2 + δE4 can be interpreted as a
fluctuation correction to the mean-field energy of the ground
stateH(0)

SW [35]. The first two terms represent 1/S corrections to
the ground-state energy and the last term is a higher order cor-
rection of order 1/S2. To minimize the modified ground-state
energy with respect to θ and χ leads to a renormalization of the
variational parameters of the mean-field configuration: θmf →
θren = θmf + δθcor and χmf → χren = χmf + δχcor. This corre-
sponds to a reduction of the order-parameter amplitude induced
by quantum and thermal fluctuations. At the renormalized
configuration, the linear term including the shift from the cubic
Hamiltonian H(3)

SW becomes zero: H(1)
SW + δH(1)

SW = 0. More-
over, the renormalized parameters and additional quadratic
term : δH(2)

SW : stemming from the quartic Hamiltonian H(4)
SW

modify the band energies E1,k and E2,k calculated within the
mean-field approximation.

Although it is naively expected that inclusion of the renor-
malization effect induced by fluctuations should make the
results more quantitative, it leads to a theoretical difficulty
concerned with spectral properties of the NG mode. If we
deal with the renormalization effect on the basis of our
perturbative scheme around the mean-field ground state, then
we are confronted with a situation in which a finite-energy
gap opens in the NG mode branch. In general, the gap of
the NG mode must vanish in the symmetry broken phase,
so that the appearance of the finite gap is an artifact of our
naive perturbative approach. Moreover, whether the finite gap
exists or not in the low-energy sector of the NG mode spectrum
strongly affects the decay processes of the Higgs mode because
the possible scattering channels are restricted by the on-shell
energy-momentum conservation laws between the low-energy
collective modes [34]. Thus, in order to describe the stability
of the Higgs mode corresponding to experiments, we need to
eliminate the finite gap from the NG mode branch.

The similar problem also appears in the Hartree-Fock-
Bogoliubov approximation of single-component dilute Bose
gases [52–55]. In this scheme, the artificial energy gap of
the NG or Bogoliubov mode is often eliminated by the
conventional Popov-Shohno prescription [54–56] in which an
anomalous average of boson operators is detuned so that the
artificial gap vanishes. Our bosons in the current problem
have two components, so that the application of the similar
prescription for our case is not straightforward. Therefore,
in this work, we do neglect the modification of the mean-
field variational parameters as a simpler prescription. Our
prescription here is similar in spirit to the standard Bogoliubov
approximation for dilute Bose gases [57] and is expected to be
better as the spatial dimension of the system increases and the
temperature decreases.

In addition to the prescription, we also neglect the normally
ordered quartic term : H(4)

SW : throughout our analysis. Within
our lowest order O(S0), the term only generates a shift of
the peak position of the Higgs mode but no contribution to
the peak width. Moreover, the shift is expected to be rather
small at sufficiently low temperatures. Thus it makes no
important difference whether the quartic term exists or not,

as far as the problem of the stability of the Higgs mode is
concerned.

Finally, the above discussions are summarized as the fol-
lowing normally ordered Hamiltonian:

HSW = const.+ : H̃(2)
SW : + : H(3)

SW : . (27)

In the next section, we will compute the fluctuation correc-
tions to the response functions practically by using the final
Hamiltonian (27).

V. LINEAR RESPONSE ANALYSIS

In this section, we calculate and investigate the response
functions (1) and (3) combining the methods developed in
Sec. IV and imaginary-time or Matsubara Green’s function
theory. The basis of the Green’s function theory is explained
in Refs. [58–60].

A. Response functions

We express the K-to-K response function (1) in terms of
the Bogoliubov operators βm,k. Using the Holstein-Primakoff
expansion (14) and Bogoliubov transformation, the kinetic
energy K becomes

K = NA0 +
√

Nϒ1(β†
1,0 + β1,0) + · · · , (28)

where the coefficient ϒ1 is defined by

ϒ1 = A1[u11(0) + v11(0)] + B1[u21(0) + v21(0)]. (29)

It should be noted that · · · in Eq. (28) includes the term propor-
tional to β2,0 + β

†
2,0. Here β2,0 corresponds to the zero-energy

mode of the system. We can easily check that the coefficient of
β2,0 + β

†
2,0 should be zero because of the eigenvalue equation

of [u12(0),v12(0),u22(0),v22(0)] extracted from Eq. (24).
Therefore the zero-mode contribution is eliminated in our

analysis. Substituting (28) into the definition of DR
KK (t − t ′)

and keeping only leading-order terms, we obtain

DR
KK (t − t ′) = N |ϒ1|2

{
GR

13,0(t − t ′) + GR
31,0(t − t ′)

+ GR
11,0(t − t ′) + GR

33,0(t − t ′)
}
, (30)

where we have introduced four types of retarded Green’s
function of the zero-momentum Higgs mode β1,0,

GR
13,0(t − t ′) = −i�(t − t ′)〈[β1,0(t),β†

1,0(t ′)]〉eq,

GR
11,0(t − t ′) = −i�(t − t ′)〈[β1,0(t),β1,0(t ′)]〉eq,

GR
31,0(t − t ′) = −i�(t − t ′)〈[β†

1,0(t),β1,0(t ′)]〉eq,

GR
33,0(t − t ′) = −i�(t − t ′)〈[β†

1,0(t),β†
1,0(t ′)]〉eq.

Thus, up to the leading order, evaluating the response function
DR

KK (t − t ′) results in calculating these retarded functions
of the Higgs mode. The Fourier transformation with respect
to t − t ′ gives the dynamical susceptibility χKK (ω), which
characterizes the stability of the Higgs mode [see Eq. (2)].

Similarly, we can obtain the O-to-O response func-
tion (3) written in terms of the Bogoliubov operators. Us-
ing the Holstein-Primakoff expansion (14) and Bogoliubov
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µ = µn0

|Υ2|2/U2

|Υ1|2/U2

FIG. 1. Chemical potential dependence of the coefficients |ϒ1|2
and |ϒ2|2. We choose the specific parameters n0 = 1 and u =
1 (zJ/U = 0.25). The solid and dashed lines represent |ϒ1|2/U 2 and
|ϒ2|2/U 2, which characterize the response magnitude of the hopping
and onsite-interaction modulations, respectively. The point indicated
by the solid arrow corresponds to the unit filling rate n̄ = n0 = 1. The
mean filling rate n̄ decreases as the chemical potential μ decreases.
After decreasing below μ ≈ −0.75, n̄ becomes zero.

transformation, the onsite interaction energy O becomes

O = NÃ′
0 +

√
Nϒ2(β†

1,0 + β1,0) + · · · , (31)

where the coefficient ϒ2 is defined by

ϒ2 = Ã′
1[u11(0) + v11(0)], (32)

and the constants Ã′
0 and Ã′

1 are given by

Ã′
0 = 1

2 s2
1 , Ã′

1 = − 1
2 s1c1. (33)

For the same reason of the zero-mode coefficient vanishing in
K , the onsite energy O has also no term of β2,0 + β

†
2,0.

Substituting (31) into the definition of DR
OO(t − t ′) and

keeping only leading-order terms, we obtain

DR
OO(t − t ′) = N |ϒ2|2

{
GR

13,0(t − t ′) + GR
31,0(t − t ′)

+ GR
11,0(t − t ′) + GR

33,0(t − t ′)
}
. (34)

The dynamical susceptibility χOO(ω) is given by the Fourier
transformation of this quantity [see Eq. (4)].

Within the leading order, the O-to-O response function has
the same form as the K-to-K response function except for its
coefficients |ϒ1|2 and |ϒ2|2. In Fig. 1, we show the chemical
potential dependence of the coefficients at n̄ = n0 = 1 and
u = 1. The point indicated by a solid arrow in Fig. 1 is at the
commensurate filling rate n0, and the corresponding chemical
potential is expressed by μn0 whose explicit form is presented
in Appendix C. As shown in Fig. 1, the coefficients are found
to completely coincide with each other for any μ, so that
there is no difference between two response functions, at least,
within our approximate calculation. Notice that the similar
coincidence occurs for other values of n0 and u.

B. Imaginary-time Green’s functions

In this paper, we calculate the response functions by means
of perturbative methods of the imaginary-time Green’s func-
tions. Let us define three time-ordered normal or anomalous
Green’s functions on an imaginary time axis [58–60]

G1,k(τ − τ ′) = − 〈Tτβ1,k(τ )β†
1,k(τ ′)〉eq

+ 〈β1,0(0)〉eq〈β†
1,0(0)〉eq,

F1,k(τ − τ ′) = −〈Tτβ1,k(τ )β1,−k(τ ′)〉eq + 〈β1,0(0)〉2
eq,

F
†
1,k(τ − τ ′) = −〈Tτβ

†
1,−k(τ )β†

1,k(τ ′)〉eq + 〈β†
1,0(0)〉2

eq.

Here Tτ is the imaginary-time ordering operator and τ,τ ′ ∈
[0,β]. These functions are periodic with respect to the inverse
temperature β [58–60]. Thus the Fourier components are
given by

G1,k(iωn) =
∫ β

0
dτG1,k(τ )eiωnτ ,

F1,k(iωn) =
∫ β

0
dτF1,k(τ )eiωnτ ,

F†
1,k(iωn) =

∫ β

0
dτF

†
1,k(τ )eiωnτ ,

where ωn = 2πn/β (n ∈ N) is the Matsubara frequency
[58–60]. It should be noted that a relation F†

1,k(iωn) =
F1,k(−iωn) holds for any n, at least, within our leading
order O(S0). In fact, this is verified by a straightforward
calculation based on the perturbative expansion. According
to more general consideration [59], this relation is expected to
be true at any order of the perturbative expansion.

For a fixed ωn, the imaginary-time Green’s functionsG(iωn)
and F(iωn) fulfill the Dyson’s equations [58,59]

G1,0(iωn) =G(0)
1,0(iωn) + G(0)

1,0(iωn)�11(iωn)G1,0(iωn)

+ G(0)
1,0(iωn)�02(iωn)F1,0(−iωn),

F1,0(iωn) =G(0)
1,0(iωn)�11(iωn)F1,0(iωn)

+ G(0)
1,0(iωn)�02(iωn)G1,0(−iωn),

where �11(iωn) and �02(iωn) are the self-energy func-
tions of the normal and anomalous Green’s functions. Here,
G(0)

1,0(iωn) = 1/(iωn − �) is the free propagator of the Higgs
mode with its energy gap � at zero momentum. The formal
solutions [58,59] are

G1,0(iωn) = − 1

D

{[
G(0)

1,0(−iωn)
]−1 − �11(−iωn)

}
,

F1,0(iωn) = − 1

D
�02(iωn),

where its denominator D is given by

D = [�02(iωn)]2 − [iωn − � − �11(iωn)]

× [−iωn − � − �11(−iωn)].

In terms with the Fourier components of the Green’s
functions, the dynamical susceptibilities χKK (ω) and χOO(ω)
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FIG. 2. Leading one-loop order contributions to the normal Green’s function G1,0(iωn). The variables k1 and iωn1 added near the internal
line implies the internal summation over the possible momentum and Matsubara frequency. The solid arrow denotes the propagator of the free
Higgs mode while the dashed arrow denotes the propagator of the free NG mode. The self-energy function of each diagram is obtained by
picking off its two external lines. The left arrow in the first column represents the zeroth-order Green’s function. The diagrams in each column
form an individual group labeled by �

(a)
11 (iωn), �

(b)
11 (iωn), �

(c)
11 (iωn), or �

(d)
11 (iωn).

read

χKK (ω) = N |ϒ1|2{g(ω) + f (ω) + ḡ(ω) + f̄ (ω)}, (35)

χOO(ω) = N |ϒ2|2{g(ω) + f (ω) + ḡ(ω) + f̄ (ω)}. (36)

The analytically continued functions

g(ω) = G1,0(iωn)|iωn→ω+iε, f (ω) = F1,0(iωn)|iωn→ω+iε,

ḡ(ω) = G1,0(−iωn)|iωn→ω+iε,

f̄ (ω) = F†
1,0(iωn)|iωn→ω+iε = F1,0(−iωn)|iωn→ω+iε,

are nothing but the retarded (real time) Green’s functions
GR

13,0(ω), GR
11,0(ω), GR

31,0(ω), and GR
33,0(ω). Here ε is an

infinitesimal and positive number. Thus we can obtain
the dynamical susceptibilities when the self-energy func-
tions �11(iωn) and �02(iωn) are known for all of n > 0.

C. Self-energy functions

At the level of the formal solutions of the Dyson’s equations,
the self-energy functions are still unknown. Here we compute
them through a perturbative approximation of the normal and
anomalous Green’s functions. The lowest order contributions
to the self-energy functions arise from the second-order per-
turbation with respect to : H(3)

SW :. If we stop the expansion
up to the lowest one-loop order, i.e., O(S0), each self-energy
function then contains 12 distinct contributions.

Let us compute the normal self-energy function �11(iωn).
In Fig. 2, we show the corresponding Feynman diagrams
up to the one-loop order corrections. The contributions
to the full self-energy function can be categorized into
four parts, �11(iωn) = �

(a)
11 (iωn) + �

(b)
11 (iωn) + �

(c)
11 (iωn) +

�
(d)
11 (iωn). Within the lowest order, each partial self-energy

function is given by

�
(a)
11 (iωn) = −1

2N

∑
k1∈�0

M
[333]
0,k1,−k1

M
[111]
k1,−k1,0

1 + 2nB
[
E1,k1

]
iωn + 2E1,k1

− 1

2N

∑
k1∈�0

M
[344]
0,k1,−k1

M
[221]
k1,−k1,0

1 + 2nB[E2,k1 ]

iωn + 2E2,k1

− 1

N

∑
k1∈�0

M
[334]
0,k1,−k1

M
[211]
−k1,k1,0

1 + nB
[
E1,k1

] + nB[E2,k1 ]

iωn + E1,k1 + E2,k1

,

�
(b)
11 (iωn) = 1

2N

∑
k1∈�0

M
[311]
0,k1,−k1

M
[331]
k1,−k1,0

1 + 2nB
[
E1,k1

]
iωn − 2E1,k1

+ 1

2N

∑
k1∈�0

M
[322]
0,k1,−k1

M
[441]
k1,−k1,0

1 + 2nB[E2,k1 ]

iωn − 2E2,k1

+ 1

N

∑
k1∈�0

M
[312]
0,k1,−k1

M
[341]
k1,−k1,0

1 + nB
[
E1,k1

] + nB[E2,k1 ]

iωn − E1,k1 − E2,k1

,

�
(c)
11 (iωn) = − 1

N

∑
k1∈�0

M
[332]
0,k1,k1

M
[411]
k1,k1,0

nB[E2,k1 ] − nB
[
E1,k1

]
iωn + E1,k1 − E2,k1

− 1

N

∑
k1∈�0

M
[341]
0,k1,k1

M
[321]
k1,k1,0

nB
[
E1,k1

] − nB[E2,k1 ]

iωn + E2,k1 − E1,k1

,
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�
(d)
11 (iωn) = − 1

N

∑
k1∈�0

M
[331]
0,0,0M

[311]
k1,0,k1

1

�
nB
[
E1,k1

] − 1

N

∑
k1∈�0

M
[311]
0,0,0M

[331]
0,k1,k1

1

�
nB
[
E1,k1

]

− 1

N

∑
k1∈�0

M
[331]
0,0,0M

[412]
k1,0,k1

1

�
nB[E2,k1 ] − 1

N

∑
k1∈�0

M
[311]
0,0,0M

[432]
k1,0,k1

1

�
nB[E2,k1 ].

Here the function nB(x) = (eβx − 1)−1 is the Bose distribution
function. We have defined a symmetrized third-order vertex
coefficient

M
[l1l2l3]
k1,k2,k3

= M
(l1l2l3)
k1,k2,k3

+ M
(l1l3l2)
k1,k3,k2

+ M
(l2l1l3)
k2,k1,k3

+ M
(l2l3l1)
k2,k3,k1

+ M
(l3l1l2)
k3,k1,k2

+ M
(l3l2l1)
k3,k2,k1

. (37)

Most dominant contributions to the decay of the Higgs
mode stem from �

(b)
11 (iωn). The partial function describes

the Beliaev damping processes where one Higgs mode with
zero momentum collapses into two NG modes with opposite
momenta k and −k with satisfying the on-shell energy-
momentum conservation of E1,0 − E2,k − E2,−k. The Beliaev
damping of the Higgs mode in the Bose-Hubbard systems has
been studied in some literatures through calculations of its
damping rate for n0 � 1 at zero temperature [33] and at finite
temperatures [34].

In our previous study based on the imaginary-time Green’s
function theory [34], we have calculated the damping rate
� ≡ −Im�11(iωn)|iωn→ω+iε only at ω = E1,0 = � in order to
obtain a qualitative measure of the stability of the Higgs mode.
Our analysis of the present paper generalizes it such that the
real and imaginary parts of the self-energy functions are taken
into account at general frequencies. In particular, the real part
is important because it characterizes a renormalization effect
of the mean-field Higgs gap, which stems from interactions
between the collective excitations.

The diagrams in Fig. 2 include processes with an odd number
of NG modes. Such a contribution vanishes for a large filling
rate n0 � 1 due to the explicit particle-hole symmetry of the
effective model Hn0�1

eff . In particular, the contribution of �
(c)
11

can emerge only at n0 ∼ 1 and provides purely thermal effects
on the damping properties of the Higgs mode. This process can
be regarded as a Landau-type damping of the Higgs mode with
absorbing one NG mode from a thermal cloud and emitting
one Higgs mode. In Ref. [34], it has been reported that the NG
mode with a nonzero momentum can exhibit a similar Landau
damping into a single Higgs mode at finite temperatures via
interactions with the NG modes in a thermal cloud. For basic
explanations of the Landau damping of collective excitations,
see, e.g., Ref. [54].

We next calculate the anomalous self-energy function
�02(iωn). In Fig. 3, we depict the lowest order cor-
rections to F1,0(iωn) by using the Feynman diagrams.
The contributions to the anomalous self-energy function
�02(iωn) are also categorized into four groups as in
the case of �11(iωn); �02(iωn) = �

(a)
02 (iωn) + �

(b)
02 (iωn) +

�
(c)
02 (iωn) + �

(d)
02 (iωn). Each diagram in �02(iωn) has the same

structure as the corresponding diagram in �11(iωn) except for
the interaction vertex on the righthand side at which the right
external line connects with two internal lines. The analytic
expressions of the anomalous self-energy function are given
as follows:

�
(a)
02 (iωn) = − 1

2N

∑
k1∈�0

M
[333]
0,k1,−k1

M
[311]
0,k1,−k1

1 + 2nB
[
E1,k1

]
iωn + 2E1,k1

− 1

2N

∑
k1∈�0

M
[344]
0,k1,−k1

M
[322]
0,k1,−k1

1 + 2nB[E2,k1 ]

iωn + 2E2,k1

− 1

N

∑
k1∈�0

M
[334]
0,k1,−k1

M
[312]
0,k1,−k1

1 + nB
[
E1,k1

] + nB[E2,k1 ]

iωn + E1,k1 + E2,k1

,

�
(b)
02 (iωn) = 1

2N

∑
k1∈�0

M
[311]
0,k1,−k1

M
[333]
0,k1,−k1

1 + 2nB
[
E1,k1

]
iωn − 2E1,k1

+ 1

2N

∑
k1∈�0

M
[322]
0,k1,−k1

M
[344]
0,k1,−k1

1 + 2nB[E2,k1 ]

iωn − 2E2,k1

+ 1

N

∑
k1∈�0

M
[312]
0,k1,−k1

M
[334]
0,k1,−k1

1 + nB
[
E1,k1

] + nB[E2,k1 ]

iωn − E1,k1 − E2,k1

,

�
(c)
02 (iωn) = − 1

N

∑
k1∈�0

M
[332]
0,k1,k1

M
[341]
0,k1,k1

nB
[
E1,k1

] − nB[E2,k1 ]

iωn + E2,k1 − E1,k1

− 1

N

∑
k1∈�0

M
[341]
0,k1,k1

M
[332]
0,k1,k1

nB[E2,k1 ] − nB
[
E1,k1

]
iωn + E1,k1 − E2,k1

,

�
(d)
02 (iωn) = − 1

N

∑
k1∈�0

M
[333]
0,0,0M

[311]
k1,k1,0

1

�
nB
[
E1,k1

] − 1

N

∑
k1∈�0

M
[331]
0,0,0M

[331]
0,k1,k1

1

�
nB
[
E1,k1

]

− 1

N

∑
k1∈�0

M
[333]
0,0,0M

[421]
k1,k1,0

1

�
nB[E2,k1 ] − 1

N

∑
k1∈�0

M
[331]
0,0,0M

[423]
k1,k1,0

1

�
nB[E2,k1 ].
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FIG. 3. Leading one-loop order contributions to the anomalous Green’s functionF1,0(iωn). The variables k1 and iωn1 added near the internal
line implies the internal summation over the possible momentum and Matsubara frequency. The self-energy function of each diagram is obtained
by picking off its two external lines. The diagrams in each column form an individual group labeled by �

(a)
02 (iωn), �

(b)
02 (iωn), �

(c)
02 (iωn), or

�
(d)
02 (iωn).

Here we should mention how to evaluate the momentum
summations appearing in the self-energy functions. In our
analysis, we have numerically computed the retarded
self-energy functions such as �R

11(ω) = �11(iωn)|iωn→ω+iε

for a fixed frequency after replacing the summations
by the corresponding integral, i.e.,

∑
k1∈�0

→∫ π

−π

∫ π

−π

∫ π

−π
dkxdkydkz/(2π )3. From the self-energy

functions obtained numerically, we can construct the
dynamical susceptibilities χKK (ω) and χOO(ω) according to
the formulas (35) and (36).

VI. RESULTS

Using the formulations explained in the previous sections,
we are able to obtain the dynamical susceptibilities. In this
section, we compute the imaginary part of the susceptibility as
a function of frequency ω and discuss the stability of the Higgs
mode in three-dimensional optical lattice systems.

FIG. 4. Susceptibility at the unit filling rate n0 = 1 and at zero
temperature. The position of the resonance peak increases away from
the critical point uc ≈ 1.457.

A. Response functions in the uniform system

We analyze the response functions (dynamical susceptibil-
ities) in the Bose-Hubbard model with no trapping potential
in order to discuss the broadening of the resonance peak
solely due to quantum and thermal fluctuations. In Fig. 4,
we show Im[χKK (ω)] at the unit filling rate and at zero
temperature. Notice that the two response functions χKK (ω)
and χOO(ω) are equal as mentioned in Sec. V. In Fig. 4,
we see a sufficiently sharp resonance peak corresponding to
the Higgs mode, which forms a Lorentzian-like curve. The
center of the peak defines a renormalized Higgs gap and the
width provides a damping rate of the mode. The existence
of the sharp resonance peak implies that the Higgs mode is
stable in the 3D system within the lowest order of the quantum
fluctuation. In addition, the position of the peak shifts to the
high-ω side as u leaves from the critical point u = uc. Table I
shows each value of the renormalized Higgs gap �∗ scaled by
the corresponding Mott gap �MI, which has a same relative
distance from the critical point, ūrel = |u − uc|/uc, as that of
the Higgs gap. As the energy scale, we used the mean-field Mott
gap �MI =

√
U 2 − 2JzU (2n0 + 1) + (Jz)2, which is derived

in Ref. [35].
We also see the similar behavior at a large filling rate

n0 � 1. In Fig. 5, we show Im[χKK (ω)] at a large filling
rate and at zero temperature. The peak width approximately

TABLE I. The explicit values of the renormalized Higgs gap �∗
scaled by the Mott gap �MI. �∗ and �MI locate at a same relative
distance ūrel from the critical point uc ≈ 1.457. uo and ud are the
corresponding values of u at a given ūrel = |u − uc|/uc in the ordered
side and disordered side, respectively.

�∗/�MI �/�MI ūrel uo ud

0.890 1.081 0.314 1.000 1.914
1.057 1.206 0.382 0.900 2.014
1.251 1.359 0.451 0.800 2.114
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FIG. 5. Susceptibility at a large filling rate n0 � 1 and at zero
temperature. The peak position corresponding to the Higgs mode gap
increases away from the critical point uc = 1.

coincides with the damping rate of the Higgs mode evaluated
in three dimensions and at a large filling rate [33]. It should be
noted that we see another peak near ω = 0. Such an additional
peak near ω = 0 also appears in Fig. 4. The additional peak
can be interpreted as an artifact of our perturbative method. In
fact, the real parts of the self-energy functions become as large
as the mean-field Higgs gap near ω = 0. This means that the
perturbative corrections to the Higgs gap are no longer small
compared with the zeroth-order gap itself; i.e., the perturbative
approximation breaks down near ω = 0. Nevertheless, the
perturbative corrections are sufficiently small compared to the
Higgs gap � around ω = �∗, meaning that our perturbative
approach is valid there. The emergence of this additional
peak is related to the logarithmic infrared divergence of the
self-energy functions of the (3 + 1)-dimensional relativistic
O(N ) scalar model [61]. Notice that in contrast to the infrared
divergence of the self-energy function, our naive perturbation
approach fails to describe the logarithmic corrections that
appear as a result of renormalization of the marginal terms
[62], which is ignored in our analysis.

Next, we consider finite-temperature effects on the response
functions. In Fig. 6, we show the temperature dependence of
the susceptibility at u = 1. The results show that the thermal
fluctuation only makes the peak width slightly broader, so that
the resonance peak is quite robust against the thermal fluctua-
tions up to T = 2J . Considering that the typical temperature
in real experiments is of order J , we conclude that the Higgs
resonance peak survives even at typical temperatures and at the
unit filling rate. Our result is in contrast to the case of the 2D
Bose-Hubbard model computed by the quantum Monte Carlo
simulations [30].

It is worth noting that the damping rate of the zero-
momentum Higgs mode at a large filling rate, which is
computed similarly to our approaches used in this paper, also
shows that the Higgs mode is sufficiently stable at typical
temperatures of order J [34]. Our result presented in Fig. 6
generalizes the result obtained in the virtual large-filling case
[34] into a more realistic case with unit filling rate correspond-
ing to actual experiments.

FIG. 6. Susceptibility at the unit filling rate n0 = 1 and at typical
temperatures. We have chosen the specific parameter u = 1 (zJ/U =
0.25).

B. Effects of a trapping potential

We include the trapping-potential effects within the local
density approximation. As a specific shape of the potential, we
assume a parabolic and isotropic potential

Vtrap(r) = mω2
0

2
r2, (38)

where m is the atomic mass and ω0 is the frequency of
the potential. According to the conventional local density
approximation (LDA) [57], the effect of the inhomogeneity
is described by the general formula

χlda(ω) = 4π

∫ R

0
drr2n̄′[μ(r)]χunif [ω,μ(r)], (39)

where χunif (ω,μ) is the bulk susceptibility [Eqs. (2) or (4)
divided by the factor N ] at the fixed chemical potential μ and
μ(r) = μn0 − Vtrap(r) is the local chemical potential. n̄′[μ] is
the normalized density defined by

n̄′[μ(r)] = n̄[μ(r)]

4π
∫ R

0 drr2n̄[μ(r)]
. (40)

R denotes the radius of the spherical region, in which atoms
are perturbed by the temporal modulation of J or U . When
the modulation perturbs the entire system, R is equal to the
Thomas-Fermi radius RTF, at which the density vanishes. We
assume that at the trap center the density n̄[μn0 ] is tuned to
n0 = 1.

1. Response functions at R = RTF

We analyze the response function to the modulation applied
globally to the entire system. In this case, the radial integral
in Eq. (39) is taken up to the Thomas-Fermi radius from the
spatial center of the trapping potential: R = RTF.

In Fig. 7(a), we show Im[χlda(ω)] together with the one
in the absence of the potential (38). We assume that T = 0
and u = 1, at which a sharp resonance peak survives when the
system is homogeneous. In Fig. 7(b), we plot the same LDA
susceptibility in a magnified scale in order to see its detailed
structure. There we see that the resonance peak, which would
be rather sharp without the trapping potential, is significantly

043628-13



KAZUMA NAGAO, YOSHIRO TAKAHASHI, AND IPPEI DANSHITA PHYSICAL REVIEW A 97, 043628 (2018)

FIG. 7. (a) Dynamical susceptibility of the trapped system (the solid line) versus the one in the homogeneous system (the dashed line) at
T = 0 and u = 1. At the center of the trap, the density of the system is tuned to unity, i.e., n0 = 1. (b) Magnifying the dynamical susceptibility
of the trapped system at zero temperature. In order to obtain a smooth line from LDA data, we used the spline interpolation.

broadened due to the inhomogeneity effect so that the peak
width is as large as the Higgs gap �. In this sense, one can no
longer regard the response as a well-defined resonance peak.

The broadening of the resonance peak can be attributed to
the following reason. When we apply the modulation globally
to the entire system, all the subsystems corresponding to
n̄ ∈ [0,1] contribute to the resulting response. Specifically, the
gap at n̄ < 1 is larger than that at n̄ = 1 and the high-energy
contributions far from the trapping center obscure the well-
defined Higgs resonance.

In Fig. 7(b), we also find a fine structure of the response
in the region of 0.7U < ω < 1.0U . This structure means that
the response of the bulk gapful mode at a certain value of μ,
which gives � � 0.75U (0.85U ), is locally strong (weak). It
is interesting to examine in future experiments whether or not
the emergence of the fine structure is an artifact of LDA.

While the resonance peak structure in the response is
smeared out, a characteristic feature of the Higgs mode in the
bulk is still visible in the susceptibility of the trapped system.
Specifically, the onset frequency of the response is almost equal
to the bulk Higgs gap � at n̄ = 1. This property has been found
also in 2D [30] and indeed utilized to measure � in experiments
[23].

2. Responses around the trapping center

We analyze the response to a partial modulation, which acts
only on atoms inside the spherical region with R < RTF around
the trap center. In this way, we eliminate the contributions from
the low-density region that broaden the resonance peak and
expect to see a sharp resonance peak as long as R is sufficiently
small. A similar analysis at 2D has been presented in Ref. [31].
In what follows, we set u = 1.

We define the radius for the partial modulation as Rmod. In
the unit of the Thomas-Fermi radius RTF, Rmod reads

Rmod

RTF
=
√

μn0 − μmod

μn0 − μTF
, (41)

where μmod = μ(Rmod) and μTF = μ(RTF). In particular, one
can easily see that μTF = −0.75U for u = 1. The calculation
of the LDA is performed just by making R = Rmod in Eq. (39).

In Fig. 8, we show Im[χlda(ω)] at zero temperature for dif-
ferent values of Rmod. When Rmod/RTF = 0.49, the modulation
is added to a subregion of n̄ � 0.90. In this case, the shape of
the resonance peak in the resulting response function is well
approximated as a Lorentzian function and the peak width
is clearly smaller than the peak position. Thus, the response
exhibits a sharp resonance peak. We also find that the peak
position is slightly shifted to the high-energy side due to the
contribution from the low-density region.

WhenRmod/RTF is increased, the response becomes broader
to approach the result at Rmod = RTF (see the dash-dotted line
in Fig. 8). When Rmod/RTF = 0.57, at which a subregion of
n̄(r) � 0.85 is modulated, the response is significantly broader
than that of Rmod/RTF = 0.49 and the shape of the response
function noticeably deviates from a Lorentzian function. Thus,
our results indicate that the condition that Rmod < 0.5RTF is
required for a sharp resonance peak to be observed.

For the case of Rmod/RTF = 0.49, let us consider finite-
temperature effects on the LDA susceptibility of the par-
tial modulation. Figure 9 shows the results at different

FIG. 8. Averaged dynamical susceptibilities in the trapped system
modulated partially. The dashed, dotted, and dash-dotted lines corre-
spond to Rmod/RTF = 0.49,0.57,1.00, respectively. The susceptibility
approaches the uniform result (solid line) in the limit of Rmod → 0.
Here u = 1 (zJ/U = 0.25) and T/J = 0. The filling factor at the
trapping center is tuned to unity, i.e., n0 = 1.
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FIG. 9. Finite-temperature effects on the susceptibilities of the
trapped system at u = 1 and Rmod/RTF = 0.49. The solid, dashed,
and dotted lines represent T/J = 0,1,2, respectively. At the center of
the trap, the density of the system is tuned to unity, i.e., n0 = 1.

temperatures. Our results reveal that the resonance peak is
robust against thermal fluctuations at typical experimental
temperatures of order J . The robustness of the response is not
related to the specific choice of Rmod because similar features
can be found in the uniform cases. According to the results in
Fig. 9, it is expected to be able to detect the well-defined Higgs-
mode resonance in typical three-dimensional experiments with
a parabolic potential. The detection procedure requires a partial
modulation of J or U over a radius Rmod � RTF, and it is,
in principle, possible in experiments. We emphasize that the
temperature dependence in 3D systems is distinct from that
in 2D systems [31]. In 2D systems, the response function
significantly depends on the temperature so that the Higgs peak
is smeared out due to thermal fluctuations when T > J even
for partial modulations.

VII. CONCLUSIONS

In conclusion, we analyzed the effects of quantum and ther-
mal fluctuations and spatial inhomogeneity due to a trapping
potential on the response functions of the 3D Bose-Hubbard
model both for the hopping strength and onsite-interaction
strength modulations, respectively. At the unit filling rate and
in the absence of the trapping potential, our results showed
that the Higgs mode can exist as a sharp resonance peak
in the dynamical susceptibilities at typical temperatures. We
included the effect of a trapping potential within the local
density approximation and indicated that the resonance peak is
significantly broadened due to the trapping potential when the
modulations are applied globally to the entire system. In order
to extract a sharp resonance peak from the smeared response,
we discussed partial modulations around the trap center. The
results with a modulation radius Rmod < 0.5RTF showed that
a well-defined resonance peak of the Higgs mode can survive
at typical temperatures.

Recently, a quantum Monte Carlo study on a 3D quantum
antiferromagnet, which has a quantum critical point described
effectively by the 3D relativistic O(3) scalar model, has
appeared [63]. In this numerical work, some response functions

are calculated and show a sufficiently sharp resonance peak of
the Higgs mode. It is an interesting and important problem that
one applies the same method to the 3D Bose-Hubbard model
with the parabolic potential and tests our qualitative results by
utilizing a more quantitative approach.
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APPENDIX A: ENERGY ABSORPTION DUE TO THE
ONSITE-INTERACTION STRENGTH MODULATIONS

In this appendix, we derive the relation between the re-
sponse function (3) and energy absorbed by the system for
a finite-time period of the onsite-interaction strength modu-
lation, according to the literature about the hopping strength
modulations [2,44].

As seen in Sec. III B, the time-dependent Hamiltonian
HBH(t) = HBH + �U (t)O describes the behavior of the sys-
tem that is initially in a thermal equilibrium state and is driven
by the small and periodic modulation U → [1 + �U (t)]U =
[1 + δU cos(ωt)]U at a fixed ω. If we assume that ρ(t) is the
total density operator at t , which approaches the equilibrium
one ρeq as t → −∞, then the total energy of the system at
t is given by E(t) = 〈HBH(t)〉(t) = Trρ(t)HBH(t). We can
verify easily that its instantaneous change rate dE(t)/dt is
proportional to only the instantaneous average of O with a
oscillation factor:

dE

dt
= �̇U (t)〈O〉(t)
= −ωδU sin(ωt)〈O〉(t). (A1)

Using the basic result of the linear response theory [60], the
response of O to the U modulation, it is defined by �〈O〉(t) ≡
〈O〉(t) − 〈O〉eq and is related to �U (t) such that

�〈O〉(t) =
∫ t

−∞
DR

OO(t − t ′)�U (t ′), (A2)

where DR
OO(t − t ′) is the response function given by Eq. (3).

Substituting �U (t) = δU cos(ωt) into this Eq. (A2), we obtain

�〈O〉(t) = δU Re{eiωtχ∗
OO(ω)}

= δU {cos(ωt)ReχOO(ω) + sin(ωt)ImχOO(ω)}.
(A3)

Averaging Eq. (A1) over one period tmod = 2π/ω and using
Eq. (A3), we finally obtain the mean energy absorbed by the
system for a period of tmod

�E(ω) = 1

tmod

∫ tmod

0
dt

dE

dt
= (δO)2

2
ωSOO(ω), (A4)

where SOO(ω) = −ImχOO(ω) is the spectral function. One
can measure �E(ω) accurately by using the quantum-gas
microscope technique. The relation (A4) reveals that for the
modulations of U , the experimental observable �E(ω) is
related only to the O-to-O response function DR

OO(t − t ′).

043628-15



KAZUMA NAGAO, YOSHIRO TAKAHASHI, AND IPPEI DANSHITA PHYSICAL REVIEW A 97, 043628 (2018)

APPENDIX B: SUPPLEMENT ON THE DERIVATION
OF THE EFFECTIVE PSEUDOSPIN-1 MODEL

In the Hilbert space projected by Pn0 , each of local operator
that constitutes the model Hamiltonian, ai , a

†
i , and δn = ni −

n0, reduces to a simple form represented by the constrained
Schwinger bosons tα , t†α (α = −1,0,1). In terms of the bosons,
the operators read

Pn0a
†
i P−1

n0
=
√

n0 + 1t
†
1,i t0,i + √

n0t
†
0,i t−1,i ,

Pn0aiP−1
n0

=
√

n0 + 1t
†
0,i t1,i + √

n0t
†
−1,i t0,i ,

Pn0δniP−1
n0

= t
†
1,i t1,i − t

†
−1,i t−1,i .

For any nonzero and positive integer n0, the last operator
Pn0δniP−1

n0
turns out to be the pseudospin-1 operator Sz

i ,

Pn0δniP−1
n0

= Sz
i . (B1)

At n0 � 1, due to
√

n0 + 1 ≈ √
n0, we find that the remaining

operators are rewritten by the pseudospin-1 operators S+
i and

S−
i simply, and thus,

Pn0a
†
i P−1

n0
≈
√

n0

2
S+

i , Pn0aiP−1
n0

≈
√

n0

2
S−

i . (B2)

Substituting these relations into Eq. (5), we obtain the particle-
hole symmetric effective pseudospin-1 model (7).

On the other hand, for an arbitrary filling rate, the rela-
tions (B2) need to be modified. We can verify easily that
t
†
1,i t0,i = Sz

i S
+
i and t

†
0,i t1,i = S−

i Sz
i ; therefore, we obtain more

complicated relations

Pn0a
†
i P−1

n0
=
√

n0

2

(
1 + δνSz

i

)
S+

i ,

Pn0aiP−1
n0

=
√

n0

2
S−

i

(
1 + δνSz

i

)
, (B3)

where δν = √
1 + 1/n0 − 1. Substituting these relations into

Eq. (5), we obtain the explicit form of the modified effective
pseudospin-one model (8). As seen in Sec. IV, this model has
no longer the particle-hole symmetry when δν �= 0.

APPENDIX C: SUPPLEMENT ON THE VARIATIONAL
ANSATZ OF THE GROUND-STATE WAVE FUNCTION

Using the variational wave function (9), the specific repre-
sentation of the mean energy density EMF = 〈�|Hn0

eff |�〉/N is
computed as

EMF =
[

1

2
+ μcosχ

]
sin2

(
θ

2

)
− Jz

4
sin2θ

[
n0 + sin2

(χ

2

)

+
√

n0(1 + n0)sinχcos2η
]
. (C1)

After effecting the variation of Eq. (C1) with respect to the
variational parameters, we obtain a mean-field ground-state
energy E0(θmf) = EMF[θmf ,0,0,χ (θmf )], where

tanχ (θ ) = −2Jz
√

n0(n0 + 1)[1 − sin2(θ/2)]

2μ + Jz[1 − sin2(θ/2)]
, (C2)

and θmf is determined such that it minimizes the functionE0(θ ).
Using the optimized wave function after the variation, we also

obtain the order parameter � = 〈�|ai |�〉 and mean density
n̄ = 〈�|ni |�〉 of the ground state as follows:

� = 1

2
sinθmf

[√
n0 + 1sin

(χmf

2

)
+ √

n0cos
(χmf

2

)]
,

n̄ = n0 − sin2

(
θmf

2

)
cosχmf , χmf = χ (θmf). (C3)

It is easy to obtain an analytical form of θmf at commensurate
filling rates. In this case, χmf turns out to be χmf = π/2 [see
Eq. (C3)]. Minimizing EMF(θ,0,0,π/2) with respect to θ , we
obtain

θmf = sin−1(
√

1 − (Jz)−2(
√

n0 + 1 + √
n0)−4), (C4)

and the corresponding chemical potential at n̄ = n0 reads

μn0 = − 1
4 [zJ + (

√
n0 + 1 + √

n0)−2]. (C5)

Here, it is worth noting that at χmf = π/2 the ground state
is particle-hole symmetric. This is because the corresponding
wave function (9) contains t

†
1,i and t

†
−1,i components with equal

weights at each site.

APPENDIX D: COEFFICIENTS
IN THE EFFECTIVE MODEL

In this appendix, we give the coefficients in each partial
Hamiltonian H(l)

eff for l = 0,1,2,3,4. To simplify our discus-
sion, we define a formal representation of the pseudospin
operators as follows:

S+
i = t

†
i T1ti , S−

i = t
†
i T2ti , Sz

i = t
†
i T3ti ,(

Sz
i

)2 = t
†
i T4ti , Sz

i S
+
i = t

†
i T5ti , S−

i Sz
i = t

†
i T6ti , (D1)

where ti = (t1,i ,t0,i ,t−1,i)T. We have introduced matrices
T1,T2, . . . ,T6 defined by

T1 =
⎛
⎝0

√
2 0

0 0
√

2
0 0 0

⎞
⎠, T2 =

⎛
⎝ 0 0 0√

2 0 0
0

√
2 0

⎞
⎠,

T3 =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, T4 =

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠,

T5 =
⎛
⎝0

√
2 0

0 0 0
0 0 0

⎞
⎠, T6 =

⎛
⎝ 0 0 0√

2 0 0
0 0 0

⎞
⎠. (D2)

The canonical transformation (11) can be regarded as the
linear transformation from the old basis ti to the new one bi =
(b1,i ,b0,i ,b2,i)T. After the transformation, the elements of the
matrices in the new basis are given by

T̃1 =
⎛
⎝−√

2s1c1(s2 + c2)
√

2(s1
2c2−c1

2s2) −√
2s1s2√

2(s1
2s2 − c1

2c2)
√

2s1c1(s2 + c2) −√
2c1s2√

2s1c2

√
2c1c2 0

⎞
⎠,

T̃2 =
⎛
⎝−√

2s1c1(s2 + c2)
√

2(s1
2s2 − c1

2c2)
√

2s1c2√
2(s1

2c2 − c1
2s2)

√
2s1c1(s2 + c2)

√
2c1c2

−√
2s1s2 −√

2c1s2 0

⎞
⎠,
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T̃3 =
⎛
⎝ c2

1(s2
2 − c2

2) s1c1(c2
2 − s2

2) −2c1s2c2

s1c1(c2
2 − s2

2) s1
2(s2

2 − c2
2) 2s1s2c2

−2c1s2c2 2s1s2c2 c2
2 − s2

2

⎞
⎠,

T̃4 =
⎛
⎝ c2

1 −s1c1 0
−s1c1 s1

2 0
0 0 1

⎞
⎠,

T̃5 =
⎛
⎝−√

2s1c1s2 −√
2c1

2s2 0√
2s1

2s2

√
2s1c1s2 0√

2s1c2

√
2c1c2 0

⎞
⎠,

T̃6 =
⎛
⎝−√

2s1c1s2

√
2s1

2s2

√
2s1c2

−√
2c1

2s2

√
2s1c1s2

√
2c1c2

0 0 0

⎞
⎠. (D3)

In the following equations, we express the matrix elements of
each matrix by

T̃μ =
⎛
⎝(T̃μ)11 (T̃μ)10 (T̃μ)12

(T̃μ)01 (T̃μ)00 (T̃μ)02

(T̃μ)21 (T̃μ)20 (T̃μ)22

⎞
⎠, for μ = 1,2, . . . ,6.

In terms of the matrix elements, the coefficients in H(0)
eff are

given by

A0 = −Jn0z

2
{(T̃1)00 + δν(T̃5)00}2, (D4)

Ã0 = U

2
(T̃4)00 − B(T̃3)00. (D5)

The coefficients in H(1)
eff are given by

A1 = −Jn0z

2
{(T̃1)00 + δν(T̃5)00}

× [(T̃1)01 + (T̃1)10 + δν(T̃5)01 + δν(T̃5)10], (D6)

B1 = −Jn0z

2
{(T̃1)00 + δν(T̃5)00}

× [(T̃1)02 + (T̃1)20 + δν(T̃5)20], (D7)

Ã1 = U

2
(T̃4)10 − B(T̃3)10, (D8)

B̃1 = −B(T̃3)20. (D9)

The coefficients in H(2)
eff are given by

A2 = −Jn0z{(T̃1)00 + δν(T̃5)00} × {(T̃1)11 + δν(T̃5)11},
(D10)

B2 = − Jn0z

2
[{(T̃1)00 + δν(T̃5)00}{(T̃1)21 + δν(T̃5)21}

+ (T̃1)12{(T̃1)00 + δν(T̃5)00], (D11)

D2 = −Jn0z

2
{(T̃1)10 + δν(T̃5)10} × {(T̃1)01 + δν(T̃5)01},

(D12)

E2 = −Jn0z

2
[{(T̃1)10 + δν(T̃5)10}2{(T̃1)01 + δν(T̃5)01}2],

(D13)

F2 = −Jn0z

2
[{(T̃1)20 + δν(T̃5)20}{(T̃1)10 + δν(T̃5)10}

+ (T̃1)02{(T̃1)01 + δν(T̃5)01}], (D14)

G2 = −Jn0z

2
[{(T̃1)20 + δν(T̃5)20}{(T̃1)01 + δν(T̃5)01}

+ (T̃1)02{(T̃1)10 + δν(T̃5)10}], (D15)

H2 = −Jn0z

2
(T̃1)02{(T̃1)20 + δν(T̃5)20}, (D16)

I2 = −Jn0z

2

[{(T̃1)20 + δν(T̃5)20}2 + (T̃1)2
02

]
, (D17)

Ã2 = U

2
(T̃4)11 − B(T̃3)11, (D18)

B̃2 = −B(T̃3)12, (D19)

C̃2 = U

2
(T̃4)22 − B(T̃3)22. (D20)

The coefficients in H(3)
eff are given by

A3 = −Jn0z

2
{(T̃1)11 + δν(T̃5)11}

× {(T̃1)10 + (T̃1)01 + δν(T̃5)10 + δν(T̃5)01}, (D21)

B3 = −Jn0z

2
{(T̃1)11 + δν(T̃5)11}

× {(T̃1)20 + (T̃1)02 + δν(T̃5)20}, (D22)

C3 = −Jn0z

2
[{(T̃1)10 + δν(T̃5)10)(T̃1)12

+{(T̃1)21 + δν(T̃5)21}{(T̃1)01 + δν(T̃5)01}], (D23)

D3 = −Jn0z

2
[{(T̃1)10 + δν(T̃5)10}{(T̃1)21 + δν(T̃5)21}

+{T̃1)12((T̃1)01 + δν(T̃5)01}], (D24)

E3 = −Jn0z

2
[{(T̃1)21 + δν(T̃5)21}{(T̃1)20 + δν(T̃5)20}

+ (T̃1)02(T̃1)12], (D25)

F3 = −Jn0z

2
[(T̃1)02{(T̃1)21 + δν(T̃5)21}

+ (T̃1)12{(T̃1)20 + δν(T̃5)20}]. (D26)

Finally, the coefficients in H(4)
eff are given by

A4 = −Jn0z

2
{(T̃1)11 + δν(T̃5)11}2, (D27)

B4 = −Jn0z

2
(T̃1)12{(T̃1)21 + δν(T̃5)21}, (D28)

C4 = −Jn0z

2
{(T̃1)11 + δν(T̃5)11}

× [
(T̃1)12 + (T̃1)21 + δν(T̃5)21

]
, (D29)

D4 = −Jn0z

2

[{(T̃1)21 + δν(T̃5)21}2 + (T̃1)2
12

]
. (D30)
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APPENDIX E: BOGOLIUBOV TRANSFORMATION
AT LARGE FILLING RATES

At n0 � 1, we can compute Wk, E1,k, and E2,k analytically.
As we have seen in Sec. IV D,H(2)

SW has no mixing term between
branches labeled by 1 or 2 in the limit. Hence, we can perform
the Bogoliubov transformation independently in each blanch:

Wk →

⎛
⎜⎜⎝

u11,k 0 v∗
11,−k 0

0 u22,k 0 v∗
22,−k

v11,k 0 u∗
11,−k 0

0 v22,k 0 u∗
22,−k

⎞
⎟⎟⎠.

Let us assume that the coefficients are real and have a
symmetry under a sign change of the momentum k → −k.
In this assumption, the coefficients of the transformation are

u11,k =
√

2 − u2γk

4
√

1 − u2γk

+ 1

2
, (E1)

v11,k = sgn(γk)

√
2 − u2γk

4
√

1 − u2γk

− 1

2
, (E2)

u22,k =
√

2 − γk

4
√

1 − γk
+ 1

2
, (E3)

v22,k = −sgn(γk)

√
2 − γk

4
√

1 − γk
− 1

2
. (E4)

The band dispersions of the Higgs and NG modes in the large
filling limit [33] are

E1,k = 2Jn0z
√

1 − u2γk, (E5)

E2,k = Jn0z(1 + u)
√

1 − γk. (E6)

The former Higgs band has a finite-energy gap �̃ =
2Jn0z

√
1 − u2 at k = 0 while the latter NG band is gapless.

The energy gap �̃ closes at the critical point u = uc = 1.

[1] G. E. Volovik and M. A. Zubkov, J. Low Temp. Phys. 175, 486
(2014).

[2] D. Pekker and C. M. Varma, Annu. Rev. Condens. Matter Phys.
6, 269 (2015).

[3] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
[4] R. Sooryakumar and M. V. Klein, Phys. Rev. Lett. 45, 660 (1980).
[5] R. Sooryakumar and M. V. Klein, Phys. Rev. B 23, 3213 (1981).
[6] P. B. Littlewood and C. M. Varma, Phys. Rev. Lett. 47, 811

(1981).
[7] P. B. Littlewood and C. M. Varma, Phys. Rev. B 26, 4883 (1982).
[8] M.-A. Méasson, Y. Gallais, M. Cazayous, B. Clair, P. Rodiére,

L. Cario, and A. Sacuto, Phys. Rev. B 89, 060503 (2014).
[9] R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z.

Wang, and R. Shimano, Phys. Rev. Lett. 111, 057002 (2013).
[10] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y.

Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Science
345, 1145 (2014).

[11] D. Sherman, U. S. Pracht, B. Gorshunov, S. Poran, J. Jesudasan,
M. Chand, P. Raychaudhuri, M. Swanson, N. Trivedi, A. Auer-
bach et al., Nat. Phys. 11, 188 (2015).

[12] R. Matsunaga, N. Tsuji, K. Makise, H. Terai, H. Aoki, and R.
Shimano, Phys. Rev. B 96, 020505(R) (2017).

[13] C. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D. F.
McMorrow, K. W. Kramer, H. U. Gudel, S. N. Gvasaliya, H.
Mutka, and M. Boehm, Phys. Rev. Lett. 100, 205701 (2008).

[14] P. Merchant, B. Normand, K. W. Krämer, M. Boehm, D. F.
McMorrow, and Ch. Rüegg, Nat. Phys. 10, 373 (2014).

[15] H. Kuroe, N. Takami, N. Niwa, T. Sekine, M. Matsumoto, F.
Yamada, H. Tanaka, and K. Takemura, J. Phys.: Conf. Series
400, 032042 (2012).

[16] J. Demsar, K. Biljaković, and D. Mihailovic, Phys. Rev. Lett.
83, 800 (1999).

[17] H. Schaefer, V. V. Kabanov, and J. Demsar, Phys. Rev. B 89,
045106 (2014).

[18] R. Yusupov, T. Mertelj, V. V. Kabanov, S. Brazovskii, P. Kusar,
J.-H. Chu, I. R. Fisher, and D. Mihailovic, Nat. Phys. 6, 681
(2010).

[19] T. Mertelj, P. Kusar, V. V. Kabanov, P. Giraldo-Gallo, I. R. Fisher,
and D. Mihailovic, Phys. Rev. Lett. 110, 156401 (2013).

[20] O. Avenel, E. Varoquaux, and H. Ebisawa, Phys. Rev. Lett. 45,
1952 (1980).

[21] C. A. Collett, J. Pollanen, J. I. A. Li, W. J. Gannon, and W. P.
Halperin, J. Low Temp. Phys. 171, 214 (2013).

[22] U. Bissbort, S. Götze, Y. Li, J. Heinze, J. S. Krauser, M.
Weinberg, C. Becker, K. Sengstock, and W. Hofstetter, Phys.
Rev. Lett. 106, 205303 (2011).

[23] M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C.
Gross, E. Demler, S. Kuhr, and I. Bloch, Nature (London) 487,
454 (2012).

[24] D. Podolsky, A. Auerbach, and D. P. Arovas, Phys. Rev. B 84,
174522 (2011).

[25] D. Podolsky and S. Sachdev, Phys. Rev. B 86, 054508
(2012).

[26] S. Gazit, D. Podolsky, and A. Auerbach, Phys. Rev. Lett. 110,
140401 (2013); S. Gazit, D. Podolsky, A. Auerbach, and D. P.
Arovas, Phys. Rev. B 88, 235108 (2013).

[27] A. Rançon and N. Dupuis, Phys. Rev. B 89, 180501(R) (2014).
[28] Y. T. Katan and D. Podolsky, Phys. Rev. B 91, 075132 (2015).
[29] F. Rose, F. Léonard, and N. Dupuis, Phys. Rev. B 91, 224501

(2015).
[30] L. Pollet and N. Prokof’ev, Phys. Rev. Lett. 109, 010401 (2012).
[31] L. Liu, K. Chen, Y. Deng, M. Endres, L. Pollet, and N. Prokof’ev,

Phys. Rev. B 92, 174521 (2015).
[32] K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev, Phys.

Rev. Lett. 110, 170403 (2013).
[33] E. Altman and A. Auerbach, Phys. Rev. Lett. 89, 250404 (2002).
[34] K. Nagao and I. Danshita, Prog. Theor. Exp. Phys. 2016, 063I01

(2016).

043628-18

https://doi.org/10.1007/s10909-013-0905-7
https://doi.org/10.1007/s10909-013-0905-7
https://doi.org/10.1007/s10909-013-0905-7
https://doi.org/10.1007/s10909-013-0905-7
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.45.660
https://doi.org/10.1103/PhysRevLett.45.660
https://doi.org/10.1103/PhysRevLett.45.660
https://doi.org/10.1103/PhysRevLett.45.660
https://doi.org/10.1103/PhysRevB.23.3213
https://doi.org/10.1103/PhysRevB.23.3213
https://doi.org/10.1103/PhysRevB.23.3213
https://doi.org/10.1103/PhysRevB.23.3213
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.89.060503
https://doi.org/10.1103/PhysRevB.89.060503
https://doi.org/10.1103/PhysRevB.89.060503
https://doi.org/10.1103/PhysRevB.89.060503
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1126/science.1254697
https://doi.org/10.1126/science.1254697
https://doi.org/10.1126/science.1254697
https://doi.org/10.1126/science.1254697
https://doi.org/10.1038/nphys3227
https://doi.org/10.1038/nphys3227
https://doi.org/10.1038/nphys3227
https://doi.org/10.1038/nphys3227
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevLett.100.205701
https://doi.org/10.1103/PhysRevLett.100.205701
https://doi.org/10.1103/PhysRevLett.100.205701
https://doi.org/10.1103/PhysRevLett.100.205701
https://doi.org/10.1038/nphys2902
https://doi.org/10.1038/nphys2902
https://doi.org/10.1038/nphys2902
https://doi.org/10.1038/nphys2902
https://doi.org/10.1088/1742-6596/400/3/032042
https://doi.org/10.1088/1742-6596/400/3/032042
https://doi.org/10.1088/1742-6596/400/3/032042
https://doi.org/10.1088/1742-6596/400/3/032042
https://doi.org/10.1103/PhysRevLett.83.800
https://doi.org/10.1103/PhysRevLett.83.800
https://doi.org/10.1103/PhysRevLett.83.800
https://doi.org/10.1103/PhysRevLett.83.800
https://doi.org/10.1103/PhysRevB.89.045106
https://doi.org/10.1103/PhysRevB.89.045106
https://doi.org/10.1103/PhysRevB.89.045106
https://doi.org/10.1103/PhysRevB.89.045106
https://doi.org/10.1038/nphys1738
https://doi.org/10.1038/nphys1738
https://doi.org/10.1038/nphys1738
https://doi.org/10.1038/nphys1738
https://doi.org/10.1103/PhysRevLett.110.156401
https://doi.org/10.1103/PhysRevLett.110.156401
https://doi.org/10.1103/PhysRevLett.110.156401
https://doi.org/10.1103/PhysRevLett.110.156401
https://doi.org/10.1103/PhysRevLett.45.1952
https://doi.org/10.1103/PhysRevLett.45.1952
https://doi.org/10.1103/PhysRevLett.45.1952
https://doi.org/10.1103/PhysRevLett.45.1952
https://doi.org/10.1007/s10909-012-0692-6
https://doi.org/10.1007/s10909-012-0692-6
https://doi.org/10.1007/s10909-012-0692-6
https://doi.org/10.1007/s10909-012-0692-6
https://doi.org/10.1103/PhysRevLett.106.205303
https://doi.org/10.1103/PhysRevLett.106.205303
https://doi.org/10.1103/PhysRevLett.106.205303
https://doi.org/10.1103/PhysRevLett.106.205303
https://doi.org/10.1038/nature11255
https://doi.org/10.1038/nature11255
https://doi.org/10.1038/nature11255
https://doi.org/10.1038/nature11255
https://doi.org/10.1103/PhysRevB.84.174522
https://doi.org/10.1103/PhysRevB.84.174522
https://doi.org/10.1103/PhysRevB.84.174522
https://doi.org/10.1103/PhysRevB.84.174522
https://doi.org/10.1103/PhysRevB.86.054508
https://doi.org/10.1103/PhysRevB.86.054508
https://doi.org/10.1103/PhysRevB.86.054508
https://doi.org/10.1103/PhysRevB.86.054508
https://doi.org/10.1103/PhysRevLett.110.140401
https://doi.org/10.1103/PhysRevLett.110.140401
https://doi.org/10.1103/PhysRevLett.110.140401
https://doi.org/10.1103/PhysRevLett.110.140401
https://doi.org/10.1103/PhysRevB.88.235108
https://doi.org/10.1103/PhysRevB.88.235108
https://doi.org/10.1103/PhysRevB.88.235108
https://doi.org/10.1103/PhysRevB.88.235108
https://doi.org/10.1103/PhysRevB.89.180501
https://doi.org/10.1103/PhysRevB.89.180501
https://doi.org/10.1103/PhysRevB.89.180501
https://doi.org/10.1103/PhysRevB.89.180501
https://doi.org/10.1103/PhysRevB.91.075132
https://doi.org/10.1103/PhysRevB.91.075132
https://doi.org/10.1103/PhysRevB.91.075132
https://doi.org/10.1103/PhysRevB.91.075132
https://doi.org/10.1103/PhysRevB.91.224501
https://doi.org/10.1103/PhysRevB.91.224501
https://doi.org/10.1103/PhysRevB.91.224501
https://doi.org/10.1103/PhysRevB.91.224501
https://doi.org/10.1103/PhysRevLett.109.010401
https://doi.org/10.1103/PhysRevLett.109.010401
https://doi.org/10.1103/PhysRevLett.109.010401
https://doi.org/10.1103/PhysRevLett.109.010401
https://doi.org/10.1103/PhysRevB.92.174521
https://doi.org/10.1103/PhysRevB.92.174521
https://doi.org/10.1103/PhysRevB.92.174521
https://doi.org/10.1103/PhysRevB.92.174521
https://doi.org/10.1103/PhysRevLett.110.170403
https://doi.org/10.1103/PhysRevLett.110.170403
https://doi.org/10.1103/PhysRevLett.110.170403
https://doi.org/10.1103/PhysRevLett.110.170403
https://doi.org/10.1103/PhysRevLett.89.250404
https://doi.org/10.1103/PhysRevLett.89.250404
https://doi.org/10.1103/PhysRevLett.89.250404
https://doi.org/10.1103/PhysRevLett.89.250404
https://doi.org/10.1093/ptep/ptw061
https://doi.org/10.1093/ptep/ptw061
https://doi.org/10.1093/ptep/ptw061
https://doi.org/10.1093/ptep/ptw061


RESPONSE OF THE HIGGS AMPLITUDE MODE OF … PHYSICAL REVIEW A 97, 043628 (2018)

[35] S. D. Huber, E. Altman, H. P. Büchler, and G. Blatter, Phys. Rev.
B 75, 085106 (2007).

[36] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 (1989).

[37] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[38] D. van Oosten, P. van der Straten, and H. T. C. Stoof, Phys. Rev.
A 63, 053601 (2001).

[39] B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. B 75, 134302 (2007).

[40] S. Sachdev, Quantum Phase Transition, 2nd ed. (Cambridge
University Press, Cambridge, UK, 2011).

[41] T. Nakayama, I. Danshita, T. Nikuni, and S. Tsuchiya, Phys. Rev.
A 92, 043610 (2015).

[42] E. Altman, arXiv:1512.00870 [cond-mat.quant-gas].
[43] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger,

Phys. Rev. Lett. 92, 130403 (2004).
[44] M. Endres, Probing Correlated Quantum Many-Body Systems

at the Single-Particle Level (Springer, Switzerland, 2014).
[45] P. O. Fedichev, Y. Kagan, G. V. Shlyapnikov, and J. T. M.

Walraven, Phys. Rev. Lett. 77, 2913 (1996).
[46] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff,

R. Grimm, and J. H. Denschlag, Phys. Rev. Lett. 93, 123001
(2004).

[47] R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, Phys. Rev.
Lett. 105, 050405 (2010).

[48] D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, Nat.
Phys. 5, 339 (2009).

[49] L. W. Clark, L.-C. Ha, C.-Y. Xu, and C. Chin, Phys. Rev. Lett.
115, 155301 (2015).

[50] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
[51] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. B 79,

144416 (2009).
[52] T. Kita, J. Phys. Soc. Jpn. 75, 044603 (2006).
[53] V. I. Yukalov and H. Kleinert, Phys. Rev. A 73, 063612 (2006).
[54] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute

Gases (Cambridge University Press, Cambridge, UK, 2008).
[55] A. Griffin, Phys. Rev. B 53, 9341 (1996).
[56] N. Shohno, Prog. Theor. Phys. 31, 553 (1964).
[57] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation

(Oxford University Press, New York, 2003).
[58] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods

of Quantum Field Theory in Statistical Physics (Dover, New
York, 1975).

[59] E. M. Lifshitz and L. Pitaevskii, Statistical Physics, Part 2
(Pergamon, Oxford, UK, 1980).

[60] A. Altland and B. D. Simons, Condensed Matter Field Theory,
2nd ed. (Cambridge University Press, Cambridge, UK, 2010).

[61] N. Dupuis, Phys. Rev. E 83, 031120 (2011).
[62] I. Affleck and G. F. Wellman, Phys. Rev. B 46, 8934 (1992).
[63] Y. Q. Qin, B. Normand, A. W. Sandvik, and Z. Y. Meng, Phys.

Rev. Lett. 118, 147207 (2017).

043628-19

https://doi.org/10.1103/PhysRevB.75.085106
https://doi.org/10.1103/PhysRevB.75.085106
https://doi.org/10.1103/PhysRevB.75.085106
https://doi.org/10.1103/PhysRevB.75.085106
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevA.63.053601
https://doi.org/10.1103/PhysRevA.63.053601
https://doi.org/10.1103/PhysRevA.63.053601
https://doi.org/10.1103/PhysRevA.63.053601
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevA.92.043610
https://doi.org/10.1103/PhysRevA.92.043610
https://doi.org/10.1103/PhysRevA.92.043610
https://doi.org/10.1103/PhysRevA.92.043610
http://arxiv.org/abs/arXiv:1512.00870
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevLett.77.2913
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevLett.93.123001
https://doi.org/10.1103/PhysRevLett.105.050405
https://doi.org/10.1103/PhysRevLett.105.050405
https://doi.org/10.1103/PhysRevLett.105.050405
https://doi.org/10.1103/PhysRevLett.105.050405
https://doi.org/10.1038/nphys1232
https://doi.org/10.1038/nphys1232
https://doi.org/10.1038/nphys1232
https://doi.org/10.1038/nphys1232
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevB.79.144416
https://doi.org/10.1103/PhysRevB.79.144416
https://doi.org/10.1103/PhysRevB.79.144416
https://doi.org/10.1103/PhysRevB.79.144416
https://doi.org/10.1143/JPSJ.75.044603
https://doi.org/10.1143/JPSJ.75.044603
https://doi.org/10.1143/JPSJ.75.044603
https://doi.org/10.1143/JPSJ.75.044603
https://doi.org/10.1103/PhysRevA.73.063612
https://doi.org/10.1103/PhysRevA.73.063612
https://doi.org/10.1103/PhysRevA.73.063612
https://doi.org/10.1103/PhysRevA.73.063612
https://doi.org/10.1103/PhysRevB.53.9341
https://doi.org/10.1103/PhysRevB.53.9341
https://doi.org/10.1103/PhysRevB.53.9341
https://doi.org/10.1103/PhysRevB.53.9341
https://doi.org/10.1143/PTP.31.553
https://doi.org/10.1143/PTP.31.553
https://doi.org/10.1143/PTP.31.553
https://doi.org/10.1143/PTP.31.553
https://doi.org/10.1103/PhysRevE.83.031120
https://doi.org/10.1103/PhysRevE.83.031120
https://doi.org/10.1103/PhysRevE.83.031120
https://doi.org/10.1103/PhysRevE.83.031120
https://doi.org/10.1103/PhysRevB.46.8934
https://doi.org/10.1103/PhysRevB.46.8934
https://doi.org/10.1103/PhysRevB.46.8934
https://doi.org/10.1103/PhysRevB.46.8934
https://doi.org/10.1103/PhysRevLett.118.147207
https://doi.org/10.1103/PhysRevLett.118.147207
https://doi.org/10.1103/PhysRevLett.118.147207
https://doi.org/10.1103/PhysRevLett.118.147207



