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Abstract: Implantation of the embryo into the uterine endometrium is one of the most finely 14 
regulated processes that leads to the establishment of a successful pregnancy. A plethora of factors 15 
are released in a time-specific fashion to synchronize the differentiation program of both the embryo 16 
and the endometrium. Indeed, blastocyst implantation in the uterus occurs in a limited time-frame 17 
called the “window of implantation” (WOI), during which the maternal endometrium undergoes 18 
dramatic changes, collectively called “decidualization”. Decidualization is guided not just by 19 
maternal factors (e.g. oestrogen, progesterone, thyroid hormone), but also by molecules secreted by 20 
the embryo, such as chorionic gonadotropin (CG) and interleukin-1 (IL-1), just to cite few. 21 
Similarly, once reached the uterine cavity, the embryo orients correctly toward the uterine 22 
epithelium, interacts with specialized structures, called uterodomes, and begins the process of 23 
adhesion and invasion; all these events are guided by factors secreted by both the endometrium and 24 
the embryo, such as leukaemia inhibitory factor (LIF), integrins and their ligands, adhesion 25 
molecules, Notch family members, metalloproteinases and their inhibitors. Aim of this review is to 26 
give an overview of the factors and mechanisms regulating implantation, with a focus on those 27 
involved in the complex dialogue between the blastocyst and the endometrium. 28 
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 31 

1. Introduction 32 

Infertility is considered a pathological condition of the reproductive system. The WHO has 33 
designated infertility as "a disease of the reproductive system defined by the failure to achieve a 34 
clinical pregnancy after 12 months or more of regular unprotected sexual intercourse” [1,2]. Infertility 35 
is one of the main health issues in all societies worldwide, with a prevalence of 3.5-16.7% in developed 36 
countries and 6.9-9.3% in developing countries [3,4]. Causes of infertility may be various. Male 37 
infertility is responsible for 20–30% of cases, while 20–35% of cases are due to female infertility, and 38 
25–40% are due to combined problems in both partners [5]. In 10–20% of cases, infertility is 39 
unexplained [5]. Regarding the female, causes of infertility are diverse, such as lack of regular 40 
ovulation, blocked or damaged fallopian tubes, endometriosis, and endometrial problems [6]. This 41 
last situation leads to defects in blastocyst implantation in the maternal uterus, causing implantation 42 
failure, which is a common cause of impaired fertility [7]. The term “implantation failure” refers to 43 
the lack of implantation after the transfer of good quality embryos, following assisted reproduction 44 
techniques (ARTs). However, the term “implantation failure” actually implies a series of conditions 45 
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in which the embryo does not implant in the maternal endometrium after both spontaneous and in 46 
vitro fertilization [8]. In spontaneous conception 30% of pregnancies are lost before implantation [7]. 47 
On this premise, it is conceivable that implantation is a rather inefficient process, also considering 48 
that the estimated implantation rate in humans is 30% per cycle [9,10].  49 

The inefficiency in blastocyst implantation may be explained by the fact that implantation is a 50 
complex process involving the simultaneous development of an embryo able to implant and an 51 
endometrium able to respond to embryonic signals. Implantation is defined as the process by which 52 
the floating blastocyst adheres to the endometrium and invades the stroma, leading to the formation 53 
of the placenta. Implantation requires a complex crosstalk between the endometrium and the 54 
blastocyst, which is highly regulated by a variety of factors, such as soluble growth factors, hormones, 55 
prostaglandins, adhesion molecules and the extracellular matrix (ECM) [11-15]. These factors, 56 
produced by the receptive endometrium in response to the presence of the blastocyst and viceversa, 57 
are able to synchronize the development of the embryo to the blastocyst stage and differentiation of 58 
the uterus to the receptive state [16,17].  59 

The present review describes and discusses the molecular mechanisms underlying the 60 
implantation process, focusing on factors implicated in the complex blastocyst-endometrium 61 
crosstalk, which are crucial for successful implantation. Further research for new factors involved in 62 
the dialogue between the blastocyst and the endometrium would allow to reduce the current rates of 63 
implantation failure, allowing many couples with infertility problems to reach a successful 64 
pregnancy. 65 

2. Preparation of the endometrium to implantation 66 

Interaction between the uterus and the blastocyst can only occur during a limited defined period, 67 
known as the “window of implantation” (WOI) [18-20]. In humans, this defined period corresponds 68 
to the mid-secretory phase, occurring between the 20th and the 24th day of the menstrual cycle, or 6-69 
10 days after the luteinizing hormone (LH) peak [18,21-23]. In this timeframe, the molecular program 70 
regulating growth and differentiation of the embryo synchronizes with the molecular program 71 
regulating endometrial receptivity. Failure in such synchronization results in failure of the blastocyst 72 
to implant. Given the relevance of this stage for the establishment of a successful pregnancy, the WOI 73 
is regulated by a wide variety of cytokines, growth factors, prostaglandins, enzymes and adhesion 74 
molecules [24-26]. 75 

During the WOI, the uterine endometrium is affected by changes which allow blastocyst 76 
implantation [27]. The epithelial cells present vacuoles to a supranuclear position and glands become 77 
more irregular with a papillary appearance, but the major changes take place in the stroma. The 78 
endometrial stromal cells undergo the decidual reaction, in which they proliferate and differentiate 79 
from fibroblast-like to epithelial-like cells, which will form the maternal decidua. Decidual cells 80 
progressively increase in size and number throughout pregnancy, starting from 9.8% of stromal cells 81 
in early pregnancy and arrive to 57.8% at term [28]. The acquisition of the epithelial-like phenotype 82 
by stromal cells consists of an increase in size, rounding of the nucleus with an increase in number of 83 
nucleoli, accumulation of glycogen, lipid droplets and secretory granules in cytoplasm, and 84 
expansion of rough endoplasmic reticulum and Golgi apparatus [29]. The term “decidua” derives 85 
from Latin “de cadere” and means to fall down, so it refers to the fact that the decidualized uterine 86 
tissue is lost after parturition. Decidua is mainly formed by decidualized endometrial stromal cells, 87 
but also contains hematopoietic cells, macrophages, uterine natural killer and monocytes [30,31]. 88 
Decidualization starts in the luteal phase, with stromal cells surrounding the spiral arteries in the 89 
upper two-thirds of the endometrium, regardless of whether or not the blastocyst is present [32]. 90 
Differently from most mammals, decidualization in humans occurs before the embryo reaches the 91 
uterine cavity and is driven by the postovulatory rise in progesterone levels and local increase of 92 
cyclic adenosine monophosphate (cAMP) production, occurring way before the embryo is ready to 93 
implant. In the absence of pregnancy, progesterone levels decrease, and menstrual shedding and 94 
cyclic regeneration of the endometrium occur. Decidualization is responsible for embryo quality 95 
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control, promoting implantation and development, or facilitating early rejection in case, for example, 96 
of chromosomally abnormal human embryos [33]. 97 

Estrogen and progesterone guide the structural and functional remodeling occurring during 98 
decidualization. The estrogen receptor (ER) exists in two isoforms, ER and ER, but only ER is 99 
essential for implantation since ER knockout mice are infertile, while those knockout for ER appear 100 
fertile [34]. During the proliferative phase, high levels of estrogen induce proliferation of the 101 
epithelial, stromal, and vascular endothelial cells [35,36]. In ARTs estradiol priming results in 102 
endometrial proliferation and induction of PRs. Subsequently, progesterone acts on these receptors, 103 
thus opening the WOI [37]. Decidualization is guided by progesterone, which starts to increase 104 
during the secretory phase of the menstrual cycle and remains elevated in case of pregnancy. PR 105 
exists in two isoforms, PR-A and PR-B, and only PR-A is essential for implantation since mice 106 
knockout for both PR-A and PR-B are infertile, while those knockout for PR-B only are fertile [38,39].  107 

The role of the various factors that regulate decidualization has also been clarified by in vitro 108 
experiments. In these models, decidualization of human endometrial stromal cells (HESCs) is 109 
induced by different treatments. Most of them requires the use the steroid hormones, progesterone 110 
or progesterone and estradiol [40,41], but with higher efficiency if steroid hormones are used in 111 
combination with cAMP [42,43]. cAMP alone can induce decidualization of HESCs but for few days 112 
only [44-46], since for the stabilization of the process is necessary the presence of both cAMP and 113 
progesterone [43]. As already discussed, decidualization is also induced by stimulation of stromal 114 
cells with CG. [47-52].  115 

Once the WOI is opened, a variety of factors, activating multiple signaling pathways, allows the 116 
establishment of the complex crosstalk at the blastocyst-maternal interface, indispensable for 117 
implantation and pregnancy. Chorionic gonadotropin (CG) is produced by the embryo very early 118 
and it is one of the main players in this communication. The ovaries respond to CG, which acts as an 119 
agonist of LH, by maintaining the corpus luteum, thus producing the progesterone necessary for the 120 
establishment and progression of pregnancy. The responses of the endometrium are multiple, but 121 
basically refer to the inhibition of apoptosis, which usually occurs at the end of the menstrual cycle, 122 
by activating anti-apoptotic genes as B-cell lymphoma 2 (BCL-2) [53,54], and the induction of the 123 
decidualization process [54-56]. Both epithelial and stromal cells possess the LH/CG receptor 124 
LHCGR, a seven transmembrane G protein-coupled receptor, which shows the highest expression 125 
during the secretory phase of the menstrual cycle [47,48,55]. Endometrial epithelial cells respond to 126 
CG by expressing cyclooxygenase-2 (COX2) and prostaglandin E synthase (PGES), through the 127 
activation of extracellular signal-regulated protein kinases 1/2 (Erk1/2) signaling pathway. The 128 
increased production of prostaglandin E2 (PGE2) [48-50] induces cAMP in endometrial stromal cells 129 
and promotes their decidualization [50,51]. COX-derived PGE2 plays an important role in the 130 
increase of endometrial vascular permeability, which characterizes the inflammatory reaction typical 131 
of implantation [57,58]. In endometrial stromal cells CG activates Erk1/2 signaling pathway, thus 132 
increasing the expression of the progesterone receptor (PR) and regulating the expression of genes 133 
controlling endometrial receptivity [47]. Moreover, in primates, endometrial stromal cells respond to 134 
CG and progesterone by activating NOTCH1 pathway, as discussed later. NOTCH1 induces the 135 
expression of -smooth muscle actin (-SMA), which positively regulates remodeling of cytoskeleton 136 
and the initial changes typical of the decidualization process [59]. Subsequently, a decrease in CG 137 
and NOTCH1 levels is necessary for the completion of decidualization, which is accompanied by an 138 
increase in the expression of insulin-like growth factor binding protein-1 (IGFBP1) and prolactin 139 
(PRL), markers of decidualization [60-62], and a downregulation of LHCGR [56,63-65].  140 

In response to progesterone uterodomes (also konown as pinopods), apical cell membrane 141 
protrusions of the endometrial luminal epithelium, appear. The specific temporal and spatial 142 
expression of uterodomes [66] coincides with the WOI, so it has been proposed as a marker of 143 
endometrial receptivity [18,67]. The function of uterodomes is not entirely clear. Some authors 144 
suggest that uterodomes are responsible of pinocytosis and endocytosis of uterine fluid and 145 
macromolecules, which facilitates adhesion of the blastocyst to the endometrium, by inter-digitating 146 
with microvilli on the apical trophectodermal surface of the blastocyst [68-72]. In a study by Nikas et 147 
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al. it has been demonstrated that, in humans, the presence of uterodomes correlated with the success 148 
of embryo implantation. In fact, patients with abundant uterodomes became pregnant, while those 149 
with a moderate number of uterodomes showed a pregnancy rate lower than 50%, and patients with 150 
few uterodomes did not achieve pregnancy [68]; however, the validity of uterodomes as markers of 151 
endometrial receptivity is dabeted [73]. More recently it has been proposed that uterodomes might 152 
be responsible of the secretion of leukaemia inhibitory factor (LIF) [74], which is indispensable for 153 
blastocyst implantation, as discussed later in this review.  154 

Uterine receptivity is also regulated by members of the epidermal growth factor (EGF) family, 155 
whose expression pattern in the peri-implantation uterus has been widely investigated in murine 156 
models [75-82]. Amon the EGF family members, amphiregulin (AREG) has been identified in the 157 
luminal epithelium exclusively at the site of blastocyst apposition and its expression appears to 158 
correlate first with the increase of progesterone levels and then with the attachment reaction [77]. 159 
Similarly, the expression of heparin binding-EGF (HB-EGF), which is under the control of both 160 
estrogen and progesterone [80], requires the presence of competent blastocysts and it occurs in the 161 
luminal epithelium when the uterodomes are fully formed at the sites of blastocyst apposition [75,81], 162 
while epiregulin (EREG) is expressed in both the luminal epithelium and stroma during blastocyst 163 
attachment [78]. This unique expression pattern suggests a role for AREG, HB-EGF, and EREG in 164 
uterine receptivity and subsequent embryo adhesion. The role of HB-EGF in blastocyst adhesion to 165 
the uterus has been further demonstrated in vitro in a co-culture of a mouse cell line synthesizing 166 
transmembrane human HB-EGF (TM HB-EGF) and mouse blastocysts. Cells synthesizing TM HB-167 
EGF adhered to mouse blastocysts more than parental cells or cells synthesizing a constitutively 168 
secreted form of HB-EGF [83]. These results were confirmed in a more recent study using HB-EGF 169 
mutant mice which demonstrates that maternal deficiency of HB-EGF limits pregnancy success [82].  170 

NOTCH signaling pathway is involved in the regulation of various cellular processes such as 171 
cell proliferation, invasion, adhesion, survival, apoptosis and differentiation [84-87]. All four NOTCH 172 
receptors, the ligands Jagged1 (JAG1) and Delta-like 4 (DLL4) and the target genes hairy enhancer of 173 
split (HES) and Hes-related 1 (HEY1) are known to be expressed by the endometrium [88-91]. Several 174 
ligands and receptors of the NOTCH signaling pathway are expressed in both the inner cell mass 175 
(ICM) and trophectoderm of the human blastocyst [92-94]. NOTCH1 plays an important role in the 176 
process of decidualization, by inducing pro-survival signals in the endometrium, thus avoiding 177 
apoptosis normally occurring at the end of the menstrual cycle. Hess et al. showed that blastocyst-178 
conditioned medium induces an increase in the expression of NOTCH family members in decidual 179 
cells, suggesting a role for this pathway in decidualization [95]. Moreover, it has recently been shown 180 
that NOTCH signaling pathway is dysregulated in the endometrium of women with unexplained 181 
recurrent pregnancy loss [96]. Activation of NOTCH1 pathway in the endometrium is stimulated by 182 
CG and progesterone and leads to increased expression of -SMA and Forkhead box protein O1 183 
(FOXO1) [11,59,97]. FOXO1, in turns, induces expression of PRL and IGFBP1 and it is essential for 184 
the decidualization process [98-102]. NOTCH1 is involved in the inhibition of cAMP/protein kinase 185 
A (PKA) signaling pathway [103], so that NOTCH1 needs to be downregulated to allow cAMP 186 
response of stromal cells. Similar to what described for -SMA and LHCGR expression, a 187 
downregulation of NOTCH1 is necessary for the induction of IGFBP1 and the completion of 188 
decidualization [42,56,59].  189 

Interleukin-1 (IL-1) is another important factor supporting blastocyst-endometrium dialogue, 190 
playing a fundamental role in decidualization of stromal cells and in successful blastocyst 191 
implantation. IL-1 is secreted by cytotrophoblast cells isolated from first trimester placenta, while 192 
its expression is lower in cultures from second and third trimester placenta [104]. In endometrial 193 
stromal cells IL-1 induces the expression of COX2 and PGE2, known to increase the levels of cAMP, 194 
which are necessary for decidualization, as above described [105,106]. Moreover, in vivo infusion of 195 
IL-1 and CG promotes the expression of IGFBP1 in apical surface stromal cells [64]. It has been 196 
demonstrated that inhibition of COX2 in human and baboon endometrial stromal cells is able to block 197 
the decidualization induced by IL-1in the presence of steroid hormones, suggesting that IL-1 acts 198 
upstream of COX2 [105]. On the contrary, inhibition of COX2 does not affect decidualization induced 199 
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by cAMP and steroid hormones, suggesting that cAMP acts downstream of COX2 and PGE2 [105].  200 
Interestingly, cAMP is able to block decidualization induced by IL-1, indicating a negative feedback 201 
between IL-1and cAMP [105,107]. In baboon, IL-1 positively regulates the expression of matrix 202 
metalloproteinase 3 (MMP3) in endometrial stroma, thus inducing degradation of the ECM. 203 
Considering that disruption of the ECM might reflect in cellular cytoskeleton remodeling, IL-1 may 204 
play an important role in the decidualization also by promoting cytoskeleton changes typical of this 205 
process [108,109]. All these data clearly indicate that IL-1 plays a relevant role in blastocyst-206 
endometrium crosstalk. 207 

Endometrial receptivity is regulated also by thyroid hormone (TH). Both thyroid hormone and 208 
thyroid-stimulating hormone receptors (TR and TSHR, respectively) are expressed in the 209 
endometrium with variations during the menstrual cycle [110]. Two of the isoforms of TR, TRα1 and 210 
TRβ1, are expressed during the mid-luteal phase in glandular and luminal epithelium, showing an 211 
increase during the secretory phase, followed by a drastic decrease. Interestingly, the expression of 212 
TRα1 and TRβ1, and also of TRα2 and TSHR, in endometrial cells is concomitant to the appearance 213 
of the uterodomes and the establishment of endometrial receptivity. The expression of TRα1, TRβ1, 214 
TRα2 and also of type 2 deiodinase (DIO2) is regulated by progesterone. In fact, the administration 215 
of mifepristrone, an anti-progestinic drug that makes the endometrium unreceptive and induces 216 
menstrual bleeding, reduces the expression of TRα1 and TRα2, while it up-regulates TRβ1 and DIO2 217 
expression, suggesting a role for progesterone in regulating molecules involved in TH synthesis and 218 
metabolism [111]. The role of TH pathway in endometrial function is also demonstrated by the 219 
observation that hypothyroidism is able to reduce uterine endometrial thickness, and also interferes 220 
with estrogenic response of the endometrium [112]. TH regulates endometrial receptivity also by 221 
acting on LIF pathway, since TSH induces increased expression of LIF and LIF receptor (LIFR) in 222 
endometrial stromal cells obtained from human endometrial biopsy samples, suggesting a major role 223 
for TSH in the implantation process [110]. 224 

A role for the immune system in embryo implantation has been widely investigated for obvious 225 
reasons. The decidua plays a fundamental role in ensuring immune tolerance toward the semi-226 
allogenic conceptus, protecting it from the mother’s immune system. Regulatory T cells (Tregs) are 227 
CD4+CD25+ T cells, having the role to suppress the immune response [113]. During early pregnancy, 228 
in the decidua there is an increase in Tregs, which produce immunosuppressive cytokines, such as 229 
IL-10, for inducing immune tolerance [114-117]. Uterine natural killer (uNK) are a particular type of 230 
NK cells, which lose their cytotoxic functions during pregnancy. uNK cells play a supportive role by 231 
enhancing angiogenesis and induce immune tolerance, by reducing inflammation through 232 
interferon- (IFN-) [118] and inhibiting the function of T cells through the expression of 233 
immunomodulatory molecules such as galectin-1 and glycodelin A [119]. 234 

Recently, a customized endometrial receptivity array (ERA), containing 238 genes related to 235 
endometrial receptivity, was created [120]. These genes, differentially expressed in the receptive 236 
phase, encode for factors involved in several biological processes, such as processes relating to the 237 
immune system, circulation, response to external stimulus, behavior, cell cycle, cell adhesion, 238 
anatomical structure development, cell–cell signaling, and mitotic cell cycle. ERA represents a useful 239 
tool for clinicians to choose the best time for blastocyst transfer during ART procedures [120,121]. In 240 
vitro fertilization (IVF) cycles often fail since it is difficult to identify potential dysregulations of the 241 
many factors involved in implantation. High throughput screening, as ERA technology, might allow 242 
identification of molecular alterations responsible for recurrent implantation failures (RIF) which are 243 
not currently evaluated in routine workup. Thus, ERA could suggest clinicians a possible therapy, 244 
leading to an increase in the success of the ART procedures. 245 

3. Implantation of the competent blastocyst 246 

Implantation is a crucial event of mammalian reproduction, during which the embryo makes 247 
contact with the maternal uterus for the first time. It is defined as “a series of events initiated by 248 
fertilization of the ovum which ultimately leads to the embedding of the blastocyst in the 249 
endometrium” [13]. So, implantation starts with the fertilization of the ovum, in the ampulla of the 250 
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Fallopian tube within 24 to 48 hours after ovulation and ends with the formation of the primitive 251 
placenta. 252 

3.1. Transport, orientation and hatching 253 

After fertilization, the embryo, encased in a non-anchored glycocalix, the so-called zona 254 
pellucida, which prevents ectopic implantation, descends the Fallopian tube and reaches the uterine 255 
cavity while undergoing profound morphological changes ending in the formation of the blastocyst 256 
[122,123].  257 

For a successful implantation into the maternal tissues, a correct orientation of the blastocyst 258 
towards the uterine wall is needed. In most eutherian mammals, at the time of first contact of the 259 
blastocyst to the endometrial epithelium, the ICM of the various embryos has an almost constantly 260 
specific orientation toward the uterus. In humans, the ICM faces the uterine wall. This positioning of 261 
the ICM usually correlates with the site of trophectoderm attachment to the endometrium, as well as 262 
with subsequent development of the fetal membranes and placental structures [124,125]. Why, within 263 
most species, the ICM of the blastocyst, or the placenta, should be positioned consistently in the same 264 
way with respect to the uterine wall is not completely understood. Moreover, how the blastocyst 265 
becomes correctly oriented [126,127] or what directs the process has not been well clarified, for even 266 
the most commonly studied mammals. 267 

Embedding of the blastocyst into the maternal endometrium requires hatching from the zona 268 
pellucida, which otherwise would prevent adhesion of the embryo to the uterine wall. Blastocyst 269 
hatching exposes the trophectoderm and allows the blastocyst to implant in the maternal uterus. The 270 
crucial event for blastocyst hatching is the formation of a nick into the zona pellucida, and proteases, 271 
such as serine-, cysteine- and metallo-proteases have been proposed to play a major role in this event 272 
depending on the species [128-133]. Cathepsins, belonging to the ubiquitous cysteine proteases 273 
family [134], have been demonstrated to be involved in blastocyst hatching and zona lysis in mice: 274 
the expression of cathepsin L and P (mRNA and protein) and their natural inhibitor, Cystatin C, has 275 
been demonstrated in mouse peri-hatching blastocysts [135]. Treatment of golden hamster embryos 276 
with Cystatin C is able to block blastocyst hatching [131]. The process of murine blastocyst hatching 277 
from the zona pellucida is also regulated by two mouse-specific proteinases, Strypsin (ISP1) and 278 
Lysin (ISP2). ISP1 and ISP2 are two related S1-family serine proteinases, which are tandemly localized 279 
in a cluster of tryptase genes [136,137]. The ISPs are co-expressed in the mouse preimplantation 280 
embryos and in the mouse uterine endometrium during the WOI, indicating that they could play a 281 
role in the process of blastocyst implantation [136,138]. Expression of ISP genes is positively regulated 282 
by progesterone and TH [129,133,136] and ISPs are secreted by the blastocyst and the endometrial 283 
glands into uterine fluid just prior to implantation [139]. The use of antibodies against ISP1/ISP2 284 
abrogate murine embryo hatching and outgrowth, ascribing a crucial role for ISPs in this process 285 
[138]. This is further supported by our recent observations using mouse blastocysts cultured in the 286 
presence of TH, with or without endometrial cells used as the feeder layer. In the presence of 287 
endometrial feeder cells, TH is able to anticipate blastocyst hatching (Figure 1) by upregulating the 288 
expression of blastocyst produced ISPs, and to enhance blastocyst outgrowth by upregulating 289 
endometrial ISPs and MMPs. On the contrary, in the absence of the endometrial feeder layer, TH does 290 
not affect blastocyst hatching, suggesting that TH is one of the players involved in the bidirectional 291 
crosstalk between the blastocyst and the endometrium during the WOI [133]. Human homologs of 292 
ISPs have not been so far identified, and it is possible that other proteases might be involved in 293 
blastocyst hatching in humans. 294 
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Figure 1. Thyroid hormone (TH) supplementation stimulates mouse blastocyst hatching in vitro. (A) 296 
Schematic representation of the in vitro model developed to assess TH role in implantation. (a) Co-culture of 297 
murine blastocysts and endometrial primary cells as the feeder layer; (b) blastocysts cultured on plastic; (c) 298 
endometrial cells cultured without blastocysts. (B) Representative images of the cultures. Scale bar 50µm. (C, D) 299 
Graphs summarizing the results shown in B: percent of hatched blastocysts after co-culture on endometrial cells 300 
(C) or on plastic (D). Reproduced with permission from Piccirilli et al. [133].  301 

3.2. Apposition 302 

Histological analysis of uteri of pregnant women allows to recognize three different levels of 303 
blastocyst adhesion to the uterine wall, which correspond to the three stages of blastocyst 304 
implantation (Figure 2) [140,141].   305 

 306 
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Figure 2. Blastocyst apposition, adhesion and invasion. The diagram shows a preimplantation-stage (A, B) 307 
and invading (C) blastocyst (about 9 to 10 days after conception) and the processes and factors required for 308 
uterine receptivity and blastocyst apposition, adhesion (A, B) and invasion (C). hCG denotes human chorionic 309 
gonadotropin, LIF leukemia inhibiting factor, IL-1 interleukin-1 beta, EGF-like growth factors epidermal 310 
growth factor-like growth factors, AREG amphiregulin, EREG epiregulin, PG progesterone, COX-2 311 
cyclooxygenase-2, PGE2 prostaglandin E2, CSF-1 colony stimulating factor-1, OPN osteopontin, MUC-1 mucin-312 
1, MMPs metalloproteinases, EGFL7 epidermal growth factor-like domain 7, MAPK mitogen activated protein 313 
kinase, AKT protein kinase B, PA plasminogen activator, TGF transforming growth factor beta, TIMPs tissue 314 
inhibitor of metalloproteinases, PAI-1 plasminogen activator inhibitor-1.  315 

Blastocyst apposition is the initial stage representing the first physical contact between the 316 
blastocyst and the endometrium, in which the blastocyst finds a site for implantation, guided by the 317 
maternal endometrium [142,143]. The site of implantation in the human uterus is usually in the upper 318 
and posterior part in the midsagittal plane. During blastocyst apposition, the microvilli placed on the 319 
apical surface of trophectoderm interdigitate with the uterodomes localized on the apical surface of 320 
the uterine epithelium (Figure 2A). These specialized structures support a stable binding between 321 
trophoblast and uterine epithelial cells, so that the plasma membranes of these cells are parallel and 322 
separated by a distance of 20 nm [144]. The uterodomes secrete LIF [74]. LIF is a cytokine of the IL-6 323 
family, which in the uterus activates the Janus kinases (JAK) - signal transducer and activator of 324 
transcription protein (STAT) pathway, and therefore phosphorylates STAT3, whose activation is 325 
required for implantation [145,146]. LIF is indispensable for blastocyst implantation. Mice knockout 326 
for LIF are infertile since, although they are able to develop blastocysts, these fail to implant, however 327 
successfully implant in surrogate female mice [147]. In Lif-null mice the expression of EGF-like 328 
growth factors, such as HB-EGF, AREG and EREG, which, as previously mentioned, are normally 329 
expressed by the luminal epithelium adjacent to the blastocyst and are essential for successful 330 
pregnancy, is abolished [148]. Since the defects in decidualization caused by the absence of LIF can 331 
be rescued by intrauterine administration of EGF ligand [149], it has been hypothesized that LIF 332 
favors blastocyst invasion by reducing the expression of cell-cell junction molecules and proliferation 333 
of the stromal cell through activation of EGF signaling pathway [150]. In fertile women, LIF 334 
expression increases in the endometrium around the time of implantation, while infertile women 335 
express low levels of this factor [151,152]. Once a competent blastocyst takes contact with the maternal 336 
endometrium, a dialogue made of signals and responses between them occurs. One of the most 337 
important factors secreted by trophoblast cells is CG. CG is expressed very early by the embryo, since 338 
its mRNA can be detected starting from the 6-8 cell stage, but the secreted protein becomes 339 
measurable starting from the late blastocyst stage [153]. During pregnancy, CG is firstly detectable in 340 
maternal blood during implantation and then rapidly increases [154]. As discussed before, CG plays 341 
a fundamental role in inducing the production of progesterone and the decidualization process, thus 342 
allowing implantation of the blastocyst. 343 

3.3. Adhesion 344 

Following apposition, stable adhesion of the blastocyst to the endometrium occurs, mediated by the 345 
interaction between several receptors and ligands (Figure 2B). Over the last decades, several of these 346 
ligands and receptors have been identified. It has been observed that both the uterodomes of the 347 
endometrial epithelium and the trophectoderm of the blastocyst express the integrin v3, together 348 
with the endometrial expression of its ligand the glycoprotein osteopontin (OPN). Their expression 349 
at the WOI suggests a role in implantation [80,155,156], and the binding between integrin v3 and 350 
its ligand OPN might mediate the stable adhesion between the blastocyst trophoblast and the 351 
endometrium [157]. Using an in vitro model of implantation, Genbacev et al. suggested that 352 
trophoblast adhesion to the uterine wall is also mediated by L-selectin expressed on the surface of 353 
the trophoblast cells, and uterine epithelial oligosaccharide ligands, such as HECA-452 and MECA-354 
79 [158,159]. More recently it has been also demonstrated that the transmembrane glycoprotein 355 
Mucin 1 (MUC1), abundantly expressed at the apical surface of uterine epithelium under the control 356 
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of progesterone, acts as a scaffold mediating the binding between L-selectin and their ligands [160]. 357 
The adhesion of the blastocyst to the endometrium is also promoted by the expression of adhesion 358 
molecules, such as cadherins. The presence of endothelial cadherin (E-cadherin) in both the 359 
trophoblasts and endometrial epithelium, regulated by progesterone, indicates that it may play an 360 
important role in blastocyst adhesion to the endometrium [161]. As trophoblast cells proliferate, 361 
differentiate and invade the stroma, they downregulate E-cadherin and increase osteoblast cadherin 362 
(OB-cadherin) [162,163]. The expression of OB-cadherin in the endometrial epithelium suggests that 363 
this adhesion molecule later mediates trophoblast–endometrium interactions. Blastocyst adhesion is 364 
also favored by the expression of the glycoproteic receptor CD98 on the surface of endometrial cells, 365 
which is normally involved not only in amino acids transport but also in cell fusion [164,165]. Using 366 
two human endometrial cell lines characterized by low and high receptivity, Dominguez et al. 367 
demonstrated that CD98 receptor is significantly associated with the receptive phenotype. In human 368 
endometrial samples, they found that CD98 expression was spatially restricted to the apical surface 369 
of endometrial cells and temporally restricted to the WOI. Treatment of primary endometrial 370 
epithelial cells with hCG, 17-β-estradiol, LIF or EGF increases expression of CD98, greatly enhancing 371 
murine blastocyst adhesion, while its siRNA-mediated depletion reduced blastocyst adhesion rate 372 
[166]. The expression of NOTCH receptors and ligands in the trophectoderm of the blastocyst and 373 
that of NOTCH1, DLL4 and JAG1 in the apical surface of the endometrial epithelium during the mid-374 
secretory phase [90,167] would suggest a role for NOTCH signaling in the adhesion of the blastocyst 375 
to the epithelium. Indeed, it has been demonstrated that blastocyst-conditioned medium regulates 376 
NOTCH1 and JAG1 expression in endometrial epithelium [167], suggesting that the blastocyst is able 377 
to activate NOTCH signaling in the endometrium, thus possibly regulating endometrial receptivity. 378 
This is reinforced by the fact that women with primary infertility show a reduced or absent 379 
immunostaining for JAG1 in the luminal endometrial epithelium during the mid-secretory phase 380 
[167]. As already mentioned, adhesion of the blastocyst to the endometrium is regulated by several 381 
different factors. A role for colony-stimulating factor-1 (CSF-1) in implantation has been proposed. 382 
Indeed, supplementation of CSF-1 in cultures of human trophoblast cells promotes their 383 
differentiation in syncytiumtrophoblast cells and leads to the production of placental lactogen [168], 384 
while supplementation of CSF-1 to cultures of murine blastocyst induces trophoblast outgrowth 385 
[169]. However, using osteopetrotic mutant mice, which lack CSF-1, it has been shown that a maternal 386 
source of CSF-1 is not necessary for pregnancy, and possibly the fetus can provide a source of CSF-1 387 
which compensate for the absence of maternally produced CSF-1 [170].  388 

3.4. Invasion 389 

Finally, in the third stage, invasion occurs starting with the penetration of highly invasive 390 
trophoblast cells in the uterine epithelium (Figure 2C), followed by infiltration in the basement 391 
membrane and in the stromal compartment, a process known as “interstitial invasion” [143,171,172].  392 
Besides invading the endometrial stroma, trophoblast cells also migrate down the lumen of maternal 393 
spiral arteries, replace the vascular endothelial lining and become embedded in the arterial walls. 394 
This process of “endovascular invasion” allows to replace small-caliber, high-resistance vessels with 395 
large-caliber, low-resistance vessels, ensuring an adequate blood supply to the fetoplacental unit 396 
[173,174]. Defects in trophoblast endovascular invasion of maternal spiral arteries can seriously 397 
impair placental function, leading to significant complications of advanced gestation, such as 398 
intrauterine growth restriction (IUGR) and preeclampsia [175]. The huge invasive ability of the fetal 399 
trophoblast is due to a high production of activated gelatinases, in particular MMPs 2 and 9 [176-400 
178]. Trophoblastic MMPs are regulated in response to IL-1, tumour necrosis factor alpha (TNF), 401 
IL-1α, macrophage colony-stimulating factor (MCSF), transforming growth factor β (TGFβ), IGFBP1, 402 
leptin, hCG, EGF [104,179-183], which are secreted from different cell types at the feto-maternal 403 
interface, such as trophoblasts themselves and endometrial cells, promoting trophoblast invasion. As 404 
already mentioned above, the expression of MMPs involved in endometrial invasion by trophoblast 405 
cells is also under the control of TH, as TH positively regulates MMP expression by endometrial cells 406 
[133]. Recently, we demonstrated that the migration and invasion of trophoblast cells is regulated by 407 



Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 24 

 

the secreted factor Epidermal growth factor-like domain 7 (EGFL7), which activates NOTCH1, 408 
MAPK and AKT signaling pathways [184]. Activation of the NOTCH pathway is important in both 409 
interstitial and endovascular invasion by trophoblast cells. In vitro functional assays show that 410 
invasion of Matrigel by trophoblast cells is impaired in the presence of a -secretase inhibitor, 411 
normally used to inhibit NOTCH activation [175,184]. NOTCH appears to be also involved in 412 
trophoblast endovascular invasion, since uNK, involved in the disruption of endometrial spiral 413 
arteries integrity, express NOTCH1 and 2 and maternal cells surrounding spiral arteries express 414 
Delta-like 1 (DLL1) [175], and NOTCH activation may lead to arterial wall disruption. These results 415 
are further confirmed by the fact that NOTCH pathway is dysregulated in placenta of women affected 416 
by preeclampsia [175,185-191], a common pregnancy disorder characterized by an insufficient 417 
trophoblast invasion and an inadequate vascular remodeling. In women affected by preeclampsia, 418 
the alteration of NOTCH pathway is accompanied by a concomitant altered expression of NOTCH 419 
ligand EGFL7, in both placenta and maternal circulation [185,192].  420 

In all the placental species the extent of endometrial decidualization is proportional to the 421 
invasiveness of the embryo. The human placenta is the most invasive one known so far, and it has 422 
been suggested that the unique invasiveness of the human trophoblast could due to its high 423 
production of hyperglicosylated CG isoform, which is maximal in the first weeks of pregnancy 424 
[193,194]. In order to limit the extent of trophoblast invasion, both trophoblast and endometrium 425 
balance the expression of growth factors, cytokines, and enzymes. As an example, maternal 426 
endometrium increases the production of tissue inhibitors of MMPs (TIMPs), due to a spatial and 427 
temporal regulation of cytokines and growth factors, such as IL-10 [195], TGFβ and IL-1 [179]. While 428 
IL-1 significantly increases the activity of MMP-9 and MCSF increases MMP-9 immunoreactivity, 429 
TGFβ inhibits total gelatinolytic activity, MMP-9 activity and immunoreactivity [179]. TIMP-3, which 430 
is up-regulated by progesterone, plays a major role in limiting trophoblast invasion by limiting ECM 431 
degradation. It has been detected in the fetal extravillous trophoblasts, as well as in the maternal 432 
endometrial cells [196,197]. On the contrary, by in situ hybridization in implanting mouse embryos 433 
no expression was observed for TIMP-1 or TIMP-2 in the embryo proper, trophoblasts, or in the 434 
decidua. Weak signals were demonstrated for TIMP-1 only in the circular layer of myometrial smooth 435 
muscle and in some uterine stroma cells distant from the site of embryo implantation. Moreover, the 436 
expression of TIMP-1 and TIMP-2 is not dependent on the stage of the menstrual cycle [197]. 437 
Trophoblast invasion is promoted by the action of the plasminogen activator (PA) system since it is 438 
able to promote trophoblast invasion, by converting plasminogen into the active serine protease 439 
plasmin, which in turn, degrades ECM [198]. In endometrial cells, TGFβ regulates trophoblast 440 
invasion up-regulating the expression of plasminogen activator inhibitor-1 (PAI-1), which is the main 441 
inhibitor of urokinase-type plasminogen activator (uPA) [199-201], and decorin, a decidua-derived 442 
TGFβ binding proteoglycan, which inhibits proliferation, migration and invasion of trophoblast cells 443 
[202]. The blastocyst is completely embedded in the uterine stroma 8 days after fertilization and the 444 
site of entry is covered by fibrin, over which the uterine epithelial cells grow [143,203,204]. 445 

4. Conclusions 446 

Human reproduction is a rather inefficient process, with a chance to achieve pregnancy of 15% per 447 
cycle [205]. ART procedures help several couples to have a baby, but only 25% of transferred embryo 448 
will successfully implant [206]. Implantation is a critical process, finely regulated by a variety of 449 
molecules and hormones secreted by both the blastocyst and the endometrium. Considering this, it 450 
is difficult to identify the alteration of those factors that determine the lack of embryo implantation. 451 
This also occurs probably because at present these factors are not sufficiently evaluated in routine 452 
clinical screening. Poor knowledge of the factors that regulate implantation and therefore not 453 
sufficient clinical screening exams are responsible of the high incidence of unexplained infertility 454 
cases (25%). A more in-depth knowledge of the mechanisms involved in the early stages of 455 
pregnancy, leading to increased efficiency of ART techniques, will definitely improve the diagnosis 456 
and treatment of infertility. 457 
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Abbreviations 465 

WOI Window of implantation 
CG Chorionic gonadotropin 
IL Interleukin 
LIF Leukemia inhibitory factor 
ARTs Assisted reproduction techniques 
ECM Extracellular matrix 
LH Luteinizing hormone 
cAMP Cyclic adenosine monophosphate 
BCL-2 B-cell lymphoma 2 
COX2 Cyclooxygenase-2 
PGES Prostaglandin E synthase 
Erk1/2 Extracellular signal-regulated protein kinases 1/2 
PGE2 Prostaglandin E2 
PR Progesterone receptor 
-SMA -smooth muscle actin 
IGFBP1 Insulin-like growth factor binding protein-1 
ER Oestrogen receptor 
PRL Prolactin 
EGF Epidermal growth factor 
AREG Amphiregulin 
HB-EGF Heparin binding epidermal growth factor 
EREG Epiregulin 
JAG1 Jagged1 
DLL4 Delta-like 4 
HES Hairy enhancer of split 
HEY1 Hes-related 1 
ICM Inner cell mass 
FOXO1 Forkhead box protein O1 
PKA Protein kinase A 
MMP Matrix metalloproteinase 
TH Thyroid hormone 
TR Thyroid hormone receptor 
TSHR Thyroid-stimulating hormone receptor 
DIO2 Type 2 deiodinase 
LIFR LIF receptor 
ERA Endometrial receptivity array 
IVF In vitro fertilization 
RIF Recurrent implantation failures 
HESCs Human endometrial stromal cells 
Tregs Regulatory T cells 
uNK Uterine natural killer 
IFN- Interferon- 
ISP1 Strypsin 
ISP2 Lysin 
JAK Janus kinases 
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STAT Signal transducer and activator of transcription protein 
OPN Osteopontin 
MUC1 Mucin 1 
E-cadherin Endothelial cadherin 
OB-cadherin Osteoblast cadherin 
CSF-1 Colony-stimulating factor-1 
IUGR Intrauterine growth restriction 
TNF Tumor necrosis factor  
MCSF Macrophage colony-stimulating factor 
TGF Transforming growth factor β 
EGFL7 Epidermal growth factor-like domain 7 
DLL1 Delta-like 1 
TIMPs Tissue inhibitors of MMPs 
PA Plasminogen activator 
PAI-1 Plasminogen activator inhibitor-1 
uPA Urokinase-type plasminogen activator 
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