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Abstract: A new catalytic system for transfer hydrogenation of carbonyl compounds using glucose
as a hydrogen donor was developed. Various ketones and aldehydes were efficiently converted
to corresponding alcohols with two equivalents of glucose in the presence of a small amount
(0.1 to 1.0 mol%) of iridium catalyst that had a functional ligand. In this catalytic system,
transfer hydrogenation reactions proceeded based on the cooperativity of iridium and a functional
ligand. It should be noted that environmentally benign water could have been used as a solvent in the
present catalytic system for the reduction of various carbonyl substrates. Furthermore, the reaction
scope could be extended by using N,N-dimethylacetamide as a reaction solvent.

Keywords: transfer hydrogenation; iridium catalyst; functional ligand; glucose; ketone; aldehyde;
alcohol; water solvent

1. Introduction

Reductive conversion of carbonyl compounds to alcohols is one of the most important and
fundamental reactions in the field of synthetic organic chemistry. This method has been predominantly
used to prepare various alcohols. On an industrial scale and as a conventional technology, such reductive
conversion has been performed via catalytic reactions using hydrogen as a reductant [1]. For small-scale
laboratory experiments, reduction of carbonyl compounds to alcohols is often performed with
stoichiometric amounts of metal hydride reductant, such as lithium aluminum hydride or sodium
borohydride. Both the aforementioned methods are well-established; however, hydrogen poses safety
issues owing to its explosive nature. Additionally, using a metal hydride reductant not only adversely
affects the chemoselectivity of the reaction but also produces a stoichiometric amount of waste.

On the other hand, catalytic transfer hydrogenation reactions using a less toxic hydrogen donor are
also important and widely employed in methods for converting carbonyl compounds to alcohols [2–4].
The most well-known of these would be the Meerwein–Ponndorf–Verley (MPV)-type reduction using
2-propanol as a hydrogen donor. Although an aluminum catalyst is typically used in MPV-type
reductions [5,6], many highly efficient systems using transition metal catalysts have been reported [7–12].
However, MPV-type reduction depends on the equilibrium between alcohols and carbonyl compounds;
therefore, a large excess of 2-propanol as a hydrogen donor must be used to obtain an alcohol in high
yield. For example, Li et al. recently reported highly efficient MPV-type reduction of aldehydes using
an iridium catalyst [12]; however, 65 equivalents of 2-propanol relative to the aldehyde substrates
had to be used to obtain the product primary alcohols in satisfactory yields. Currently, 2-propanol is
produced from propylene, which is obtained from fossil resources. Hence, it is essential to search for
a low-cost hydrogen donor that is sustainably available from natural resources.
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In these situations, we focused on carbohydrate as an alternative hydrogen donor for catalytic
transfer hydrogenation. Thus, we studied the catalytic transfer hydrogenation of carbonyl compounds
to form alcohols using glucose as a hydrogen donor. Glucose is inexpensive, easily obtained from
natural renewable resources, and safe to handle [13]. Furthermore, as it is extremely soluble in water,
it is expected to be an ideal hydrogen donor if the reduction can be performed in aqueous media [14].
However, few catalytic transfer hydrogenation reactions that use glucose as a hydrogen donor have
been reported. Manna and Antonchick recently reported a new system for transfer hydrogenation
of unsaturated organic compounds using glucose as a hydrogen donor [15]. Their system involved
relatively large amounts of rhodium complex, [Cp*RhCl2]2 (6 to 12 mol% Rh), as catalyst. The main
target of this catalytic system was the reductive transformation of alkynes to alkenes, and alkenes
to alkanes; therefore, only five examples of the transfer hydrogenation of carbonyl substrates have
been demonstrated.

Our group developed various iridium catalysts exhibiting high catalytic performances in
dehydrogenation and hydrogen transfer reactions based on the cooperativity of iridium and functional
ligands [16–20]. As an expansion of our study, here, we reported the transfer hydrogenation of various
ketones and aldehydes using glucose as a hydrogen donor, catalyzed by a small amount of iridium
complex (0.1 to 1 mol% Ir) (Scheme 1). It should be noted that water could be used as a solvent in the
present catalytic system for various carbonyl substrates, although N,N-dimethylacetamide (DMAc),
was indispensable as an organic solvent for improving the reduction efficiency for some substrates.

Catalysts 2019, 9, x FOR PEER REVIEW 2 of 13 

 

it is essential to search for a low-cost hydrogen donor that is sustainably available from natural 

resources. 

In these situations, we focused on carbohydrate as an alternative hydrogen donor for catalytic 

transfer hydrogenation. Thus, we studied the catalytic transfer hydrogenation of carbonyl 

compounds to form alcohols using glucose as a hydrogen donor. Glucose is inexpensive, easily 

obtained from natural renewable resources, and safe to handle [13]. Furthermore, as it is extremely 

soluble in water, it is expected to be an ideal hydrogen donor if the reduction can be performed in 

aqueous media [14]. However, few catalytic transfer hydrogenation reactions that use glucose as a 

hydrogen donor have been reported. Manna and Antonchick recently reported a new system for 

transfer hydrogenation of unsaturated organic compounds using glucose as a hydrogen donor [15]. 

Their system involved relatively large amounts of rhodium complex, [Cp*RhCl2]2 (6 to 12 mol% Rh), 

as catalyst. The main target of this catalytic system was the reductive transformation of alkynes to 

alkenes, and alkenes to alkanes; therefore, only five examples of the transfer hydrogenation of 

carbonyl substrates have been demonstrated. 

Our group developed various iridium catalysts exhibiting high catalytic performances in 

dehydrogenation and hydrogen transfer reactions based on the cooperativity of iridium and 

functional ligands [16–20]. As an expansion of our study, here, we reported the transfer 

hydrogenation of various ketones and aldehydes using glucose as a hydrogen donor, catalyzed by a 

small amount of iridium complex (0.1 to 1 mol% Ir) (Scheme 1). It should be noted that water could 

be used as a solvent in the present catalytic system for various carbonyl substrates, although N,N-

dimethylacetamide (DMAc), was indispensable as an organic solvent for improving the reduction 

efficiency for some substrates. 

 

Scheme 1. Catalytic transfer hydrogenation using easily available hydrogen donors. 

2. Results 

We initially optimized the reaction conditions for the transfer hydrogenation of acetophenone 

(5a) to 1-phenylethanol (6a) using glucose as a hydrogen donor. The results are shown in Table 1. 

Reactions were conducted in a sealed stainless-steel reactor using 5a (2.0 mmol) and glucose (4.0 

mmol) in water (3.0 mL) in the presence of catalytic amounts of iridium complex and base for 20 h at 

80 °C to 120 °C. As indicated in entry 1, a simple iridium complex, [Cp*IrCl2]2, exhibited no catalytic 

Scheme 1. Catalytic transfer hydrogenation using easily available hydrogen donors.

2. Results

We initially optimized the reaction conditions for the transfer hydrogenation of acetophenone
(5a) to 1-phenylethanol (6a) using glucose as a hydrogen donor. The results are shown in Table 1.
Reactions were conducted in a sealed stainless-steel reactor using 5a (2.0 mmol) and glucose (4.0 mmol)
in water (3.0 mL) in the presence of catalytic amounts of iridium complex and base for 20 h at 80 ◦C to
120 ◦C. As indicated in entry 1, a simple iridium complex, [Cp*IrCl2]2, exhibited no catalytic activity,
which resulted in no formation of 6a. When the reaction of 5a was performed in the presence of 0.1 mol%
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Ir of aqua(2,2′-bipyridine-6,6′-dionato)(pentamethylcyclopentadienyl)iridium (1) and 5.0 mol% of
Na2CO3 at 100 ◦C, transfer hydrogenation proceeded selectively to give 6a in 85% yield (entry 2).
Other iridium catalysts 2 and 3 having substituents of the functional bipyridonate ligand exhibited
lower activity than 1 (entries 3 and 4). Related dicationic iridium catalyst 4 was also inferior to 1
(entry 5). Reactions at lower and higher temperatures (80 ◦C and 120 ◦C) both resulted in lower yields
of 6a (entries 6 and 7). Employing other bases such as K2CO3, NaOtBu, and KOtBu also decreased
the yield of 6a (entries 8–10). Two equivalents of glucose were indispensable in obtaining 6a in high
yield, as the reaction using just one equivalent of glucose resulted in a moderate yield of 6a (entry
11). Finally, the highest yield of 6a (89%) was achieved by employing 0.2 mol% Ir of the catalyst 1
(entry 12). Additionally, DMAc could be used as a solvent in place of water, maintaining a high yield of
6a (entry 13).

Table 1. Optimization of reaction conditions for the transfer hydrogenation of acetophenone (5a) to
1-phenylethanol (6a) using glucose as a hydrogen donor.
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5 4 100 Na2CO3 (5.0) 67 67
6 1 80 Na2CO3 (5.0) 48 47
7 1 120 Na2CO3 (5.0) 92 81
8 1 100 K2CO3 (5.0) 75 72
9 1 100 NaOtBu (10.0) 58 56

10 1 100 KOtBu (10.0) 62 56
11 c 1 100 Na2CO3 (5.0) 54 53
12 d 1 100 Na2CO3 (5.0) 94 89

13 b,e 1 100 Na2CO3 (5.0) 85 80

Reaction conditions: Catalyst (0.1 mol% Ir), base, 5a (2.0 mmol), glucose (4.0 mmol), H2O (3.0 mL) in a sealed
stainless-steel reactor. a Determined by GC analysis. b Catalyst loading was 1.0 mol% Ir. c 1.0 equivalent of glucose
was used. d Catalyst loading was 0.2 mol% Ir. e Reaction was conducted in DMAc (3.0 mL) instead of H2O.

To explore the substrate scope for the transfer hydrogenation catalyzed by 1 using glucose as a
hydrogen donor, reactions were conducted with various ketones. The results are shown in Table 2.
Reactions of acetophenone derivatives bearing various substituents on the phenyl ring were initially
examined in water (Conditions A). In most of these reactions, 1.0 mol% Ir of catalyst 1 was required to
achieve efficient conversion of the ketone substrates. The meta-methyl-substituted acetophenone 5b
was converted to the corresponding secondary alcohol 6b in 61% yield. Acetophenone derivatives 5c–f
bearing electron-withdrawing substituents such as trifluoromethyl, nitro, cyano, and methoxycarbonyl
groups at the para-position on the phenyl ring were selectively converted to the corresponding
secondary alcohols 6c–f in moderate to good yields. The 2,2,2-trifluoroacetophenone (5g) was also
converted to the corresponding 2,2,2-trifluoro-1-phenylethanol (6g) in 89% yield. Propiophenone



Catalysts 2019, 9, 503 4 of 13

(5h) and other ketones 5i–k were also applicable to this catalytic system. Conversely, reactions of
acetophenone derivatives bearing methoxy and halogen substituents in water gave lower yields of
secondary alcohols. Here, intermolecular dehydration predominantly proceeded to afford ethers
[bis-(α-methylbenzyl)ether derivatives]. For these substrates, the reaction in DMAc as a solvent
(Conditions B) significantly improved the yields of secondary alcohols. Starting from acetophenone
derivatives 5l–q, the desired alcohol products 6l–q were obtained in good to excellent yields under
catalytic conditions B.

Table 2. Transfer hydrogenation of various ketones catalyzed by 1 using glucose as a hydrogen donor.
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The present catalytic system was also suitable for reducing various aromatic aldehydes to primary
benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were applied for
reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde (7a) and
p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), respectively.
Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as cyano, nitro,
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and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 8c–f in moderate
to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing methoxy, tert-butyl,
and halogen substituents were efficiently converted to benzylic alcohols 8g–k under conditions B
using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were also converted to
corresponding primary alcohols 8l and 8m in excellent yields under conditions B.

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen donor.

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Conditions A: H2O was used as a solvent a

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

7a, 87(86) c, d 7b, 72(58) 7c, 54(56) 7d, 63(54)

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

7e, 58(54) 7f, 68(63)

Conditions B: DMAc was used as a solvent b

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78)

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The present catalytic system was also suitable for reducing various aromatic aldehydes to 

primary benzyl alcohols. The results are summarized in Table 3. Reaction conditions A, which were 

applied for reducing ketones, as mentioned in Table 2, were also effective for reducing benzaldehyde 

(7a) and p-methylbenzaldehyde (7b) to benzyl alcohol (8a) and p-methylbenzyl alcohol (8b), 

respectively. Benzaldehyde derivatives 7c–f bearing electron-withdrawing substituents such as 

cyano, nitro, and methoxycarbonyl groups were also converted to corresponding benzylic alcohols 

8c–f in moderate to good yields under conditions A. Benzaldehyde derivatives 7g–k bearing 

methoxy, tert-butyl, and halogen substituents were efficiently converted to benzylic alcohols 8g–k 

under conditions B using DMAc as a solvent. Other aldehydes 7l and 7m with naphthyl rings were 

also converted to corresponding primary alcohols 8l and 8m in excellent yields under conditions B. 

Table 3. Transfer hydrogenation of various aldehydes catalyzed by 1 using glucose as a hydrogen 

donor. 

 
 

 
Conditions A: H2O was used as a solvent a 

    

7a, 87(86)c, d 7b, 72(58) 7c, 54(56) 7d, 63(54) 

 
 

  

7e, 58(54) 7f, 68(63)   

Conditions B: DMAc was used as a solvent b 

    
7g, 73(69) 7h, 88(88) 7i, 95(88) 7j, 81(78) 

   

 

7k, 94(87) 7l, 97(91) 7m, 88(83)  
a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), 

H2O (3.0 mL). b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose 

(4.0 mmol), DMAc (3.0 mL). The yields were determined by 1H NMR analysis. The isolated yields are 

indicated in parentheses. c The yield was determined by GC analysis. d Catalyst loading was 0.5 mol% 

Ir. 

To determine which part of glucose functioned as a hydrogen donor, two additional experiments 

were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of 

the hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation 1). 

Conversely, 2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for 

7k, 94(87) 7l, 97(91) 7m, 88(83)

a Conditions A: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), H2O (3.0 mL).
b Conditions B: Catalyst (1.0 mol% Ir), Na2CO3 (5.0 mol%), aldehyde (2.0 mmol), glucose (4.0 mmol), DMAc (3.0
mL). The yields were determined by 1H NMR analysis. The isolated yields are indicated in parentheses. c The yield
was determined by GC analysis. d Catalyst loading was 0.5 mol% Ir.

To determine which part of glucose functioned as a hydrogen donor, two additional experiments
were conducted (Figure 1). The reaction of 5a using methyl α-glucopyranoside (9), in which one of the
hydroxy groups of glucose at the C1 position was protected, did not proceed (Equation (1)). Conversely,
2,3,4,6-tetra-O-methyl α-glucopyranose (10), in which all four hydroxy groups except for that at the C1
position were protected, was an effective hydrogen donor for the transfer hydrogenation of 5a to give
6a in 97% yield (Equation (2)). These results verified that hydrogen transfer occurred from the hydroxy
group at the C1 position in glucose to the carbonyl substrates during the catalytic processes.

A possible mechanism for the transfer hydrogenation of carbonyl compounds to the corresponding
alcohol products catalyzed by iridium complex 1 is shown in Scheme 2. First, elimination of the aquo
ligand in 1 occurred to generate coordinatively unsaturated species I. Then, dehydrogenation at the
hydroxy moiety at the C1 position of glucose, based on the cooperativity of iridium and the functional
ligand, proceeded through transition state II, affording gluconolactone and iridium-hydride species
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III. (NMR analysis of the crude mixture obtained under optimal conditions (Table 1, entry 12) was
performed. Signals due to gluconolactone were observed, indicating that catalytic hydrogen transfer
from glucose to acetophenone surely occurred.) Transfer hydrogenation from species III to carbonyl
substrates occurred through transition state IV to give the alcohol products along with regeneration of
catalytically active species I.
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3. Materials and Methods

3.1. General

1H and 13C{1H} NMR spectra were recorded on JEOL ECX-500 and ECS-400 spectrometers
(JEOL Ltd., Tokyo, Japan). Gas chromatography (GC) analyses were performed on a GL-Sciences
GC353B gas chromatograph (GL Sciences Inc., Tokyo, Japan) with a capillary column (GL-Sciences
and InertCap Pure WAX (GL Sciences Inc., Tokyo, Japan)). Silica-gel column chromatography
was carried out by using Wako-gel C-200 (FUJIFILM Wako Pure Chemical Corp., Osaka, Japan).
Ketones and aldehydes were purchased from FUJIFILM Wako Pure Chemical Corp. (Osaka, Japan),
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) or nacalai tesque (Kyoto, Japan). Distilled water
and N,N-dimethylacetamide(super dehydrated) were purchased from FUJIFILM Wako Pure Chemical
Corp. (Osaka, Japan). The compounds, [Cp*IrCl2]2 (Cp* = η5-pentamethylcyclopentadienyl) [21] and
iridium complexes 1–4 were prepared according to the literature methods [18,19,22,23].

3.2. General Procedure for Transfer Hydrogenation of Acetophenone to 1-phenylethanol Using Glucose (Table 1)

In a 5 mL stainless-steel reactor under argon atmosphere, catalyst (0.1 mol% Ir), acetophenone
(2.0 mmol), glucose (4.0 mmol), base (5.0 or 10.0 mol%) and degassed distilled water (3.0 mL) were
placed. Then, the reactor was sealed with a stainless-steel stopper, and the mixture was stirred at
100 ◦C for 20 h. After cooling to room temperature, the mixture was diluted with toluene (50 mL).
The conversion of acetophenone and the yield of 1-phenylethanol were determined by GC analysis
using biphenyl as an internal standard.

3.3. General Procedure for Transfer Hydrogenation of Ketones to the Corresponding Secondary Alcohols Using
Glucose (Table 2)

3.3.1. Conditions A

In a 5 mL stainless-steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 mol%),
ketone (2.0 mmol), glucose (720.6 mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 mol%)
and degassed distilled water (3.0 mL) were placed. Then, the reactor was sealed with a stainless-steel
stopper, and the mixture was stirred at 100 ◦C for 20 h. After cooling to room temperature, the products
were extracted with dichloromethane (20 mL × 3). After evaporation of the solvent, the yield was
determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. The products
were isolated by column chromatography (eluent = ethyl acetate/hexane). 1H and 13C{1H} NMR
spectra of each isolated products are shown in Supplementary Materials.

1-Phenylethanol (6a) [24]: 1H NMR (500 MHz, CDCl3) δ 7.40–7.33 (m, 4H, aromatic), 7.31–7.25 (m, 1H,
aromatic), 4.91 (qd, J = 6.5, 3.5 Hz, 1H, CHOH), 1.85 (d, 3.5 Hz, 1H, CHOH), 1.50 (d, J = 6.0 Hz, 3H,
CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 145.9, 128.6, 127.5, 125.5, 70.4, 25.2.

1-(3’-Methylphenyl)ethanol (6b) [25]: 1H NMR (400 MHz, CDCl3) δ 7.25 (t, J = 8.0 Hz, 1H, aromatic),
7.23–7.15 (m, 2H, aromatic), 7.09 (d, J = 7.2 Hz, 1H, aromatic), 4.87 (qd, J = 6.4, 2.8 Hz, 1H, CH(OH)CH3),
2.36 (s, 3H, ArCH3), 1.80 (br, 1H, OH), 1.49 (d, J = 6.4 Hz, 3H, CH(OH)CH3 ). 13C{1H} NMR (100 MHz,
CDCl3) δ 145.9, 138.3, 128.6, 128.4, 126.2, 122.6, 70.6, 25.3, 21.6.

1-(4’-Trifluoromethylphenyl)ethanol (6c) [25]: 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.0 Hz, 2H,
aromatic), 7.42 (d, J = 8.4 Hz, 2H, aromatic), 4.88 (q, J = 2.4 Hz, 1H, -CH(OH)CH3), 2.93 (br, 1H, OH),
1.44 (d, J = 6.4 Hz, 3H, CH3). 13C{1H} NMR (100 MHz, CDCl3) δ 149.8, 129.6 (q, JCF3 = 31.7 Hz), 125.7,
125.4 (q, JCF3 = 3.9 Hz), 124.3 (q, JCF3 = 271.2 Hz), 69.8, 25.3.
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1-(4’-Nitrophenyl)ethanol (6d) [24]: 1H NMR (500 MHz, CDCl3) δ 8.20 (dt, J = 9.0, 2.0 Hz, 2H, aromatic),
7.55 (ddt, J = 8.5, 2.0, 0.5 Hz, 2H, aromatic), 5.03 (q, J = 6.5 Hz, 1H, CH(OH)CH3), 2.16 (br, 1H, OH),
1.52 (d, J = 6.5 Hz, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 153.2, 147.3, 126.2, 123.9, 69.6, 25.6.

1-(4’-Cyanophenyl)ethanol (6e) [26]: 1H NMR (500 MHz, CDCl3) δ 7.65 (dd, J = 8.5, 1.0 Hz, 2H, aromatic),
7.49 (d, J = 8.0 Hz, 2H, aromatic), 4.97 (ddd, J = 13.0, 4.0, 2.5 Hz, CH(OH)CH3), 1.92 (d, J = 4.0 Hz, OH),
1.50 (d, J = 6.0 Hz, 3H, CH3). 13C{1H} NMR (100 MHz, CDCl3) δ 151.4, 132.2, 126.1, 118.9, 110.5, 69.3, 25.2.

Methyl-4-(1-hydroxyethyl)benzoate (6f) [27]: 1H NMR (500 MHz, CDCl3) δ. 8.00 (dt, J = 8.0, 2.0 Hz,
2H, aromatic), 7.43 (d, J = 8.0 Hz, 2H, aromatic), 4.95 (q, J = 5.5 Hz, 1H, CH(OH)CH3), 3.90 (s, 3H,
C(O)OCH3), 2.19 (br, 1H, OH), 1.49 (d, J = 6.5 Hz, 3H, CH(OH)CH3). 13C{1H} NMR (125 MHz, CDCl3)
δ 167.1, 151.1, 130.0, 129.3, 125.4, 70.1, 52.2, 25.4.

2,2,2-Trifluoro-1-phenylethanol (6g) [28]: 1H NMR (400 MHz, CDCl3) δ 7.52–7.45 (m, 2H, aromatic),
7.45-7.37 (m, 3H, aromatic), 5.03 (m, 1H, CHOHCF3), 2.60–2.58 (br, 1H, OH). 13C{1H} NMR (100 MHz,
CDCl3) δ .134.0, 129.7, 128.8, 127.6, 124.3 (q, JCF3 = 280.1 Hz), 72.9 (q, JCF3 = 32.1 Hz).

1-Phenyl-1-propanol (6h) [29]: 1H NMR (500 MHz, CDCl3) δ 7.40–7.31 (m, 4H, aromatic), 7.29–7.23
(m, 1H, aromatic), 4.58 (t, J = 6.5 Hz, 1H, CH(OH)CH2CH3), 1.96–1.98 (br, 1H, OH), 1.86-1.70 (m, 2H,
CH(OH)CH2CH3), 0.91 (t, J = 7.5 Hz, CH(OH)CH2CH3). 13C{1H} NMR (125 MHz, CDCl3) δ. 144.7,
128.5, 127.6, 126.1, 76.1, 32.0, 10.3.

4-Phenylbutan-2-ol (6i) [29]: 1H NMR (500 MHz, CDCl3) δ 7.31-7.26 (m, 2H, aromatic), 7.23–7.17 (m, 3H,
aromatic), 3.84 (sep, J = 6.0 Hz, 1H, CH(OH)), 2.80-2.64 (m, 2H, CH2CH3), 1.85–1.72 (m, 2H, CH2), 1.34
(br, 1H, OH), 1.23 (d, J = 6.5 Hz, 3H, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 142.2, 128.5, 125.9, 67.5,
40.9, 32.2, 23.7.

Cyclohexanol (6j) [29]: 1H NMR (500 MHz, CDCl3) δ 3.61 (m, 1H, CH2CHOHCH2), 1.92–1.88 (m. 2H,
CH2), 1.78–1.68 (m, 2H, CH2), 1.59–1.51 (m, 1H, CH2), 1.37 (s, 1H, CH2), 1.35–1.24 (m, 4H, CH2),
1.22–1.12 (m, 1H, CH2). 13C{1H} NMR (125 MHz, CDCl3) δ 70.4, 35.6, 25.5, 24.3.

Cycloheptanol (6k) [30]: 1H NMR (500 MHz, CDCl3) δ 3.85 (m, 1H, CH2CHOHCH2), 1.92 (m. 2H,
CH2), 1.65 (m, 2H, CH2), 1.61–1.50 (m, 6H, CH2), 1.40 (m, 2H, CH2), 1.30 (br, 1H, OH). 13C{1H} NMR
(100 MHz, CDCl3) δ 72.9, 37.7, 28.2, 22.7.

3.3.2. Conditions B

In a 5 mL stainless-steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 mol%),
ketone (2.0 mmol), glucose (720.6 mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 mol%)
and N,N-dimethylacetamide (3.0 mL) were placed. Then, the reactor was sealed with a stainless-steel
stopper, and the mixture was stirred at 100 ◦C for 20 h. After cooling to room temperature, the reaction
mixture was poured into water (50 mL) and the products were extracted with a mixed solvent having a
volume ratio of hexane: AcOEt of 1: 1 (20 mL × 3). After evaporation of the solvent, the yield was
determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. The products
were isolated by column chromatography (eluent = ethyl acetate/hexane). 1H and 13C{1H} NMR
spectra of each isolated products are shown in Supplementary Materials.

1-(4’-Methoxyphenyl)ethanol (6l) [24]: 1H NMR (500 MHz, CDCl3) δ 7.31 (dt, J = 8.5, 2.0 Hz, 2H, aromatic),
6.89 (dt, J = 9.0, 2.0 Hz, 2H, aromatic), 4.86 (q, J = 6.0 Hz, 1H, CHOH), 3.81 (s, 3H, OMe), 1.78-1.75
(br, 1H, OH), 1.48 (d, J = 6.5 Hz, 3H, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 159.1, 138.1, 126.8, 113.9,
70.1, 55.4, 25.2.
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1-(2’-Methoxyphenyl)ethanol (6m) [30]: 1H NMR (500 MHz, CDCl3) δ 7.34 (dd, J = 7.5, 1.5 Hz, 1H,
aromatic), 7.28-7.22 (m, 1H, aromatic), 6.97 (td, J = 7.5, 1.0 Hz, 1H, aromatic), 6.88 (d, J = 8.0 Hz, 1H,
aromatic), 5.09 (quint, J = 6.5 Hz, CH(OH)CH3), 3.87 (s, 3H, OMe), 2.69 (d, J = 5.0 Hz, OH), 1.51 (d, J =

7.0 Hz, CH(OH)CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 156.7, 133.5, 128.4, 126.2, 120.9, 110.5, 66.7,
55.4, 22.9.

1-(4’-Chlorophenyl)ethanol (6n) [24]: 1H NMR (500 MHz, CDCl3) δ 7.35–7.27 (m, 4H, aromatic), 4.89 (m,
1H, CHOH), 1.91-1.84 (br, 1H, CHOH), 1.47 (d, J = 6.5 Hz, 3H, CH3). 13C{1H} NMR (125 MHz, CDCl3)
δ 144.3, 133.2, 128.7, 126.9, 69.9, 25.4.

1-(3’-Chlorophenyl)ethanol (6o) [25]: 1H NMR (500 MHz, CDCl3) δ 7.37 (t, J = 2.0 Hz, 1H, aromatic), 7.30–7.22
(m, 3H, aromatic), 4.88 (qd, J = 6.5, 3.5 Hz, CH(OH)CH3), 1.92 (d, J = 3.5 Hz, 1H, OH), 1.48 (d, J = 6.5 Hz,
3H, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 148.0, 134.5, 129.9, 127.7, 125.8, 123.7, 70.0, 25.4.

1-(2’-Chlorophenyl)ethanol (6p) [31]: 1H NMR (500 MHz, CDCl3) δ 7.58 (dd, J = 8.0, 2.0 Hz, 1H, aromatic),
7.33–7.27 (m, 2H, aromatic), 7.20 (td, J = 8.0, 2.0 Hz, 1H, aromatic), 5.28 (qd, 6.5, 3.5 Hz, 1H, CH(OH)CH3),
2.13 (d, J = 4.0 Hz, 1H, OH), 1.48 (d, J = 6.5 Hz, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 143.2, 131.7,
129.5, 128.5, 127.3, 126.4, 67.1, 23.6.

1-(4’-Bromophenyl)ethanol (6q) [24]: 1H NMR (500 MHz, CDCl3) δ 7.46 (dt, J = 8.5, 2.5, 1.5 Hz, 2H, aromatic),
7.24 (d, J = 8.5 Hz, 2H, aromatic), 4.85 (q, J = 6.5 Hz, 1H, CH(OH)CH3), 1.98 (br, 1H, OH), 1.46 (d, J = 6.5 Hz,
3H, CH(OH)CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 144.9, 131.7, 127.3, 121.3, 69.9, 25.4.

3.4. General Procedure for Transfer Hydrogenation of Aldehydes to the Corresponding Alcohols Using Glucose
(Table 3)

3.4.1. Conditions A

In a 5 mL stainless-steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 mol%),
aldehyde (2.0 mmol), glucose (720.6 mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 mol%)
and degassed distilled water (3.0 mL) were placed. Then, the reactor was sealed with a stainless-steel
stopper, and the mixture was stirred at 100 ◦C for 20 h. After cooling to room temperature, the products
were extracted with dichloromethane (20 mL × 3). After evaporation of the solvent, the yields were
determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. The products
were isolated by column chromatography (eluent = ethyl acetate/hexane). 1H and 13C{1H} NMR
spectra of each isolated products are shown in Supplementary Materials.

Benzyl alcohol (8a) [32]: 1H NMR (500 MHz, CDCl3) δ 7.41–7.35 (m, 4H, aromatic), 7.33–7.28 (m, 1H,
aromatic), 4.70 (d, J = 6.0 Hz, 2H, CH2(OH)), 1.75 (t, J = 6.0 Hz, 1H, OH).13C{1H} NMR (125 MHz,
CDCl3) δ 141.0, 128.6, 127.7, 127.1, 65.2.

p-Methylbenzyl alcohol (8b) [32]: 1H NMR (500 MHz, CDCl3) δ 7.21 (d, J = 8.0 Hz, 2H, aromatic), 7.14
(d, J = 8.0 Hz, 2H, aromatic), 4.57 (d, J = 3.5 Hz, 2H, ArCH2OH), 2.33 (s, 3H, Me), 2.23–2.12 (br, 1H,
OH).13C{1H} NMR (125 MHz, CDCl3) δ138.0, 137.4, 129.3, 127.2, 65.2, 21.2.

p-Cyanobenzyl alcohol (8c) [30]: 1H NMR (500 MHz, CDCl3) δ 7.62–7.57 (m, 2H, aromatic), 7.46–7.41
(m, 2H, aromatic), 4.73 (s, 2H, CH2), 2.61 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ 146.5, 132.3,
127.1, 119.0, 110.9, 64.1.

m-Nitrobenzyl alcohol (8d) [33]: 1H NMR (500 MHz, CDCl3) δ 8.26 (s, 1H, aromatic), 8.16 (dd, J = 8.5, 1.0
Hz, 1H, aromatic), 7.71 (dd, J = 8.0, 1.0 Hz, 1H, aromatic), 7.54 (t, J = 8.0 Hz, 1H, aromatic), 4.84 (s, 2H,
CH2), 1.95 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ 148.4, 143.0, 132.8, 129.6, 122.6, 121.6, 64.0.
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o-Nitrobenzyl alcohol (8e) [33]: 1H NMR (500 MHz, CDCl3) δ 8.12 (dd, J = 8.0, 1.0 Hz, 1H, aromatic),
7.75 (d, J = 7.0 Hz, 1H, aromatic), 7.69 (td, J = 7.5, 1.0 Hz, 1H, aromatic), 7.49 (td, J = 8.0, 1.0 Hz, 1H,
aromatic), 4.99 (d, J = 6.0 Hz, 2H, –CH(OH)–), 2.53 (t, J = 7.0 Hz, 1H, OH).13C{1H} NMR (125 MHz,
CDCl3) δ 147.7, 136.9, 134.3, 130.2, 128.7, 125.2, 62.7.

Methyl-4-(hydroxymethyl)benzoate (8f) [34]: 1H NMR (500 MHz, CDCl3) δ 7.95 (d, J = 8.0 Hz, 2H,
aromatic), 7.37 (d, J = 8.0 Hz, 2H, aromatic), 4.69 (s, 2H, CH2(OH)), 3.88 (s, 3H, OCH3), 3.21 (br, 1H,
OH). 13C{1H} NMR (125 MHz, CDCl3) δ 167.2, 146.3, 129.8, 129.0, 126.4, 64.4, 52.2.

3.4.2. Conditions B

In a 5 mL stainless-steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 mol%),
aldehyde (2.0 mmol), glucose (720.6 mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 mol%)
and N,N-dimethylacetamide (3.0 mL) were placed. Then, the reactor was sealed with a stainless-steel
stopper, and the mixture was stirred at 100 ◦C for 20 h. After cooling to room temperature, the reaction
mixture was poured into water (50 mL) and the products were extracted with a mixed solvent having
a volume ratio of hexane: AcOEt of 1:1 (20 mL × 3). After evaporation of the solvent, the yield was
determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. The products
were isolated by column chromatography (eluent = ethyl acetate/hexane). 1H and 13C{1H} NMR
spectra of each isolated products are shown in Supplementary Materials.

p-Methoxybenzyl alcohol (8g) [32]: 1H NMR (500 MHz, CDCl3) δ 7.28 (dt, J = 9.0, 3.0, 2.0 Hz, 2H,
aromatic), 6.89 (dt, J = 8.5, 3.0, 2.0 Hz, 2H, aromatic), 4.60 (s, 2H, CH2), 3.80 (s, 3H, OMe), 1.87 (br, 1H,
OH). 13C{1H} NMR (125 MHz, CDCl3) δ 159.2, 133.2, 128.8, 114.0, 65.1, 55.4.

p-Chlorobenzyl alcohol (8h) [32]: 1H NMR (500 MHz, CDCl3) δ 7.34–7.23 (m, 4H, aromatic), 4.62 (s, 2H,
ArCH2OH), 2.21 (br, 1H, ArCH2OH).13C{1H} NMR (125 MHz, CDCl3) δ 139.3, 133.4, 128.8, 128.4, 64.6.

p-Bromobenzyl alcohol (8i) [30]: 1H NMR (500 MHz, CDCl3) δ 7.48 (dt, J = 8.5, 2.0 Hz, 2H, aromatic), 7.23
(d, J = 8.5 Hz, 2H, aromatic), 4.65 (s, 2H, CH2), 1.87 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ
139.8, 131.7, 128.7, 121.6, 64.7.

p-tert-Butylbenzyl alcohol (8j) [35]: 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 8.0 Hz, 2H, aromatic), 7.30
(d, J = 8.5 Hz, 2H, aromatic), 4.64 (d, J = 1.5 Hz, 2H, CH2), 1.32 (d, J = 2.0 Hz, 9H, C(CH3)3). 13C{1H}
NMR (125 MHz, CDCl3) δ 150.8, 138.0, 127.0, 125.6, 65.2, 34.6, 31.5.

2,6-Dichlorobenzyl alcohol (8k) [36]: 1H NMR (500 MHz, CDCl3) δ 7.34–7.28 (m, 2H, aromatic), 7.18 (m,
1H, aromatic), 4.95 (d, J = 3.5 Hz, CH2OH), 2.31 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ 136.0,
135.7, 129.9, 128.5, 60.2.

2-Naphthalenemethanol (8l) [37]: 1H NMR (500 MHz, CDCl3) δ 7.83–7.75 (m, 3H, aromatic), 7.72 (s, 1H,
aromatic), 7.49–7.38 (m, 3H, aromatic), 4.76 (s, 2H, CH2), 2.33 (br, 1H, OH). 13C{1H} NMR (125 MHz,
CDCl3) δ 138.3, 133.4, 133.0, 128.3, 128.0, 127.8, 126.2, 126.0, 125.5, 125.3, 65.4.

1-Naphthalenemethanol (8m) [33]: 1H NMR (500 MHz, CDCl3) δ 8.04 (d J = 8.0 Hz, 1H, aromatic),
7.88–7.74 (m, 2H, aromatic), 7.54–7.36 (m, 4H, aromatic), 5.05 (s, 2H, CH2), 2.30–2.10 (br, 1H, OH).
13C{1H} NMR (125 MHz, CDCl3) δ 136.3, 133.8, 131.3, 128.7, 128.6, 126.4, 126.0, 125.5, 125.4, 123.7, 63.6.

3.5. Preparation of 2,3,4,6-tetra-O-methyl-D-glucopyranose (10). (Equation (2))

In a two-necked round-bottomed flask, aqueous NaOH (50 wt%, 4.0 mL), methyl
α-D-glucopyranoside (9) (1.94 g, 10.0 mmol) and DMSO (35 mL) were placed. After stirring the mixture
at room temperature for 5 min, iodomethane (3.3 mL, 50 mmol) was added. The mixture was stirred
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at room temperature for 4 h. The reaction mixture was poured into water (100 mL) and extracted
with Et2O. An intermediate product was obtained after evaporation of the organic layer. (colorless oil,
1.64 g, 6.5 mmol, 65% yield).

In a round-bottomed flask, above intermediate product (1.64 g, 6.5 mmol) and aqueous HCl (9.6 M,
25 mL) were placed. The mixture was stirred at 60 ◦C for 16 h. After cooling to room temperature,
the crude product was obtained by evaporation of the reaction mixture. After purifying by column
chromatography (eluent = EtOH/CH2Cl2), the product 10 was obtained (653.5 mg, 2.8 mmol, 43% yield).

2,3,4,6-tetra-O-methyl-D-glucopyranose (10) [38]:1H NMR (500 MHz, CDCl3) δ 5.31 (d, J = 3.5 Hz,
1H), 4.56 (d, J = 7.5 Hz, 0.5H), 3.91 (dt, J = 10.5 Hz, 2.5 Hz, 1H), 3.70 (q, J = 7.0 Hz, 1H), 3.66–3.60
(m, 6H), 3.59–3.5 (m, 6H), 3.53–3.50 (m, 4H), 3.42–3.30 (m, 5H,), 3.22–3.05 (m, 3H), 2.97 (dd, J = 9.0, 8.0
Hz, 0.5 H). 13C NMR (125 MHz, CDCl3) δ 96.9, 90.5, 86.4, 84.7, 83.1, 81.9, 79.7, 79.7, 74.1, 71.6, 71.4, 69.6,
60.9, 60.8, 60.5, 60.4, 59.1, 58.7.

3.6. Reaction of Acetophenone Using α-D-glucopyranoside (9) (Equation (1))

In a 5 mL stainless-steel reactor under argon atmosphere, catalyst 1 (1.0 mg, 0.002 mmol, 0.1 mol%
Ir), acetophenone (240.5 mg, 2.0 mmol), α-D-glucopyranoside (777.3 mg, 4.0 mmol), Na2CO3 (10.5 mg,
0.1 mmol, 5.0 mol%) and degassed distilled water (3.0 mL) were placed. Then, the reactor was sealed
with a stainless-steel stopper, and the mixture was stirred at 100 ◦C for 20 h. After cooling to room
temperature, the mixture was diluted with toluene (50 mL). The conversion of acetophenone and the
yield of 1-phenylethanol were determined by GC analysis using biphenyl as an internal standard.
No reaction occurred.

3.7. Reaction of Acetophenone Using 2,3,4,6-tetra-O-methyl-D-glucopyranose (10) (Equation (2))

In a 5 mL stainless-steel reactor under argon atmosphere, catalyst 1 (1.1 mg, 0.002 mmol, 0.2 mol%Ir),
acetophenone (120.6 mg, 1.0 mmol), 2,3,4,6-tetra-O-methyl-D-glucopyranose (472.4 mg, 2.0 mmol,
2.0 equiv.), Na2CO3 (5.4 mg, 0.05 mmol, 5 mol%) and degassed distilled water (1.5 mL) were placed.
Then, the reactor was sealed with a stainless-steel stopper, and the mixture was stirred at 100 ◦C for
20 h. After cooling to room temperature, the mixture was diluted with toluene (25 mL). The conversion
of acetophenone and the yield of 1-phenylethanol were determined by GC analysis using biphenyl as
an internal standard. The conversion and the yield were 97% and 97%, respectively.

4. Conclusions

In conclusion, we developed a new system for transfer hydrogenation of various ketones and
aldehydes using glucose as a hydrogen donor catalyzed by a small amount of iridium complex (0.1 to
1 mol% Ir). It should be noted that environmentally benign water could be used as a solvent in the
present catalytic system for various carbonyl substrates. To the best of our knowledge, the results
disclosed in this paper were the first example of transfer hydrogenation in water using glucose as a
hydrogen donor. Furthermore, the reaction scope could be extended by using DMAc as a reaction
solvent instead of water.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/503/s1,
detailed description of experimental procedures, 1H and 13C{1H} NMR data of the isolated products with
spectral charts.
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