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Abstract

In the present study, the magnetic field scaling on density, rµ k∣ ∣B , was revealed in a single starless core for the
first time. The κ index of 0.78±0.10 was obtained toward the starless dense core FeSt 1-457 based on the analysis
of the radial distribution of the polarization angle dispersion of background stars measured at the near-infrared
wavelengths. The result prefers κ=2/3 for the case of isotropic contraction, and the difference of the observed
value from κ=1/2 is 2.8 sigma. The distribution of the ratio of mass-to-magnetic flux was evaluated. FeSt 1-457
was found to be magnetically supercritical near the center (λ≈2), whereas nearly critical or slightly subcritical at
the core boundary (λ≈0.98). Ambipolar diffusion-regulated star formation models for the case of moderate
magnetic field strength may explain the physical status of FeSt 1-457. The mass-to-flux ratio distribution for typical
dense cores (critical Bonnor–Ebert sphere with central λ=2 and κ=1/2–2/3) was calculated, and found to be
magnetically critical/subcritical at the core edge, which indicates that typical dense cores are embedded in and
evolve from magnetically critical/subcritical diffuse surrounding medium.
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1. Introduction

Magnetic fields are believed to play an important role in
controlling the formation and contraction of dense cores in
molecular clouds. The determination of the relationships
between the magnetic field strength, ∣ ∣B , and the gas volume
density, ρ, usually expressed in a power-law form as rµ k∣ ∣B ,
is important because they are related to the accumulation
history of both the magnetic flux and the cloud material (e.g.,
Crutcher 1999). The ∣ ∣B –ρ relationship is also crucial to
compare the magnetic field and internal density structure
observations with theory.

If an initially uniform magnetic field pervading a diffuse
medium is assumed as a starting condition of the mass
accumulation to form dense cores, the ∣ ∣B –ρ relationship of the
core depends on (1) the shape of the progenitor cloud (e.g.,
spherical, cylindrical), (2) the magnetic field geometry (i.e.,
parallel or perpendicular or inclined geometry with respect to
the elongation axis of the core), and (3) the direction of
contraction (i.e., isotropic contraction or contraction toward a
specific direction). In the case of (spherical) isotropic
contraction, the conservation of magnetic flux ( pF = ∣ ∣R B2 )
yields µ -∣ ∣B R 2 (R is the radius of the core), and the
conservation of mass p r=( ( ) )M R4 3 3 yields ρ2/3∝R−2,
providing the ∣ ∣B –ρ relationship as rµ∣ ∣B 2 3. This corresponds
to the prediction of the relatively weak magnetic field case
(Mestel 1966). Note that isotropic contraction does not

necessarily mean spherical cloud shape, but merely that the
shape be conserved during the contraction. However, if the
initial axial ratio of the cloud is large, the shape of the cloud
becomes more elongated during the contraction by the effect of
gravity. In the case of the plane-parallel or infinite thin disk
geometry, the conservation of magnetic flux ( pF = ∣ ∣R B2 ) and
mass p r=( )M R z2 yields r =∣ ∣z B constant, where z is the
distance perpendicular to the plane. In this geometry, the force
balance between self gravity and internal thermal pressure
along the symmetry axis is p r »G z C2 2

s
2 (Spitzer 1942),

where Cs is the sound speed. Therefore, rµ∣ ∣ ( )B T 1 2 (T is the
gas temperature), and in the isothermal case, rµ∣ ∣B 1 2 (see
Crutcher 1999).
On the basis of large samples with Zeeman measurements of

the line-of-sight magnetic field strength, Blos, and Bayesian
statistical analysis, Crutcher et al. (2010) concluded that the
data prefer κ≈2/3 rµ (∣ ∣B 0.65 0.05 for ρ>300 cm−3) and
reject κ≈1/2. They also showed the existence of two distinct
branches on the B versus ρ diagram, a flat region at low
densities (∣ ∣B independent of ρ, i.e., κ≈0) and a power-law
scaling region at high densities (κ≈2/3). A recent study
reported results contrary to those reported by Crutcher et al.
(2010) based on the reanalysis of the same observational data
(κ≈1/2 is preferred; Tritsis et al. 2015). Note that Crutcher
et al. (2010) analyzed the full set of Zeeman data including
non-detections, whereas Tritsis et al. (2015) only analyzed the
observational data with Zeeman detection (this may cause the
biased results with stronger magnetic field strength and
smaller κ).
Several κ measurements with smaller samples have been

conducted. Li et al. (2015) obtained κ=0.41±0.04 toward
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the clouds and cores in the NGC 6334 complex based on the
measurements of Bpos by comparing the curvature of the plane-
of-sky magnetic field lines with self gravity. Ching et al. (2017)
obtained κ=0.54±0.30 toward the cores in the dense
filamentary cloud DR21 based on the submillimeter (submm)
dust emission polarimetry and the Chandrasekhar–Fermi
method (Chandrasekhar & Fermi 1953). Hoq et al. (2017)
obtained κ=0.73±0.06 toward the filamentary infrared dark
cloud (IRDC) G28.23-00.19 based on near-infrared (NIR) dust
extinction polarimetry and the Chandrasekhar–Fermi method.
Observations show a variety of κ values ranging from κ≈1/2
to κ≈2/3. Therefore, it is important for observational studies
to provide the definite value of κ through much larger samples
or much more accurate measurements, although it is possible
that the value of κ varies from region to region, depending on
the shape of objects or the type of contractions or other
characteristics. Note that there is no observation of the ∣ ∣B –ρ
relationship determined using a single molecular cloud core.

From a theoretical point of view, Mouschovias (1976a,
1976b) showed that the ratio of magnetic and gas pressure
(B2/8πP) tends to remain constant, ≈1, inside the magnetized
cloud during collapse. This yields rµ∣ ∣B 1 2 for the isothermal
case (i.e., r=P Cs

2, where Cs is the isothermal sound speed).
Numerical simulation of the ambipolar diffusion-driven core
contraction (Fiedler & Mouschovias 1993) provided κ≈0.47,
which is consistent with a κ value of 1/2. Ciolek &
Mouschovias (1994) obtained relatively smaller values of
κ=0.38–0.43. Mouschovias (1991) suggested that the magn-
etic field in molecular clouds depends on both the density and
the velocity dispersion σv as r sµ∣ ∣B v

1 2 . Basu (2000) showed
that there is a good correlation between Blos and ρσv in
observations, providing s rµ B vlos

0.50 0.12. If the velocity
dispersion does not depend on the density, this is consistent
with the relation of rµ∣ ∣B 1 2. In contrast, Li et al. (2015)
recently conducted a large-scale magnetohydrodynamic
(MHD) simulation of isothermal, self-gravitating gas with a
slightly magnetically supercritical initial magnetic field. A κ
value of 0.70±0.06 was obtained, and the result is consistent
with the value obtained by Crutcher et al. (2010) of κ≈2/3

rµ (Btot
0.65 0.05). The flat low-density region and the high-

density region following a power-law relation (κ=0.65) on
the ∣ ∣B versus ρ diagram are reproduced in their simulation.
Furthermore, it was found that the velocity dispersion scales
weakly with density as σv∝ρ0.14±0.05, which is also consistent
with the result of κ≈2/3. Theoretical studies have revealed a
variety of κ values ranging from κ≈1/2 to κ≈2/3. Further
theoretical studies are desirable in this field.

Another critical parameter for magnetic field theories is the
ratio of the mass, M, in the flux tube to the magnitudes of
magnetic flux, Φ, which is often expressed as the observational
parameter normalized by the theoretical critical value,
l = F F( ) ( )M Mobs critical. As the magnetic support and the
gravity have same radial dependence, the collapse of dense
cores cannot be stopped by magnetic fields once gravity
overcomes magnetic fields. Theoretical determination of the
critical value is thus important. The critical value suggested
by theory can be written as F = F( )M c Gcritical , and
Mouschovias & Spitzer (1976) found cΦ≈0.126 for disks
with support along magnetic field lines. Tomisaka et al. (1988)
found a consistent value based on extensive numerical
calculations as cΦ≈0.12. Nakano & Nakamura (1978) derived
cΦ=1/2π with a linear perturbation analysis for the magnetized

isothermal gaseous disk. Note that the mass-to-flux ratio depends
on cloud geometries, and pF = -( ) [ ]M G3 5critical

1 can be
obtained for a uniform sphere under virial equilibrium between
gravity and the magnetic field, =GM R B R3 5 32 2 3 (Crutcher
2004). Thus, cΦ≈2/3π for the spherical case. Molecular cloud
cores in various regions tend to show projected aspect ratios of
2:1 (e.g., Myers et al. 1991; Jijina et al. 1999), and de-projection
analyses for revealing the intrinsic shape of dense cores were
reported (e.g., Jones et al. 2001, triaxial shape; Tassis 2007,
oblate shape with finite thickness). Therefore, in general,
observational studies need assumption on the shape of the core
when choose and use the theoretical critical value, although the
value of cΦ=1/2π (Nakano & Nakamura 1978) has been
widely used.
Without information of line-of-sight inclination angle of

magnetic field direction, λ was statistically estimated assuming
random orientation of the inclination angle for many target
cores. After statistical geometric correction, Crutcher (1999)
and Troland & Crutcher (2008) obtained λ≈2 based on the
OH Zeeman observations of dark cloud cores, and the CN
Zeeman observations by Falgarone et al. (2008) showed
consistent results. Thus, typical dense cores seem to be in a
state of slightly magnetically supercritical condition. However,
these results have a problem that the statistical analysis
eliminates the information of the diversity of the magnetic
fields for each core. To know λ for each core and discuss the
magnetic field condition of the core in detail, it is necessary to
obtain the information of the magnetic inclination angle θinc. If
θinc is known in addition to ρ and κ, the distribution of λ can be
obtained from the center of the core to its envelope. As stated
by Crutcher (2004), the λ value at the cloud envelope provides
a crucial test for magnetic support models of star formation.
In the present study, the ∣ ∣B –ρ relationship was constructed

for the starless dense core FeSt 1-457 based on the NIR
polarimetric observations of the dichroic polarization of dust
toward the background stars. A modified form of the
Chandrasekhar–Fermi method, which enables the determina-
tion of the value of κ, was used. With information of the
magnetic fields (κ and θinc) and the cloud density distribution,
the distribution of mass-to-magnetic flux was obtained, and the
physical status of FeSt 1-457 was discussed. The mass-to-flux
ratio distribution for the case of critical Bonnor–Ebert sphere
with λ=2 was calculated to evaluate the behavior of the
distribution for typical dense cores.
FeSt 1-457 is known to be accompanied by an hourglass-

shaped magnetic field (Kandori et al. 2017a, hereafter Paper I),
and the three-dimensional modeling of the field provides the
magnetic field curvature and the line-of-sight inclination angle
of the magnetic field direction θinc (Kandori et al. 2017b, Paper
II). The total magnetic field strength of the core is
33.7±18.0 μG with a ratio of the observed mass-to-magnetic
flux to a critical value of λ=1.41±0.38 (magnetically
supercritical, Paper II). These analyses seem reliable, because
observed NIR polarizations of stars show linear relationship
with respect to the dust extinction, indicating that magnetic
fields inside FeSt 1-457 are traced by the NIR polarimetry
(Kandori et al. 2018, Paper III). The fundamental physical
parameters of FeSt 1-457 have been well defined in an internal
density structure study based on NIR extinction measurements
of the background stars and fitting with the Bonnor–Ebert
sphere model (Ebert 1955; Bonnor 1956). The radius, mass,
and central density of the core are 18,500 au (144″), 3.55Me,
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and 3.5×105 cm−3 (Kandori et al. 2005), respectively, at a
distance of -

+130 58
24 pc (Lombardi et al. 2006).

Throughout this paper, the spherical shape was assumed for
the core geometry, and pF =( )M G1 2critical (for disk
geometry; Nakano & Nakamura 1978) was used for the
theoretical critical mass-to-flux ratio. Though FeSt 1-457 was
well fitted using the Bonnor–Ebert sphere model, the elonga-
tion in column density structure appears around the core center,
which may be the existence of disk-like structure around
center. The theoretical critical value for spherical geometry is
larger than that for disk geometry, thus we use the value of

p G1 2 as a lower limit of the theoretical critical value.

2. Data and Methods

The NIR polarimetric data for the analysis of the ∣ ∣B –ρ
relationship of FeSt 1-457 is taken from Paper I. Observations
were conducted using the JHKs-simultaneous imaging camera
SIRIUS (Nagayama et al. 2003) and its polarimetry mode
SIRPOL (Kandori et al. 2006) on the IRSF 1.4 m telescope at
the South African Astronomical Observatory (SAAO). SIR-
POL can provide deep (18.6 mag in the H band, 5σ for a one-
hour exposure) and wide-field (7 7×7 7 with a scale of
0 45 pixel−1) NIR polarimetric data.

The polarimetry data toward the core is the superposition of
the polarizations from both the core itself and the ambient
medium which is unrelated to the core. After subtracting the
ambient polarization components, 185 stars located within
the core radius (R�144″) in the H band were selected for the
polarization analysis (the yellow vectors in Figure 1). The most
probable configuration of the magnetic field lines pervading the
core, estimated using a parabolic function and its rotation, is
shown by the solid white lines in Figure 1. The coordinate
origin of the parabolic function is fixed to the center of the core
measured on the extinction map (R.A.=17h35m47 5,
decl.=−25°32′59 0, J2000; Kandori et al. 2005). The fitting
parameters are θmag=179°±11° and C=1.04 (±0.45)×
10−5 pixel−2 (=5.14×10−5 arcsec−2) for the parabolic
function = +y g gCx2, where g specifies the magnetic field
lines, θmag is the position angle of the magnetic field direction
(from north to east), and C determines the degree of curvature
of the parabolic function (Paper I).

The parabolic fitting appears to be reasonable because the
standard deviation of the residual angles q q q= -res obs fit,
where θfit is the best-fit model position angle, is smaller for the
parabolic function (δθres=10°.24±0°.84) than for the uni-
form field case of 16°.25±0°.70 (Paper I). The intrinsic
dispersion can be dq dq dq= -( )int res

2
err
2 1 2, where δθerr is the

standard deviation of the observational error.
In the present study, the radial distribution of the angular

difference θres is used to derive the magnetic field scaling on
density ( rµ k∣ ∣B ) toward FeSt 1-457 based on the modified
Chandrasekhar–Fermi method and the simple simulations
described below.

Figure 2 shows the simple simulation of the radial distribution
of the intrinsic polarization angular difference θint (left-hand row
of panels) for various values of κ in the relationship of rµ k∣ ∣B
(right-hand row of panels). The horizontal axis in the right-hand
row of panels show the line-of-sight mean density, ρlos,
calculated using the Bonnor–Ebert model with a solution
parameter x p r= =( )R C G4 12.6max s,eff c , where R is the
core radius, Cs,eff is the effective sound speed, G is the
gravitational constant, and ρc is the central volume density

(Kandori et al. 2005). The solid lines in the right-hand row of
panels were obtained by calculating average Bpos toward each
line of sight using the assumed κ and known density
distribution. Note that the relationship rµ k∣ ∣B is not
identical to rµ k∣ ∣B los. Thus, the slope of the relationship on
the log Bpos–log ρlos plane is slightly different from the κ
value in each panel except for the case of κ=0. The
Bpos–ρlos relationships (right-hand row of panels) have the
same mean plane-of-sky magnetic field strength of the core
(23.8 μG, Paper I), but have different κ indices. The number
of data points in each panel in the left-hand row is
N=20,000, as calculated by generating random numbers
following the normal distribution for which the standard
deviation is δθint at each radius. The value of δθint at each
radius was obtained based on the Bpos–ρlos relationship
(right-hand row of panels) and the Chandrasekhar–Fermi
formula dq pr s= ( )C B4int corr los

1 2
turb pos (Chandrasekhar &

Fermi 1953), where Ccorr is a correction factor from theory
(0.5, Ostriker et al. 2001; see also Heitsch et al. 2001; Padoan
et al. 2001; Heitsch 2005; Matsumoto et al. 2006) and the
turbulent velocity dispersion σturb (0.0573 km s−1, Kandori
et al. 2005) was assumed to be constant with respect to the
radius. The dotted–dashed lines in the left-hand row of panels
show ±3δθint.
Figure 2 shows that the radial distributions of θint change

dramatically from κ=0 to κ=1. Thus, it may not be difficult
to determine κ directly from the θint–r diagram, if observational
data points are large and accurate. For example, dividing the
θint data into bins along the radius r and measuring the
dispersion δθint in each bin can produce the radial distribution
of pr s dq=( ( ) )B C 4pos corr los

1 2
turb int to determine κ on the

Bpos–ρlos plane. However, this is not appropriate when the
number of data points is limited. The selection of bin size
significantly affects the result. Thus, it is important to develop a
robust and practical method by which to measure κ using a
relatively small amount of data.
Figure 3 shows the results of the simulation for measuring κ

based on the radial distributions of θint. The left-hand row of
panels and the white solid lines in the right-hand row of panels
are the same as those in Figure 2. The radial distribution of the
polarization residual angle θint (left-hand row of panels) was
used to calculate pr s q= ( ) ∣ ∣B C 4pos,idv corr los

1 2
turb int . In the

equation, q∣ ∣int was used instead of δθint as in the original
Chandrasekhar–Fermi formula, which causes the corresp-
onding dispersion in the derived Bpos,idv values on the
Bpos–ρlos plane. The number density distribution of Bpos,idv is
shown as color images in the right-hand row of panels, in
which the distribution of Bpos,idv appears flat with respect to ρlos
for κ=0, and the distributions become steeper for larger κ.
The least-squares fitting of the Bpos,idv versus ρlos data with

the rµ k∣ ∣B relationship (white dashed lines in the right-hand
row of panels) provides the index κ in the relationship.
The fitted results (white dashed line) show the same shape,

i.e., κ, but have an offset from the original relationship (white
solid line). This is a result of using q∣ ∣int instead of δθint. The
q∣ ∣int values close to zero cause the large values in Bpos,idv, so
that the resulting Bpos,idv–ρlos relationship has an upward offset.
The existence of the offset is not a problem. The offset can be
estimated and removed because both the value of κ and the
mean magnetic field strength are known.
The accuracy of the κ value depends on the number of stars.

In case of N=20,000, resulting κ values are identical to the
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original κ within δκ=0.01. For the realistic case of N=185,
the δκ increases to δκ=0.10. The method described here
provides a robust and practical method by which to determine
the κ index by a least-squares fitting.

3. Results and Discussion

3.1. Magnetic Field Scaling on Density

Figure 4 shows the radial distribution of θres (=θobs−θfit)
for FeSt 1-457. The number of data points is not large
(N= 185), and some outliers exist in the diagram. Thus, it is
not easy to determine the κ index directly from this figure
through fitting. In the present study, the method described in
the previous section was used to estimate κ.

First, each data point of θres was corrected with observational
error θerr to derive the estimate of the absolute intrinsic angular

difference, q q q= -∣ ∣ (∣ ∣)int res
2

err
2 1 2. Note that the conclusion

on the best-fit κ value does not change if we mask the data of
q q- < 0res

2
err
2 . Then, pr s q= ( ) ∣ ∣B C 4pos,idv corr los

1 2
turb int was

calculated for individual star as a point-to-point application of
the Chandrasekhar–Fermi formula. The data points with q∣ ∣int
values close to zero ( q <∣ ∣ 0.01int ) were removed, because such
data points produce extremely large Bpos,idv values. Note that
the number of such data points is small (a few), and this does
not change our conclusion. The value of σturb was set to
0.0573 km s−1 measured in the N2H

+ (J=1−0) line using
the Nobeyama 45 m radio telescope (Kandori et al. 2005; see
also Aguti et al. 2007). The σturb was confirmed to be constant
in r70″ in the core, thus the relationship was assumed to be
flat toward the boundary of the core.
The obtained Bpos,idv versus ρlos diagram is shown in

Figure 5. The solid line shows the least-squares fitting of the
data points with the rµ k∣ ∣B relationship, resulting in

Figure 1. Polarization vectors of FeSt 1-457 after subtracting the ambient polarization component. The field of view is the same as the diameter of the core (288″ or
0.19 pc). The white lines indicate the magnetic field direction inferred from the fitting with a parabolic function of, = +y g gCx2, where g specifies the magnetic field
lines, and C determines the degree of curvature in the parabolic function. The scale of the 5% polarization degree is shown at the top. The background image is the AV

distribution taken from Kandori et al. (2005). In the image, grayscale (filled contour) starts from AV=0 mag with a step of 3 mag. The resolution of the AV

measurements is 33″.
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κ=0.78. This is the first κ value estimated toward a single
starless core. As described in Section 2, the fitting result of κ
with N=185 samples diverges from the original κ with
uncertainties of δκ=0.10. We evaluated the uncertainty of κ
using the bootstrap method. A random number following the
normal distribution with the same width as the observational
error was added for each star, and we performed a least-squares
fitting. This process was repeated 1000 times to obtain the
dispersion of the resulting κ values. A value of 0.084 was
obtained for the uncertainty of κ. Considering the estimates
of uncertainties, we chose the value of 0.10 for the
uncertainty of κ.

The obtained value of κ=0.78±0.10 indicates that the
case of κ=2/3 (isotropic contraction) is preferable for FeSt
1-457, and the difference of the observed value from κ=1/2
is 2.8σ. A similar value is obtained toward the filamentary
cloud IRDC G28.23-00.19 (κ=0.73±0.06, Hoq et al. 2017).
These studies support the conclusion by Crutcher et al. (2010).
The relatively large κ value indicates that the magnetic field in
FeSt 1-457 is not very strong. This is consistent with the
(slightly) magnetically supercritical feature (λ=1.41) of the
core. The magnetic field in FeSt 1-457 can be strong enough to
control the contraction of the core, because the magnetic field
direction of the core (θmag=179°) is perpendicular to the

Figure 2. Simulation of the radial distribution of the polarization residual angle θint (left-hand row of panels) for various values of κ in the relationship of rµ k∣ ∣B
(right-hand row of panels). The horizontal axis in the right-hand row of panels shows the line-of-sight mean density, ρlos, calculated using the Bonnor–Ebert sphere
model with a solution parameter of ξmax=12.6. The number of data points in each panel in the left-hand row is N=20,000 calculated by generating a random
number following a normal distribution with a standard deviation of δθint at each radius. The value of δθint at each radius was obtained based on the Chandrasekhar–
Fermi formula and the Bpos–ρlos relationship in the right-hand row of panels. The dotted–dashed lines in the left-hand row of panels show ±3δθint. The horizontal axis
in each panel corresponds to the core center to the boundary of r=144″.
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Figure 3. Same as Figure 2, but the relationship of rµ k∣ ∣B is indicated by the white solid lines in the right-hand row of panels. The radial distribution of the
polarization residual angle qint (left-hand row of panels) was used to calculate pr s q= ( ) ∣ ∣B C 4pos,idv corr los

1 2
turb int . The number density distributions of Bpos,idv

are shown as color images in the right-hand row of panels. Their least-squares fits are indicated by the white dashed lines in the right-hand row of panels, whereas the
white solid lines indicate the original relationship. The offset between the two lines can be removed because the value of κ and the mean magnetic field strength of the
core are known.
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elongation axis of the core (θelon≈90°) as shown in Paper I.
Observations of ordered magnetic field lines in Figure 1 also
support this conclusion.

The above conditions are consistent with the theoretical
MHD simulation results by Li et al. (2015). They presented two
simulation results: one with a slightly magnetically super-
critical initial mean field (λ=1.62) that is comparable to the
parameter of FeSt 1-457, and the other with a very supercritical
field (λ=16.2). In the former model, well-ordered magnetic
field lines appeared in the simulation box and the relatively
large value of κ=0.70±0.06 was obtained, which is
consistent with the results obtained in the present study. In
the latter very weak field model, the magnetic field lines are
highly tangled by the turbulent motions, which does not match
observations.

On the basis of the known slope and mean field strength, the
plane-of-sky magnetic field strength at the center and boundary
of FeSt 1-457 are 93 μG and 12 μG, respectively. If we apply
the line-of-sight inclination angle of the magnetic field
direction (45◦) estimated in Paper II, the total magnetic field
strength at the center and boundary of the core are 132 μG and
17 μG, respectively. The boundary value of 17 μG can be used
as the estimation of the magnetic field strength in the diffuse
interclump medium surrounding the core.
The global plane-of-sky magnetic field strength of the “Pipe

Bowl” region, ≈2° around the FeSt 1-457 core, was determined
to be 65 μG (Alves et al. 2008). This value is too large
compared with our estimation for the core boundary value.
However, this is not surprising because the polarization angle
dispersion is integrated and smoothed toward the line of sight
in their data. These values are consistent, if we consider
the number of (polarization) coherent cell to be N=30
(Franco et al. 2010) along the line of sight, resulting in

=65 30 11.9 μG for the magnetic field strength in each
cell. The consistency in the magnetic field strength confirms the
coherent cell analysis by Franco et al. (2010). In other words,
the present method of the Chandrasekhar–Fermi application to
a single core can be used to count the number of line-of-sight
polarization coherent cells, if the global magnetic field strength
is known. The obtained coherent cell numbers can be compared
with the results obtained from the other methods (e.g., Myers &
Goodman 1991, Houde et al. 2009).

3.2. Distribution of Mass-to-flux Ratio

The distribution of mass-to-flux ratio l = F( )M obs
F( )M critical inside FeSt 1-457 was evaluated, as we now

know the κ index in this paper, mean plane-of-sky magnetic
field strength (Paper I), magnetic inclination angle toward the
line of sight (Paper II), and density and column density
distribution for the core (Kandori et al. 2005). The employed
critical value of the mass-to-flux ratio suggested by theory is
1/2πG1/2 (Nakano & Nakamura 1978).
First, the offset in the Bpos–ρlos relationship (solid line in

Figure 5) was corrected with known κ=0.78 and mean
plane-of-sky magnetic field strength for the core of 23.8 μG
(Paper I). Second, the obtained Bpos was divided by sin(45°)
(Paper II) to convert it to the total magnetic field strength Btot

to obtain the Btot–ρlos relationship. Third, as we now know
Btot and the column density N for the same line of sight
(along the flux tube) is also known (Kandori et al. 2005), the
mass-to-flux ratio at each core radius can be obtained
by l p= ( ) ( )N B G1 2tot

1 2 .
Caution must be used at this point. The column density N

(Kandori et al. 2005) was measured by subtracting the
contribution from ambient medium, and N represents the
column density solely associated with the core. The N always
goes to zero at core edge, whereas B has a finite value there.
Thus, this provides λ=0 at core edge, regardless of various κ
indices. In reality, the place outside the core is not a perfect
vacuum, and is filled with diffuse medium. A magnetic flux
tube pervading the core edge region includes the mass of
diffuse medium surrounding the core. To reflect this effect, we
set a cylinder around the core with a diameter of R2 and a
height of R2 and oriented parallel to the flux tube, and assume
that the region outside the core but inside the cylinder is filled
with diffuse medium with the density equal to the one at core
edge (i.e., r r= 74.5diffuse c , where the coefficient is the density

Figure 4. Distribution of the residual polarization angle θres (=θobs−θfit)
obtained using a parabolic function. The horizontal axis ranges from the core
center to the boundary of r=144″.

Figure 5. Distribution of Bpos,idv calculated from the observed residual
polarization angle θres. The solid line shows the least-squares fit of the data
based on the relationship of rµ k∣ ∣B .
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contrast of FeSt 1-457). The rdiffuse serves as upper limit for
ambient diffuse medium, because hotter tenuous gas can
achieve pressure-equilibrium at the boundary of the core. As
we consider diffuse surrounding medium, we recalculate the
average line-of-sight magnetic field strength, Btot, by including
the contribution from ρdiffuse medium. The λ value is then
l p= +( ) ( )N N B G1 2diffuse tot

1 2 . The obtained λ repre-
sents the averaged value toward the line of sight. The result is
shown in Figure 6. The λ distribution was plotted against the
normalized radius (solid line), and the dashed line shows the
critical state (λ=1).

The obtained λ distribution shows ≈2 toward the core
center, and the relationship gradually decreases toward outer
region, showing λ≈0.98 at the core edge (nearly magnetically
critical or slightly magnetically subcritical). The result indicates
that FeSt 1-457 is magnetically supercritical inside and critical
or slightly subcritical outside. A natural interpretation of this
result is that the interclump medium surrounding the core is
also magnetically critical or slightly subcritical.

Alves et al. (2008) reported λpos≈0.4 toward the Pipe Bowl
region based on the wide-field optical polarization observa-
tions. The Pipe Nebula dark cloud complex is known to be less
active in star formation, except for the spatially limited region
around B59 (e.g., Forbrich et al. 2009, 2010), which is
consistent with the subcritical feature in the Pipe Bowl region
around FeSt 1-457. As H I clouds are known to be significantly
magnetically subcritical (Heiles & Troland 2005), it is natural
for molecular clouds, the assembly of diffuse H I clouds, to
have magnetically subcritical or critical subregions.

On the basis of these results, we speculate that the FeSt
1-457 core was born from nearly magnetically critical or
slightly magnetically subcritical diffuse interclump medium.
This picture reminds us of the ambipolar diffusion regulated
star formation (Shu 1977; Shu et al. 1987). In a classical view,
introduced magnetic field strength is very strong, and the
magnetically supported cloud core can quasi-statically evolve
and reach the singular-isothermal-sphere (SIS) to start inside-
out collapse (Shu 1977). In case of moderate magnetic field
strength, the cloud core can become magnetically supercritical

before reaching the SIS state and start collapse (e.g., Ciolek &
Mouschovias 1994; Ciolek & Basu 2000). Note that though our
obtained index of κ=0.78 does not fit to the case of strong
magnetic fields, it may not be inconsistent with the moderate
magnetic field case. Though FeSt 1-457 is magnetically
supercritical in the central region, this does not mean the core
to readily collapse. The theoretical critical mass for the core,

+M M Mcr mag BE (Mouschovias & Spitzer 1976; Tomisaka
et al. 1988; McKee 1989), is 3.70±0.92 (Paper II), where
Mmag is the magnetic critical mass, and MBE is the Bonnor–
Ebert mass, and the observed core mass, Mcore=3.55±0.75
(Kandori et al. 2005), is identical to Mcr, suggesting nearly
critical state. The magnetically supercritical region in FeSt
1-457 can additionally be supported by thermal pressure, and
further magnetic and/or turbulent dissipation should be needed
to initiate collapse in the core. Since the core is in a nearly
critical state, it is most likely that the magnetohydrostatic
configuration (e.g., Tomisaka et al. 1988) can be achieved in
FeSt 1-457. The modeling of FeSt 1-457 with respect to the
internal density and magnetic field structure is planned.
It is known that the diffusion timescale tAD is about an order

of magnitude longer than the free-fall timescale tff (e.g., McKee
& Ostriker 2007). This is longer than the observational
estimates of the lifetime of prestellar cores (e.g., ∼2–5 tff,
Ward-Thompson et al. 2007). However, tAD can be shortened
by the turbulence and shocks which increase the efficiency of
ambipolar diffusion (e.g., Fatuzzo & Adams 2002; Li &
Nakamura 2004; Kudoh & Basu 2008). Moreover, in a
moderately strong magnetic field case, the cloud core should
only lose a part of magnetic flux to become supercritical
(Ciolek & Basu 2000). These effects may bring tAD reasonable
length in timescale.
Finally, we evaluated the distribution of the mass-to-flux

ratio for the critical Bonnor–Ebert sphere to obtain insights of
magnetic criticality for typical dense cores. First, the critical
Bonnor–Ebert sphere (temperature T=10 K, external pressure

=P 10ext
4 K cm−3, and ξmax=6.5) was prepared. The λ value

toward the center was set to two as a typical value. Second,
magnetic field strength toward center was calculated from

p= ( )N B G2 1 2center center
1 2 . Third, the coefficient A for the

relationship r= k∣ ∣B A was determined by the equation

ò r= k( ( ) )A B r dr R
R

center 0
. Fourth, the line-of-sight density

distribution of the core was manipulated as Aρκ, and the
quantities were averaged to derive the mean line-of-sight
B value. Fifth, according to the same manner of FeSt 1-457
analysis, we set a cylinder around the Bonnor–Ebert core with
diameter of R2 and height of R2 and oriented parallel to the flux
tube. The region inside the cylinder but outside the core is filled
with diffuse medium with the same density at core edge. The λ
value for the critical Bonnor–Ebert sphere can be derived as
l p= +( ) ( )N N B G1 2diffuse

1 2 . The results are shown in
Figure 7 for the case of κ=0 (dotted line), 1/2 (solid line),
2/3 (dashed line), and 1 (dotted–dashed line).
It was reported that the density structure of starless dense

cores (globules) can be well fitted by the nearly critical
Bonnor–Ebert sphere (Kandori et al. 2005). On the basis of
Zeeman observations, λ≈2 was statistically obtained
(Crutcher 1999; Falgarone et al. 2008; Troland & Crutcher
2008). Figure 7 indicates that under the typical input
parameters for dense cores (i.e., critical Bonnor–Ebert sphere,
λ=2, and κ=1/2–2/3), the distribution of mass-to-flux
ratio becomes magnetically critical/subcritical at the core edge.

Figure 6. Distribution of λ toward the lines of sight calculated from known
density structure of FeSt 1-457 and κ=0.78 (solid line). The dashed line
shows the critical state (λ=1).
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This result implies that the dense cores in previous Zeeman
observations are supercritical near the center but critical/
subcritical at the edge, and the surrounding diffuse medium of
them can also be magnetically critical/subcritical. We thus
speculate that typical dense cores are embedded in and evolve
from magnetically critical/subcritical diffuse surrounding
medium.

Figure 8 shows the relationship between λedge and λcenter for
κ=0, 1/2, 2/3, and 1, where λedge is the line-of-sight λ value
at the core boundary, and λcenter is the value toward the core
center. The lines for each κ cross the critical state at λcenter≈6
for κ=0, λcenter≈2.5 for κ=1/2, λcenter≈2 for κ=2/3,
and λcenter=1 for κ=1. If λcenter is less than two, the core
edge is magnetically subcritical in either case of κ=1/2 or
κ=2/3. We discussed the distribution of mass-to-flux ratio
based on the assumption that the geometry of the core is
sphere. Exploring the case of other geometry (e.g., spheroid,
cylinder, sheet) should be needed for future studies.

4. Summary and Conclusion

In the present study, the magnetic field scaling on density,
rµ k∣ ∣B , was revealed in a single starless core for the first

time. The index κ was obtained to be 0.78±0.10 toward the
starless dense core FeSt 1-457, based on the analysis of the
radial distribution of the polarization angle dispersion of
background stars measured at the NIR wavelengths. The result
prefers κ=2/3 (isotropic contraction), and the difference of
the observed value from κ=1/2 is 2.8 sigma. The relatively
large κ value indicates that the magnetic field in FeSt 1-457 is
not very strong. This is consistent with the slightly magneti-
cally supercritical feature of the core. The magnetic field in
FeSt 1-457 can be strong enough to control the contraction of
the core, because the magnetic field direction of the core is
perpendicular to the elongation axis of the core. Observations
of ordered magnetic field lines around the core also support this
conclusion. These results are consistent with the recent
theoretical MHD simulation calculated under the slightly

magnetically supercritical condition. The total magnetic field
strengths at the center and boundary of the core are 132 μG and
17 μG, respectively. The boundary value can be used as the
estimation of the magnetic field strength in the diffuse
interclump medium surrounding the core. On the basis of κ
and the known density structure, the distribution of the ratio of
mass-to-magnetic flux was evaluated. FeSt 1-457 was found to
be magnetically supercritical near the center (λ≈2), whereas
nearly critical (slightly subcritical) at the core boundary
(λ≈0.98). Thus, the diffuse interclump medium surrounding
the core can also be nearly magnetically critical. Ambipolar
diffusion regulated star formation models for the case of
moderate magnetic field strength may explain the physical
status of FeSt 1-457. Note that though our obtained index of
κ=0.78 does not fit to the case of strong magnetic fields, it
may not be inconsistent with the moderate magnetic field case.
The mass-to-flux ratio distribution for typical dense cores
(critical Bonnor–Ebert sphere with central λ=2 and κ=
1/2–2/3) was found to be magnetically critical/subcritical at
the core edge, which indicates that typical dense cores are
embedded in and evolve from critical/subcritical diffuse
surrounding medium.
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Figure 7. Distribution of the line-of-sight λ values calculated for the case of the
critical Bonnor–Ebert sphere. The value of λ toward the core center is set to
two. The dotted line, solid line, dashed line, and dotted–dashed line correspond
to κ=0, 1/2, 2/3, and 1, respectively. The gray dashed line shows the critical
state (λ=1).

Figure 8. Relationship between λedge and λcenter, where λedge is the line-of-
sight λ value at core boundary, and λcenter is the value toward core center. This
diagram was made for the case of the critical Bonnor–Ebert sphere. The dotted
line, solid line, dashed line, and dotted–dashed line correspond to κ=0, 1/2,
2/3, and 1, respectively. The gray dashed line shows the critical state (λ=1).
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