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1 Introduction

The discovery of the Higgs boson [1, 2] and the lack (so far) of new physics challenged

the standard view on naturalness of the electroweak scale (see presentations at the confer-

ences [3, 4]). The latter led to the expectation that the Higgs boson should be accompanied

by new physics at the weak scale that is able to provide a cut-off to quadratically divergent

quantum corrections to the squared Higgs mass due to the standard model (SM) couplings.

Given that power divergent quantum corrections do not lead to any physical effect,

some theorists are considering the possibility that the Higgs mass fine-tuning problem could

be just an unphysical artifact of the standard renormalisation procedure, that introduces

an artificial cut-off and unphysical bare parameters. On the contrary, heavy new particles

coupled to the Higgs boson would lead to large physical corrections to the Higgs mass:

the associated fine-tuning could be probed by experiments [5–7]. Thereby, one is led to

redefine natural models as those where new physics heavier than the weak scale is weakly

coupled to the Higgs.

Starting from these phenomenological considerations, various authors tried to develop

a theoretical framework able of explaining the co-existence and the origin of the largely

separated mass scales observed in nature. Most attempts involve, in some way or another,
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classical scale invariance and dynamical generation of mass scales [8–39]. Implications for

inflation have been explored in [39, 40].

The largest scale observed in Nature so far is the Planck scale. Inflationary [41–43]

generation of primordial perturbations [44–46] can provide an observational window on

Planck-scale physics. The recent Bicep2/Keck/Planck common analysis [47] of the B-

mode polarisation data tries to control the astrophysical backgrounds [48] and hints at a

value for the tensor-to-scalar ratio r = 0.06 ± 0.04, in-between the previous BICEP2 [49]

and Planck [50, 52, 53] results. If future experiments will find a statistically significant

evidence for r > 0, this might be the first hint of the quantum nature of gravity, and a

precise determination of r may help us to discriminate between different ultraviolet (UV)

completions of gravity.1 This result, therefore, invites for thorough common studies of

gravity and inflation.

In this paper we explore the implications of the assumption that the Planck scale is gen-

erated dynamically, assuming that the same sector also provides inflation. The dynamics

leading to dimensional transmutation can be due to strongly-coupled or to weakly-coupled

physics. We here focus on weakly coupled dynamics, such that we can perform pertur-

bative computations. The literature contains studies of models with a dynamical Planck

scale (see e.g. [39, 56–61]) and of models with a dynamical inflaton potential (already

the very first papers on inflation considered the possibility that the inflaton potential is

generated dynamically by loop effects [62–64] via the Coleman-Weinberg mechanism [65]).

Furthermore, dynamical generation of masses is compatible with the small observed cosmo-

logical constant provided that the scalar potential satisfies the ‘multiple point criticality

principle’ [66], that was introduced for the SM Higgs boson and is extensively used in

Higgs inflation [67, 68]. Originally, the non-minimal coupling for the usual inflaton was

considered in [69–73].

In this paper we combine these concepts into a consistent framework and study impli-

cations for inflation, gravity and the electroweak scale. We follow two different approaches.

To obtain model independent results we first take an effective field theory approach

and study the minimal single field inflation from dynamical generation of the Planck scale

without knowing the theory of gravity. We assume that a complete theory of quantum

gravity is not needed either because inflation is described by Einstein gravity at sub-

Planckian energy or because some completion of Einstein gravity is weakly coupled enough.

The inflaton is assumed to be the Higgs of gravity: the pseudo-Goldstone boson of scale

invariance that acquires a vacuum expectation value (VEV) generating the Planck mass.

The assumption of classical scale invariance allows us to deal with trans-Planckian inflaton

field values [74, 75].

We find that in the limit when gravity effects can be ignored the inflationary observables

converge towards the predictions of a quadratic inflationary potential [76], up to deviations

due to higher order corrections, ns ≈ 0.96 and r ≈ 0.13+0.01
−0.03. We formulate conditions when

this approximation is valid (details are collected in appendix A) and discuss the equivalence

1However, an observable value of r can also be obtained for sub-Planckian field variations in certain

cases [54, 55].
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of Einstein and Jordan frames in this limit. For large values of the non-minimal coupling

to gravity, we obtain much wider range for tensor-to-scalar ratio, r > 0.04, while the

prediction for scalar spectral index remains the same. This is a new and much more

constraining result compared to the corresponding result in the previous scale-invariant

inflation study [40] due to extra constraints arising from the dynamically generated Planck

scale and the dynamically realised multiple point criticality principle. We present the

minimal model for this scenario and study its properties.

After the effective field theory study, we focus on a specific possibility for quantum

gravity: agravity [39], which is the dimensionless renormalizable extension of Einstein

gravity. New gravitational degrees of freedom, predicted by the theory, can be light enough

to take part in inflationary dynamics. We thereby have multifield inflation, and we find the

prediction ns ≈ 0.96 and a tensor-to-scalar ratio 0.003 < r < 0.13 that interpolates between

the values characteristic to quadratic [76] and to Starobinsky [77] inflation. In this context

the smallness of the electroweak scale is connected to the smallness of the inflationary

perturbations: both arise because the underlying theory is very weakly coupled.

In both cases, gravitational decays of the inflaton reheat the SM particles up to a

temperature 107–109 GeV.

The organization of the paper is the following. In section 2 we present our results of the

effective field theory approach to dynamically induced gravity and inflation. In section 3

we focus on agravity and compute inflationary parameters in this quantum gravity theory.

In section 4 we collect our results on reheating and on dark matter (DM) abundance of the

universe. We conclude in section 5 and present technical details in appendix A.

2 Effective field theory approach

In this section we present a general, model independent study of scale-invariant single

field inflation in which the Planck scale is dynamically generated by the inflaton. The

main aim of our effective field theory approach is to derive results that are valid for all

possible UV completions of gravity. We, therefore, restrict our physical parameters such

that inflation occurs within the low-energy (sub-Planckian) limit of gravity. More broadly,

the hope of deriving general implications for inflation rests on the possibility that, if the

scale symmetry is broken dynamically by a VEV induced by weakly coupled dynamics,

it leaves a light scalar, which is the pseudo-Goldstone boson of scale invariance. Two

experimental facts support this assumption, suggesting two possibilities where an effective

field theory could be adequate:

1) First, the amplitude of primordial scalar perturbations is observed to be small, PR =

(2.14± 0.05)× 10−9 [52, 53]. This suggests that inflation occurs at a sub-Planckian

energy E, where the gravitational coupling g(E) ∼ E/M̄Pl (M̄Pl = 2.4× 1018 GeV is

the reduced Planck mass) is still small enough that no knowledge of the UV structure

of quantum gravity is needed. We check that our effective field theory is valid in the

parameter space we consider and that the results of our computations are trustable.

We will explicitly demonstrate that the results obtained in the Jordan and Einstein

frames are physically equivalent.
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2) Second, the smallness of Higgs boson mass, Mh/M̄Pl ∼ 10−16 suggests that quantum

gravity should be weakly coupled [39, 78], such that the quantum corrections to

Mh are naturally small. Soft-gravity is the idea that the growth of the gravitational

coupling g(E) with energy could be stopped by new gravitational physics at an energy

E ∼ Mg low enough that g(E) saturates at a small enough value g(E)<∼ g(Mg).

Then soft-gravity can be neglected during inflation even when Einstein gravity would

become non-perturbative, extending the domain of validity of our computations.

In practice, both possibilities above amount to ignoring quantum gravity in a control-

lable way.

2.1 Model-independent dimensionless single field inflation

Assuming no explicit mass scale in the fundamental Lagrangian,2 the inflaton field s, singlet

under the SM gauge group, has a scalar potential consisting only of a quartic term

V =
1

4
λS(s)s4, (2.1)

where the self-coupling λS(s) runs due to interactions (to be specified in the next subsec-

tion). The inflaton has a non-minimal coupling to gravity −f(s)R/2, where R is the Ricci

scalar, parameterised by the dimensionless coupling ξS as

f(s) = ξSs
2. (2.2)

We neglect the running of ξS in the limit of weak coupling of gravity in the Einstein frame

(see appendix A for more details). We assume that the SM degrees of freedom are very

weakly coupled to the inflaton and do not affect its dynamics. For example we assume

that the allowed inflaton-Higgs mixing term s2|H|2 is negligibly small. We will show in

section 4 that this assumption is compatible with an acceptable reheating of the universe

after inflation.

The coupling in eq. (2.2) has the same form as the usual gravitational coupling

−M̄2
PlR/2 in the Einstein-Hilbert Lagrangian. With the assumptions made above we ex-

pect that the Planck scale and the cosmological constant must be generated by quantum

corrections encoded in the dynamics of λS(s). This is, indeed, possible since the running

of λS allows the scalar potential of s to have a minimum at a non-zero field value. To

generate the Planck scale, the VEV vs of the inflaton field must be given by

v2
s =

M̄2
Pl

ξS
. (2.3)

To compute inflationary observables we go from the Jordan frame possessing the non-

minimal coupling (2.2) to the Einstein frame possessing the canonical Einstein-Hilbert

2In the full theory Lagrangian, the Higgs mass is generated via dimensional transmutation as well. We

do not discuss this topic in detail here because it depends on the exact model realisation, which is outside

the scope of this section. For further details in the agravity realisation, we refer the reader to the following

sections and to [39], where the Higgs mass was generated in such a way.
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action of gravity with the Weyl transformation

gEµν = Ω(s)2gµν , where Ω(s)2 =
f(s)

M̄2
Pl

=
s2

v2
s

. (2.4)

The Einstein frame scalar potential is then given by

VE(s) =
V (s)

Ω(s)4
=

1

4
λS(s)

M̄4
Pl

ξ2
S

. (2.5)

At the minimum the value of this potential must be (very close to) zero in order to yield

the tiny positive vacuum energy density that gives the universe its current accelerated ex-

pansion.3 In our framework this requirement implies λS(vs) = 0. The minimum condition

on λS is
dλS
dt

(vs) = βλS (vs) = 0, (2.6)

where t = ln µ̄, µ̄ is the renormalisation scale and βλS is the β function of λS . As usual, we

resum log-enhanced quantum corrections by identifying the renormalisation scale µ̄ with the

inflaton field value s. Moreover, in order to ensure that λS(vs) = 0 is not just a stationary

point but a minimum, we need to impose the requirement β′λS (vs) ≡ d2λS(vs)/dt
2 > 0.

In explicit model realisations of this scenario these requirements imply conditions on the

model parameters. We can Taylor expand λS around the minimum vs obtaining

λS(s) =
1

2!
β′λS (vs) ln2 s

vs
+

1

3!
β′′λS (vs) ln3 s

vs
+ · · · , (2.7)

where we have used λS(vs) = βλS (vs) = 0. In any model, this is a perturbative expansion

that holds for small enough couplings.4 Assuming weak couplings in order to get the

correct small amplitude of primordial fluctuations, we will treat β′λS (vs) and β′′λS (vs) as

small constant parameters. We will show in the next subsection that this approximation

can indeed hold in the explicit model realisation.

It is convenient to rewrite VE in terms of the canonically normalised field sE in the

Einstein frame,

sE =

√
1 + 6ξS
ξS

M̄Pl ln
s

vs
, (2.8)

or equivalently

s = vse

√
ξS

1+6ξS

sE
M̄Pl . (2.9)

Inserting (2.7) and (2.9) into (2.5) we get

VE(sE) '
β′λS (vs)M̄

2
Pl

8ξS (1 + 6ξS)

(
1 +

√
ξS

1 + 6ξS

β′′λS (vs)

3M̄Plβ
′
λS

(vs)
sE

)
s2
E , (2.10)

3Notice that the ‘multiple point criticality’ principle of [66] arises in the context of dynamical generation

of scales because the dimensionless potential of eq. (2.1) necessarily has another, unphysical, minimum

with zero cosmological constant at s = 0.
4Ref. [39] used a simpler approximation, neglecting also the ln3 s term. Here we investigate its impact.

Of course, an extra ln4 s term is needed in order to stabilise the potential for s� vs.
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Figure 1. The Einstein-frame inflation potential VE(sE) (solid) as computed in the minimal model

of section 2.2, and its quadratic approximation (dashed). Blue dots show s∗E and sEend for negative-

field inflation and red dots for positive-field inflation. Other parameters are specified in the text.

which is nothing but a quadratic potential with a cubic correction. Such a potential is

symmetric under the transformation sE → −sE and β′′λS (vs) → −β′′λS (vs), therefore by

redefining the sign of sE we can always assume that β′′λS (vs) ≥ 0. This potential allows for

two different types of inflation:

− Negative-field inflation, when sE rolls down from negative values to zero. This corre-

sponds, in the Jordan frame, to small-field inflation (s rolls down from a value s < vs
to vs) for β′′λS (vs) > 0 and to large-field inflation (s rolls down from a value s > vs to

vs) if β′′λS (vs) < 0.

+ Positive-field inflation, when sE rolls down from positive field values to zero. This

corresponds, in the Jordan frame, to large-field inflation for β′′λS (vs) > 0 and to

small-field inflation if β′′λS (vs) < 0.

We present in figure 1 an example plot of the Einstein frame potential VE(sE), as

computed in the minimal model presented later in section 2.2: the potential is well ap-

proximated by the cubic potential of eq. (2.10), with the following values of its parameters:

ξS(vs) = 300, β′λS (vs) = 6×10−5 and β′′λS (vs) = 9×10−6. Figure 1 also shows the potential

in quadratic approximation (dashed parabola), which is not quite perfect. We denote the

field values corresponding to 60 e-folds (s∗E) and to the end of inflation (sEend) with blue

dots for negative-field inflation and with red dots for positive-field inflation. We follow the

same colour code throughout this section. Because of the loop-induced cubic term in sE ,

the two inflation regimes are physically different and can be distinguished from each other

experimentally. The potential in figure 1 yields r = 0.11 for negative-field and r = 0.16

for positive-field inflation. For large ξS , β′λS (vs) and β′′λS (vs) (given by large couplings),

higher order terms in the expansion (2.7) will become important. The cubic approximation

breaks down and one has to consider numerically exact running of the couplings.

Under the soft-gravity assumption (described as point 2 at the beginning of section 2),

this computation holds in all its parameter space. The model-independent approach (de-

scribed as point 1) holds instead only as long as Einstein gravity can be neglected. It is

– 6 –
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simple to check the validity range of the computations in the Einstein frame. The condi-

tion is

(VE(sE))1/4 � M̄Pl, (2.11)

so that we can consistently ignore quantum gravity corrections. Such a condition should

be realised at least for sE = s∗E , which corresponds to the maximum potential value for

the inflation computations. Ignoring the cubic correction in eq. (2.10) we get

1

8

β′λS (vs)

ξS(6ξS + 1)
�
(
M̄Pl

s∗E

)2

. (2.12)

We considered values of β′λS (vs), β
′′
λS

(vs) and ξS so that eq. (2.11) is satisfied, so that our

computations are consistent and we can safely ignore quantum gravity corrections. The

consistency condition (2.11) can also be expressed in the Jordan frame as

(VJ(s))1/4 �
√
ξS |s|, (2.13)

leading to the same result expressed in (2.12) after taking into account the relation between

s and sE (see eq. (2.8)).

To better understand how the predictions of negative-field inflation differ from positive-

field inflation due to the presence of the cubic term β′′λS (vs)/β
′
λS

(vs), we expand the slow-roll

parameters at first order in it. The scalar spectral index ns and the tensor-to-scalar ratio

r are given by

r ' 8

N
∓ 32

√
2

9

√
ξS

6ξS + 1

β′′λS (vs)

β′λS (vs)

(
1√
2N
− 1

4N2

)
,

ns ' 1− r

4
±

√
ξS

6ξS + 1

β′′λS (vs)

β′λS (vs)

√
r

3
√

2
,

(2.14)

where N denotes the number of e-folds, and the signs +(−) should be used for the positive-

field inflation and −(+) for negative-field inflation. We see that (2.14) predicts somewhat

different behaviour of ns and r for the positive-field and negative-field inflation scenarios.

The approximation (2.14) breaks down if ξS and other couplings are large. In that

case the deviation of r from quadratic inflation can be large too, as seen in the minimal

model realisation presented in subsection 2.2.

In conclusion, the observed small value of PR favours a small inflaton self-coupling.

If other couplings are small as well, then the Einstein-frame inflaton potential is well

approximated by a quadratic potential. If other couplings are large, the deviation of r

from quadratic inflation can be strong, as shown in figure 3. In section 3 we will show that

in agravity [39] — a concrete UV completion of gravity — dimensionless inflation can give

a significantly smaller value of r if all couplings are small. Basically this will arise because

agravity realises the soft-gravity scenario by adding to the Lagrangian dimensionless terms

of R2 form (as in Starobinsky inflation), leading to extra light scalars.

– 7 –
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2.2 The minimal model for dimensionless single field inflation

In this subsection we present the minimal model that dynamically reproduces all features

of dimensionless single field inflation considered in the previous subsection. Besides the in-

flaton s, the minimal model contains another real scalar σ and a Majorana fermion ψ. This

is the minimal field content that is needed to achieve condition (2.6) dynamically. Indeed,

the portal coupling of the inflaton with the extra scalar is needed to trigger dimensional

transmutation while the extra fermion is needed to be able to tune the minimum of the

potential according to the multiple point criticality principle. The latter is possible since

the scalar and fermion couplings contribute to the running of the inflaton self-coupling

with opposite signs, as is apparent from the RGEs presented in appendix A. This fact has

also been used to achieve the multiple point criticality in Higgs inflation [79].

Thus the Jordan frame Lagrangian of the minimal model is√
−gJL J =

√
−gJ

[
LSM −

ξS
2
s2R+

(∂s)2

2
+

(∂σ)2

2
+
i

2
ψ̄c /Dψ + LY − V

]
, (2.15)

LY =
1

2
ySsψ̄

cψ +
1

2
yσσψ̄

cψ, (2.16)

V =
1

4
λSs

4 +
1

4
λSσs

2σ2 +
1

4
λσσ

4, (2.17)

where we neglected the couplings to the SM fields, as suggested by the hierarchy problem.

In the Einstein frame, the Lagrangian reads√
−gEL E =

√
−gE

[
LSM

Ω(s)4
− 1

2
M̄2

PlR

+
(∂sE)2

2
+

(∂σE)2

2
+
i

2
ψ̄cE /DψE + LYE − VE + · · ·

]
, (2.18)

LYE =
1

2
ySvsψ̄

c
EψE +

1

2
yσσEψ̄

c
EψE ≡

1

2
mψψ̄

c
EψE +

1

2
yσσEψ̄

c
EψE , (2.19)

VE =
1

4
λSv

4
s +

1

4
λSσv

2
sσ

2
E +

1

4
λσσ

4
E ≡ Λ +

1

2
m2
σσ

2
E +

1

4
λσσ

4
E , (2.20)

where, in order to have canonical kinetic terms, the Einstein-frame scalar and fermion fields

are defined as

σE =
σ

Ω(s)
, ψE =

ψ

Ω(s)
3
2

, (2.21)

whereas gauge vectors are invariant under the transformation. It can be shown that the

derivative of the denominator in (2.21) cancels out in the fermion kinetic term because

of the spin connection contribution in /D [80–82], whereas for scalars (with the exception

of the canonically normalised inflaton field sE) it induces a derivative interaction. For

simplicity we omit these details in the above Lagrangian, which are essential for reheating

the universe after inflation and will be discussed in section 4. Below, we work in the

Einstein frame and omit indices (except for sE).

Note that in the scalar potential and in the Yukawa terms of the high scale inflationary

physics the scale transformation is equivalent to the substitution s→ vs and, therefore, in

the Einstein frame the fermion ψ and the scalar σ do not have couplings to the inflaton at

– 8 –
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tree-level. The Jordan frame self-coupling term of the inflaton becomes the cosmological

constant Λ in the Einstein frame potential (2.20) (equivalent to (2.5)). The Yukawa and

quartic portal terms of the inflaton become mass terms, giving the mass of the σ field in

the Einstein frame by

m2
σ =

1

2
λSσ(vs)

M̄2
Pl

ξS
, (2.22)

and the mass of the fermion ψ in the Einstein frame by

mψ = yS(vs)
M̄Pl√
ξS
. (2.23)

The scalar potential depends on the inflaton field only due to the running of the scalar

couplings.

The renormalisation group equations (RGEs) of the model in the weakly coupled grav-

ity limit are computed in appendix A. In the Jordan frame, gravity does not contribute to

the running of the couplings at the one-loop level [119]. The transformation to the Einstein

frame mixes the gravitational and scalar degrees of freedom such that in the Einstein frame

the matter RGEs get contributions from gravity, that we neglect. We can explicitly verify

the equivalence of the frames only up to these neglected effects, as discussed in appendix A

around eq. (A.15).

We suppose that inflation takes place along the s field direction (that is, σ = 0). We

will see later that such an assumption is self-consistent: since the scalar σ will turn out

to be heavier than the inflaton, it does not take part in inflation. As discussed earlier, we

need to realise λS(vs) = βλS (vs) = 0. Imposing λS(vs) = 0, the second condition becomes

(see eq. (A.1)),

16π2βλS (vs) =
1

2
λ2
Sσ − 4y4

S = 0, (2.24)

Moreover, in order to ensure that vs is not just a stationary point but a minimum, we need

to impose that λ′′S(vs) = β′λS (vs) > 0. At the minimum

β′λS (vs) =
1

16π2

[
8yS(λS − 2y2

S)βyS + 4(9λS + y2
S)βλS + λSσβλSσ

]
=
λ2
Sσ

[
6λσ + (4−

√
2)λSσ − (4 + 6

√
2)y2

σ

]
256π4

,

(2.25)

where we have used λS(vs) = 0 and the relations (2.3) and (2.24).

Physically, it means that the inflaton mass in the Einstein frame,

m2
sE

=
β′λs(vs)M̄

2
Pl

4ξS (1 + 6ξs)
, (2.26)

has to be positive. Since mσ arises at tree-level, while msE arises at loop level, the σ field

is typically heavier than the inflaton field and remains frozen at its minimum σ = 0 during

inflation. We thereby have realised the single field scenario discussed in the previous

subsection. The presence of a non-vanishing Yukawa coupling yS is needed in order to

realise dynamical generation of the Planck scale with a vanishing cosmological constant;
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Figure 2. Acceptable range of parameters in the minimal dimensionless inflation model. Left :

inflaton mass msE as a function of ξS . Right : the inflaton-σ coupling λSσ as a function of ξS . Blue

means negative-field and red means positive-field inflation. Lighter colours mark the regions where

gravity cannot be ignored in the Einstein frame.

Figure 3. Predictions of dimensionless single field inflation in the (ns, r) plane for 50 < N < 60

e-folds assuming that gravity is described by the Einstein action, and that it gives small quantum

corrections. The blue region shows the prediction of negative-field inflation and red shows positive-

field inflation around the quadratic potential (the yellow line). Light blue and light red mark the

regions where gravity cannot be ignored in the Einstein frame. The light green contours are the

1,2σ best fit regions from Planck, BICEP2/Keck [47, 51–53].

this implies that mψ must be larger than the inflaton mass msE . If the model has more

than one fermion, some of them can be lighter than sE .

Taking into account all constraints, we determine the allowed parameter region for

the minimal model. In figure 2 we plot the inflaton mass as a function of ξS for both

negative-field and positive-field inflation (the two regions are partially overlapping) for

50 < N < 60 [83–85]. The non-minimal coupling cannot be arbitrarily small, because that

would mean vs � M̄Pl, implying trans-Planckian masses for σ and ψ. Trans-Planckian
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masses are avoided for ξS >∼ 10−6. An upper bound on the non-minimal coupling comes

from the requirement that gravity corrections to couplings in the Einstein frame can be

neglected (this is true if conditions (A.15) hold, see appendix A). The bound is ξS <∼ 10(50),

for positive-field (negative-field) inflation. In the region where gravity corrections cannot

be neglected in the Einstein frame, the range of ξS can be extended (shown with lighter

colours) up to ξS ' 1900 for positive-field and ξS ' 6900 for negative-field inflation.5 In

this case the upper bound on ξS arises from perturbativity of running couplings: λσ <∼ 2π/3

and λSσ <∼ 4π. The range of λSσ(vs) in the right panel of figure 2 is determined by the

normalisation of the spectrum PR = VE(s∗)/24π2M̄4
Plε(s

∗). The running of λSσ depends

on the self-coupling λσ. If λσ(vs) is relatively small, then λSσ(vs) has to be larger at the

potential minimum. If λσ(vs) is large, then λSσ runs faster to the required value at s∗

and can be smaller in the minimum. Variations of λSσ and λσ determine the range of the

inflaton mass in the left panel of figure 2 as well.

The inflaton potential in figure 1 corresponds to the model parameters ξS(vs) = 300,

λSσ(vs) = 0.725, λσ(vs) = π/12, yS(vs) = 0.253, yσ(vs) = 0 and msE = 1.28 × 1013 GeV

that are in the physical range, verifying our model independent results in the previous

subsection.6 The large values of the couplings are needed to get a significant deviation

from quadratic inflation.

The slow-roll parameters in this model are given by

ε =

[
λ′S(s)

λS(s)

]2 ξSs
2

2(1 + 6ξS)
, η =

sξS [λ′S(s) + sλ′′S(s)]

λS(s)(1 + 6ξS)
, (2.27)

in terms of which the inflationary parameters are given by

ns = 1− 6ε(s∗) + 2η(s∗), r = 16ε(s∗). (2.28)

The predictions of dimensionless single field inflation for r as a function of ns are presented

in figure 3 for 50 < N < 60 [83–85]. To compare our predictions with experimental results

we plot in the same figure also the contours of the 1,2 σ best-fit regions from the official

combination of the BICEP2/Keck Array/Planck [47, 51–53].

The yellow line represents the quadratic approximation obtained in the limit β′′λS (vs) =

0 (see eq. (2.10)). The blue region shows the allowed parameter space for negative-field

inflation and the red region for the positive-field inflation. In the region with darker colours

around the yellow line, the conditions (A.15) hold and gravity corrections can be neglected

in the Einstein frame. In this region, λσ and λSσ are small and the inflaton potential is well

approximated by (2.10). The predictions for the inflationary parameters ns and r roughly

coincide with the model-independent predictions. In the light red and light blue regions,

the conditions (A.15) do not hold, but due to the equivalence of the frames the gravitational

corrections in the Einstein frame must arise from scalar loops in the Jordan frame. The

5Notice that a large ξ-coupling does not necessarily spoil perturbative unitarity if the VEV of the

corresponding scalar field is large [68, 86].
6We choose yσ(vs) = 0 for simplicity. If yσ 6= 0, the predictions for inflation do not change, since its

negative influence on the running of λSσ must be countered by a larger value of λσ in order to get the

correct value for PR.
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potential is not close to the cubic (2.10) any more. We see that for large couplings taking

into account exact numerical solutions for RGE running can induce a large correction in

r. For the number of e-folds N = 60, the lowest possible value of the tensor-to-scalar ratio

is r = 0.04.

3 Inflation in agravity

In this section we reconsider inflation within agravity [39]: a renormalizable extension of

Einstein gravity, obtained by adding all dimensionless couplings which are anyhow gen-

erated by quantum corrections, and removing any massive parameter such that power

divergences must vanish. The action has the generic structure

S =

∫
d4x
√
|det g|

[
Lmatter −

∑
i

ξi
ϕ2
i

2
R+

R2

6f2
0

+
1
3R

2 −R2
µν

f2
2

]
. (3.1)

The gravitational kinetic terms suppressed by the dimensionless constants f0 and f2 contain

four derivatives: thereby the graviton contains a massive spin-2 ghost component [87],

which is possibly problematic for energies above its mass M2 = |f2|M̄Pl/
√

2: we do not

address the issue of finding a sensible interpretation for it (see [88–95] for some attempts).

In this section, as mentioned in the introduction, we do not adopt the effective field theory

approach of section 2 and eq. (3.1) is assumed to be the full action, like in ref. [39]. As

a curiosity, we notice that the classical gravitational equations of motion, in a theory

with neither matter nor cosmological constant, have inflationary solutions with arbitrary

Hubble constant.

Of course, matter must be present in a realistic theory: a generic Lmatter can be written

in terms of real scalars ϕ, Weyl fermions ψ and vectors Aµ with gauge, Yukawa and quartic

couplings g, y and λ. Furthermore, the scalars ϕi can have dimensionless ξi couplings to

gravity. Once that scalars dynamically get a vacuum expectation value generating the

Planck mass as
∑

i ξiϕ
2
i = M̄2

Pl, agravity realises the scenario of soft-gravity: the graviton

splits into the usual graviton, a massive spin-2 ghost-like graviton and a scalar; their masses

M2 an M0 represent the energy scale at which gravity softens, becoming described by the

dimensionless couplings f2 and f0.

The theory is renormalizable, and quantum corrections enhanced by large logarithms

are taken into account, as usual, by substituting the couplings with running couplings

(RGE equations have been computed in [39]), renormalised at an energy comparable to

the energy or field value of the process under consideration.

3.1 Agravity in the Einstein frame

We want to employ the results in the literature that give the inflationary predictions of

multifield Einstein gravity models. Then, we need to recast the agravity action of eq. (3.1)

in Einstein form. We here use a compact notation, leaving implicit the sums over the

scalars ϕi, which, in a realistic theory, include at least the Planckion s, the physical Higgs

h and the other components of the Higgs doublet H.
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We start adding to the generic agravity Lagrangian the vanishing term

−(R+ 3f2
0χ/2)2/6f2

0 , where χ is an auxiliary field with no kinetic term. Such new term is

designed to cancel R2/6f2
0 , leaving

L =
√
| det g|

[
Lmatter +

1
3R

2 −R2
µν

f2
2

− f

2
R− 3f2

0

8
χ2

]
, (3.2)

where f = χ+ ξϕ2 and7

Lmatter =
(Dµϕ)2

2
− 1

4
F 2
µν + ψ̄i /Dψ + (y ϕψψ + h.c.)− V (ϕ). (3.3)

Here y denotes a set of Yukawa couplings and V is a general quartic potential. Next, we

transform the −fR/2 term into the canonical Einstein term −M̄2
PlRE/2 by performing a

rescaling of the metric,

gEµν = gµν × f/M̄2
Pl. (3.4)

In the limit of constant f (global scale transformation) our dimensionless action is invariant

provided that the scalars ϕ, the fermions ψ and the vectors Aµ are also rescaled as:

ϕE = ϕ× (M̄2
Pl/f)1/2, ψE = ψ × (M̄2

Pl/f)3/4, AµE = Aµ. (3.5)

However, we need to consider a non-constant f and perform a local scale transformation,

under which all dimensionless terms without derivatives remain (trivially) invariant. Fur-

thermore, various kinetic terms happen to be also (non-trivially) invariant: this is the case

for the fermion kinetic terms [80–82], the vector kinetic terms and the graviton kinetic term

proportional to 1/f2
2 . The scalar kinetic terms are not invariant (away from the special

conformal value ξ = −1/6); thereby we keep using ϕ in addition to ϕE for the scalars.

Then the Einstein-frame Lagrangian is:

L =
√

det gE

[
1
3R

2
E −R2

Eµν

f2
2

− 1

4
F 2
Eµν + ψ̄Ei /DψE

+ (yϕEψEψE + h.c.)−
M̄2

Pl

2
RE + Lϕ − VE

]
, (3.6)

where

Lϕ = M̄2
Pl

[
(Dµϕ)2

2f
+

3(∂µf)2

4f2

]
, VE =

M̄4
Pl

f2

[
V (ϕ) +

3f2
0

8
χ2

]
. (3.7)

A kinetic term for f has been generated [96], such that f becomes an extra scalar, with

no gauge charge.8 The kinetic metric in scalar field space has constant negative curvature

−Nϕ(Nϕ + 1)M̄2
Pl/6, where Nϕ is the total number of scalars ϕ, and can be conveniently

put in conformal form by redefining z =
√

6f , such that our final Lagrangian is

Lϕ =
6M̄2

Pl

z2

(Dµϕ)2 + (∂µz)
2

2
(3.8)

7If one makes the sum over the scalars ϕi explicit, one should read ξϕ2 as
∑
i ξiϕ

2
i , the kinetic term

(Dµϕ)2 as
∑
iDµϕiDµϕi and so on.

8The scalar kinetic term is conformally invariant for ξϕ = −1/6; this manifests as cancellations in the

scalar kinetic terms.
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and

VE(z, ϕ) =
36M̄4

Pl

z4

[
V (ϕ) +

3f2
0

8

(
z2

6
− ξϕϕ2

)2]
. (3.9)

We anticipate here a non-trivial peculiarity of the Einstein-frame Lagrangian, best seen

by considering the case of a single ‘Planckion’ scalar field s, such that f = ξSs
2: by using

the first equation in (3.5) we obtain that sE = M̄Pl/
√
ξS is a constant i.e. its quartic be-

comes a cosmological constant and its Yukawa couplings become fermion mass terms. How

can this be equivalent to the Jordan frame Lagrangian where s has quartic and Yukawa

interactions? The point is that s, being the pseudo-Goldstone boson of spontaneously bro-

ken approximate scale invariance (the explicit breaking of scale invariance coming from the

quantum running of the coupling constants is small because we are assuming perturbative

couplings), couples to the divergence of the dilatation current Dµ, ∂µDµ, that vanishes at

tree-level because we consider special dimensionless theories.9

Mass eigenstates. We compute here the mass eigenstates formed by the scalars φ =

{h, s, z} at the minimum of the potential, where the scalars kinetic terms of eq. (3.8)

become canonical. Indeed, minimisation with respect to z leads to z2 = 6M̄2
Pl+16V/f2

0 M̄
2
Pl.

Minimisation with respect to s gives ∂V /∂s − 4ξSsV /M̄
2
Pl = 0, that should be solved by

M̄2
Pl =

∑
ξiϕ

2
i ' ξSs2. The measured value of the cosmological constant implies a negligible

value of V at the minimum, simplifying the above equations. Minimisation with respect to

h then leads to a negligible vacuum expectation value. On the other hand gauge invariance

implies that h should appear at least quadratically in V ; therefore expanding h around its

VEV necessarily produces at least one power of this negligible VEV, which implies that

the Higgs negligibly mixes with s and z. The mass matrix for the fields s and z around

the minimum is given by the second derivatives of VE :

M2
s

(
1 0

0 0

)
+
f2

0 M̄
2
Pl

2

(
6ξS

√
6ξS√

6ξS 1

)
. (3.10)

The first term alone would give a Planckion with mass M2
s = ∂2V/∂s2. The second term

alone would give a spin-0 graviton with mass M2
0 = 1

2f
2
0 M̄

2
Pl(1 + 6ξS). Taking into account

both terms, the mass eigenvalues are

M2
± =

M2
s +M2

0

2
± 1

2

√
(M2

s +M2
0 )2 − 4

M2
sM

2
0

1 + 6ξS
. (3.11)

3.2 Computing multifield inflationary predictions

The classical equations of motion for the Einstein-frame scalar fields φ = {z, s, h} during

inflation in slow-roll approximation are

dφ

dN
= − z2

6VE

∂VE
∂φ

, (3.12)

9The explicit verification that the Jordan frame couplings of s vanish on-shell needs manipulations similar

to the ones used to verify the analogous property of the couplings of a Goldstone boson of a U(1) global

symmetry, when a Dirac fermion mass term Ψ̄Ψ is re-expressed as derivatives acting within a chiral current

Ψ̄γµγ5Ψ.
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having defined the number of e-folds N as dN = H dt. The spin-2 massive graviton does

not affect such classical equations of motion, and we assume that it can be neglected event

at the quantum level. The quantum predictions for inflation can now be computed by using

the previous literature on multifield inflation [97–102]; they can be expressed in terms of

the number of e-folds starting from a generic initial point, N(h, s, z):

• The power-spectrum of scalar fluctuations is given by

PR(k) =

(
H

2π

)2 z2

6M̄2
Pl

(∇N)2 (3.13)

with H computed at horizon exit k = aH and

(∇F )2 ≡
(
∂F

∂z

)2

+

(
∂F

∂s

)2

+

(
∂F

∂h

)2

. (3.14)

• The spectral index ns of scalar perturbations is given by

ns ≡ 1 +
d lnPR
d ln k

=
1

6z2V 2
E(∇N)2

{
6V 2

E

(
z2(∇N)2 − 12

)
− z4(∇N)2(∇VE)2

+2z3VE

[(
∂N

∂h

)2(
z
∂2VE
∂h2

− ∂VE
∂z

)
+

(
∂N

∂z

)2(
z
∂2VE
∂z2

+
∂VE
∂z

)
+2

∂N

∂h

(
∂N

∂z

(
z
∂2VE
∂z∂h

+
∂VE
∂h

)
+ z

∂N

∂s

∂2VE
∂s∂h

)
+ 2

∂N

∂z

∂N

∂s

(
z
∂2VE
∂s∂z

+
∂VE
∂s

)
+

(
∂N

∂s

)2(
z
∂2VE
∂s2

− ∂VE
∂z

)]}
. (3.15)

• The tensor power spectrum is given by Pt(k) = (2/M̄2
Pl)(H/2π)2. Equivalently, the

tensor-to-scalar ratio is given by

r ≡ 4Pt
PR

=
48

z2(∇N)2
. (3.16)

The measured values at k = 0.002 Mpc−1 are PR(k) = (2.14 ± 0.05) × 10−9 [52, 53],

ns = 0.965 ± 0.006 [50, 52, 53] and r = 0.06 ± 0.04 (according to [47]) or r = 0 ± 0.04

(according to [52, 53]).

3.3 Inflationary predictions

In general, predictions of multifield inflation depend on the inflationary trajectory reducing

the predictive power. However, our potential VE(h, s, z) has a peculiar structure, such that

all classical trajectories converge towards a unique attractor solution even when scalar

masses are comparable at the minimum (examples are shown in figure 4). This presumably

happens because we are considering dimensionless dynamics, such that the derivatives of

the potential are hierarchical almost everywhere in field space. We find that slow-roll

inflation starts only when such attractor is reached. In order to understand our results, it

is useful to first consider three relevant extreme limits:
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Figure 4. Left: sample of classical field evolution in the (s, z) plane with h = 0 for ξS = 1

and Ms = M0. All trajectories starting from different initial values converge towards a unique

inflationary attractor (thick curve) that ends at the minimum (thick dot). The red dashed contour-

lines show the number N of e-foldings. Right : sample of classical field evolution in the (h, s, z)

space, showing that an attractor solution with negligible h is reached even starting from h� s, z.

1. Planckion inflation. If M0 � Ms (obtained when the agravity coupling f0 is

larger than the matter couplings in the inflaton sector), the attractor corresponds

to z2 ≈ 6ξSs
2, which is the valley along which the squared term proportional to f2

0 in

VE , eq. (3.9), nearly vanishes. Then the potential simplifies to VE ' (M̄2
Pl/ξSs

2)2V ,

reproducing the situation considered in [39] and in section 2. The inflationary pre-

dictions are

ns ≈ 1− 2

N

N≈60
≈ 0.967, r ≈ 8

N

N≈60
≈ 0.13. (3.17)

The scalar amplitude PR = M2
sN

2/6π2M̄2
Pl is reproduced for Ms ≈ 1.4× 1013 GeV.

2. Scalar graviton inflation. In the opposite limit, Ms �M0 (obtained when the agrav-

ity coupling f0 is smaller than the matter couplings), the attractor solution approxi-

mately corresponds to a Planckion s frozen at its VEV. Thereby the Planck constant

remains fixed, and the inflaton is z, the scalar component of the graviton. In this

limit we obtain Starobinsky inflation [77] that predicts the same ns as in the previous

case and a smaller value of r:

ns ≈ 1− 2

N

N≈60
≈ 0.967, r ≈ 12

N2

N≈60
≈ 0.003. (3.18)

The scalar amplitude PR = f2
0N

2/48π2 is reproduced for f0 ≈ 1.8× 10−5.

3. Higgs inflation. We find that, for any value of M0/Ms, inflation is never dominated by

the Higgs, because its quartic self-coupling λH (assumed to be positive) is unavoidably

larger than the other scalar couplings, taking into account its RG running. Even
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Figure 5. Left: predictions for the tensor/scalar ratio r after N = 50 or 60 e-folds of inflation for

various values of ξS as function of M0/Ms. In the limit where this ratio is large (small), inflation

is dominated by the Planckion (the scalar component of the graviton). Right: predictions for the

scalar spectral index ns and for the tensor/scalar ratio r with the same coding. The green area is

favoured by a global fit of Planck, BICEP2/Keck [47, 51–53]

assuming that the Higgs has a dominant initial vacuum expectation value [67], in our

multifield context inflation starts only after that the field evolution has reached the

attractor solution along which h is subdominant, as exemplified in figure 4b.

Notice that in both limits 1. and 2. the predictions do not depend on ξS nor on ξH .

We next proceed to numerically compute the inflationary predictions corresponding to

the intermediate cases by using the general formulae presented in section 3.2.

Figure 5 (left) shows the prediction for r at N = 50 and 60 e-folds while Ms/M0 is

varied from small to large values: we find that r smoothly interpolates between the two

limiting cases, 0.003 < r < 0.13. The intermediate region remains negligibly dependent on

the value of ξS . Furthermore, the value of ns− 1 approximately scales as 1/N and remains

close to its common value achieved in the two limiting cases. Figure 5 (right) shows the

prediction in the (ns, r) plane.10 The prediction is compatible with the region (in green)

preferred by data at 68, 95% confidence level according to the latest combination from

Planck, BICEP2/Keck [47, 51–53]. Next generation experiments could probe r down

to few× 10−3.

4 Cosmology after inflation

We here outline the main possibilities for cosmology after inflation in the present context,

and the possible connections with leptogenesis and Dark Matter. In section 4.3 we return

to the Higgs mass hierarchy problem.

10When both fields are relevant, our prediction for (ns, r) lies in the ‘forbidden region’ according to the

claim in [103–105] that assumes single field inflation. Unlike in the previous section, all couplings are here

small. Other potentials that lead to similar intermediate values of r are considered in [106–109].
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4.1 Reheating

We assumed that the inflaton sector that generates the Planck scale is very weakly coupled

to the SM sector, such that the weak scale is naturally much lighter than the Planck scale.

Because of this, we need to study with special attention how the SM sector can be reheated

by the inflaton decays. The decay of the inflaton I with mass MI and width ΓI reheats

the universe up to a temperature

TRH =

[
90

π2g∗
Γ2
IM̄

2
Pl

]1/4

, (4.1)

where g∗ ∼ 100 is the number of relativistic degrees of freedom at TRH. We need to compute

the total inflaton decay width ΓI and its decay channels, in order to check if the SM sector

is reheated up to a large enough temperature.

Section 2 identified the inflaton as the Planckion s and section 3 added the scalar

graviton as a possible extra candidate, finding that the inflaton I is a combination of the

two. We can treat these possibilities jointly given that they have similar couplings, as we

now discuss. The Planckion and the scalar component of the graviton respectively couple to

∂µDµ

M̄Pl/
√
ξS

and
Tµµ
M̄Pl

, (4.2)

where Tµµ is the trace of the energy-momentum tensor and ∂µDµ is the divergence of the

dilatation current Dµ = Tµνxν + D ′µ. According to the Noether procedure, the first term

comes from the transformation of the coordinates δxν ∝ xν ; the second term comes from

the variations of the fields and produces a difference between ∂µDµ and Tµµ. The theory

is explicitly dimensionless in the Jordan frame such that a non-zero divergence arises only

at loop level, and is given by

∂µDµ =
βg1

2g1
Y 2
µν +

βg2

2g2
W 2
µν +

βg3

2g3
G2
µν + βytHQ3U3 + βλH |H|

4 + · · · , (4.3)

where · · · denotes terms beyond the SM and βg = dg/d ln µ̄ is the β function of the coupling

g. The dominant gluon term gives

Γ(I → gg) ≈ |ξS |g
4
3M

3
s

(4π)5M̄2
Pl

. (4.4)

This unavoidable decay channel alone is able of reheating the universe up to

TRH ≈ 107 GeV

(
Ms

1013 GeV

)3/2

(4.5)

for ξS ∼ 1.

The trace of the energy-momentum tensor Tµµ receives the same loop contribution.

However, it also receives a new, possibly dominant, tree-level contribution. Indeed, Tµµ
would vanish in a conformal theory; we are instead considering a non-conformal theory

where the ξ couplings of scalars are generically different from the conformal value ξ = −1/6,
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as already discussed around eq. (3.6). Focusing on the Higgs boson h, the resulting tree-

level decay is best computed by transforming the [(∂µh)2−ξHh2R]/2 part of the Lagrangian

to the Einstein frame and to canonically normalised fields hE = h× M̄Pl/
√
f and sE . We

find the effective operator11

− (1 + 6ξH)

√
ξS

1 + 6ξS

h2
E

2

∂2sE
M̄Pl

(4.6)

that produces a tree-level contribution to the decay width

Γ(I → hEhE) = Γ(I → ZZ) =
1

2
Γ(I →WW ) ≈ (1 + 6ξH)2|ξS |

|1 + 6ξS |
M3
I

64πM̄2
Pl

. (4.7)

The decays to electroweak vectors arise because their longitudinal components are the

Goldstone components of the Higgs doublet H. For ξS,H ∼ 1 this channel gives a TRH ≈
109 GeV, two orders of magnitude larger than in eq. (4.5). However, in section 4.3 we will

find that naturalness of the Higgs mass favours a ξH so close to −1/6 that Γ(I → hEhE)

becomes subdominant with respect to Γ(I → gg).

4.2 Dark matter

So far we neglected possible inflaton decays into the inflaton sector. For example the

minimal model introduced in section 2.2 contains an extra scalar and an extra fermion.

Such decays are not kinematically allowed if the inflaton is the lightest component of its

sector. This is the case in the minimal model, and likely holds more in general, given that

the Planckion is the light pseudo-Goldstone boson of scale invariance.

However, the inflaton sector must contain fermions in order to provide a negative

Yukawa contribution to the β function of the Planckion quartic. Fermions ψ have an

associated ψ → −ψ symmetry that keeps the lightest fermion stable.

If the lightest fermion within the inflaton sector has no gauge interactions, then it

can also couple to the SM sector behaving as a right handed neutrino N . It can gener-

ate the observed light neutrino masses via NLH Yukawa couplings [111] (in such a case

MN <∼ 107 GeV in order to avoid an unnaturally large quantum correction to the Higgs

mass [5–7, 112]) and it can provide baryogenesis via leptogenesis [113, 114].

The lightest fermion in the inflaton sector is instead a stable Dark Matter candidate

if it cannot couple to the SM sector (for example because it has gauge interactions under

the inflaton sector). Assuming that it is light enough to be produced by inflaton decays,

it inherits the observed primordial adiabatic density perturbations.12

The decay width of the inflaton into Dark Matter could be computed along the lines

of eq. (4.3). A less model-dependent possibility is that such DM fermions get their mass

from another source, independent from the Planckion, that also breaks scale invariance but

11A contribution to it was computed in [110].
12An alternative production mechanism can operate even if the fermions are so heavy that decays into

them are not kinematically allowed; however, this alternative would lead to Dark Matter with isocurvature

perturbations [115], which are no longer compatible with observations.
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at a lower energy scale. Then such fermion masses would contribute to ∂µDµ and to Tµµ
as MΨ̄Ψ (we are considering, for example, a Dirac mass term) giving the contribution13

Γ(I → Ψ̄Ψ) ≈ |ξS |M2MI

8π(1 + 6ξS)M̄2
Pl

. (4.8)

By identifying the fermion Ψ with Dark Matter, its abundance is

ΩDM ≡
ρDM

ρcr
=

s0M

3H2
0/8πGN

Γ(I → DM)

Γ(I → SM)
≈ 0.110

h2
× M

0.40 eV

Γ(I → DM)

Γ(I → SM)
, (4.9)

having inserted the present entropy density (s0 = gs0T
3
0 2π2/45 with gs0 = 43/11), the

present Hubble constant H0 = h × 100 km/sec Mpc, and the present temperature T0 =

2.725 K. The observed DM abundance is reproduced for

M ≈ (10− 200) TeV

(
MI

1013 GeV

)2/3

. (4.10)

where the lower (higher) estimate applies if Γ(I → gg) (Γ(I → hEhE)) dominates. The

proximity of this mass with the range favoured by the hypothesis that DM is a thermal relic

is an accident: this DM candidate leads to negligible non-gravitational signals in agreement

with present observations.

Finally, we recall that the Higgs potential might be unstable at energies above

1010 GeV (for a precise computation see [116]). The compatibility of this possible in-

stability with cosmology is discussed in [117].

4.3 Inflation and the weak scale

In models that allow for super-Planckian field variations, inflation becomes a generic natural

phenomenon [41–43]; however, small parameters are needed to get the observed amplitude

of scalar perturbation PR ≈ 10−9 rather than PR ∼ 1 from chaotic inflation. We obtain a

naturally small PR because we are considering a dimensionless theory with small couplings.

Small couplings are also needed in order to keep the Higgs mass Mh naturally much smaller

than M̄Pl. These models predict a non-trivial connection of the form

Mh ∼ PRM̄Pl (4.11)

between the weak scale, the Planck scale and the amplitude of inflationary perturbations.

Eq. (4.11) ignores loop factors (4π)2, e-fold factors N ≈ 60 and the possibility that different

couplings have different size. In the rest of the section we add such factors showing that

the observed Mh/M̄Pl and PR are compatible.

As discussed above, inflation wants f0>∼ 10−5. Thereby, we need to compute the max-

imal value of f0 naturally allowed by the Higgs mass.

13The analogous contribution from SM fermion masses is negligible, and the Higgs mass terms Mh would

give a contribution suppressed by two extra powers of Mh/MI .
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Whatever sector dynamically breaks scale invariance, it must provide an effective Ein-

stein term −M̄2
PlR/2. Then, inserting such a term in gravitational loop corrections to the

Higgs propagator, one estimates a correction to the Higgs mass of order

δM2
h ∼ ξH

g2(Mg)M
2
g

(4π)2
, (4.12)

where, as anticipated in section 2, we assume a soft-gravity scenario where new physics at

Mg stops the growth of the gravitational coupling g(E) = E/M̄Pl. Here we are neglecting

the contributions to δM2
h proportional to powers of M2

h because they are not dangerous

from the point of view of naturalness. The one-loop effect in (4.12) is proportional to

ξH , the ξ-coupling that provides interactions between the Higgs and gravity, which do

not involve the Higgs mass or derivatives on the external Higgs field. If ξH vanishes, the

correction to M2
h arises at two loops.

Within agravity Mg ∼M0,M2 and the estimate in eq. (4.12) gets replaced by a precise

result [39]: the log-enhanced correction to the Higgs mass is described by the following RG

equation, valid at energies between M̄Pl and Mg:

(4π)2 d

d ln µ̄

M2
h

M̄2
Pl

= −ξH [5f4
2 + f4

0 (1 + 6ξH)] + · · · , (4.13)

where µ̄ is the MS renormalization scale and · · · denotes negligible terms. If ξS,H ∼ 1,

naturalness implies f0<∼ 10−8. This bound can be relaxed by performing a more complete

discussion at the light of the RGE for ξH [39]:

(4π)2 dξH
d ln µ̄

= (1 + 6ξH)

(
y2
t −

3

4
g2

2 −
3

20
g2

1 + 2λH

)
+
f2

0

3
ξH(1 + 6ξH)(2 + 3ξH)− 5

3

f4
2

f2
0

ξH + · · · , (4.14)

where · · · denote beyond-the-SM terms. We see that the ξ couplings can naturally acquire

two special values:

• close to zero, ξ ∼ y2/(4π)2, where y is a generic coupling of the theory, e.g. y ∼ yt in

the SM;

• close to the conformal value, ξ + 1/6 ∼ f4
2 /(4πf0)2.

In the latter case, the larger f0 ∼ 10−5 called by inflation becomes naturally allowed. We

thereby conclude that the smallness of Mh/M̄Pl and the smallness of PR are mutually

compatible, although the ξ terms need to lie in special natural ranges.

5 Conclusions

We computed the inflationary predictions of models where mass scales (in particular the

Planck scale) are absent at tree-level and generated only by quantum corrections from

dimensionless dynamics. The same sector that generates the Planck mass does also provide
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cosmological inflation with super-Planckian field variations: the slow-roll parameters are

related to the β-functions of the theory. We consider two scenarios: single field inflation

in an effective field theory approach, and inflation in agravity, which is a UV completion

of general relativity coupled to the SM fields.

In the first case, in the limit where couplings are small enough that gravity effects can

be ignored in the Einstein frame, we showed the consistency between computations in the

Jordan and in the Einstein frames, obtaining an inflaton potential which is approximatively

quadratic with a cubic correction, leading to

ns ≈ 0.967, r ≈ 0.13. (5.1)

If, instead, ξS and other couplings are large one can obtain smaller values of r, down to

about 0.04, as shown in figure 3.

In the second case, we considered agravity, the dimensionless extension of Einstein

gravity that allows, for small enough couplings, the natural co-existence of the small weak

scale with the much larger Planck scale M̄Pl even in absence of new physics at the weak

scale. Agravity implies an extra scalar component of the graviton and an extra spin-2

ghost-like graviton that make quantum gravity renormalizable and controlled by two di-

mensionless couplings f0, f2. A small amplitude of scalar perturbations is also predicted

because this sector must contain small couplings such that the weak scale Mh/M̄Pl is natu-

rally small, resulting in a relation that scales as PR ∼Mh/M̄Pl, more precisely discussed in

section 4.3. We computed the inflationary predictions finding the result in figure 5 (right):

ns ≈ 0.967, 0.003 < r < 0.13, (5.2)

which agrees with present observations. Figure 5 (left) shows that the upper range of r is

realised if the ‘Higgs of gravity’ is the lighter scalar that dominates inflation (this limit gives

the effective field theory scenario discussed above); the lower range is realised if instead

the lighter inflationary field is the scalar component of the graviton.

Both in the effective field theory and in agravity, the inflaton decays via Planck-

suppressed interactions (it couples to a combination of the trace of the energy momentum

tensor and of the divergence of the dilatation current) producing a reheating temperature

TRH ∼ 107−9 GeV.

Furthermore the inflation sector must contain fermions that either behave as right-

handed neutrinos (if they have no gauge interactions) or are stable. In the latter case,

they might be light enough that the inflaton can decay in them, providing the observed

Dark Matter abundance with adiabatic primordial inhomogeneities if their mass is around

10− 200 TeV.

A determination of the tensor-to-scalar ratio r in the future can help us to discriminate

between different paradigms behind inflation and to test quantum theories of gravity such

as agravity.
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A RGE and the compatibility of frames

In this appendix we give more details about the compatibility between computations per-

formed in the Jordan and Einstein frame in the effective field theory approach described

in section 2. This is particularly relevant since we have to make sure that the RG running

in the Jordan frame and in the Einstein frame is consistent.

It has been shown that the results computed in the Jordan and Einstein frames are

compatible with each other [120, 121]. However, according to the problem at hand, com-

putations can be easier in one frame or another. Usually it is easier to compute the RGEs

in the Jordan frame, while inflationary calculations are more simply performed using stan-

dard formulæ valid in the Einstein frame. The RGEs of the Jordan frame can be applied

to Einstein frame once we keep in mind that also the renormalisation scale has to rescale

under a Weyl transformation [120, 121]. In order to fully recover the equivalence one would

need to include gravitational loops, that we neglect.

Let us consider the minimal model described by the Lagrangian (2.17) in the Jordan

frame. Assuming the possibility to neglect quantum gravity corrections eq. (2.11), the

one-loop level β-functions for the couplings in the Jordan frame are given by

16π2βλS = 18λ2
S +

1

2
λ2
Sσ + 4λSy

2
S − 4y4

S , (A.1)

16π2βλσ = 18λ2
σ +

1

2
λ2
Sσ + 4λσy

2
σ − 4y4

σ, (A.2)

16π2βλSσ = 4λ2
Sσ + 6λSσ(λS + λσ) + 4λSσ(y2

S + y2
σ)− 24y2

Sy
2
σ, (A.3)

16π2βyS = 4yS(y2
S + y2

σ), (A.4)

16π2βyσ = 4yσ(y2
S + y2

σ), (A.5)

16π2βξS =

(
ξS +

1

6

)(
6λS +

1

6
y2
S

)
. (A.6)

We used the PyR@TE package [118] to derive the RGEs for the scalar and Yukawa cou-

plings and ref. [119] for the non-minimal coupling ξS . On the other hand, in the approx-

imation of weakly coupled gravity, the RGEs for the parameters of the Einstein frame

Lagrangian (2.18) are

16π2βΛ =
1

2
m4
σ −m4

ψ, (A.7)

16π2βλσ = 18λ2
σ + 4λσy

2
σ − 4y4

σ, (A.8)

16π2βm2
σ

= (6λσ + 4y2
σ)m2

σ − 24y2
σm

2
ψ, (A.9)

16π2βmψ = 4y2
σmψ, (A.10)

16π2βyσ = 4y3
σ, (A.11)
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where the connection between the Jordan and Einstein frame parameters is given by

Λ =
1

4

λS
ξ2
S

M̄4
Pl, (A.12)

m2
σ =

1

2

λSσ
ξS

M̄2
Pl, (A.13)

mψ =
yS√
ξS
M̄Pl. (A.14)

We see that the RGEs are not perfectly matching with each other. This is because we

neglect gravitational corrections due to the mixing of gravitational and scalar degrees of

freedom in the transformation between the frames. To match the RGEs of the Jordan

frame and the RGEs of Einstein frame in the weak gravity limit, we need to impose

λS � λSσ � λσ, βyS � yS , βξS � ξS , (A.15)

on the Jordan frame parameters. However, since physical observables are frame indepen-

dent [120, 121], the quantum gravity corrections in the Einstein frame must be reproduced

by scalar loops in the Jordan frame.
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