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1 Introduction

One important feature of type II string compactifications is the amount of information on

the effective, lower-dimensional theory that one obtains by analysing BPS D-branes. In

fact, knowledge on the spectrum of BPS D-branes is a requirement to build interesting

type II string vacua, since they typically host the non-trivial gauge sector of the compact-

ification [1]. The more precise this knowledge is, the better the picture on the set of vacua

on a certain region of the string landscape.

While D-brane BPS conditions have been thoroughly analysed for different classes of

vacua, solving them explicitly can oftentimes be challenging. In that sense, a particularly

tractable set of vacua is given by type IIB Calabi-Yau orientifolds with O3/O7-planes.

Indeed, in this case the set of space-time-filling BPS D-branes at large volume is given

by D3-branes and D7-branes. On the one hand, the embedding of a single D3-brane is

simply a point in the internal six-manifold B, which trivially satisfies the BPS conditions.

On the other hand, the BPS conditions for a single D7-brane demand that it wraps a

holomorphic four-cycle S ⊂ B, threaded by an anti-self-dual worldvolume flux. Thanks

to the machinery of Kähler geometry, finding the full set of such four-cycles and fluxes

for a compact Calabi-Yau is a relatively easy task. A similar statement applies to stacks

of D7-branes on S endowed with non-Abelian, anti-self-dual gauge bundles, which allows

to have a good grasp on the spectrum of space-time-filling BPS D-branes in this setting.
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Overall, the capability to construct such D-branes explicitly explains to great extent why

type IIB orientifold compactifications and their F-theory generalisation has flourished so

much in the past few years [2–8].

Nevertheless, it is precisely in this context where it has been realised that such BPS

solutions may not be sufficient to realise certain phenomenological features. In addition to

the above configurations, one may consider stacks of 7-branes whose complex worldvolume

scalar (a.k.a. Higgs field) has a non-Abelian profile. These new objects are typically known

as Higgs bundles in the mathematics and T-branes in the string theory literature [9–12],

and can be seen as generalisations of the original construction of Hitchin [13]. As pointed

out in [10, 11], such T-brane backgrounds are crucial to engineer and compute realistic

Yukawas in F-theory GUTs [14–17], as checked in explicit models in [18–21]. Since then

there has been a lot of effort in understanding this class of backgrounds [22–36].

Unlike their Abelian counterparts, configurations of 7-branes with a non-Abelian Higgs-

field profile are poorly understood, in the sense that it is not known when they can be

accommodated in type IIB/F-theory compactifications. Needless to say, this knowledge

is necessary to realise the full model building potential of this class of vacua. This paper

aims to make progress in this direction by analysing the conditions to construct T-branes

with a compact embedding. That is, we analyse D7-branes with a non-Abelian profile for

its worldvolume scalar Φ, globally well-defined over a compact Kähler four-cycle S and

without any poles. We dub such configurations as compact T-branes, and analyse them by

inspecting the related Hitchin system of equations over S. We therefore extend previous

analysis of this sort, which so far have been essentially performed only at a local level.1

As usual, obstructions may be found when trying to extend a local solution globally. In

our case we find that constructing compact T-brane solutions crucially depends on the Ricci

curvature of the surface S, and more precisely on its cohomology class. Indeed, we find

obstructions to the existence of compact T-branes over complex four-cycles of vanishing or

positive-definite curvature, like K3 or del Pezzo surfaces. On surfaces of negative-definite

curvature, instead, solutions can always be constructed, generalising the result of Hitchin

for Riemann surfaces of genus g > 1 [13]. Finally, for surfaces of indefinite curvature the

construction will depend on the particular region of the Kähler moduli space where we sit.2

This latter case raises the question of the fate of T-branes when we move in Kähler moduli

space and, in particular, when we pass from one region to another by crossing stability

walls. In this respect, we find that a T-brane is either converted into a different BPS

object as it crosses the wall, or it splits into non-mutually-BPS constituents. As could be

expected, the T-brane’s fate will ultimately depend on its topological data, and we analyse

several interesting cases in terms of them.

The paper is organised as follows. In section 2 we specify the class of T-branes that we

will be studying, with special emphasis on their global description in terms of a compact

four-cycle. We then turn to discuss solutions to the BPS equations, first the analogous

1An alternative treatment is via tachyon condensation techniques, particularly suitable for T-branes

defined over 7-brane intersections. In this case a global analysis can also be carried out, as shown in [25].
2More precisely, we find that, if ρ is the Ricci form of S and J its Kähler form, then compact T-branes

can be constructed when
∫
S
ρ ∧ J < 0.
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of the original Hitchin solution and then generalisations thereof. In section 3 we prove

a topological obstruction to building compact T-brane solutions: they cannot be hosted

by four-cycles of vanishing or positive-definite Ricci curvature class. Finally, in section 4

we analyse the stability of the allowed T-brane constructions as we move in large volume

Kähler moduli space, and in particular their fate after crossing a stability wall. We draw

our conclusions in section 5.

Some technical details are relegated to the appendices. In appendix A we give a

four-dimensional interpretation of the non-harmonicity of the worldvolume flux in T-brane

solutions. In appendix B we construct several explicit examples of the stability-wall tran-

sitions discussed in section 4.

2 Global aspects of T-branes

Consider a stack of 7-branes wrapping a compact Kähler surface S. Following [14–17], the

7-brane configuration and degrees of freedom can be characterised in terms of an eight-

dimensional action on R1,3×S with a non-Abelian symmetry group G. In particular, such

data are encoded in terms of two two-forms on S: the field strength F = dA− iA∧A of the

7-branes gauge boson A, and the (2,0)-form Higgs field Φ, whose eigenvalues describe the

7-brane transverse geometrical deformations. Both A and Φ transform in the adjoint of the

initial gauge group G, which is nevertheless broken to a subgroup due to their non-trivial

profile. Finally, such profiles need to satisfy certain equations of motion, which in the case

of supersymmetric configurations are given by

∂̄AΦ = 0 (2.1a)

F(0,2) = 0 (2.1b)

J ∧ F +
1

2
[Φ,Φ†] = 0 , (2.1c)

where J is the Kähler two-form of S. These equations are a generalisation of the celebrated

Hitchin system [13] to a four-manifold. Upon dimensional reduction to four dimensions, the

first two equations ensure the vanishing of the F-terms, while the third equation ensures

the vanishing of the D-terms.

In this paper we will analyse 7-brane backgrounds with non-commuting expectation

values for the worldvolume scalar Φ, namely such that [Φ,Φ†] 6= 0, also known as T-branes

in the string theory literature. We will restrict to those T-brane configurations that are

globally well-defined over a compact Kähler surface S and such that the Higgs field pro-

file is absent of poles.3 We dub such T-brane configurations as compact T-branes, in the

sense that the spectral equation for Φ describes a compact surface. Notice that poles are

naturally associated to field-theory defects originating from additional 7-branes intersect-

ing the stack. More precisely, they are generated by localized modes acquiring non-trivial

vacuum expectation values [15]. Therefore we may interpret a compact T-brane as a stack

of 7-branes “in isolation” from the others, meaning that all fields localized at its intersec-

tions have vanishing expectation value. We may see these BPS 7-brane configurations as

3See [33] for a recent account of Hitchin systems with poles.
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the basic building blocks in type IIB/F-theory compactifications, and we can treat them

independently of each other due to their mutual supersymmetry. We will moreover focus

on solutions of equations (2.1) involving an Abelian profile for the gauge field. Said dif-

ferently, in our backgrounds the source of non-commutativity of the 7-brane system will

come entirely from Φ.

In order to describe the essential features of compact T-branes, in this section we will

focus on the simplest possible example, namely a stack of two D7-branes. This case allows to

generalise the original example of Hitchin on a Riemann surface [13] to a compact complex

four-cycle. From there one may generalise the T-brane Ansatz in a number of ways, finding

backgrounds with a non-harmonic worldvolume flux. As we will see, the departure from

harmonicity is governed by certain non-linear differential equations, and this will allow to

connect our constructions with the literature of T-brane solutions in flat space.

2.1 T-branes and non-harmonic fluxes

Let us focus on a stack of two 7-branes wrapping S, and therefore on a super-Yang-Mills

theory on R1,3 × S with symmetry group G = SU(2). We will always assume that S is

simply-connected, i.e. π1(S) = 0. This will simplify our analysis considerably because it

implies, in particular, that holomorphic line bundles on S have their topology completely

specified by the first Chern class. As mentioned, we will also restrict attention to a rank-two

gauge bundle V on S of split type, i.e.

V = L ⊕ L−1 , (2.2)

where L is a line bundle whose curvature we denote by F . The F-term (2.1b) of the

eight-dimensional super-Yang-Mills theory forces F to be a differential form of Hodge-type

(1, 1), which gives L a holomorphic structure. Moreover, since F is closed, using the Hodge

decomposition, we can uniquely write it as

F = F h + dα , (2.3)

where the superscript h denotes the harmonic representative and α is a globally well-defined

one-form. Note that the absence of non-trivial first-cohomology classes on S, following

from its simply-connectedness, forbids harmonic representatives for α. We can thus always

choose (globally) a gauge that kills the exact part of α, and use the ∂∂̄-lemma (see e.g. [37])

to write

α = −dc g (x, x̄)

2
, (2.4)

where g(x, x̄) is a globally well-defined real function on S (with local complex coordinates

collectively denoted by x) such that
∫
S g dvolS = 0, and dc = i(∂̄ − ∂). Using that S

is Kähler, it is easy to see that the co-differential operator δ = − ∗ d∗ annihilates the

expression (2.4), and hence α is co-closed. In this way, the gauge field strength becomes

F = F h − i∂∂̄g . (2.5)

The function g, or equivalently α, will play a key rôle in the sequel. It will be the

unknown of the non-linear partial differential equation governing T-brane backgrounds,
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which arises from the equation (2.1c) of the eight-dimensional super-Yang-Mills theory. In

an ordinary intersecting-brane background, where Φ is diagonalisable, this equation forces

F to be primitive. By a standard result in Kähler geometry (see e.g. [37]), every primitive

(1,1)-form on a Kähler two-fold is anti-self-dual with respect to the Hodge-star operator.

Since F is closed, this implies then that F is also co-closed, and hence harmonic. Now,

reversing the argument, a T-brane supersymmetric configuration will involve a gauge field

strength which is closed but not anti-self-dual, and therefore F will not necessarily be

given by the harmonic representative of a certain cohomology class. This departure from

harmonicity is described by g.

As we will see, the information that g encodes is lost in the four-dimensional effective

theory. It can only be recovered when we include the D7-brane Kaluza-Klein modes into

the four-dimensional description, as we discuss in appendix A. In other words, g determines

the microscopic details of the T-brane background, which only the eight-dimensional theory

is sensitive to.

In order to determine g let us for convenience define the global real function

ϕ(x, x̄)σ3 ≡ ∗[Φ,Φ†] , (2.6)

where, compatibly with our choice of gauge bundle V, we restrict our attention to commu-

tators proportional to the third Pauli matrix σ3. Then one can see that ϕ ≥ 0 all over S

and that equation (2.1c) reads

F ∧ J = −ϕ
4
J2 . (2.7)

Using the Lefschetz decomposition of harmonic forms (as is explained for instance in [2]),

we can write

F h =
c

4
J + F h

p , (2.8)

where c is a constant, F h
p is primitive and the numerical factor is for later convenience. Of

course this splitting depends on the Kähler moduli of our string compactification, and the

periods of the two summands are generally real (moduli-dependent) numbers which must

add up to (half-)integer numbers to satisfy the quantization condition for F .4

Using that S is Kähler, one can show that 2i∂∂̄g ∧ J = ∗∆g, where ∆ is the Laplace

operator in real coordinates. This leads us to an elegant rewriting of equation (2.7):

∆g(x, x̄) = c+ ϕ(g; x, x̄) , (2.9)

where we indicated that ϕ may formally depend on g as well, as will be clear shortly.

At this point, one fixes an hermitian metric on S, and solves equation (2.9) for g, or

equivalently for the unitary connection A on L. Notice that a necessary requirement to

solve this equation is that its r.h.s. integrates to zero, i.e.

c = − 1

2Vol(S)
Tr

∫
S

[Φ,Φ†]σ3 , (2.10)

4Recall that, in cohomology, 1
2π

[F ] = c1(L).
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which is nothing but the condition for vanishing D-term potential in the four-dimensional

low-energy effective theory.

Practically, equation (2.9) can only be solved analytically in few situations, because

in general ϕ will depend non-linearly on g. Nevertheless this equation is always of elliptic

type [13] and, as such, on a compact manifold it admits a unique smooth solution if the

input function ϕ is smooth and provided that (2.10) is satisfied [38].

The most convenient and adopted [11, 12] approach to formulate the problem is to

fix the holomorphic structure of L such that A0,1 = 0, which turns the anti-holomorphic

covariant derivative of equation (2.1a) into the simple Dolbeault operator ∂̄. In this frame,

equation (2.1c) (or else (2.9)), becomes an equation for the hermitian metric h on L, which

appears in the gauge field strength. The latter is indeed the curvature of the associated

Chern connection A1,0 ∼ h−1∂h, i.e. locally F = −i∂∂̄ log h. Given that we can locally

write F h = −i∂∂̄ log h0 and that F and F h are in the same cohomology class, we see that

the unknown function g is globally-well defined and enters the metric h as a conformal

factor, i.e. h = h0 e
g.

For concreteness, let us consider a nilpotent Higgs field profile

Φ =

(
0 m

0 0

)
(2.11)

where m ∈ H2,0(S,L2). Using Serre duality, we can also see m as a scalar holomorphic

section of the line bundle M ≡ L2 ⊗KS , with KS the canonical bundle of S. By a slight

abuse of notation, in the following we will describe both kinds of object with the same

symbol, being clear from the context which one we are referring to. As it stands, this

profile is a solution of equation (2.1a) in the holomorphic gauge. However, equation (2.1c)

contains the adjoint Φ†, which depends on the metric as

Φ† = H−1Φ+H , (2.12)

where the superscript + indicates complex conjugation and matrix transposition, and H =

diag(h, h−1). This brings a non-linearity in the partial differential equation (2.9), which

can now be written as

∆g = c+
h20 |m|2

hS
e2g , (2.13)

where hS , the determinant of the fixed hermitian metric on S, appears because of applying

the Hodge-star operator on a four-form. This is a rather non-trivial equation that reduces

to a Liouville-like equation when m is constant and hS is the flat metric [11]. Nevertheless,

there is a particularly nice setup in which (2.13) simplifies even further, as we discuss

explicitly in the next subsection.

As a side remark, note that, for the split-type configurations (2.2) we consider in

this paper, the stability-based algebro-geometric criterion [39] for existence and unicity of

solutions of the non-Abelian BPS equations (2.1) is trivially satisfied. For instance, it is

immediate to see that the only sub-bundle of V preserved by the Higgs field (2.11) (i.e. L)

has negative J-slope, as enforced by the D-term equation (2.10).

– 6 –
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2.2 The Hitchin Ansatz

The most emblematic class of Higgs-bundle configurations is probably the one originally

studied by Hitchin in the case of Riemann surfaces [13]. One can straightforwardly extend

this Ansatz to the present context of complex surfaces, as first suggested in [38]. This

would correspond to taking the nilpotent Higgs field (2.11) such that the line bundle M is

the trivial one, which amounts to demanding that5

L ' K−1/2S . (2.14)

Since S is compact, this choice implies that the quantity m in (2.11) can only be a constant.

Notice also that equation (2.14) only fixes the cohomology class of the gauge curvature in

terms of that of S, but not its actual representative. Therefore, let us write the Ricci form

of S as

ρ = ρh − 2i∂∂̄s(x, x̄) , (2.15)

where s is another globally well-defined smooth real function on S such that
∫
S s dvolS = 0,

and the factor of 2 is for later convenience. Then, eq. (2.14) states that F h = ρh/2, or

equivalently, using (2.5), that6

F =
ρ

2
− i∂∂̄(g − s) . (2.16)

Loosely speaking, eg−s is the conformal factor needed to rescale the hermitian metric

on the surface S to get the hermitian metric on the line bundle L. More precisely we have

h0 =
√
hSe−s . (2.17)

Using the above relation, our partial differential equation (2.13) becomes

∆g = c+ |m|2e2(g−s) , (2.18)

where, as said, in this Hitchin set of solutions m is a complex number. Let us now analyse

two possible sub-cases of this setup.

Kähler-Einstein metric. The easiest possible situation is analogous to the one origi-

nally considered by Hitchin in the case of Riemann surfaces [13]. This arises when g = s.

Taking into account the D-term condition (2.10), which now simply says that c = −|m|2,
equation (2.18) reads

∆g(x, x̄) = 0 , (2.19)

whose unique solution on S is g(x, x̄) = 0. This, in turn, means that also s = 0, and thus

that both the gauge flux F and the Ricci form ρ are harmonic. If in particular h1,1(S) = 1,

then F h
p = 0 in equation (2.8) and therefore we have

ρ = −|m|
2

2
J . (2.20)

5At weak coupling this is made compatible with cancellation of the Freed-Witten anomalies of the

individual branes by considering a suitably-quantised primitive flux associated to the center-of-mass U(1).
6Recall that, in cohomology, 1

2π
[ρ] = c1(K−1

S ).
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Thus the metric on our surface S is Kähler-Einstein with Einstein constant −|m|2/2, that

is it has constant negative Ricci curvature.

We can reverse the above argument and get a more useful statement. If we fix the

metric on S to be Kähler-Einstein, then ρ = kJ with k a real constant, which in particular

means that s = 0 in equation (2.15). Equation (2.13) now reads

∆g = |m|2
(
e2g − 1

Vol(S)

∫
S
e2gdvolS

)
, (2.21)

where we substituted the value of c fixed by the D-term (2.10). The above equation auto-

matically implies that g(x, x̄) = 0, because it admits a unique smooth solution. Therefore

we conclude that, if we fix a (negatively curved) Kähler-Einstein metric on S, the vacuum

solution for a constant nilpotent Higgs field involves a non-primitive, but still harmonic

gauge flux.

Beyond Kähler-Einstein. If instead we consider a non-Kähler-Einstein metric on S, the

vacuum profile of the gauge flux will necessarily depart from the harmonic representative,

and will be uniquely fixed by the equation

∆g = |m|2
(
e2g−2s − 1

Vol(S)

∫
S
e2g−2sdvolS

)
. (2.22)

As before, there will be a unique smooth solution for g. Note that this extension beyond

Kähler-Einstein is also possible in the case of Riemann surfaces, thus directly generalising

the type of solution discussed in [13].

2.3 Generalising the Ansatz

There are a few ways of generalising the above simple set of solutions, namely by considering

Higgs field profiles that are non-nilpotent and by considering line bundles L that do not

meet the topological condition (2.14). In the following we will consider and combine both

generalisations, comparing the resulting equations for the function g with the local T-brane

solutions in the literature.

Non-nilpotent Higgs field. Let us first consider the case of four-cycles where the con-

dition (2.14) is met, but now we have a non-nilpotent (but still non-commuting) profile for

the Higgs field. Namely we consider it to be of the form

Φ =

(
0 m

p 0

)
(2.23)

where p ∈ H2,0(S,L−2), or equivalently a scalar holomorphic section of the line bundle

P ≡ L−2 ⊗KS . Notice that due to (2.14) we have that P ' K2
S . Such a bundle will have

sections in many four-cycles of negative curvature, like for instance in those where KS also

does. In this case eq. (2.13) generalises to

∆g = c+ h−1S
(
|m|2h20e2g − |p|2h−20 e−2g

)
, (2.24)

– 8 –
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and so, using eq. (2.17), we arrive to

∆g = c+
(
|m|2e2g − h−40 |p|

2e−2g
)
e−2s . (2.25)

As before, |m|2 is a constant, while h−40 |p|2 is a globally well-defined smooth function on

S. Finally, enforcing the 4d D-term condition implies that c is given by

c = − 1

Vol(S)

∫
S

(
|m|2e2g − h−40 |p|

2e−2g
)
e−2sdvolS , (2.26)

so that eq. (2.25) has a (unique) solution.

Notice that now g will not vanish in the Kähler-Einstein case s = 0. Instead, eq. (2.25)

will become a complicated non-linear equation for g. Near the locus where p = 0 we can

Taylor expand the function h−40 |p|2, and recover an equation very similar to that obtained

in the local T-brane Z2 background of [11]. As pointed out in there, such an equation

can be rewritten as a Painlevé III differential equation. Hence one would expect that, at

least in a local patch near p = 0, the profile for g can be expressed in terms of solutions

to that equation. Finally, one may depart from a Kähler-Einstein metric by considering

s 6= 0. This will modify the (unique) solution for g, which will depend on the profiles of

the functions |m|e−s and h−20 |p|e−s.

Non-trivial bundle M. Let us now consider relaxing the topological condition (2.14),

or in other words assume that M≡ L2 ⊗KS is a non-trivial bundle with sections. Given

its definition, we can express the hermitian metric on M as

hM = h−1S h20 e
2g = hM,0 e

2(g−s) , (2.27)

where hM,0 corresponds to the metric with curvature 2F h − ρh and s is again defined

by (2.15). We can then express (2.13) as

∆g = c+ ‖m‖2M e2(g−s) , ‖m‖2M ≡ hM,0|m|2 , (2.28)

with ‖m‖M a globally well-defined, smooth function on S that vanishes over the same locus

as m. This corresponds to an obvious generalisation of eq. (2.18), where now the input

function that determines g is given by e−s‖m‖M. Since ‖m‖M is non-constant, g will be

non-trivial even in the Kähler-Einstein case s = 0, and so the gauge flux F will depart

from harmonicity.

Finally, one may combine a non-trivial bundle M with a non-nilpotent Higgs

field (2.23), again assuming that P ≡ L−2 ⊗ KS has sections. In that case, we may

express the metric for this bundle as

hP = h−1S h−20 e−2g = hP,0 e
−2(g+s) , (2.29)

with hP,0 the metric of curvature −2F h − ρh. We then consider the globally well-defined,

vanishing smooth function on S given by ‖p‖2P ≡ hP,0|p|2. Together with the above defini-

tion for ‖m‖2M, we obtain an equation for g of the form

∆g = c+
(
‖m‖2Me2g − ‖p‖2Pe−2g

)
e−2s . (2.30)

While arising from a more general setup, this new differential equation is in fact very similar

to (2.25), with the new functions that determine g now given by e−s‖m‖M and e−s‖p‖P .
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3 A no-go theorem

The simple examples discussed in the previous section suggest that it is relatively easy to

construct global T-brane configurations on four-manifolds with negative Ricci curvature.

While it may seem that this preference comes from imposing the Hitchin Ansatz or general-

isations thereof, there is in fact a deeper reason behind. Indeed, in the following we will see

that compact T-brane configurations with Abelian gauge bundles cannot be implemented

on four-manifolds of vanishing or positive Ricci curvature. We will first show this no-go

result for the configuration with symmetry group G = SU(2) and split gauge bundle of the

type (2.2), and then generalise it to groups of higher rank.

The case of SU(2). In order to investigate the possible obstructions to the construction

of compact T-branes, let us first consider the stack of two D7-branes wrapping a simply-

connected Kähler surface S, and with split gauge bundle V = L⊕L−1. As before, we may

start considering the T-brane background given by the nilpotent Higgs vev

Φ =

(
0 m

0 0

)
, (3.1)

where m ∈ H0(S,M). Now, the very fact that an holomorphic section m exists implies

that the divisor associated to M≡ L2 ⊗KS is effective. That is, for J in the Kähler cone

we have ∫
S
J ∧ c1(M) =

∫
S
J ∧ (2c1(L) + c1(KS)) ≥ 0 (3.2)

with the equality holding if and only if M is trivial.7 Moreover, the 4d D-term condi-

tion (2.10), or equivalently ∫
S

[Φ,Φ†] = −2

∫
S
J ∧ F · σ3 , (3.3)

for a Higgs field of the form (3.1) implies that

2

∫
S
J ∧ c1(L) < 0 , (3.4)

where we just used that F/2π represents c1(L) in cohomology. Subtracting the l.h.s. of (3.4)

from the middle expression in (3.2), we get the statement that we can construct such a

T-brane in a region of Kähler moduli space where∫
S
J ∧ c1(KS) > 0 . (3.5)

This conditions forbids S to be K3 or a manifold with positive-definite Ricci curvature.

Indeed, if it were positive definite, the canonical class, which is represented by minus

the Ricci form, would necessarily have a negative volume everywhere in Kähler moduli

space. Kähler surfaces with negative-definite Ricci curvature certainly satisfy the necessary

7We will always be at large volume, so in particular well away from boundaries of the Kähler cone.
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requirement (3.5), but surfaces with indefinite curvature may also do so. The second

inequality we get from (3.2) and (3.4) is∫
S
J ∧ c1(M) <

∫
S
J ∧ c1(KS) , (3.6)

which simply states that the volume of the holomorphic curve {m = 0} must be strictly

smaller than the one of the self-intersection curve of S.8 As a result, given a surface of

non-positive curvature and a point in Kähler moduli space, (3.6) selects a subset of the

lattice of bundles [L] that one can use to build a T-brane background.

As an example, take the case where S has only one Kähler modulus, i.e. h1,1(S) = 1.

Together with the fact that S is simply-connected, this implies that every gauge “line

bundle” L on S is of the form L ' K−n/2, for some non-zero integer n. Then, the two

conditions (3.2) and (3.4) boil down to n ≤ 1 and n > 0 respectively, which are both

solved only by the choice n = 1. This is nothing but the generalisation of Hitchin’s class

of solutions to a four-manifold, as already analysed in [38].

Let us now consider the most general Higgs vev compatible with a split rank-two gauge

bundle, namely

Φ =

(
0 m

p 0

)
, (3.7)

where now m ∈ H0(S,M) and p ∈ H0(S,P), with P ≡ L−2 ⊗KS . Suppose now, without

loss of generality, that the Fayet-Iliopoulos (FI) term in (3.3) is positive, namely condi-

tion (3.4) is satisfied. Then we obtain the following inequalities among the areas of the

various curves involved

0 ≤
∫
S
J ∧ c1(M) <

∫
S
J ∧ c1(KS) <

∫
S
J ∧ c1(P) , (3.8)

where again the first inequality (with equality if and only if M is trivial) comes from

requiring that M admits at least one holomorphic section, as otherwise equation (3.3)

with positive FI term would be violated. Conversely, if the FI is negative, we get the same

statement (3.8) with M and P swapped. In other words, the modes determining the sign

of the D-term define the curve with the smallest volume. In any of these cases we have

that (3.5) must be satisfied, which again obstructs the construction of compact T-brane

configurations on four-manifolds of vanishing or positive-definite Ricci curvature.

Incidentally, notice that the product mp transforms as a section of H0(S,K2
S), and it

appears in the spectral equation for the Higgs field. Therefore for the background (3.7) one

could have guessed the obstruction to realise it on del Pezzo surfaces from a more standard,

spectral-surface-based reasoning, see e.g. [40]. Nevertheless, our analysis provides more

detailed information about the obstruction, like for instance the inequalities (3.8) that

select a subset of possible line bundles [L].

8Note that such a curve needs not be holomorphic.
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Higher rank groups. Let us now consider a general simple Lie group G: this includes the

non-classical groups, which need departure from the weak coupling regime to be engineered.

Following the F-theory arguments of [15], we expect that our analysis, which is based on the

eight-dimensional (partially twisted) Super-Yang-Mills-Higgs theory, carries over to these

general cases. In particular, the Higgs field Φ should always be regarded as a (adjoint-

valued) section of the canonical bundle of S, despite the fact that, away from weak coupling,

this contradicts our intuition of associating this field to normal deformations of the stack.

Let Hi be the Cartan generators of G and Eρ be the set of roots such that

[Hi, Eρ] = ρiEρ . (3.9)

We choose a basis of Cartan generators that diagonalises the Cartan-Killing metric

gij = Tr (HiHj) , (3.10)

and moreover we choose their normalisation such that the ρi are all integer numbers.

Now we take the following Ansatz for our T-brane background

F

2π
=
∑
i

ωiHi =
∑
i

c1(Li)Hi (3.11)

and

Φ = mρEρ (3.12)

with mρ ∈ H2,0(⊗i(Li)ρi) and ρ a set of roots such that

[Eρ, E
†
σ] = δρσ

∑
i

ρiHi , (3.13)

where ρi = ρig
ii. Hence

[Φ,Φ†] = mρ ∧ m̄ρ
∑
i

ρiHi . (3.14)

On the one hand, the fact that mρ are holomorphic sections implies∫
S

(∑
i

ρic1(Li) + c1(KS)

)
∧ J ≥ 0 ∀ρ . (3.15)

On the other hand, the D-term condition implies that

2π

∫
S
c1(Li) ∧ J = −1

2
ρi
∫
S
mρ ∧ m̄ρ ∀i , (3.16)

which in turn implies the following∑
i

ρi

∫
S
c1(Li) ∧ J < 0 . (3.17)

Putting these two results together we finally obtain the following inequalities among curve

areas ∫
S
c1(KS) ∧ J >

∫
S

(∑
i

ρic1(Li) + c1(KS)

)
∧ J ≥ 0 ∀ρ , (3.18)

and in particular we recover equation (3.5).
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4 T-branes and stability walls

Starting from a T-brane configuration, we now want to study its stability when we move

in the moduli space of Kähler structures. Changes are expected to arise simply because

the r.h.s. of the D-term equation (3.3) depends on the Kähler form. In particular, if S

has more than one Kähler modulus, there will generically be real codimension-one loci in

the Kähler moduli space where the r.h.s. vanishes, possibly resulting in a decay of the

T-brane, or in its transmutation into a different type of supersymmetric vacuum. In this

section, we would like to make a systematic study of what may happen to the T-brane

background as we cross such stability walls. We will first consider the sort of T-brane

configurations considered in section 2, and then extend our analysis to a system of two

D7-branes intersecting at a curve.

4.1 Coincident branes

Let us consider two D7-branes wrapping a simply-connected Kähler surface S, holomor-

phically embedded in a Calabi-Yau threefold. As in section 2 we consider a split rank-two

gauge bundle of the form (2.2), specified by a line bundle L of curvature F . We moreover

consider a Kähler structure compatible with a T-brane of the nilpotent type (3.1). Because

of the D-term (3.3), the size of the vev 〈m〉 is controlled by the FI term
∫
F ∧J , and thus it

is proportional to the distance from the wall, which is defined by the condition
∫
F ∧J = 0.

There we get a vanishing vacuum expectation value for Φ and therefore a standard sys-

tem of two coincident D7-branes with a worldvolume flux along the Cartan. We are now

interested in studying the open-string moduli space in a region around the origin

Φ = 0 , (4.1)

and to see how the D7-brane system evolves when the FI term is switched back on, at the

other side of the wall.

To carry such an analysis one may first consider the spectrum of light open-string

modes at the wall, where the effective theory has a unbroken U(1) × U(1) gauge group

and a set of bifundamental chiral fields charged under the relative U(1), associated to the

Cartan.9 By standard results [41] (see also [42]), the full spectrum of charged massless fields

is provided by the appropriate sheaf-extension groups. More precisely, as in section 2, let

us define the two line bundles M ≡ L2 ⊗KS and P ≡ L−2 ⊗KS , with KS the canonical

bundle of S. Then one has

(+) ∈ Ext1(i∗L−1, i∗L) ' H0(S,M)︸ ︷︷ ︸
m

⊕ H1(S,P)︸ ︷︷ ︸
a+

,

(−) ∈ Ext1(i∗L, i∗L−1) ' H0(S,P)︸ ︷︷ ︸
p

⊕ H1(S,M)︸ ︷︷ ︸
a−

,
(4.2)

where the signs on the left indicate the relative-U(1) charge and i is the embedding map

of S in the Calabi-Yau threefold. Here the H0 parts correspond to massless off-diagonal

9We neglect the possibility of turning on a B-field, as the latter would only contribute to the FI term

associated to the center-of-mass U(1), and thus have no effect on the T-brane sector.
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fluctuations of the Higgs field, whereas the H1 parts correspond to off-diagonal components

of the non-Abelian gauge field living on S. Notice that a non-vanishing vacuum expectation

value for the latter would correspond to a non-Abelian gauge bundle, and so the vevs for

such fields a± were assumed to vanish in the T-brane configurations of section 2. We must

however take them into account in the following, to study how the D-brane configuration

may react as we cross a stability wall.

On top of the charged modes there are also uncharged zero modes, which however

only appear as fluctuations of Φ and not of the gauge field, because we are taking S to be

simply-connected. Such fields originate from open strings with endpoints on the same D7-

brane and thus corresponding to its normal deformations inside the ambient Calabi-Yau

manifold. Here we only focus on relative deformations of the two branes wrapping S, and

ignore the movements of their center of mass. Therefore, these deformations appear in the

Higgs-field fluctuation as

δΦ|neutral =

(
v 0

0 −v

)
, v ∈ H0(S,KS) . (4.3)

Note that these vevs were also set to vanish in the T-brane configurations of section 2.

Finally, the absence of modes with negative norm (ghosts) for the strings connecting

the two branes [14] leads to the following important requirements

H0(S,L2) = H0(S,L−2) = 0 . (4.4)

These conditions are automatically satisfied if the FI term vanishes and we are inside the

Kähler cone.

Given the above spectrum one may analyse how the system behaves at both sides of

the wall. For simplicity, we will first consider the case where the modes (4.3) are absent.

Then, in a sufficiently small region in Kähler moduli space around the wall, and upon

dimensional reduction to 4d, the D-term condition (2.1c) becomes10∑
m

|m|2 +
∑
a+

|a+|2 −
∑
p

|p|2 −
∑
a−

|a−|2 = ξ , (4.5)

which is nothing but the vanishing of the 4d D-term scalar potential. By assumption, on

one side of the wall we have a supersymmetric configuration where only m-type zero modes

have a non-vanishing vev, and so there ξ > 0. Then we reach the wall by moving in the

Kähler-structure moduli space. After crossing the wall the FI term flips sign, so

ξ ≡ −2

∫
S
J ∧ c1(L) < 0 . (4.6)

Therefore from equation (4.5) it is manifest that if H0(S,P) = H1(S,M) = 0, there is no

solution for the D-term equation as we cross the wall. Microscopically, this means that

10We use the same symbol for the eight-dimensional fields and the corresponding four-dimensional zero

modes, and suppress the symbol 〈·〉 to indicate the vev. We moreover work in units of α′.
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the T-brane we started with disappears as we cross the wall, by decaying into its D7-brane

constituents, which are not mutually supersymmetric.11

Interestingly, by using the index theorem we are able to formulate a practical necessary

criterion for such a decay to occur. In particular, applying the index theorem to the line

bundle P, we get

h0(S,P)− h1(S,P) =

∫
S

ch(P) ∧ Td(S) , (4.7)

where the symbol hi indicates the dimension of the corresponding group H i, “ch” is the

total Chern character and “Td” is the Todd class.12 In (4.7) we have used that h2(S,P) =

h0(S,L2) = 0, where the first equality comes from Serre duality, and the second from

equation (4.4). Likewise, the index theorem for the line bundle M means that

h0(S,M)− h1(S,M) =

∫
S

ch(M) ∧ Td(S) , (4.8)

where again we used that h2(S,M) = h0(S,L−2) = 0, because of Serre duality and equa-

tion (4.4) respectively. By subtracting equation (4.8) from equation (4.7), with some trivial

algebra we get to the chiral index of the theory:

I = #(+)−#(−) = 2

∫
S
c1(L) ∧ c1(KS) , (4.9)

where the symbol #(±) denotes the number of zero modes with U(1)-charge ±. Finally,

from equation (4.9) we obtain the following implication

I = 2

∫
S
c1(L) ∧ c1(KS) ≤ 0 =⇒ No T−brane decay , (4.10)

because if there were no negatively-charged modes available to turn the T-brane into an-

other supersymmetric system, the integral on the l.h.s. would necessarily be positive.

On the contrary, if conditions are met for some negatively-charged modes to exist, the

T-brane simply turns into a different supersymmetric state on the other side of the wall.13

The latter could be another T-brane, if just the p-type modes get a vev, a non-Abelian

bundle configuration (T-bundle) if just the a−-type modes get a vev, or a more complicated

mixed object. The indices of the individual bundles, quoted in equations (4.7) and (4.8),

can turn useful to guess what type of object the T-brane may turn into, although most of

the times they cannot give definite answers. In practice, one may compute the cohomology

groups in (4.2) case by case, as illustrated in appendix B, to find out the fate of the T-brane

at the other side of the wall. There are however a few classes of constructions where a more

general statement can be made, as we discuss in the following.

11Note that we are considering the D7-brane stack in isolation, neglecting other D-branes that may yield

further chiral zero modes charged under the Cartan U(1). One clearly needs to take into account the full

brane content of the compactification to see if crossing the wall really breaks supersymmetry.
12For a line bundle F , ch(F) = 1 + c1(F) + c21(F)/2, and for a surface S one has Td(S) = 1− c1(KS)/2 +

(c1(KS)2 + c2(S))/12.
13One particular case is when I = 0, which in the literature corresponds to a wall of threshold stability.

Indeed, by looking at the definition (4.9) one realises that −I corresponds to the intersection product used

in [43] to classify stability walls.
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The Hitchin Ansatz. An interesting case of T-branes is the one constructed using what

we have dubbed the Hitchin Ansatz, namely whenM is trivial, or equivalently L ' K−1/2S .

One important remark regarding this case is that, if the Ricci curvature of S is negative

definite, then there will be no stability walls. Indeed, for L ' K
−1/2
S we have that the FI

term becomes

ξ =

∫
S
J ∧ c1(KS) , (4.11)

which for negative curvature cannot be taken to zero while moving inside the Kähler cone.

Let us then consider the case where the Ricci curvature of S is indefinite. This in

particular implies absence of holomorphic sections for the canonical bundle (thus S is

rigid) and for any power thereof (positive and negative). Therefore no p-type modes are

available and, since by assumption S is simply-connected, no a−-type modes are available

either. Hence, in this class of configurations, our T-brane is forced to decay into a non-

supersymmetric vacuum when the wall is crossed.

A simple instance of a Kähler surface with the above properties can be obtained as

follows. Consider P4 with homogeneous coordinates x1, . . . , x5, blown up along a four-cycle,

e.g. {x1 = x2 = 0}. The toric weights of this manifold are

x1 x2 x3 x4 x5 w

1 1 0 0 0 −1

0 0 1 1 1 1

(4.12)

where E : {w = 0} corresponds to the exceptional divisor, homeomorphic to P2×P1. In this

ambient manifold, we consider the Calabi-Yau threefold CY3 given by the zero-locus of a

smooth polynomial of bi-degree (1, 4), and the D7-brane stack wrapped on S : E ∩CY3. It

is easy to show that this surface is rigid (as a consequence of the rigidity of the exceptional

divisor), and moreover has indefinite Ricci curvature, because e.g.∫
S∩{x1=0}

c1(KS) = 4 ,

∫
S∩{x3=0}

c1(KS) = −3 . (4.13)

By using the Hirzebruch-Riemann-Roch theorem, we can also easily show that this surface

has no cohomologically non-trivial one-forms

h0,1(S) = 1− 1

12

∫
S
c21(KS) + c2(S) = 0 , (4.14)

where we used that h0,2(S) = 0. If we label H : {x1 = 0} and expand the Kähler form in this

basis, J ≡ vH H + vE E, we may compute the Fayet-Iliopoulos term as ξ = 5(4vH − 7vE),

which can indeed acquire both positive and negative values within the Kähler cone.

Negative curvature. Let us now consider the case where the Ricci curvature of the

surface S is negative definite. Note that this does not necessarily imply that S can be

holomorphically deformed, a subcase to be considered momentarily. By the observation

made above, in the negative curvature case we must consider a T-brane whose m-type mode
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transforms under a non-trivial bundle M. The fact that M is effective and non-trivial,

together with the ampleness of KS due to the negative curvature, implies that

I > −
∫
S
c21(KS) , (4.15)

where the r.h.s. is a negative integer number. Applying the same reasoning to the bundle

P, we have that the existence of p-type modes implies that I ≤
∫
S c

2
1(KS), and so whenever

I >

∫
S
c21(KS) > 0 (4.16)

there will be no such p-modes. Notice that imposing (4.16) implies (4.15). Therefore, if we

consider a case where (4.16) is satisfied and h1(S,M) = 0 (see appendix B for an example),

then there will be a T-brane decay. Alternatively, if h1(S,M) > 0 then the T-brane will

turn into a supersymmetric non-Abelian bundle configuration on the other side of the wall.

One particular case of a negative curvature four-cycle is when S can be holomorphically

deformed, namely when the modes (4.3) exist. Then there is a self-intersection curve defined

by C ≡ {v = 0} and with a genus g such that∫
S
c21(KS) = g − 1 . (4.17)

Note that by the adjunction formula one finds that g = 1 + [S]3, where [S] stands for the

divisor class of S in the Calabi-Yau. Since
∫
S c

2
1(KS) > 0, we have that [S]3 is a positive

number and so g ≥ 2.

In this particular case there is the open-string field v defined in (4.3), which is a

modulus along the wall. One may then wonder what happens when the wall is crossed

with a non-vanishing Higgs-field vev, namely at

Φ =

(
v 0

0 −v

)
. (4.18)

In this case, by dimensionally reducing the D7-brane superpotential

W =

∫
S

Tr (F ∧ Φ) , (4.19)

one obtains Yukawa couplings of the form

W ⊃ dijk viaj−ak+ , (4.20)

which generically give an F-term mass to the negative-chirality modes a−. Now, if we im-

pose (4.16) and cross the wall at (4.18), for h1(S,M) > 0 there will be an F-term potential

that will make (4.18) vanish and take the system to the supersymmetric configuration of

coincident D7-branes with a non-Abelian bundle created by the vev of a−.

Notice that at (4.18) we have a system of two homotopic D7-branes intersecting at

a curve C, with opposite worldvolume fluxes. This is nothing but a particular case of a

more general configuration, made of two intersecting D7-branes with arbitrary worldvolume

fluxes. As we will now see, one can formulate the T-brane wall-crossing conditions for this

more interesting case as well.
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4.2 Intersecting branes

Let us consider two D7-branes wrapping different simply-connected Kähler surfaces S1, S2,

holomorphically embedded in a Calabi-Yau threefold. Let L1,L2 be the holomorphic gauge

line bundles on each of the two branes, with fluxes F1, F2 respectively. As in the coincident

case, the four-dimensional effective theory has a U(1)×U(1) gauge group and bifundamental

chiral fields charged under the relative combination. The 4d D-term condition that controls

the vacuum expectation values of their scalar components is now given by14∑
m∈(+,−)

|m|2 −
∑

p∈(−,+)

|p|2 =

∫
S2

J ∧ F2 −
∫
S1

J ∧ F1 = ξ , (4.21)

where the two sums extend over zero modes with U(1) × U(1)-charges (+,−) and (−,+)

respectively. They correspond to open strings stretching from brane 2 to brane 1 and to

strings going the opposite way respectively. Assuming that the intersection curve C ≡ S1∩
S2 is connected, such zero modes are counted by the following sheaf-extension groups [41]

(see also [42]):

(+,−) ∈ Ext1(i2∗L2, i1∗L1) ' H0(C,L−12 |C ⊗ L1|C ⊗K
1/2
C ) ,

(−,+) ∈ Ext1(i1∗L1, i2∗L2) ' H0(C,L2|C ⊗ L−11 |C ⊗K
1/2
C ) ,

(4.22)

with KC its canonical bundle, and i1, i2 the embedding maps of branes 1, 2 respectively.

In this case the wall is defined by the Kähler structure slice where
∫
F1∧J =

∫
F2∧J .

There we have a system of two intersecting D7-branes, and thus the spectrum of massless

fluctuations is given by equation (4.22). Notice that, unlike in the coincident case, now the

spectrum of zero modes is only counted by modes of the Higgs field. We now assume that

there is at least one of these two types of modes, say a m-type mode with charge (+,−), so

that, at one side of the wall (ξ > 0), there is a supersymmetric bound state with a T-brane

profile localised at C. As we cross the wall to the other side, either this T-brane turns into

a different kind of T-brane or, if no p-type mode is available, the T-brane decays into the

two mutually non-supersymmetric constituents.15

Since in this case the spectrum of charged zero modes is simpler, we are able to

formulate a sufficient criterion for our T-brane to decay across the wall. First, notice that

the chiral index of the theory is given by

I ≡ degL1|C − degL2|C =
1

2π

∫
C
F1 − F2 . (4.23)

Let us for now assume that the surfaces S1, S2 do not have holomorphic deformations

or, if they do, that none of them will split the intersection curve into multiple connected

components. Then, calling g the genus of C and using the Riemann-Roch theorem, the

existence of the m-type mode we began with implies that

I ≥ 1− g , (4.24)

14As opposed to the coincident case, here the presence of a B-field does affect the FI term for the relative

U(1). Nevertheless we do not expect any qualitative changes in our analysis, especially for what concerns

the wall-crossing conditions, which we are going to deduce from purely topological considerations.
15This decay process has been discussed in [25].
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Figure 1. Different possibilities of decay into non-BPS constituents as a T-brane constructed from

two intersecting D7-branes crosses a stability wall.

with the equality holding if and only if m is constant, which is the analogue of the Hitchin

Ansatz for a system of intersecting D7-branes. This relation comes from the fact that the

degree of a line bundle on a curve coincides with the number of zeros minus the number

of poles of any of its rational sections. Moreover, we have the analogue of (4.10), with the

index theorem adapted to this case

I ≤ 0 =⇒ No T−brane decay . (4.25)

Finally, by the same reasoning, if the condition

I > g − 1 (4.26)

is satisfied, there are no p-type modes to form a T-brane on the side of the wall where the

FI term is negative. Therefore, we readily see that, if the two D7-branes intersect on a

sphere, the fate of our T-brane is to decay when we cross the wall. The same statement

holds true when C is a two-torus and
∫
C F1 6=

∫
C F2. We therefore obtain a simple picture

for the decay possibilities of intersecting D7-branes, summarised in figure 1.

If on the other hand the surfaces S1, S2 contain holomorphic deformations such that

C splits into multiple components, the wall-crossing picture just described may change.

Indeed, when the matter curve C = ∪aCa is disconnected, one needs to apply (4.22) sepa-

rately to each individual component Ca to obtain the massless spectrum. While then the

relations (4.24) and (4.25) continue to hold,16 the sufficient condition for decay (4.26) gets

replaced by a significantly weaker one. This is because it is enough to find at least a p-mode

localised on any of the connected components of C, in order for the two branes to bind

back again into a supersymmetric system across the wall. In other words, decay will only

occur when all the available holomorphic deformations of S1 and S2 split C in such a way

that on every component Ca one has Ia > ga − 1.

5 Conclusions

In this paper we have analysed global aspects of T-branes in type IIB/F-theory compact-

ifications. In this context T-branes were first presented as interesting configurations that

allow for hierarchical Yukawas in F-theory GUTs. Since the computation of Yukawas can

be essentially done within a local patch of the four-cycle SGUT, only a local description of

16More precisely, (4.24) should be written in terms of topological invariants as I ≥ h0,0(C)− h0,1(C).
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the T-brane background is needed to realise this property. Nevertheless, this local picture

inevitably misses some crucial features of T-branes, including possible obstructions to their

existence, that can only be revealed by a global analysis.

In this spirit we have given a global description of such T-brane configurations from the

viewpoint of the Kähler four-cycle S where they are defined. We have focused on T-branes

with a pole-free holomorphic Higgs field Φ, and an Abelian gauge flux F , which we have

dubbed compact T-branes. We have observed several general features that mainly depend

on the topology of S and the pull-back of the threefold Kähler form J . Namely we have

found that:

– In general, the worldvolume flux F lies in a non-harmonic representative of its coho-

mology class. The departure from harmonicity is codified in a globally well-defined

function g on S satisfying certain non-linear PDEs. In local patches, such equations

reproduce the ones already found in the T-brane literature.

– There is an obstruction to building these T-brane backgrounds on surfaces where the

Ricci curvature class vanishes or is positive definite. In the remaining surfaces the

existence of T-branes depends on the classes [ρ], [F ] ∈ H2(S) of the Ricci form and

the worldvolume flux, respectively, as well as on the point in Kähler moduli space.

For instance, in the simplest case, the following condition needs to be satisfied:

0 ≤
∫
S
J ∧ (2F − ρ) < −

∫
S
J ∧ ρ . (5.1)

Hence, given a four-cycle S and a point in Kähler moduli space, only the subset of

quantised fluxes F satisfying (5.1) will be suitable to construct a compact T-brane.

Notice that whenever the Ricci form has a negative sign when projected into the

Kähler form, one may choose [F ] = [ρ]/2 (i.e. the Hitchin Ansatz) to satisfy (5.1).

– In those regions of Kähler moduli space where 0 < ξα′ = − 1
πα′

∫
S F ∧J � 1, we may

interpret our T-brane background as a 7-brane bound state obtained after switching

on a Fayet-Ilioupoulos term ξ, and see the slice ξ = 0 as a T-brane stability wall.

The fate of the system as the wall is crossed to the region ξ < 0 again depends on the

T-brane topological data, and in particular on the two classes [ρ] and [F ]. A similar

statement holds for a T-brane built at the intersection of two 7-branes.

These general results already suggest many avenues for further investigation. The two

most pressing questions are perhaps i) how everything generalises when we allow for T-

brane systems with poles, and ii) what are the implications of our findings for concrete

F-theory GUT models. We may for instance consider a model where SGUT hosts an excep-

tional symmetry group like G = E6,7,8 and a T-brane sector within a subalgebra of G, as

it is the case for local models of Yukawas [11, 18–21]. Then our no-go result implies that

either a) SGUT cannot be del Pezzo or b) the T-brane sector contains some poles. In the

latter case, one might interpret such poles as being sourced by further 7-branes intersect-

ing SGUT on matter curves, and it would be interesting to engineer compactifications that

reproduce such a setup.
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An additional generalisation would be to look at T-brane backgrounds where the gauge

bundle is not of the split form (2.2). One simple way of obtaining non-split bundles is by

switching on any of the bundle moduli a+, a− in (4.2) on top of a T-brane background

near the stability wall. Obviously, the no-go result of section 3 still holds for these more

complicated configurations. In general, for any non-split bundle that can be taken to

the split form by moving in open-string moduli space the no-go result will apply, and

equation (3.5) should be satisfied. It would be therefore very interesting to analyse the

structure of the open-string moduli space around general T-brane backgrounds.

Another direction would be to examine how α′ corrections modify the T-brane con-

structions considered in this paper. At moderate volumes of the compactification one may

in principle apply the same strategy as in [30] to see how such corrections affect the dif-

ferential equations of section 2, that govern the 7-brane background. However, as these

corrections do not affect the holomorphic T-brane data and are sufficiently mild not to flip

the FI-term sign, the no-go theorem of section 3 should still hold.

Finally, as the necessary conditions for the existence of compact T-branes depend on

the point in the Kähler moduli space of the compactification, it would be interesting to see

if our results could have any implications for Kähler moduli stabilisation (see e.g. [27]).

In summary, as argued in the introduction, our findings can be seen as one further step

in the classification of the full set of BPS branes in type IIB/F-theory compactifications.

As such, they should have direct consequences for the model-building applications that

triggered the recent study of T-branes in this context, and it would be interesting to fully

explore such implications. In any event, we expect that having a good understanding of

global T-brane configurations will give rise to new insights in the comprehension of string

theory vacua.
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A 4d interpretation of flux non-harmonicity

In section 2.1 we defined dα = −i∂∂̄g to be the exact part of the worldvolume flux that

typically appears in T-brane solutions. For intersecting branes, a non-harmonic exact flux

profile would break supersymmetry, and it would be seen as turning a non-vanishing vev for

a Kaluza-Klein mode for the gauge vector field. If we consider a T-brane in the vicinity of a

stability wall of the sort analysed in section 4.1, this correspondence between non-harmonic

fluxes and Kaluza-Klein modes remains to a good extent accurate. Therefore, it is natural
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to interpret α as a set of KK modes that got a vacuum expectation value when the 4d

Fayet-Iliopoulos term was switched on and the system evolved to a T-brane background.

In the following we would like to give a more precise description of this intuition, in terms

of the 4d effective gauge theory.

Let us begin with the D-term part of the 8d action, which is given by [15]

S ⊃
∫
R1,3×S

Tr (D ∧ ∗D) (A.1)

D = − ∗
(
J ∧ F +

1

2
[Φ,Φ†]

)
(A.2)

= ∗
(
− c

4
J ∧ J − J ∧ dα− 1

2
∗ ϕ
)
σ3,

where we have applied the general Ansatz of section 4.1 and in particular made use of

eqs. (2.6) and (2.8). To convert this to a 4d action, we need to expand the relevant fields

in eigenbasis of the Laplacian, and then perform dimensional reduction. More precisely,

we denote by ψn a real 0-form basis of the Laplacian, normalised as

∆0ψn ≡ −c2nψn (A.3)

1

VS

∫
S
ψn ∧ ∗ψm ≡ δnm , (A.4)

where VS stands for the volume of the four-cycle S. As said before, α should contain the

eigenmodes of the gauge vector field A. Now, given the relation (2.4) and the fact that

[∆, dc] = 0, if the function g is an eigenmode of the Laplacian so will be α. Therefore, one

naturally expands α as

α =
2

VS

∑
n 6=0

an(x) dc
ψn
cn

, (A.5)

where an(x) are interpreted as canonically-normalised 4d fields, which are eventually going

to acquire a vev. Additionally, we can interpret the function ϕ defined in (2.6) in terms of

the internal profile of the Higgs-field zero mode. More precisely, near the wall of stability

we have that

ϕ = |φ(x)|2 1

VS

∑
n

mnψn , (A.6)

where mn ∈ R and φ(x) is the 4d charged field whose vev generates a T-brane profile of

the form (2.11). On the one hand, the fact that φ is canonically normalised translates into

m0 = 1. On the other hand, the fact that we obtain a finite quartic coupling for this field

when we plug (A.6) into (A.1) translates to the fact that the sum
∑

nm
2
n must converge.

Finally, one may easily extend this decomposition to a more general non-nilpotent-Higgs-

field profile. Here for simplicity we will focus on the nilpotent case.

Plugging both expansions in the above action we obtain

S ⊃ 1

2VS

∫
R1,3

d4x

((
cVS + |φ|2

)2
+
∑
n 6=0

(
4cnan −mn|φ|2

)2)
, (A.7)
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x1 x2 x3 x4 x5 x6 x7

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1

↑ ↑ ↑
H1 H2 H3

Table 1. Ambient space P1 × P1 × P2.

which is nothing but eq. (2.9) expanded in a basis of eigenmodes of the Laplacian. In other

words, we have that at the wall there are cubic couplings of the form an|φ|2. If now c 6= 0

and φ develops a vev to cancel the first term, that is the usual 4d D-term, the Kaluza-Klein

modes of the gauge vector field must also do so. In particular we have that

< an > =
mn

4cn
|φ|2 . (A.8)

As the mn are bounded from above, these vev’s for the KK modes will typically decrease

as their mass cn increases.

B Examples of wall crossing for coincident branes

As a proof of existence, we will construct different examples of 4-cycles inside a compact

Calabi-Yau showing the properties discussed in section 4.1. Consider the toric ambient

space P1 × P1 × P2, where we label coordinates and divisor classes as given in table 1.

Using the Stanley-Reisner ideal, we can read off that the only non-vanishing intersection

product in the ambient space is given by H1 ·H2 ·H2
3 = 1. We define a Calabi-Yau 3-fold

X inside this ambient space by the zero locus of the most general polynomial in the class

[X] = 2H1+2H2+3H3. One may check that X is non-singular. Using Lefshetz hyperplane

theorem we know that H1,1(P1×P1×P2) ∼= H1,1(X), such that X inherits the Kähler form

J = v1H1 + v2H2 + v3H3 , vi ≥ 0 (B.1)

from the ambient space. Similarly, we have H0,1(X) = H0,1(P1 × P1 × P2) = 0. In the

following we will show different wall-crossing phenomena present on three 4-cycles inside

the Calabi-Yau.

Decay. First, consider the 4-cycle S defined by the vanishing locus S = {x5+x6+x7 = 0}.
Using the adjunction formula, we compute its total Chern class as

c(S) =
c(X)

[S]
=
c(P1 × P1 × P2)

[X] [S]
(B.2)

= 1−H3 + · · · ,

from which we can read off in particular that S is negatively curved, R = −c1(KS) =

c1(S) = −H3. In the notation of section 4.1, we take

M = H1 (B.3)

⇒ P =M−1 ⊗KS2 = 2H3 −H1 , (B.4)
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where we can identify line bundles and their Chern classes, because h0,1 = 0 and therefore

Pic(S) ∼= H1,1(S)∩H2(S,Z). To determine the physical spectrum of the coincident branes

we need to compute the zeroth and first cohomologies ofM and P. We can simply read off

the zeroth cohomologies from the toric data, where wee see, in particular, thatM is effective

whereas P is not. To determine the first cohomology groups we use cohomCalg [44, 45],17

and in summary we have

h•(M) =
(
2, 0, 0

)
(B.5)

h•(P) =
(
0, 0, 0

)
. (B.6)

From here we see that T-branes can only be stable on one side of the wall. Moreover, from

ξ = −2

∫
S
c1(L)∧J = −1

2

∫
S

(
c1(M)− c1(P)

)
∧J

= 2v1 − v2 − 2v3 , (B.7)

we see that the Fayet-Ilioupoulos term can indeed acquire both signs depending on the

position in Kähler moduli space. Notice that
∫
S c

2
1(KS) = 0 and I = 2, in agreement with

the necessary condition of section 4.1 for a decay.

T-brane to T-brane crossing. Let us repeat the analysis of the last subsection for the

different combination of 4-cycle S and line bundle M given by

[S] = 2H1 + 3H3 (B.8)

M = H1 + 4H3 (B.9)

⇒ P = 3H1 + 2H3 , (B.10)

where S should be defined for instance by the most general polynomial in the given class

in order to be non-singular. The line bundle cohomologies are given by

h•(M) =
(
30, 0, 0

)
(B.11)

h•(P) =
(
24, 0, 0

)
(B.12)

and the Fayet-Ilioupoulos

ξ = −6v1 − 3v2 + 2v3 . (B.13)

From the above we read off that the Fayet-Ilioupoulos term can acquire both signs, and

T-branes are stable on both sides, due to the condensation of either the modes ofM or of P.

T-brane to T-brane or bound state of gauge field. Last, consider

[S] = 2H1 + 2H3 (B.14)

M = 3H3 (B.15)

⇒ P = 2H1 +H3 , (B.16)

17High-performance line bundle cohomology computation based on [45].
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where the bundle cohomologies are given by

h•(M) =
(
10, 1, 0

)
(B.17)

h•(P) =
(
9, 0, 0

)
, (B.18)

and the Fayet-Ilioupoulos is given by

ξ = −4v1 − v2 + 2v3 , (B.19)

which can acquire both signs depending on the position in Kähler moduli space. We read

off that on one side of the wall T-branes are stable, whereas at the other side we may either

have T-brane bound states, non-Abelian gauge profiles or a combination of the two.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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