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Abstract 16 

Purine permeases (PUPs) mediate the proton-coupled uptake of nucleotide bases and 17 

their derivatives into cytosol. PUPs facilitate uptake of adenine, cytokinins and nicotine. 18 

Caffeine, a purine alkaloid derived from xanthosine, occurs in only a few eudicot 19 

species, including coffee, cacao, and tea. Although caffeine is not an endogenous 20 

metabolite in Arabidopsis and rice, AtPUP1 and OsPUP7 were suggested to transport 21 

caffeine. In this study, we identified 15 PUPs in the genome of Coffea canephora. 22 

Direct uptake measurements in yeast demonstrated that CcPUP1 and CcPUP5 facilitate 23 

adenine—but not caffeine—transport. Adenine uptake was pH-dependent, with 24 

increased activity at pH 3 and 4, and inhibited by nigericin, a potassium–proton 25 

ionophore, suggesting that CcPUP1 and CcPUP5 function as proton-symporters. 26 

Furthermore, adenine uptake was not competitively inhibited by an excess amount of 27 

caffeine, which implies that PUPs of C. canephora have evolved to become 28 

caffeine-insensitive to promote efficient uptake of adenine into cytosol. 29 

 30 
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Introduction 35 

Purine permeases (PUPs) constitute a large family of transporter molecules that are 36 

localized at the plasma membrane in plants, where they facilitate proton-coupled uptake 37 

of nucleotide bases and their derivatives, including adenine, cytokinins, and nicotine 38 

[1,2]. The first PUP member, AtPUP1 of Arabidopsis thaliana, was identified as the 39 

gene that complemented a yeast mutant in adenine uptake [3]. The protonophore 40 

carbonyl cyanide m-chlorophenyl hydrazine inhibits the adenine uptake activity of 41 

AtPUP1, suggesting that this PUP functions as a proton symporter [4]. In addition, the 42 

adenine uptake activity of AtPUP1 is competitively inhibited by purine derivatives 43 

including cytokinins and caffeine [4], thus suggesting that AtPUP1 mediates the uptake 44 

of a broad range of substrates.  45 

Although Arabidopsis contains 23 PUP members in its genome, only four PUP 46 

genes have been analyzed to date. Of these, both AtPUP1 and AtPUP2 have similar 47 

substrate specificity for the uptake of adenine and cytokinins, but their tissue-specific 48 

expression patterns differ: AtPUP1 is expressed mainly in leaf hydathode tissue and the 49 

stigmatic surface, whereas AtPUP2 in expressed predominantly in vascular tissues [4,5]. 50 

Furthermore, AtPUP1 reportedly also facilitates the uptake of pyridoxine [6].  51 

Another of the AtPUPs characterized to date, AtPUP3, is expressed in pollen, 52 

but the protein did not demonstrate any transport activity in a yeast system [4]. Through 53 

its cytokinin uptake activity, AtPUP14 is involved in the spatiotemporal distribution of 54 

cytokinin in the meristem and thus in plant morphogenesis [7]. Rice (Oryza sativa) 55 

contains 12 PUP members in its genome, but only one member, OsPUP7, was 56 

characterized as being involved in plant growth and development, possibly mediating 57 

cytokinin transport [8]. Although direct transport activity was not measured, OsPUP7 58 

conferred sensitivity to caffeine in yeast, suggesting that OsPUP7 may take up the 59 

caffeine [8].   60 

 In addition to adenine and cytokinins, derivatives of nucleotide bases include 61 

the alkaloids nicotine and caffeine. The ability of a PUP to take up nicotine was first 62 

identified in Nicotiana tabacum [9,10], in which NtNUP1 acquires nicotine from the 63 

apoplast, particularly in root tips. The suppression of NtNUP1 expression in tobacco 64 

hairy roots decreased the nicotine content in the tissue [10], and measurement of direct 65 



uptake activity in yeast showed that NtNUP1 is an uptake transporter of—in addition to 66 

nicotine—pyridoxamine, pyridoxine, and anatabine [9]. Although the results of 67 

competitive inhibition and yeast growth assays have suggested that PUPs in Arabidopsis, 68 

and rice potentially transport caffeine [3,4,8], their caffeine uptake activity has not been 69 

measured directly, nor have the PUPs in any caffeine-synthesizing species been 70 

characterized. Caffeine is synthesized by only a few eudicot plants, such as coffee 71 

(Coffea spp.), cacao (Theobroma cacao), and tea (Camellia sinensis) [11,12]. Coffee is 72 

an important cash crop and is cultivated across more than 11 million hectares [13]. Two 73 

species (C. arabica and C. canephora) account for nearly all coffee bean production. C. 74 

arabica is an autogamous allotetraploid species originating from a cross between C. 75 

canephora and C. eugenioides [14]. In this report we identified 15 PUP members from 76 

C. canephora, and characterized the transport activity of CcPUPs in yeast.  77 

 78 

Materials and Methods 79 

Chemicals 80 

Chemicals were obtained from Wako Pure Chemical Industries (Osaka, Japan) or 81 

Nacalai Tesque (Kyoto, Japan), unless otherwise stated. 82 

 83 

Identification and sequence analysis of PUP homologs in C. canephora 84 

We used the predicted amino acid sequence of AtPUP1 as a query sequence in a 85 

BLASTP search of the publicly available database Coffee Genome Hub 86 

(http://coffee-genome.org/) to find the PUP genes in C. canephora. Using default search 87 

parameters, we identified 15 CcPUPs, which we named CcPUP1 to CcPUP15 in order 88 

of their loci in the genome. 89 

 90 

Construction of plasmids and transformation of yeast 91 

The coding sequences of CcPUP1 and CcPUP5 were amplified in 25-µL reaction 92 

mixtures containing cDNA of cultured C. canephora cells, 0.5 μL of PrimeSTAR GXL 93 

DNA Polymerase (Takara, Japan), 5 μL of 5×PrimeSTAR GXL buffer, 16 µL of distilled 94 

water, 2 μL of dNTPs (2.5 mM), and 5 pmol of each appropriate primer (CcPUP1, 95 

5ʹ-CACCATGCCAGTCAATGAGGAACC-3ʹ and 96 



5ʹ-TCAGCACAACGAGTCATTAGTAG-3ʹ; CcPUP5, 97 

5ʹ-CACCATGGAGAATACTACTCAAGAAATGG-3ʹ and 98 

5ʹ-TCAAGAAGTCCCTAGGAAAGAA-3ʹ). PCR amplification conditions were: 99 

denaturation at 98 °C for 1 min; 30 cycles of 98 °C for 10 s, 60 °C for 15 s, and 68 °C 100 

for 1 min. A final extension was conducted for 5 minutes at 58°C. PCR amplicons were 101 

purified by using the Wizard SV Gel and PCR Clean-Up System (Promega, San Luis 102 

Obispo, CA) according to the manufacturer’s protocol. CcPUP1 and CcPUP5 cDNAs 103 

were ligated into pENTR/D-TOPO vector (Invitrogen, Carlsbad, CA). DNA sequence of 104 

CcPUP7 was synthesized by Genewiz (Kawaguchi, Japan), and ligated into 105 

pENTR/D-TOPO. These were then transferred into pYES-DEST52 (Invitrogen) by 106 

using Gateway cloning technology (Invitrogen) according to the manufacturer’s 107 

instructions. The cDNA-carrying pYES-DEST52 vectors were used to transduce an 108 

FCY2-deleted yeast strain (BY4741, Mata, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, 109 

YER056C::kanMX4; Invitrogen) according to the manufacturer’s protocol; 110 

pYES-DEST52 lacking a CcPUP cDNA insert was used as a negative control. 111 

 112 

Growth assay 113 

Gene expression in pYES-DEST52-transduced yeast cells can be induced by galactose 114 

and repressed by glucose. The basic (control) medium for the growth assays was 115 

minimal medium (lacking uracil and glucose); 2% galactose and 1% raffinose were 116 

added as carbon sources to induce gene expression. Basic medium containing 2% 117 

glucose was used to repress gene expression. Transduced yeast cells were pre-incubated 118 

in the inducing medium or repression medium for 2 days at 30 °C, and then were diluted 119 

to an OD600 of 0.002 by adding sterile water. Then 40 µl of each diluted solution was 120 

applied to an agar plate containing caffeine, which was incubated at 30 °C for 5 days, 121 

according to the literatures [4, 8]. 122 

 123 

Measurement of transport of purine derivatives in yeast 124 

For caffeine uptake assays, transduced yeast cells were pre-incubated in repression 125 

medium for 2 days at 30 °C. Cells were harvested by centrifugation, washed, and 126 

resuspended in inducing medium to a final OD600 of 0.2. Yeast cells were incubated at 127 



30 °C for 40 hours and then harvested, washed, and resuspended in 100 mM sodium 128 

citrate buffer (pH 3.0) containing 1% glucose to a final OD600 of 12. Before initiation of 129 

the transport assay, yeast cells (100 µL) were preincubated at 30 °C for 2 min; then 130 

assay buffer (105 µL) containing 100 mM citrate buffer, pH 3.0, 1% glucose, 176 Bq 131 

µL-1 14C-labeled caffeine (American Radiolabeled Chemicals, St Louis, MO) and 132 

unlabeled caffeine was added. A 40-µL sample was withdrawn from the reaction tube 133 

after 30, 60, 120, and 180 s; each sample was transferred to 4 mL of ice-cold water, 134 

filtered onto glass-fiber filters (GE Healthcare, Chicago, IL), and then washed with 4 135 

mL of water in a manifold (Merck Millipore, Burlington, MA). For adenine uptake 136 

assays, the incubation was initiated by adding 103 µL of assay buffer containing 100 137 

mM citrate buffer, pH 3.0, 1% glucose, 718 Bq µL-1 3H-labeled adenine (Moravek 138 

Biochemicals, Brea, CA) and unlabeled adenine at the final concentration of 100 µM, 139 

according to the literature [4].  140 

To vary the pH of the assay, yeast cells were grown at 30 °C for 40 hours, 141 

washed, and resuspended in 100 mM sodium citrate buffer for which the pH was 142 

adjusted. For assays involving nigericin, a reaction buffer containing 4.0 mM nigericin 143 

was used. For competitive inhibition assays, 94 µL of buffer containing 540 µM 144 

caffeine, adenine, or sucrose was added 2 min before the start of the reaction, after 145 

preincubation, reactions were initiated by adding 9 µL of buffer containing 8.2 kBq µL-1 146 
3H-labeled adenine. 147 

 148 

Results 149 

Identification and expression analysis of purine permeases of C. canephora 150 

In this study, we used AtPUP1 as a query in a BLASTP search of the genomic sequence 151 

of C. canephora in the public database Coffee Genome Hub (http://coffee-genome.org/) 152 

to identify PUPs in this species. We named the 15 PUPs that we obtained as CcPUP1 153 

through CcPUP15, in order of their genomic loci, as follows: CcPUP1, Cc02g25680; 154 

CcPUP2, Cc03g11350; CcPUP3, Cc03g13540; CcPUP4, Cc06g15040; CcPUP5, 155 

Cc08g01780; CcPUP6, Cc08g11780; CcPUP7, Cc09g04610; CcPUP8, Cc09g08430; 156 

CcPUP9, Cc09g09080; CcPUP10, Cc09g09090; CcPUP11, Cc09g09160; CcPUP12, 157 

Cc10g06500; CcPUP13, Cc10g06800; CcPUP14, Cc10g15390; CcPUP15, Cc10g15400. 158 



A phylogenetic tree constructed by using the amino acid sequences of CcPUPs and 159 

characterized PUPs from Arabidopsis, rice, and tobacco showed that AtPUP1 and 160 

OsPUP7, which were 34% homologous at the amino acid level, clustered in different 161 

clades (Fig. 1A) even though both proteins have been suggested to transport caffeine.  162 

We then used the RNA-seq data available in Coffee Genome Hub 163 

(http://coffee-genome.org/) to summarize the tissue expression of CcPUPs (Fig. 1B). 164 

Whereas CcPUP1, CcPUP4, CcPUP6, and CcPUP12 are expressed in most tissues, 165 

CcPUP2 is expressed more specifically in leaves and roots. In addition, CcPUP7 is 166 

strongly expressed in perisperm and endosperm, where caffeine is highly accumulated. 167 

 168 

CcPUP1 and CcPUP5 confer sensitivity to caffeine in yeast 169 

Results of yeast sensitivity tests suggest that PUPs transport caffeine [4,8]. We therefore 170 

individually cloned CcPUP cDNAs into the pYES-DEST52 vector, in which gene 171 

expression is regulated by the GAL1 promoter, and used the plasmids to transform yeast 172 

mutant fcy2, which is deficient in adenine uptake [3]. Yeast transformants expressing 173 

CcPUP1, CcPUP4, CcPUP5, CcPUP6, CcPUP7, and CcPUP12 were cultured. 174 

Compared with that of the vector control, growth of the yeast transformants expressing 175 

CcPUP1 and CcPUP5 was suppressed on induction medium containing 0.2% caffeine 176 

(Fig. 2). No difference in growth was observed for yeast transformants harboring 177 

CcPUP4, CcPUP6, CcPUP7, or CcPUP12 (Supplementary Fig. 1) 178 

 179 

Transport assays  180 

Because the results of the yeast growth assay suggested that CcPUP1 and CcPUP5 have 181 

caffeine uptake activity, we analyzed their direct transport activity by determining the 182 

caffeine contents in yeast transformants after their incubation on caffeine as a substrate. 183 

No uptake activity was observed for transformants expressing either CcPUP1 or 184 

CcPUP5 (Fig. 3A). When the pH condition was modified from pH 3 to 7, there was no 185 

caffeine uptake activity in these cells (Supplementary Fig. 2). The uptake activity for 186 

adenine was then measured using the same transformants. Higher amount of adenine 187 

was transported in yeast transformants expressing CcPUP1 or CcPUP5 than the vector 188 

control (Fig. 3B). In addition, the adenine uptake activity of CcPUP1 and CcPUP5 was 189 



higher at a pH of 3 or 4 and decreased when the pH was increased (Fig. 4).  190 

 Because CcPUP7 is highly expressed in the perisperm and endosperm, where 191 

caffeine is highly accumulated, the caffeine and adenine uptake were also tested for 192 

CcPUP7. The uptake activity was not observed in yeast transformants (Supplementary 193 

Fig. 3).   194 

 195 

Inhibition of adenine uptake  196 
To analyze whether adenine uptake by CcPUP1 and CcPUP5 utilizes a proton gradient, 197 
we measured adenine uptake in the presence of nigericin, an ionophore that exchanges 198 
K+ for H+ across membranes and thus abolishes a pH gradient. Adenine uptake by 199 
CcPUP1 and CcPUP5 was decreased by about 42% and 51%, respectively, in the 200 
presence of nigericin compared with control values (Fig. 5). Nigericin also reduced the 201 
adenine uptake of AtPUP1 (Fig. 5C).   202 
 Caffeine was suggested to competitively inhibit the ability of AtPUP1 to take 203 

up adenine [3]. To investigate whether caffeine competitively inhibits adenine uptake by 204 

CcPUP1 and CcPUP5, we conducted a transport assay under which the incubation 205 

media contained 10-fold more caffeine than adenine; controls for this assay included 206 

10-fold increased amounts of adenine and sucrose. For both CcPUP1 and CcPUP5, the 207 

uptake of radioactive adenine was decreased in the presence of excess adenine but was 208 

unaffected under conditions of excess caffeine or sucrose (Fig. 5). In contrast to findings 209 

for CcPUP1 and CcPUP5, addition of an excess of caffeine diminished the uptake of 210 

adenine by AtPUP1 (Fig. 5F), in line with a previous report [3].  211 

 212 

Discussion 213 

Purine bases such as adenine and guanine are ubiquitous metabolites that are found in 214 

all organisms. In addition to purine nucleotides, several plants synthesize purine 215 

alkaloids, including caffeine and theobromine [15]. The caffeine synthesized by Coffea 216 

spp. accumulates predominantly in seeds and leaves, where caffeine restricts 217 

development and growth of other organisms [16] and also stimulates plant defense 218 

response by affecting signaling pathways [17,18]. In addition, caffeine is secreted from 219 

the roots during germination, when it is thought to modulate interactions with pathogens 220 

and mycoparasites [19,20]. 221 



Several lines of evidence support the importance of membrane transport in the 222 

function of metabolites [21,22], and various families of transporters for nucleotide bases 223 

and their derivatives have been characterized [1,23]. In the current study, we analyzed 224 

the purine permease family members, which are uptake transporters for various purine 225 

bases and their derivatives [2], in C. canephora, for which genomic and transcriptomic 226 

data are publicly available [11,24]. Among the 15 PUP genes that we discovered in the 227 

genome of C. canephora, two (CcPUP1 and CcPUP5) were identified as encoding 228 

candidate uptake transporters, according to growth assays using caffeine-containing 229 

media. Using radioactive substrates in a yeast-based system, we showed that both 230 

CcPUP1 and CcPUP5 uptake adenine, possibly in a proton-symport manner. Even 231 

though growth assay results suggested that both CcPUP1 and CcPUP5 can uptake 232 

caffeine, neither transporter recognized caffeine as a substrate. The apparent sensitivity 233 

of CcPUP1 and CcPUP5 transformants to caffeine might merely reflect the growth 234 

retardation of yeast expressing a membrane transporter. Even in liquid media without 235 

caffeine, the growth of the CcPUP1 and CcPUP5 transformants was suppressed 236 

compared with vector controls (Supplementary Fig. 4).  237 

 In conclusion, among the 15 PUPs that we identified in C. canephora, we 238 

found that CcPUP1 and CcPUP5, which are adenine transporters, not inhibited by 239 

caffeine. The insensitivity of CcPUPs to caffeine may be physiologically important in C. 240 

canephora, where these proteins need to distinguish adenine from caffeine to efficiently 241 

take up adenine in various cells. We surmise that purine permeases in C. canephora 242 

have evolved to differentiate adenine from caffeine.  243 
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Figure Legends 264 

Figure 1. Phylogenetic analysis of purine permease (PUP) proteins in Arabidopsis (At), 265 

rice (Os) and Coffea canephora (Cc) and their gene expression levels. (a) A 266 

phylogenetic tree was generated by using MEGA 7.0 software [25]. The amino acid 267 

sequences of PUPs were aligned by using the MUSCLE program. The maximum 268 

likelihood method was used to construct a phylogenetic tree with 1000 bootstrap 269 

replications. Bootstrap values (maximum, 100) are shown at nodes generating clades. 270 

(b) Heat map according to the number of reads per kilobase per million mapped reads 271 

(RPKM) for each gene. 272 

 273 

Figure 2. Growth of CcPUP-transformed yeast on media containing 0.2% caffeine after 274 

incubation at 30 °C for 5 days. 275 

 276 

Figure 3. Transport assay using CcPUP1 and CcPUP5-expressing yeast. (a) 277 

Time-dependent uptake of caffeine in yeast expressing CcPUP1 and CcPUP5. The final 278 

concentration of caffeine was 100 µM. (b) Time-dependent uptake of adenine in yeast 279 

transformants expressing CcPUP1 and CcPUP5. The final concentration of adenine was 280 

100 µM. Data are presented as mean ±SD (n = 3); different letters indicate values that 281 

are significantly different (P < 0.05) according to Tukey’s Honestly Significant 282 

Difference test. 283 

 284 

Figure 4. Effect of pH on adenine uptake by CcPUP1 and CcPUP5. Adenine uptake was 285 

determined after 3 min of incubation in sodium citrate buffer; the final concentration of 286 

adenine was 100 µM. Data are presented as mean ± SD of three replicates; different 287 

letters indicated values that are significantly different (P < 0.05) according to Tukey’s 288 

Honestly Significant Difference test. 289 

 290 

Figure 5. Inhibition of adenine uptake. Adenine uptake by (a) CcPUP1, (b) CcPUP5, 291 

and (b) AtPUP1 after 3 min of incubation in the presence of nigericin. Adenine uptake 292 

by (d) CcPUP1, (e) CcPUP5, and (f) AtPUP1 after 3 min of incubation in the presence 293 

of excess amounts of adenine, caffeine, and sucrose. The final concentration of each 294 



substrate was 25 µM. Data are given as mean ± SD (n = 3); different letters indicate 295 

values that are significantly different (P < 0.05) according to the Student t-Test (A–C) 296 

or Tukey’s Honestly Significant Difference test (D–F). 297 

 298 

Supplementary Figure 1. Growth of CcPUP-expressing yeast on media containing 299 

caffeine after incubation at 30 °C for 5 days. 300 

 301 

Supplementary Figure 2. Effect of pH on caffeine uptake by CcPUPs. Caffeine uptake 302 

was determined after 3 min of incubation in sodium citrate buffer. The final 303 

concentration of caffeine was 100 µM. Data are presented as mean ±SD of three 304 

replicates. 305 

 306 

Supplementary Figure 3. Transport assay using CcPUP7-expressing yeast. (a) Uptake of 307 

caffeine in yeast expressing CcPUP7. The final concentration of caffeine was 100 µM. 308 

(b) Uptake of adenine in yeast transformants expressing CcPUP7. The final 309 

concentration of adenine was 100 µM. Data are presented as mean ±SD of three 310 

replicates. 311 

 312 

Supplementary Figure 4. Growth of yeast in liquid media. The OD600 of each culture 313 

was measured over 24 hours. Data are presented as mean ± SD of three replicates. 314 

 315 
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