
Title Roles of dry friction in the fluctuating motion of an adiabatic
piston

Author(s) Sano, Tomohiko G.; Hayakawa, Hisao

Citation Physical Review E (2014), 89(3)

Issue Date 2014-03

URL http://hdl.handle.net/2433/245629

Right ©2014 American Physical Society; 許諾条件に基づいて掲載
しています。

Type Journal Article

Textversion publisher

Kyoto University



PHYSICAL REVIEW E 89, 032104 (2014)

Roles of dry friction in the fluctuating motion of an adiabatic piston

Tomohiko G. Sano and Hisao Hayakawa
Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan

(Received 7 October 2013; revised manuscript received 16 December 2013; published 7 March 2014)

The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in
nonequilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and
causes a discontinuity or a cusplike singularity for velocity distribution functions of the piston. We also show
that the heat fluctuation relation is modified under dry friction.
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I. INTRODUCTION

Recent developments in experimental technique enable
us to control small systems and nonequilibrium systems,
such as nanoscale systems, single colloidal systems, and
biological systems, to clarify their thermodynamic structures,
in detail [1–3]. One of the most important applications of
manipulation techniques for small systems is the design of
nanomachines or submicron machines [4–6]. The difficulty
to realize efficient small machines is the existence of dry
friction when two solids are in contact, because the dry
friction wears down the small machines [7]. Thus, to control
systems under dry friction is indispensable to make small
machines. Furthermore, dry friction cannot be ignored in
the study of nonequilibrium steady states, such as transport
phenomena of molecular motor and motor proteins, because
there are many unavoidable obstacles which play central roles
in small realistic systems, such as dry friction, wear, adhesion,
electrification, and so on [8–11]. Indeed, dry friction is known
to play a central role in the directed motion of kinesin motors
on microtubes [12,13]. Experiments for macroscopic systems
under dry friction reveal that the dry friction has an important
role to rectify unbiased fluctuations, i.e., to extract work from
an equilibrium environment [14–16]. The motor interacting
with its supporting axis via dry friction rotates even in an
equilibrium fluid. Recent studies on Brownian motion under
dry friction clarifies that the particle motion is characterized
by non-Gaussian statistics [17–27].

Although dry friction plays essential roles in nonequilib-
rium transport [7,8,10–13] and it is ubiquitous throughout
nature from a biological surface to an atomic-scale sur-
face [28–30], the energetics for the systems under dry friction
has been elusive so far. For systems without dry friction,
there exists the energetics in the Langevin description so
called stochastic energetics [31–33], in which the first law of
thermodynamics holds at the level of single fluctuating particle
manipulation. The original form of stochastic energetics has
been restricted to systems of a fluctuating single particle driven
by Gaussian white noise, while it is extended to those driven by
non-Gaussian white noise by introducing the new stochastic
products [34,35].

In this paper, we study energy transfer, such as momentum
or heat transfer, for systems with a fluctuating boundary under
dry friction. For this purpose, we study the motion of an
adiabatic piston under the mechanical equilibrium, which is
located between two equilibrium environments characterized
by two different temperatures and densities. Lieb suggested

that the equilibrium thermodynamics cannot tell us whether the
adiabatic piston moves or not [36,37]. This problem is solved
analytically by using the Boltzmann-Lorentz equation [38]
and is recently phenomenologically understood through the
concept of the momentum transfer deficit due to dissipation
(MDD) [39]. However, the motion of the adiabatic piston under
dry friction is little known.

Let us clarify the difference between this paper and
previous studies [22–24]. Although the roles of dry friction
in the asymmetric granular piston with the different restitution
coefficient have already been discussed in Ref. [22], its roles
in the symmetric piston exposed to two thermal gases of
different temperatures have not been analyzed yet. Baule and
Sollich have studied a solvable model for a fluctuating piston
whose two faces are respectively kicked by a single state-
independent Poissonian noise under dry friction, assuming an
exponential distribution for the amplitude and the constant
event probability for each noise [23,24]. However, the motion
of the piston surrounded by the two thermal gases, which
are characterized by state-dependent compound Poissonian
noises, under dry friction has not been analyzed yet.

The analysis of the fluctuating motion of an adiabatic piston
is important in the construction of engines for realistic small
systems. Indeed, small heat engines should also include the
fluctuating motion of an adiabatic piston, to separate the system
from the external environment, in a similar manner to the
macroscopic engines [40]. As the first step to consider the
energetics for realistic systems, we study the motion of an
adiabatic piston under dry friction.

The organization of this paper is as follows. First, in Sec. II
we introduce our setup and the basic stochastic equation of
motion, in which the piston is kicked by double Poissonian
noises from the left and right sides (see Fig. 1). We prove
that the introduced equation is equivalent to the Boltzmann-
Lorentz equation. In Sec. III, we show the main results on
the velocity distribution function, the reverse motion of the
piston, and the fluctuation relation for the work done by gas
under dry friction. Our theoretical results are verified through
the numerical calculation of the stochastic equation of motion.
Lastly, we conclude the paper in Sec. IV. In the Appendix, the
detailed derivation of the fluctuation relation is presented.

II. SETUP

Let us enclose ideal gas molecules of mass m in a container
and put a piston of mass M separating the gas into two parts.
In Fig. 1, the densities and the temperatures of separated gases
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FIG. 1. (Color online) Schematic picture for the system with a
fluctuating boundary under dry friction. Blue zigzag lines represent
dry friction. Ideal gas molecules are enclosed in a container and the
piston with a finite mass M separates the gas into two regions. Gas
densities nL,nR and temperatures TL,TR are assumed to be constants.

in the left and right sides are represented by nL,TL and nR,TR,
respectively. Here, we assume that the temperatures and the
densities near the piston are unaffected by the existence of the
fluctuating boundary. We also assume that the piston moves
only in the horizontal direction (see Fig. 1) under the influence
of dry dynamical friction. Moreover, molecules are assumed
to be in equilibrium, while the collisions between molecules
and the piston are characterized by the restitution coefficient
e, because the piston is composed of a collection of molecules.
We introduce the stochastic equation of motion for the piston
as follows:

M
dV̂

dt
= F̂L + F̂R + F̂fri, (1)

where F̂α (α = L or R) is the stochastic force acting on the
piston due to the kick from the α side of the piston, and
V̂ denotes the stochastic velocity of the piston. We assume
that the stochastic forces F̂α can be described by the state-
dependent compound white Poissonian process:

F̂α ≡
∑

v

Pv(V̂ ) · ξ̂ v
α (t |V̂ ), (2)

Pv(V̂ ) ≡ 1 + e

2

2ε2

1 + ε2
M(v − V̂ ), (3)

(α = L or R), where ξ̂ v
α (t |V̂ ) is one-sided Poissonian noise

whose probability is equivalent to collision probability for gas
molecules of the velocity between v and v + dv on the piston:

λα
v ≡ dv|v − V̂ | · �[εα(V̂ − v)]nαAφ(v,Tα). (4)

Here, we have introduced the area of the piston A, Maxwell
distribution φ(v,T ) ≡ √

m/2πkBT exp(−mv2/2kBT ), Boltz-
mann constant kB , and Heaviside function �(x) = 1(x �
0) and �(x) = 0(x < 0) with εL ≡ −1 and εR ≡ +1. Pv

represents the one-dimensional momentum change of the
piston for each collision between the gas molecule of velocity
v and the piston. The symbol “ · ” in Eq. (2) represents the Itô
product [41,42]. We assume that ε ≡ √

m/M , the mass ratio
between molecules and the piston, is small but finite. Here,
the piston is assumed to move along the container under the
influence of dry friction from the side walls

F̂fri ≡ −εF̄friσ (V̂ ), (5)

where σ (x) = x/|x| is the sign function [17–24], and F̄fri will
be determined later. For later discussion, we assume that the
mechanical balance condition between two gases is always
satisfied: P ≡ nLTL = nRTR.

To examine our theoretical consideration below, we adopt
the velocity Verlet method for time integration of Eq. (1) with
time interval dt/t0 = 0.01, where we have introduced t0 ≡
x0/vTR , and x0 ≡ Mv2

TR
/PA. We discretize the jump rates λα

v

by replacing dv by �vα = vTα
/50 and v by vi with −10vTα

<

vi < 10vTα
for α = L or R and 1 � i � 1000, with the thermal

velocity vT ≡ √
2kBT /M of the temperature T . e = 0.9 and

ε = 0.1 are fixed for our simulations.
The time evolution of velocity distribution function (VDF)

for the piston driven by Eqs. (2) and (3) under the dry
friction (5) satisfies the Boltzmann-Lorentz equation [41–43]:

∂f (V,t)

∂t
+ ∂

∂V

{
Ffri

M
f (V,t)

}
= JL + JR, (6)

as shown in Ref. [42] and in the next paragraph. We have
introduced the collision integral Jα (α = L or R) as

Jα ≡ nαA

∫
dv|v − V |{�[εα(V ′′ − v′′)]f (V ′′,t)φ(v′′,Tα) − �[εα(V − v)]f (V,t)φ(v,Tα)}, (7)

where v′′ and V ′′ represent the precollision velocities of the molecule vertical to the piston and those of the piston, respectively,
which lead to the corresponding velocities v and V , and  ≡ 1/e2.

Let us prove the equivalency between the stochastic equation of motion equations (1)–(5) and the Boltzmann-Lorentz
equation (6). For an arbitrary analytic function h = h(V̂ ), its differentiation dh(V̂ ) ≡ h(V̂ + dV̂ ) − h(V̂ ) can be represented as

dh(V̂ ) =
∞∑

n=1

(dV̂ )n

n!
· ∂nh

∂V n

∣∣∣∣
V =V̂

=
∞∑

n=1

1

n!

{∑
v

(
Pv

M
· dL̂v

L

)
+

∑
v

(
Pv

M
· dL̂v

R

)
+ F̂fri

M
dt

}n

· ∂nh

∂V n

∣∣∣∣
V =V̂

=
∞∑

n=1

1

n!

∑
α=L,R

{∑
v

(
Pv

M
· dL̂v

α

)n
}

· ∂nh

∂V n

∣∣∣∣
V =V̂

+ dt
F̂fri

M
· ∂h

∂V

∣∣∣∣
V =V̂

+ o(dt), (8)

where we substitute dV̂ = ∑
v(Pv/M) · (dL̂v

L + dL̂v
R) + F̂fridt/M into the Taylor expansion of h and pick up only O(dt) terms.

Here, we have introduced the total differentiation dL̂v
α of Lv

α(t |V̂ ) ≡ ∫ t

0 ξ̂ v
α (s|V̂ )ds (α = L or R), noting that (dL̂v

α)n = O(dt),
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dL̂v
L · dL̂v

R = o(dt), and dL̂v
α · dL̂v′

α = o(dt) for v �= v′. The ensemble average and the partial integral of Eq. (8) leads to

∂f

∂t
+ ∂

∂V

{
Ffri

M
f (V,t)

}
=

∞∑
n=1

(−1)n

n!

∂n

∂V n

{ ∑
α=L,R

∑
v

(
Pv

M

)n

λα
vf

}

=
∞∑

n=1

(−1)n

n!

∂n

∂V n

[{
nLA

∫ ∞

V

dv

(
Pv

M

)n

|v − V |φ(v,TL)

}
f

+
{
nRA

∫ V

−∞
dv

(
Pv

M

)n

|v − V |φ(v,TR)

}
f

]
, (9)

where we have used the martingale property of Itô
product as 〈(Pv(V̂ )/M)n · dL̂v

α〉 = 〈(Pv(V̂ )/M)n〉〈(dL̂v
α)n〉 =

[Pv(V )/M]nλα
v dt . The last equation in Eq. (9) is well known

to be derived through Kramers-Moyal expansion of the right-
hand side of Eq. (6) [42]. Thus, Eqs. (1)–(5) are equivalent to
the Boltzmann-Lorentz equation (6).

III. MAIN RESULTS

In this section, we present the main results on the velocity
distribution function of the piston in Sec. III A, the steady state
velocity in Sec. III B, and the fluctuation relation for the work
done by the gas in Sec. III C.

A. Velocity distribution function

Expanding Eqs. (6) or (9) in terms of a small but finite
parameter ε [43], we obtain a Fokker-Planck-like equation for
f = f (V,t) up to O(ε2):

∂f

∂t
= ε

γ0

M

[
∂

∂V
{V + μ0vTe

σ (V )}f + v2
Te

2

∂2f

∂V 2

]

+ ε2C
γ0

M

[
∂

∂V

V 2

vTe

f − v3
Te

4

∂3f

∂V 3

]
+ O(ε3). (10)

Here, the first two terms on the right-hand side of Eq. (10)
proportional to the first derivative term in Eq. (10) represents
the force. Thus, the proportional constant of the friction force
in Eq. (5) can be determined as

F̄fri ≡ μ0γ0vTe
(11)

with γ0 ≡ γL + γR,

γα ≡ 2(1 + e)√
π

PA

vTα

(12)

(α = L or R), the effective temperature Te ≡ (1 +
e)

√
TLTR/2, and the friction constant μ0. The steady

state VDF fSS(V ) up to O(ε) can be readily obtained from
Eq. (10):

fSS(V ) = [1 + εa1(V ) + O(ε2)]f0(V ), (13)

f0(V ) ≡ 1

Z
exp

[
− M

2kBTe

(V 2 + 2μ0vTe
|V |)

]
, (14)

a1(V ) ≡ C

{
−μ0σ (V )

(
MV 2

kBTe

− 1

)

+ (
1 − 2μ2

0

) V

vTe

− V 3

3v3
Te

}
, (15)

C ≡
√

πTe

(
1√
TL

− 1√
TR

)
, (16)

where we have introduced the normalized constant Z ≡√
πvTe

eμ2
0 erfc(μ0). It should be noted that the restitution

coefficient only appears through γ0 and Te.
References [21–24] report the existence of the discontinuity

and the cusp singularity in VDFs of a stochastic motion of
the piston under dry friction. As we expected, we obtain
the consistent results with those in the previous studies,
i.e., there exists a discontinuity at V = 0 for TL �= TR, and
the cusplike singularity appears at V = 0 for TL = TR. The
obtained singularity is close to that in Refs. [22,23], while
the singularities appear at V �= 0, in addition to V = 0 in
Ref. [24]. We note that the amount of gap at V = 0 increases
linearly with μ0.

We numerically solve Eq. (1) for 0 < t/t0 < 400 and
average the data over 1000 ensembles, to obtain the data for
VDFs and compare it with Eq. (13) in Fig. 2 for e = 0.9 and
μ0 = 1.0. As can be seen from Fig. 2, it is obvious that our
theory precisely reproduces the results of the simulation.

B. Reverse motion of adiabatic piston

It is known that the piston moves toward the high temper-
ature side under the condition nLTL = nRTR and TL �= TR. As
will be shown, however, the direction of the piston motion can
be reversed under the dry friction. Indeed, the averaged steady
state velocity of the piston defined by VSS ≡ ∫

dV VfSS(V ) is
given by

VSS = Vad

{
1 + 4μ0

(
μ0 − μ3

0

3
− 7

6
√

πeμ2
0 erfc(μ0)

+ μ2
0

3
√

πeμ2
0 erfc(μ0)

)}
+ O(ε2), (17)

where we have introduced Vad as the steady velocity of the
piston without any dry friction:

Vad ≡ ε

√
π

4
v2

Te

(
1

vTL

− 1

vTR

)
. (18)
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FIG. 2. (Color online) The obtained steady state VDFs Eqs. (13)–
(16) for μ0 = 1.0 and e = 0.9 are verified through the simulation of
Eq. (1). We average the data over 1000 ensembles with the time
average for 0 < t/t0 < 400. Purple triangles, red squares, and blue
circles are data for TL/TR = 0.10,1.0,10.0, respectively, where the
corresponding theoretical curves are represented by solid lines and
dashed lines denote discontinuity at V = 0.

The notable fact in Eq. (17) is that the direction of the piston
motion is changed around μ0 	 0.46 (see Fig. 3).

The validity for Eq. (17) is verified through the direct
simulation of Eqs. (1)–(5) in Fig. 3, where we average the data
for 0 < t/t0 < 400 and the ensemble average is taken over
1000 samples. As can be seen in Fig. 3, Eq. (17) reproduces
the accurate behavior of Eq. (1).

Through the expansion in terms of ε up to O(ε2), Eq. (1)
under the steady state average is reduced to

0 = −εγ0VSS + ε2 Cγ0

2vTe

〈V 2〉SS − ε2CF̄frif̌ (μ0), (19)

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

FIG. 3. (Color online) Reverse motion of the adiabatic piston
against the friction constant μ0 is verified for e = 0.9. We numerically
solve Eq. (1) and take steady state average for 0 < t/t0 < 400. The
numerical data are obtained from the ensemble average over 1000
samples. Purple triangles, red squares, and blue circles are data
for TL/TR = 0.10,1.0,10.0, respectively, where the corresponding
theoretical curves are represented by solid lines.

where we have introduced the positive function

f̌ (μ0) ≡ μ0

2
+ μ3

0

3
+ 2 − μ2

0

3
√

π erfc(μ0)eμ2
0

> 0. (20)

Here, the second term on the right-hand side of Eq. (19) is
the force due to MDD [39], and the direction of the steady
friction force is opposite to MDD, from which the change
of direction of the piston motion originates. As the friction
force becomes larger, it can be shown that the sign of VSS

is switched, because 〈V 2〉SS > 0 and f̌ (μ0) > 0. Thus, in
contrast to systems without any dry friction, the direction of
the piston motion under the dry friction does not correspond
to that of the force due to MDD.

C. Fluctuation relation under dry friction

Let us discuss the large deviation property [44] for the
work done by the system under dry friction. Fluctuation
relation is one of the universal relations in nonequilibrium
systems found in the last few decades [45–49]. The fluctuation
relation for frictionless granular systems has been reported
recently [50]. The fluctuation relations under dry friction are
derived for the work done by the nonfluctuating external
system under the dry friction in Ref. [51], and experimentally
discussed in Refs. [15,52,53]. However, the work done by the
fluctuating gas under dry friction has not been investigated.
Here, we derive a fluctuation relation for the work done
by the gas under dry friction, considering the excess work
defined by dŴ ′

L ≡ dŴL − F0V̂ dt , dŴL/dt ≡ ∑
v{M(V 2 −

V ′′2)/2} · ξ̂ v
L(t |V̂ ), with the precollisional velocity V ′′ and

F0 ≡ 〈F̂L(V = 0)〉 = (1 + e)PA/{2(1 + ε2)} in terms of the
perturbation of small μ0, as shown in the Appendix.
Introducing the distribution for the excess power P(pw,t) ≡
〈δ[Ŵ ′

L(t) − pwt]〉, we obtain the fluctuation relation under dry
friction up to O(ε,μ0):

lim
t→∞

1

t
ln

P(pw,t)

P(−pw,t)

= �βepw + F̄fri

PA
B(pw)pw + O

(
ε2,μ2

0

)
, (21)

where we have introduced the difference of inverse tempera-
tures

�βe ≡ 2

1 + e

(
1

kBTR
− 1

kBTL

)
, (22)

and the nonlinear function of pw,

B(pw) ≡
√

vTL

vTe

√
η∗(pw)

(1 + e)kBTe

, (23)

η∗2(pw) ≡ 1 + (T̃ 1/4 − T̃ −1/4)2

1 + 2π
(
pw/εPAvTe

)2
/(1 + e)3

(24)

with T̃ ≡ TL/TR. See the Appendix for the derivation of
the fluctuation relation. We solve Eq. (1) with μ0 = 0.1 and
e = 0.9 for 0 < t/t0 � 20.0 to verify the validity of Eq. (21) as
shown in Fig. 4(a) for TL/TR = 10.0 and (b) for TL/TR = 1.0,
where the number of samples is 2.5 × 105. The blue circles in
Fig. 4(a) and red squares in Fig. 4(b) are the numerical data for
TL/TR = 10.0,1.0, respectively, and the solid curves denote
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FIG. 4. (Color online) The fluctuation relation under dry friction Eq. (21) is verified through our simulation for μ0 = 0.1, e = 0.9, and
t/t0 = 20.0, where theoretical curves are represented by solid lines. The number of samples is 2.5 × 105. Blue circles in (a) and red squares
in (b) are the numerical data for TL/TR = 10.0,1.0, respectively. The blue and red dashed lines are theoretical lines without dry friction for
TL/TR = 10.0,1.0, respectively. The events satisfying pw < −pss

w for TL/TR = 10.0 are so rare that they could not be detected through our
calculation, while numerical data for TL/TR = 1.0 reproduces the theoretical curve for large |pw/pss

w |.

the corresponding theoretical curves. The blue and red dashed
lines are theoretical lines without dry friction for TL/TR =
10.0,1.0, respectively. Here we use the scaled pw by the
corresponding steady state value pss

w = 0.2099 for TL/TR =
10.0 and pss

w = 0.012 81 for TL/TR = 1.0, respectively. We
only plot the data for |pw/pss

w | < 1 for TL/TR = 10.0 because
the events satisfying pw < −pss

w are so rare that they could
not be detected through our calculation. On the other hand,
numerical data for TL/TR = 1.0 reproduce the theoretical
curve even for large |pw/pss

w |.

IV. CONCLUDING REMARKS

In this paper, we clarified the role of dry friction in the
fluctuating motion of an adiabatic piston surrounded by two
thermal temperatures. Through the analysis of the Boltzmann-
Lorentz equation (6), we found the singularities only at V = 0
as those in Refs. [22,23], while they are different from those in
Ref. [24]. VDF of a fluctuating piston has a cusplike singularity
for TL = TR and a discontinuity at V = 0 for TL �= TR, as in
Eqs. (13)–(16) and Fig. 2. We obtained the friction dependence
of the velocity of the piston motion in Eq. (17), whose direction
is changed above the threshold of the friction const μ0, as in
Fig. 3. The change of the direction of the piston motion has

not been reported in the previous studies for the fluctuating
piston under dry friction [22–24]. We also demonstrated that
the conventional fluctuation relation for the fluctuating work
is modified due to the existence of dry friction.
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APPENDIX: DERIVATION OF FLUCTUATION RELATION
UNDER DRY FRICTION

In this Appendix, we derive the fluctuation relation under
dry friction Eq. (21), writing Ŵ ≡ Ŵ ′

L and dŴ ≡ dŴL −
F0V̂ dt . Let us derive a master equation for f (V,W,t) ≡
〈f̂ (V̂ (t),Ŵ ′

L(t))〉 with f̂ (V̂ (t),Ŵ ′
L(t)) ≡ δ[V − V̂ (t)]δ[W −

Ŵ ′
L(t)], following Ref. [41]. For an arbitrary function g =

g(V̂ ,Ŵ ), the differentiation dg(V̂ ,Ŵ ) ≡ g(V̂ + dV̂ ,Ŵ +
dŴ ) − g(V̂ ,Ŵ ) is given by

dg(V̂ ,Ŵ ) = 1

M

(∑
v

dL̂v
L · Pv

)
·
{(

∂

∂V
+ MV

∂

∂W

)
g

}
+ 1

2M2

(∑
v

dL̂v
L · P 2

v

)
·
{(

∂

∂V
+ MV

∂

∂W

)2

g

}

+ 1

M

(∑
v

dL̂v
R · Pv

)
· ∂g

∂V
+ 1

2M2

(∑
v

dL̂v
R · P 2

v

)
· ∂2g

∂V 2
− F0V̂ · ∂g

∂W
dt − ε

F̄fri

M
σ (V ) · ∂g

∂V
dt.

+O(ε2dt) (A1)

It should be noted that 〈∑v dL̂v
α · P n+1

v 〉 = O(εndt). By taking the ensemble average of Eq. (A1) and expanding it up to O(ε),
the master equation for f (V,W,t) is derived [41].

Introducing Laplace transformation of f (V,W,t) as

f̃β ≡
∫

dW e−βWf (V,W,t), (A2)
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we obtain the time evolution for f̃β :

∂

∂t
f̃β = ε

γ0

M
(Lβ + Lfri)f̃β + O(ε2), (A3)

where Lβ and Lfri denote the linear operators on f̃β as

Lβ = v2
Te

2

∂2

∂V 2
+

(
1 + β̌

γL

γ0

√
TL

TR

)
∂

∂V
V

− β̌

2

γL

γ0

√
TL

TR
+ γL

γ0
β̌

(
1 +

√
TL

TR

β̌

4

)
V 2

v2
Te

, (A4)

Lfri ≡ μ0vTe

∂

∂V
σ (V ) (A5)

with β̌ ≡ 2kBTeβ. The eigenvalues κn and eigenfunctions for
the operator (A4) and its adjoint operator L

†
β are discussed in

Ref. [49]:

Lβψn(V ) = κnψn(V ), (A6)

L
†
βφn(V ) = κnφn(V ), (A7)

ψn(V ) =
√

ζ

2πvTe
2nn!

exp

[
−ζV 2

2v2
Te

]
Hn

(√
ηV

vTe

)
, (A8)

φn(V ) =
√

2η

ζvTe

exp

[
−

(
η − ζ

2

)
V 2

v2
Te

]
Hn

(√
ηV

vTe

)
,

(A9)

κn(β) = 1

2
{1 − (1 + 2n)η(β)} , (A10)

η(β) ≡
√√√√1 +

√
T̃ (2kBTe)2

(1 +
√

T̃ )2
β(�βe − β), (A11)

where Hermite polynomials are defined as Hn(x) ≡
(−1)nex2

(d/dx)ne−x2
and

∫ ∞
−∞ dx e−x2

Hn(x)Hl(x) =√
π2nn!δnl (n,l = 0,1, . . .). κn(β) has Gallavotti-Cohen-type

symmetry as κn (�βe − β) = κn(β) [46,48], which leads to
the conventional fluctuation relation without dry friction:

lim
t→∞

1

t
ln

P(pw,t)

P(−pw,t)
= �βepw + O(ε2). (A12)

Let us solve the eigenvalue problem for Lβ + Lfri perturba-
tively up to O(ε,μ0), assuming that μ0 is small:

(Lβ + Lfri)ψ̄n(V ) = κ̄n(β)ψ̄n(V ). (A13)

We assume that Re(κ̄n) � Re(κ̄m) for n > m, where Re(a)
represents the real part of any complex number a. Multi-
plying φn(V ) on both sides of Eq. (A13), integrating them
over V and substituting κ̄n(β) = κn(β) + μ0κ

(1)
n (β) + O(μ2

0),
ψ̄n(V ) = ψn(V ) + O(μ0) into Eq. (A13) for n = 0, we obtain

μ0κ
(1)
0 (β) = − μ0√

πη(β)

(
1 + β̌

√
T̃

1 +
√

T̃

)
. (A14)

The largest eigenvalue of the operator εγ0(Lβ + Lfri)/M
is known to be equal to the scaled cumulant generating
function [54]:

lim
t→∞

1

t
ln〈e−βŴ ′

L(t)〉 = ε
γ0

M
κ̄0(β). (A15)

Thus, according to Ref. [44], the large deviation property for
Ŵ ′

L under the dry friction is characterized by the Legendre
transformation of the maximum eingenvalue of Lβ + Lfri:

lim
t→∞

1

t
ln P (pw,t) = pwβ∗ + ε

γ0

M
κ̄0(β∗), (A16)

where β∗ = β∗(pw) gives the minimum for pwβ +
εγ0κ̄0(β)/M . Taking the asymmetric part in terms of pw, we
obtain Eq. (21).
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