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a b s t r a c t

A unified method for extracting geometric shape features from binary image data using a steady-state
partial differential equation (PDE) system as a boundary value problem is presented in this paper. The
PDE and functions are formulated to extract the thickness, orientation, and skeleton simultaneously.
The main advantage of the proposed method is that the orientation is defined without derivatives and
thickness computation is not imposed a topological constraint on the target shape. A one-dimensional
analytical solution is provided to validate the proposed method. In addition, two-dimensional numerical
examples are presented to confirm the usefulness of the proposed method.
� 2019 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The development of remarkable image analysis technology in
recent years has helped address several problems in various fields,
such as materials science (Yamashita, Yoshizawa, & Yokota, 2014),
mechanical engineering (Benko, Martin, & Varady, 2001), biome-
chanics (Sera et al., 2003; Zhenjiang, 2000), medicine (Hildebrand
& Rüegsegger, 1997; Hutton, De Vita, Ashburner, Deichmann, &
Turner, 2008), and shape analysis(Costa & Cesar, 2000; Kokaram
et al., 2003). For example, the skeleton can be extracted from com-
puted tomography (CT) and magnetic resonance imaging (MRI)
data, contributing to an understanding of its structure. In particu-
lar, the estimation of local thickness is an important measure for
disease propagation. In reverse engineering of mechanical products
(Fujimori & Suzuki, 2005), the extraction of geometrical features
(e.g., curvature and edge information) from X-ray CT images is an
important analytical technique when designing and developing
novel high-performance systems in a short time. When designing
mechanical products, the extraction of members that exceed the
allowed minimal thickness in computer-aided design (CAD) mod-
els is an important design consideration. Therefore, feature extrac-
tion is used in a variety of tasks in the fields of computer vision,
image processing, and digital engineering.

This paper presents a unified method for extracting geometric
features by using a partial differential equation (PDE). In the fol-

lowing section, related research on feature extraction and PDE-
based image processing is briefly discussed. Second, the basic con-
cept and an overview of the proposed method are discussed by
comparing related research with the proposed method. Next, a
PDE for geometric shape feature extraction is formulated. The
shape feature functions for thickness, orientation, and skeleton
are formulated based on the proposed PDE. That is, these geometric
features are represented as a function of the solution of the PDE. In
addition, a numerical algorithm for the proposed method based on
the finite element method (FEM) is presented. In Section 6, the
validity of the proposed method is discussed based on a one-
dimensional analytical solution. Finally, to confirm the validity
and utility of the proposed method, several numerical examples
are provided for two-dimensional cases.

2. Related works

The tensor scale is a measure of shape features that represents
thickness, orientation, and anisotropy (Andaló, Miranda, Torres, &
Falcão, 2010; Saha, 2005). The measure defines the parameters of
the largest ellipse within the target domain at each pixel point.
Although the measure in the proposed method represents several
geometric features simultaneously, it incurs high computational
cost because the Euclidean distance is computed for each point.

Crane, Weischedel, and Wardetzky (2013) proposed a PDE-
based method for distance computation. The basic concept of their
method involves considering a fictitious heat diffusion equation
with Dirichlet boundary conditions for a short time. Then, the
distance is approximated using the fundamental solution of the
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fictitious temperature. Although the linear diffusion equation pro-
vides a smooth solution and low computational cost, the heat
effect reaches infinite distance even in a short time. Therefore,
the method cannot be used to derive the exact distance from a the-
oretical perspective.

Related research on feature extraction is briefly discussed as
follows.

Thickness: One significant application of thickness extraction is
the determination of bone thickness (Liu et al., 2014; Saha &
Wehrli, 2004). The local thickness defined in Hildebrand and
Rüegsegger (1997) is estimated based on a fuzzy distance transfor-
mation (Saha, Wehrli, & Gomberg, 2002) in these methods. The
process requires sampling depth at axial voxels that are computed
by skeletonization techniques (Arcelli, di Baja, & Serino, 2011;
Saha, Chaudhuri, & Majumder, 1997). Another challenging applica-
tion of thickness measurement is the estimation of the cortical
thickness of the human brain from MRI data (Clarkson et al.,
2011; Hutton et al., 2008). These methods are classified as
surface-based, voxel-based, and hybrid methods. In these methods,
an image is separated into three domains: grey matter, white mat-
ter, and cerebrospinal fluid. As discussed in Clarkson et al. (2011),
the surface-based method (Davatzikos & Bryan, 1996) uses a gen-
erated mesh on one side surface. Next, the mesh is deformed to fit
the pair surface under a topological constraint. In general, calcula-
tion of the advection requires a high computational cost to ensure
consistent topology (Han et al., 2004).

In contrast, voxel-based methods can be categorized into mor-
phological, line integral, diffeomorphic registration, and
Laplacian-based methods. The morphological method (Lohmann,
Preul, & Hund-Georgiadis, 2003) divides each voxel into inner
and outer domains. The thickness is computed using a Euclidean
distance transformation. In line integral-based approaches
(Aganj, Sapiro, Parikshak, Madsen, & Thompson, 2009; Scott,
Bromiley, Thacker, Hutchinson, & Jackson, 2009), every line inte-
gral centered at each point is computed and the minimum value
is defined as the thickness. Diffeomorphic registration (Das,
Avants, Grossman, & Gee, 2009) also requires calculating surface
deformation. Jones, Buchbinder, and Aharon (2000) proposed the
Laplacian-based approach. In this approach, two surfaces consist-
ing of a target shape are considered. It is assumed that the surfaces
are topologically equivalent. The Laplace equation is considered in
the domain surrounded by the two surfaces, where Dirichlet
boundary conditions with different constant values are imposed.
The thickness between these surfaces is defined as the length along
the normal direction of the isosurface of the potential field. Based
on this approach, Yezzi and Prince (2003, 2001) proposed the Eule-
rian approach to directly compute the thickness along the normal
direction. Hybrid Eulerian-Lagrangian approaches have also been
proposed (Acosta et al., 2009; Rocha, Yezzi, & Prince, 2005). The
multiple Laplace equation has been used for time-dependent esti-
mation problems (Cardoso, Clarkson, Modat, & Ourselin, 2011). The
main advantage of PDE approaches is that thickness is uniquely
defined at any point. However, this basic idea is restricted under
the topological constraint. Furthermore, the inner subsurface must
be distinguished from the outer subsurface.

Although, the proposed method is similar to the Laplacian-
based approach, it can be applied to voxel-based and surface-
based data because the proposed PDE can be easily solved using
the boundary element method. In addition, the proposed method
essentially overcomes the topological constraints and does not
require dividing surfaces into an inner and outer surface. Further-
more, the proposed PDE is well posed, that is, the solution is
unique and numerically stable.

Skeleton: The skeleton function (Blum & Nagel, 1978;
Montanari, 1968) can be applied in a wide range of fields, such
as medical science, animation, and reverse engineering. As dis-

cussed in Cornea, Silver, and Min (2007), these methods are cate-
gorized into topological thinning methods (Palágyi & Kuba, 1998;
Saha et al., 1997), methods using a distance field (Arcelli et al.,
2011; Bitter, Kaufman, & Sato, 2001), geometric methods
(Amenta, Choi, & Kolluri, 2001), and methods using a generalized
potential field model (Abdel-Hamid & Yang, 1994). The proposed
method is closest to the generalized potential field model (Ahuja
& Chuang, 1997; Grigorishin, Abdel-Hamid, & Yang, 1998). This
model requires considering a fictitious electrostatic potential field
with sources on the surface. The main advantage of this method is
that it can provide relatively good results. However, high computa-
tional costs are incurred because the Newton potential field is
computed superpositioning each point. In addition, these algo-
rithms do not consider numerical stability from a mathematical
perspective. Several approaches have been proposed to overcome
problems related to connectivity and robustness in recent years.
For instance, the erosion thickness approach provides a robust,
connected skeleton (Yan, Sykes, Chambers, Letscher, & Ju, 2016).

Aslan, Erdem, Erdem, and Tari (2008) proposed a disconnected
skeleton based on the distance function with the heat diffusion
equation under a nonzero Dirichlet boundary condition. Aubert
and Aujol (2014) used a heat diffusion equation with a constant
heat source to extract the distance function and skeleton. Gao,
Wei, Xin, Gao, and Zhou (2018) presented connected skeleton
extraction based on the heat diffusion equation. These heat
equation-based methods require precise extraction of ridge curves
and calculation of heat diffusion from boundaries of short times
because the Dirichlet boundary condition is imposed at the shape
boundaries.

In addition, PDE-based approaches are used in many related
fields; these are described in the following section.

Image Processing: An elliptic PDE is extensively used in image
processing. Poisson image editing (Pérez, Gangnet, & Blake, 2003)
is an image-editing method that requires solving the Poisson equa-
tion. The process requires preserving the gradient of a source
image for seamless image editing. Pixels with a high gradient are
extracted by using the Poisson equation. Poisson matching (Sun,
Jia, Tang, & Shum, 2004) also uses the Poisson equation for image
matching. This basic concept of these image processing methods
is related to the extraction of geometric shape features.

Topology optimization: The use of PDE-based feature evalua-
tion has been proposed for topology optimization (Sato, Yamada,
Izui, & Nishiwaki, 2017). The manufacturability in molding is eval-
uated by superposition of the solution to the PDE. The main advan-
tages of this optimization procedure are the shape and topological
sensitivities that are derived using the adjoint variable method
without limiting the design space.

3. Concept and overview

The basic concept of shape feature extraction via the use of a
steady-state PDE is involves the extraction of target geometric fea-
tures, such as thickness, skeleton, orientation, and curvature, from
the target image as a function of the solution to the PDE system, as
shown in Fig. 1. This paper presents a formulation of a steady-state
PDE system and functions for basic geometric features represented
by a solution to the PDE system.

The proposed method has the following advantages:

1. Multiple geometric features are computed simultaneously by
solving the steady-state PDE system.

2. Relatively small shape fractionation on the surface is automat-
ically neglected in the diffusion effect, that is, the method auto-
matically inherits the numerical advantages of the method used
to solve the PDE.
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3. Thickness extraction does not require any topological con-
straints and distinction between inner and outer surfaces.

4. The formulation of the PDE and geometric shape feature func-
tions are not dependent on dimensions. Conditions on the
shape boundaries are not imposed from a numerical
perspective.

4. Formulation

4.1. Partial differential equation for geometric shape features
extraction

First, a steady-state linear PDE system is defined for extracting
geometric shape features of a binary image. A reference domain XR

is considered that consists of a black domain X and a white domain
XR nX whose digital signals are 1 in the black domain and 0 in the
white domain, respectively. It is assumed that the reference
domain XR contains the target image, as shown in Fig. 2. Here,
extraction of shape features from the black domain X is consid-
ered. Note that the shape features in the white domain can be con-
sidered in a situation with the opposite signal. This study focuses
on the similarity of shape features when optimizing periodic
homogenization (Allaire & Yamada, in press). The PDE system is
formulated as follows:

�div ~arsi � eivð Þ þ að1� vÞsi ¼ 0 in XR

si ¼ 0 on @XR

�
ð1Þ

where si 2 H1ðXRÞ is the i-th state variable, ei is the canonical base of
Rd; ~a 2 Rþ is the diffusion coefficient, a 2 Rþis the damping coeffi-
cient, and d is the dimension. The coefficient a is set to a relatively
large value in order to decrease the mutual effect via the white
domain. The characteristic function v 2 L1ðXRÞ is defined as

vðxÞ :¼ 1 for x 2 X

0 for x 2 XR nX:

�
ð2Þ

The characteristic function is equivalent to using binary data in the
target image. Note that the inner and outer surfaces do not have to
be differentiated because domains are distinguished by the charac-
teristic function in the same manner as the topology optimization

method (Yamada, Izui, Nishiwaki, & Takezawa, 2010). In addition,
the proposed PDE does not require any topological restriction.

Next, a parameter a is introduced in order for the diffusion coef-

ficient to be satisfied as ~a :¼ ah2
0, where h0 > 0 is the characteristic

length of the target shape size. The concept of the characteristic
length is the same as that used in mechanics, that is, the non-
dimensional equation and feature functions defined below are gen-
erally reasonable. The damping coefficient a is defined as follows:

a :¼ 4
a

ð3Þ

Then, the proposed PDE contains the non-dimensional diffusion
parameter a. The parameter a should be set to be sufficiently small
because the damping coefficient a is defined to prevent effects from
the surrounding domain and the boundary of the reference domain
@X, that is, the damping coefficient must be set to a large value in
order to make the state variables si to zero nearly everywhere in
the white domain. The number of potential fields defines the
dimension, that is, feature extraction is required for a vector field
consisting of independent potential fields.

To physically interpret the proposed PDE, the weak and strong
forms are derived by introducing a vector field s ¼ ½s1; s2; . . . ; sn�T .
The weak form is derived as follows:

�div ~ars� Idð Þ ¼ 0 in X

�div ~arsð Þ þ as ¼ 0 in XR nX
s ¼ 0 on @XR

8><
>: ð4Þ

As shown in Eq. (4), the black domain is governed by the diffusion
equation, as with the steady state linear elastic equation. The source
is shown in the black domain and its magnitude is the divergence of
the identity matrix. The damping term decreases the mutual effect
via the white domain because the Helmholtz equation governs the
behavior of the system in this domain. Therefore, the state variable
vector s exponentially converges to the zero vector in the white
domain. The strong form is derived as follows:Z
XR

~ars : rnð ÞdXþ a
Z
XRnX

s � ndX ¼
Z
@X

n � ndC ð5Þ

where n 2 H1
0ðXRÞd is a test function. The left and right sides are

bilinear terms and the source term, respectively. Fictitious traction
is applied along the normal direction on the surface @X with unit
magnitude. Therefore, the state variable vector s lies along the nor-
mal direction of the shape because the damping term is relatively
large in the left-hand side without domain around the surface @X.
Thus, fictitious traction is not directly imposed on the surface @X.

4.2. Shape feature tensor S�

The shape feature tensor S� is defined as follows:

Sij fsg16i6d

� �
:¼ 1

2
@si
@xj

þ @sj
@xi

� �
ð6Þ

Fig. 1. Overview of the proposed method: the proposed method extracts geometric shape features, such as thickness, orientation, and skeleton using the solutions of a
proposed linear partial differential equation, whose coefficients are given by image data. The image on the left shows input image data that are used to determine the
coefficients. The images in the middle are solutions to the linear partial differential equation. The three images on the right show various solutions.

Fig. 2. Definitions for formulation.
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The key geometric features are defined using the shape feature ten-
sor S because the tensor includes all directions of the gradient with
respect to the vector s. Note that the definition of the gradient ten-
sor is not unique. For instance, a strain tensor in linear elastic
dynamics includes transpose components. The eigenvalues kðiÞs of

the shape feature tensor matrix and normalized eigenvector xðiÞ
s ,

where the order of eigenvalues are defined to satisfy kðiÞs 6 kðiþ1Þ
s

are introduced. In addition, the state variable ~si using the eigenvec-
tor is defined as follows:

~s1
~s2

..

.

~sd

0
BBBB@

1
CCCCA :¼ x1s x2s � � � xds

� �T
s1
s2

..

.

sd

0
BBBB@

1
CCCCA ð7Þ

4.3. Thickness function

The thickness is inversely proportional to the sum of the deriva-
tives of the state variables along each direction of the canonical
base. That is, the following inverse thickness function f h is inver-
sely proportional to the local thickness of the target shape:

f h fsg16i6d

� �
:¼ h2

0

Xd
i¼1

@si
@xi

 !
v ð8Þ

¼ h2
0

Xd
i¼1

kðiÞs

 !
v ð9Þ

The detailed properties of the inverse thickness function f h are dis-
cussed in Section 7. Using the property with respect to thickness,
the thickness function hf is defined as follows:

hf fsg16i6d

� �
:¼ h0

1
f h fsg16i6d

� �� a

( )
v: ð10Þ

The value of the thickness function hf represents the local thickness
in the black domain X.

4.4. Orientation vector function

As discussed in the weak formulation of the PDE, the state vari-
able vector represents the direction normal to the shape. Therefore,
the orientation with respect to the normal direction is expressed as
follows:

nf fsg16i6d

� �
:¼ 1ffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

s2i

vuut

s1
s2

..

.

sd

0
BBBB@

1
CCCCA ð11Þ

The tangential orientation vector tf is computed by applying a rota-
tional transformation to the normal orientation vector nf .

4.5. Skeleton function

One of the skeleton functions is formulated as follows:

f s fsg16i6d

� �
:¼ P

ffiffiffiffiffiffiffi
~s12

p
k1

 !
v: ð12Þ

where P is a pulse function defined as

PðxÞ ¼
0 if �w > x

1 if �w 6 x 6 w

0 if w < x

8><
>: ð13Þ

The parameter w > 0 for width in the nonzero domain should be
defined to obtain the expected width, e.g., the pixel size. The func-
tion estimates the medial surfaces in three-dimensions. Therefore,
another function may be defined based on the requirements of each
application. Note that the function describes a disconnected skele-
ton (Aslan et al., 2008), and this heuristic formulation requires pre-
cise discussions.

5. Numerical implementation

The computational procedure, which is essentially the same as
the finite element method, is as follows:

1. The reference domain is defined within the target shape. In gen-
eral, the reference domain surrounds the input image data.

2. The reference domain is composed of discretized finite ele-
ments; their material properties are defined based on the char-
acteristic function v, which is defined in the input image data.

3. The PDE system (1) is solved using the finite element method.
That is, the numerical solution of the state variables siðxÞ are
given.

4. The target geometric shape feature is computed from the state
variables siðxÞ.

This procedure can be easily implemented using a finite ele-
ment analysis software. The numerical examples shown in Sec-
tion 7 is solved using COMSOL Multiphysics. The boundary
element method is also useful for analyzing the proposed PDE if
the input data format is surface data, such as STL data.

6. Analytical validation in one dimension

The analytical solutions of the proposed PDE are easily derived
in one dimension. A one-dimensional case is considered to verify
the proposed method. The distribution of the black domain shown
in Fig. 3 is considered. The black domain exists between x ¼ p and
x ¼ pþ h. The boundary condition is imposed at x ¼ K and x ¼ L.
These positions are sufficiently far from the black domain X. The
governing equation and boundary condition are

~as0ð Þ0 þ as ¼ 0 if K 6 x < p ð14Þ
~as0 � 1ð Þ0 ¼ 0 if p 6 x 6 pþ h ð15Þ
~as0ð Þ0 þ as ¼ 0 if pþ h < x 6 L ð16Þ

s ¼ 0 on x ¼ K ð17Þ
s ¼ 0 on x ¼ L ð18Þ

The analytical solution is derived as follows:

sðxÞ ¼
c1ekx þ c2e�kx if K 6 x < p

c3xþ c4 if p 6 x 6 pþ h

c5ekx þ c6e�kx if pþ h < x 6 L

8><
>: ð19Þ

where k is k ¼
ffiffiffiffiffiffiffiffi
a=~a

p
. In addition, the thickness function hf ðsÞ is

expressed as follows:

hf sð Þ ¼ 1
h0

1
c3

� h0a
� �

1X ð20Þ

Fig. 3. An isolated domain in one-dimension.
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The constants ci are determined based on the boundary conditions
(17) and (18), as well as the continuous conditions with respect to
the state variable s and normal flux at x ¼ p and x ¼ pþ h:

c1 ¼�h
~a

ekð2LþpÞ �ekð3pþ2hÞ

ð2þkhÞe2kðLþpÞ þ ðkhe2kLþð2�khÞe2kðpþhÞÞe2kK þkhe2kð2pþhÞ

 !

c2 ¼ he2kK

~a
ekð2LþpÞ þekð3pþ2hÞ

ð2þkhÞe2kðLþpÞ þðkhe2kLþð2�khÞe2kðpþhÞÞe2kK þkhe2kð2pþhÞ

 !

c3 ¼�2
~a

e2kðKþpþhÞ �e2kðLþpÞ

ð2þkhÞe2kðLþpÞ þ ðkhe2kLþð2�khÞe2kðpþhÞÞe2kK þkhe2kð2pþhÞ

 !

c4 ¼1
~a

�ð2pþhÞe2kðLþpÞ þðhe2kLþð2pþhÞe2kðpþhÞÞe2kK �he2kð2pþhÞ

ð2þkhÞe2kðLþpÞ þðkhe2kLþð2�khÞe2kðpþhÞÞe2kK þkhe2kð2pþhÞ

 !

c5 ¼�h
~a

ekð2KþpþhÞ þekð2pþhÞ

ð2þkhÞe2kðLþpÞ þ ðkhe2kLþð2�khÞe2kðpþhÞÞe2kK þkhe2kð2pþhÞ

 !

c6 ¼ h
~a

ekð2Lþ2KþpþhÞ þ ekð2Lþ3pþhÞ

ð2þ khÞe2kðLþpÞ þ ðkhe2kL þ ð2� khÞe2kðpþhÞÞe2kK þ khe2kð2pþhÞ

 !

If the black domain is sufficiently far from the boundaries x ¼ K and
x ¼ L, the coefficients are simplified as follows:

lim
K ! �1
L ! 1

c1 ¼ � he�kp

~aðkhþ2Þ lim
K ! �1
L ! 1

c2 ¼ 0 lim
K ! �1
L ! 1

c3 ¼ 2
~aðkhþ2Þ

lim
K ! �1
L ! 1

c4 ¼ � 2pþh
~aðkhþ2Þ lim

K ! �1
L ! 1

c5 ¼ 0 lim
K ! �1
L ! 1

c6 ¼ hekðpþhÞ
~aðkhþ2Þ

Therefore, the state variable s is simplified as follows:

lim
K ! �1
L ! 1

sðxÞ ¼

h
~aðkhþ2Þ e

kðx�pÞ if x < p
1

~aðkhþ2Þ 2x� ð2pþ hÞð Þ if p 6 x 6 pþ h
h

~aðkhþ2Þ e
�kðx�ðpþhÞÞ if pþ h < x:

8>><
>>:

ð21Þ
Note that the role of the black domain is to describe the damping of
the state variable. Therefore, the order of sufficient distance from
the black domain is 1

k, which represents the sharp area of the func-
tion e�kx.

Finally, the thickness function is obtained as follows:

lim
K ! �1
L ! 1

hf sð Þ ¼
0 if x < p

h if p 6 x 6 pþ h
0 if pþ h < x

8><
>: : ð22Þ

The value of the thickness function in the black domain is exactly
equivalent to its thickness h, as long as the black domain is suffi-
ciently far from the boundaries of the reference domain. To satisfy
this condition, the damping coefficient are set to a relatively large
value. If the black domain is relatively far from another black
domain, the thickness function in the black domain is also exactly
equivalent to its thickness h. This case is also verified by considering
the periodic domain and taking the limit with respect to the period.
Here, the most notable point is that the thickness is extracted with-
out calculating a distance.

The orientation function is well defined because one-
dimensional orientation is a sign of the state variable s. The skele-
ton is defined along a dimension without a base transformation.

Then, the skeleton clearly indicates a point at the center of the
black domain because the distribution of the state variable sðxÞ
described in Eq. (21) is zero at x ¼ pþ h

2.
The analytical solution of the one-dimensional case can now be

presented. Cases (a), (b), and (c) show the effects on h; p, and a,
respectively. These parameters are listed in Table 1. As shown in
Fig. 4, the solution s is exponentially damped in the white domain
and is a linear function in the black domain X. The profile of the
state variable s is fixed when the parameter p varies as shown in
Fig. 4(b). Therefore, a shape is equivalently evaluated to the shape
whose position has changed. In addition, the effect from another
shape or boundary is neglected when the damping coefficient is
set to a relatively large value. This is because the distribution of
the state variable s converges exponentially to zero in the white
domain, as shown in Fig. 4(c). Therefore, it is confirmed that the
proposed method can be used to correctly evaluate the geometric
features in one dimension.

The characteristic length h0 should be set to approximately the
smallest target thickness, because the proposed method is not sat-
isfied in a relatively small shape owing to the diffusive nature of
the PDE. In other words, relatively small shape fractionation is
neglected because the local information in the PDE system is aver-
aged by the diffusion term. Although a smaller diffusion coefficient
provides a more precise evaluation, a small diffusion coefficient is
required for a fine finite element mesh in numerical computation.
Therefore, the value of a must satisfy the aforementioned condi-
tion. In addition, the finite element mesh size is determined by
the value of parameter a.

7. Numerical validation in two dimensions

7.1. Multiple bars

The two-dimensional case shown in Fig. 5(a) is considered here.
As shown in the figure, the input image data includes multiple bars

Table 1
Parameters in one-dimensional calculations.

K L h0 h p a

Case 1 0:0 1:0 0:2 – 0:2 0:2
Case 2 0:0 1:0 0:2 0:2 – 0:2
Case 3 0:0 1:0 0:2 0:2 0:4 –

(a) effect on h (b) effect on p

(c) effect on a

Fig. 4. Analytical solutions of the one-dimensional case.
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with thicknesses h of 0:2;0:25;0:3;0:35;0:4;0:45;0:55, and 0:6.
The image size is 5� 8. The parameters of the PDE are set to
h0 ¼ 0:3 and a ¼ 0:2.

The domain is discretized using P2 triangular finite elements
with the maximum length of 0:05. The obtained state variables s1
and s2 are shown in Fig. 5 (d) and (e). The normal orientation vector
nf ðs1; s2Þ, tangential orientation vector tf ðs1; s2Þ, inverse thickness
function f hðs1; s2Þ, thickness function hf ðs1; s2Þ, and skeleton func-
tion f sðs1; s2Þ are shown in Fig. 5.

The properties of the inverse thickness function f h are discussed
first. As shown in Fig. 5(g), the values are constant in the black
domain, excluding the corners. The relationship between each
value of the inverse thickness function f h and the thickness of
the bar is plotted in Fig. 5(h), where the longitude and abscissa
axes are the average value of 1=f h and the thickness of the bars,
respectively. The average values are computed in each central

domain where the width is 5 to avoid the corner effect. The linear
function estimated with the least-squares method is shown in
Fig. 5(h). The coefficient of determination is R2 ¼ 1:0000. This con-
firms that the inverse thickness function f h is inversely propor-
tional to each thickness value. Fig. 5(i) also shows the
relationship between the value of the thickness function hf and
the thickness of each bar. The blue line shows the linear function
estimated using the least-squares method. The coefficient of deter-
mination in the estimation is also R2 ¼ 1:0000. These results con-
firm that the thickness function f h is proportional to each
thickness value.

The linear function does not intersect the origin. Although the
local thickness is precisely estimated near h0, the relatively small
thickness is excessively estimated. This is because of the diffusion
term in the PDE. Therefore, the value of h0 should be set to the
smallest thickness.

Fig. 5. Numerical results for an image of multiple bars with different thicknesses.
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The value of the thickness function hf is equivalent to each
thickness value, as shown in Fig. 5(f). The skeleton shown in
Fig. 5(c) is also appropriately estimated because the curve is close
to the definition of a medial axis (Blum, 1967). The orientation vec-
tors also provide good estimation, as shown in Fig. 5(b).

7.2. Complex shape composed of basic shapes

The effectiveness of the proposed method in complex shapes is
examined. The image size is set to 1� 1. The parameters of the PDE

are set to h0 ¼ 0:3 and a ¼ 0:2. The domain is discretized using P2
triangular finite elements.

An image with characteristic shapes is initially considered, as
shown in Fig. 6. Ring shapes with constant thicknesses located in
the bottom portion of the images are considered. Therefore, the
inverse thickness and thickness function values must be constant
for each ring shape. It is confirmed that this requirement and the
expected magnitude of the thickness function hf are satisfied. In
addition, the orientation vector and skeleton function also indicate
appropriate features.

Fig. 6. Numerical example of a two-dimensional complex shape.

Fig. 7. Case 1 of a general shape in two dimensions.
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Cubic shapes located in the upper left corner are also considered
here. Although each location and angle are different, the thickness
function values are equivalent. Thus, it is confirmed that the
dependency of these locations and angles are extremely low in
the proposed method. In addition, the orientation vectors and
skeleton function indicate appropriate features. Note that the med-
ial axes of the cubic shapes are its diagonal lines.

Next, the study focused on the cross shape located in the center
of the image. The intersection is made to provide a constant thick-
ness in diagonal directions. It was confirmed that the thickness
function value at the intersection was appropriate. That is, the
thickness is equivalently evaluated as straight bars.

Finally, the full image is considered. The shape and topology of
the image are extremely complex. However, all shape features are
appropriately extracted simultaneously. That is, the proposed
method does not have any topological constraint.

7.3. General shapes

The effectiveness of the proposed method for general shapes
was examined. For all examples, the image size is set to 1� 1
and the parameters of the PDE are set to h0 ¼ 0:3 and a ¼ 0:2.
The reference domain is discretized using P2 triangular finite ele-
ments. Three general two dimensional shapes are considered here,

Fig. 8. Case 2 of a general shape in two dimensions.

Fig. 9. Case 3 of a general shape in two dimensions.

654 T. Yamada / Journal of Computational Design and Engineering 6 (2019) 647–656



as shown in Figs. 7–9. As shown, the input images have complex
geometric features. The inverse thickness and thickness function
values are globally appropriate, as shown in these figures. From a
local perspective, sharply dented shapes were estimated as thick
shapes. In addition, a relatively small fluctuated shape is neglected
because the small feature is averaged by the diffusion effect in the
PDE. The orientation vectors and skeleton are also globally appro-
priate. However, disconnected skeletons are obtained, because the
proposed function is defined based on the concept of the medial
axis, and connectivity is not considered. Therefore, different func-
tions must be considered.

7.4. Tari’s dataset

All shapes in Tari’s dataset (Asian & Tari, 2005) were compared
with the related research. The dataset includes noisy images that
are used as benchmark shapes in skeleton extraction (Aslan
et al., 2008; Gao et al., 2018; Shen, Bai, Hu, Wang, & Latecki,
2011; Shen, Bai, Yang, & Latecki, 2013). The image size is set to
2� 1:5 in Fig. 10. The parameters of the PDE are set to h0 ¼ 0:05
and a ¼ 0:2. The reference domain is discretized using P2 triangu-
lar finite elements. The obtained results are consistent with results
from the literature (Aslan et al., 2008; Gao et al., 2018; Shen et al.,
2011, 2013). However, the obtained skeleton is disconnected.
Therefore, the proposed skeleton extraction results are similar to
Aslan’s results (Aslan et al., 2008).

8. Conclusions and future work

This paper presents a unified method for extracting geometric
shape features using a steady state PDE. The following results were
obtained and the conclusions were drawn:

1. A steady state PDE was formulated for extracting geometric
features.

2. The functions of the orientation vector, inverse thickness, thick-
ness, and skeleton were formulated as the solutions to the pro-
posed PDE.

3. The analytical solution was derived for the one-dimensional
case. The derived solution demonstrates the validity of the pro-
posed function.

4. Several numerical examples were presented to confirm the use-
fulness of the proposed method for the various geometric shape
features examined. In addition, it was confirmed that these geo-
metric shape features were extracted without requiring any
topological constraint.

Functions for other geometric features, such as curved skeleton,
will be mathematically considered in the future. In particular,
heuristic formulations with respect to the thickness and the skele-
ton are required for a more precise extraction. The formulation will
also be extended to gray images to expand the range of
applications.
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