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Abstract—To model the cross-couplings of multiple topics, we
develop a set of rules for opinion updates of a group of agents.
The rules are used to design or assign values to the elements
of weighting matrices. The cooperative and anti-cooperative
couplings are modeled in both the inverse-proportional and
proportional structures. The behaviors of opinion dynamics
are analyzed using a nullspace property of state-dependent
matrix-weighted Laplacian matrices and a Lyapunov candidate.
Various consensus properties of state-dependent matrix-weighted
Laplacian matrices are predicted according to the intra-agent
network topology and interdependent topical coupling topologies.

Index Terms—Cooperative opinion dynamics, Anti-cooperative
opinion dynamics, Consensus, Matrix-weighted, Multiple cross-
coupling topics

I. INTRODUCTION

The problem of opinion dynamics has attracted a lot of
attention recently due to its applications to decision-making
processes and evolution of public opinions [1]. The opinion
dynamics arises between persons who interact with each
other to influence others’ opinions or to update his or her
opinion [2]. The opinion dynamics has been also studied in
control territory or in signal processing recently. For examples,
control via leadership with state and time-dependent interac-
tions [3], game theoretical analysis of the Hegselmann-Krause
model [4], update for opinion density functions using jump
Markov processes [5], Hegselmann-Krause dynamics for the
continuous-agent model [6], and the impact of random ac-
tions [7] have been investigated. The opinion dynamics under
consensus setups has been also studied [8], [9]. In opinion
dynamics under scalar-based consensus laws, the antagonistic
interactions in some edges are key considerations [10]–[12].
The antagonistic interactions may represent repulsive or anti-
cooperative characteristics between neighboring agents. In
traditional consensus, all the interactions between agents are
attractive one; so the dynamics of the traditional consensus
has a contraction property, which eventually ensures a syn-
chronization of agents. However, if there is an antagonistic
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interaction, a consensus may not be achieved and the Laplacian
matrix may have negative eigenvalues [13]. Thus, in the
existing opinion dynamics, the antagonistic interactions are
modeled such that the Laplacian matrix would not have any
negative eigenvalues. Specifically, in [10], signs of adjacent
weights are used to model antagonistic interactions resulting
in Laplacian matrix with absolute diagonal elements, and in
[11], the author has extended the model of [10] to the one that
allows arbitrary time-dependent interactions. In [12], they have
further considered time-varying signed graphs under the setup
of the antagonistic interactions. On the other hand, opinion
dynamics with state constraints was also examined when the
agents are preferred to attach to the initial opinion, i.e., with
stubborn agents [14]. Recently, in [15], they have examined a
joint impact of the dynamical properties of individual agents
and the interaction topology among them on polarizability,
consensusability, and neutralizability, with a further extension
to heterogeneous systems with non-identical dynamics.

Unlike the scalar-consensus based updates, there also have
been some works on opinion dynamics with matrix weighed
interactions. Recently, opinion dynamics with multidimen-
sional or multiple interdependent topics have been reported in
[16], [17]. In [16], multidimensional opinion dynamics based
on Friedkin and Johnsen (FJ) model and DeGroot models
were analyzed in the discrete-time domain. The continuous-
time version of [16] with stubborn agents was presented
and analyzed in [17]. Although it is not a matrix-weighted
consensus problem, but in a similar setup, the DeGroot-
Friedkin model was also analyzed to conclude that it has an
exponential convergent equilibrium point [18]. Also in [18],
they considered the dynamic network topology to evaluate
the propagation property of the social power. Since the topics
are interdependent and coupled with each other, these works
may be classified as matrix-weighted consensus problems [19].
Opinion dynamics under leader agents with matrix weighted
couplings was studied in [20].

In this paper, we would like to present a new model for opin-
ion dynamics on cross-coupling topics under a state-dependent
matrix weighted consensus setup. We first provide a model for
characterizing the coupling effects of multiple interdependent
topics. We consider both the proportional and inverse propor-
tional structure effects on diagonal and off-diagonal terms. The
cooperative dynamics and non-cooperative dynamics are mod-
eled using the signs of diffusive couplings of each topic. Then,
we provide some analysis on the convergence or consensus
of the topics. Two results will be presented according to the
property of weighting matrices. The first result is developed
when the coupling matrices are positive semidefinite. When
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the coupling matrices are positive semidefinite, exact condi-
tions for complete opinion consensus and cluster consensus
are provided. Then, as the second result, when the coupling
matrices are indefinite, we provide a sufficient condition for a
complete opinion consensus.

Consequently, the main contributions of this paper can be
summarized as follows. First, a model for opinion dynamics
is established. The connectivities are characterized by interac-
tion topology between agents and coupling topology among
the topics. Thus, the overall system has two-layer network
topologies. Second, analysis for complete opinion consensus
and partial opinion consensus is presented for both the cases
when the coupling matrices are positive semidefinite and
indefinite. As far as the authors are concerned, this is the first
paper that presents a detailed model for inverse-proportional
and proportional structure opinion dynamics along with the
convergence analysis. This paper is organized as follows.
Section II provides a detailed process for building models
for opinion dynamics. Section III presents the analysis for
convergence of cooperative (and non-cooperative) opinion
dynamics. Section IV is dedicated to simulation results and
Section V concludes this paper with some discussions.

II. MODELING

There are d different topics that may be of interests to the
members of a society. Let the set of topics be denoted as
T = {1, . . . , d} and let the opinion vector associated with the
member i be written as xi = (xi,1, xi,2, . . . , xi,d)

T ∈ Rd. We
can write the i-th agent’s opinion about the p-th topic as xi,p.
Each member (or can be called agent) has its initial opinion on
the topics as xi,k(t0) = (xi,1(t0), xi,2(t0), . . . , xi,d(t0))T . Let
us denote the set of neighboring agents of agent i as Ni; then
the neighborhoods of agents are determined by the interaction
graph G = (V, E), where V is the set of agents and E is the
set of edges. Under the undirected graph setup, the opinion
dynamics of agent i can be modeled as

ẋi,1
ẋi,2

...
ẋi,d

 =

n∑
j∈Ni


ai,j1,1 . . . ai,j1,d

ai,j2,1 . . . ai,j2,d
...

. . .
...

ai,jd,1 . . . ai,jd,d




xj,1 − xi,1
xj,2 − xi,2

...
xj,d − xi,d


, ẋi =

n∑
j∈Ni

Ai,j(xj − xi) (1)

where Ai,j ∈ Rd×d is the matrix weighting for the edge
(i, j) ∈ E and i ∈ V , and |E| = m and |V| = n. The
practical meaning of (1) is that each member of a society
may have its own opinion about the topics, and the opinions
are inter-coupled with the opinions of the neighboring agents.
Thus, the matrix Ai,j characterizes the inter-topic association;
i.e., agent i may associate the topic q with the topic p, so
opinion exchange on the topic q may enhance opinion update
in the topic p, and drive changes in opinion exchange on the
topic p. If a topic in member i has at least one connection
to another topic or the same topic of another agent j, then
two agents i and j are called connected. The terminology
connection or connected is used for defining the connection in

the level of agents. When there are connections between the
topics, it is called coupled or couplings between topics. Thus,
the terminology coupled or couplings is used in the level of
topics. Therefore, based on the terminological definitions, if
there is at least one coupling between the topics of agents i
and j, then two agents i and j can be considered as connected.
However, even though two agents are connected, it does not
mean that a topic in an agent is connected to another topic of
the other agent. The formal definitions are given as follows.

Definition 1. Two agents i and j are considered connected
if Ai,j is not identically zero, i.e., Ai,j 6= 0. The topology for
overall network connectivities is represented by the interaction
graph G = (V, E) where the edge set E characterizes the
connectivities between agents. If there is a spanning tree in the
network G, it is called connected. For a topic p ∈ T , the graph
is called p-coupled if the elements of the set {ai,jp,p, ∀(i, j) ∈
E} are connected for the topic p. The topology for the topic
p is defined by the graph Gp = (Vp, Ep), where p ∈ T , and
Vp = {x1,p, x2,p, . . . , xn,p} and Ep = {(i, j) : ai,jp,p 6= 0}.
If it is p-coupled for all topics p ∈ T , it is called all-topic
coupled.

Definition 2. For the edge (i, j) on the graph G, let
the topology for the couplings among topics be denoted as
Gi,j = (Vi,j , Ei,j), which is called coupling graph for the
edge (i, j), where Vi,j includes all the topics contained in
the agents i and j, and Ei,j includes all the couplings. If
Gi1,j1 = Gi2,j2 for all edges (i1, j1) 6= (i2, j2), then all
the coupling topologies of the society are equivalent. If all
the coupling topologies between agents are equivalent, it is
called homogeneous-coupling network. Otherwise, it is called
heterogeneous-coupling network.

Based on the above definitions, we can see that every Gp
could be disconnected even though G is connected. If the union
of all Gp is connected, then G is also connected. Also, since
each agent has the same set of topics, it is true that Vi,j = T
for all (i, j) ∈ E .

Assumption 1. The coupling between neighboring agents is
symmetric, i.e., if there exists a coupling (p, q) in Ei,j , there
also exists a coupling (q, p) in Ei,j .

Example 1. Fig. 1 shows the concepts of “connected” and
“coupled” in neighboring agents. The coupling graph Gi,j can
be determined as Gi,j = (Vi,j , Ei,j) where Vi,j = {p, q, r} and
Ei,j = {(p, q), (q, r), (q, p), (r, q)}.

Each agent updates its coefficients in the matrix Ai,j in the
direction of cooperation or in the direction of antagonism. For
a cooperative update, we now formulate some heuristic rules
for how the edge weights are determined, with the specific
functional forms detailed in the sequel:

• The diagonal terms: If ai,jk,k is positive, then as ai,jk,k
increases, the tendency of agreement between xj,k and
xi,k increases. Otherwise, if ai,jk,k is negative and as
|ai,jk,k| increases (i.e, becomes a bigger negative value),
the tendency of anti-agreement between xj,k and xi,k
becomes significant.



Agent i Agent j

Topic p

Topic q

Topic r

Topic p

Topic q

Topic r

Fig. 1. Connected vs. Coupled: Topics p and q, and q and r are coupled in
the coupling graph Gi,j ; so the agents i and j are connected. But, although
the agents i and j are connected, for example, the topics p and r are not
coupled.

• The off-diagonal terms: Let us consider the effect of ai,j2,1.
We can consider the following four cases:

1) Case 1: (xj,2 − xi,2) ≥ 0 and (xj,1 − xi,1) ≥ 0
2) Case 2: (xj,2 − xi,2) ≥ 0 and (xj,1 − xi,1) < 0
3) Case 3: (xj,2 − xi,2) < 0 and (xj,1 − xi,1) ≥ 0
4) Case 4: (xj,2 − xi,2) < 0 and (xj,1 − xi,1) < 0

When (xj,2 − xi,2) ≥ 0, agent i needs to increase the
value of xi,2 to reach a consensus to xj,2. Otherwise, if
(xj,2 − xi,2) < 0, agent i needs to decrease the value
of xi,2 to reach a consensus to xj,2. So, for the cases
1 and 2, to enhance the agreement tendency, it needs to
increase the value of xi,2, by way of multiplying ai,j2,1

and (xj,1 − xi,1). Thus, when (xj,1 − xi,1) ≥ 0, we can
select ai,j2,1 > 0; but when (xj,1−xi,1) < 0, we can select
ai,j2,1 < 0. On the other hand, in the case of (xj,2−xi,2) <

0, we can select ai,j2,1 < 0 when (xj,1 − xi,1) ≥ 0, or we
can select ai,j2,1 > 0 when (xj,1 − xi,1) < 0. For the anti-
consensus update, ai,j2,1 should be selected with opposite
signs.

The effects of diagonal terms can be modeled as follows:

Definition 3. Direct coupling effects in diagonal terms:
• Proportional structures: A close opinion between two

agents acts as for increasing the consensus tendency
between them; i.e., a decreasing disagreement in opinions
increases the pressure to reach a consensus.

• Inverse proportional structures: A quite different opinion
between two agents acts as for increasing the consensus
tendency between them, i.e., an increasing disagreement
in opinions increases the pressure to reach a consensus.

The off-diagonal terms need to be designed carefully taking
account of the coupling effects in different topics.

Definition 4. Cross coupling effects in off-diagonal terms:
• Proportional structures: A close opinion in one topic acts

as for increasing the consensus tendency of other topics.
• Inverse proportional structures: A quite different opinion

in one topic acts as for increasing the consensus tendency
of other topics.

Definition 5. (Completely and partial opinion consensus,
and clusters) If a consensus is achieved for all topics, i.e.,
x1,p = . . . = xn,p for all p ∈ T , it is called a complete
opinion consensus. In this case, there exists only one cluster.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

C1 C2 C3

Topic 1

Topic 2

Topic 3

Fig. 2. Partial opinion consensus and clusters. The topic 3 reaches a
consensus, while topics 1 and 2 do not reach a consensus.

Otherwise, if a part of topics is agreed, it is called partial
opinion consensus. When only a partial opinion consensus
is achieved, there could exist clusters Ck, k = 1, . . . , q such
that Ci ∩ Cj = ∅ for different i and j, and

∑q
k=1 Ck =

{x1, x2, . . . , xn}, and in each cluster, xi = xj when xi and
xj are elements of the same cluster, i.e., xi, xj ∈ Ck.

Definition 6. (Complete clustered consensus) If the opinions
of agents are completely divided without ensuring any par-
tial opinion consensus between them, it is called completely
clustered consensus.

In the case of a partial opinion consensus as per Definition 5,
the clusters are not completely divided clusters, i.e., in two
different clusters, some topics may reach a consensus.

Example 2. In Fig. 2, there are five agents, with three topics.
The agents reach a consensus on the topic p = 3. But, on
other topics p = 1, 2, they do not reach a consensus. For
the topic 1, there are two clusters (i.e., agents 1, 2, 3 in one
cluster, and agents 4, 5 in another cluster), and for the topic
2, there are also two clusters (i.e., agents 1 in one cluster, and
agents 2, 3, 4, 5 in another cluster). So, overall, the network
has a consensus in a part of topics, but they do not reach
a consensus on the other topics. So, no complete opinion
consensus is achieved, and no complete clustered consensus is
achieved. Consequently, there are three clusters as C1 = {x1},
C2 = {x2, x3}, and C3 = {x4, x5}.

The consensus and coupling effects given in the Definition 3
and Definition 4 can be mathematically modeled as follows.

1) Inverse-proportional structures: When the values of
opinions of two agents are quite different, the coupling effects
are more significant, which may be against from a natural
phenomenon (ex, gravitational force). That is, when two
opinions are close, there could be more attraction force. In
inverse-proportional structures, there will be more coupling
effects when the values of opinions are quite different.

• Direct coupling in diagonal terms:

ai,jp,p = ki,jp,p (2)

where ki,jp,p = kj,ip,p > 0 is a constant.
• Cross coupling in off-diagonal terms:

ai,jp,q = ki,jp,q × sign(xj,p − xi,p)× sign(xj,q − xi,q) (3)



where ki,jp,q = kj,ip,q = ki,jq,p > 0, and sign(xj,p − xi,p) = 1
when xj,p − xi,p ≥ 0 and sign(xj,p − xi,p) = −1 when
xj,p − xi,p < 0.

2) Proportional structures: In proportional structures, there
will be less coupling effects when the values of opinions are
quite different, which is the representative of relationships that
weaken due to greater opinion disagreement1.
• Direct coupling in diagonal terms:

ai,jp,p =
ki,jp,p

c2‖xj,p − xi,p‖2 + c1‖xj,p − xi,p‖+ c0
(4)

where ki,jp,p = kj,ip,p > 0, and c0, c1, c2 are positive
constants.

• Cross coupling in off-diagonal terms:

ai,jp,q =
ki,jp,q × sign(xj,p − xi,p)× sign(xj,q − xi,q)

(c1‖xj,p − xi,p‖+ c0)(c1‖xj,q − xi,q‖+ c0)
(5)

where ki,jp,q = ki,jq,p > 0 and ki,jp,q = kj,ip,q > 0, and c1 and c0
are positive constants. Then, we can have (Ai,j)T = Ai,j

and Ai,j = Aj,i.
Note that in the above coupling models, if (p, q) ∈ Ei,j ,

then ai,jp,q 6= 0, otherwise, ai,jp,q = 0. So, the matrix Ai,j =
[ai,jp,q] is the weighting matrix for the topics between two agents
i and j. But, the matrix Ai,j is state- and sign-dependent,
while the matrix Ki,j = [ki,jp,q] is a matrix which defines the
topological characteristics between topics of the neighboring
agents. The matrix Ki,j is called coupling matrix, and it is a
constant matrix. Here, we limit the signs of ki,jp,q as positive
for a cooperative coupling; but, it can be modified to non-
cooperative coupling by adding minus sign to the edge. For
this, refer to the discussions given in the below and Remark 1.

It is worth noting that the matrix Ai,j is not an adjacency
matrix, and neither is the matrix Ki,j . But, they are similar to
an adjacency matrix. For example, if there is no direct coupling
between the same topics, then Ki,j is the adjacency matrix
for characterizing the couplings between the topics of two
neighboring agents. On the other hand, if all the topics are
coupled (i.e., a topic of agent i is coupled to all the topics of
neighboring agent j), then Ki,j − Id is the adjacency matrix
ignoring the self-loops. The direct coupling in the p-th topic
implies that there is a self-loop in the p-th topic node.

Example 3. Let us consider the following coupling matrices.

Ki,j
1 =


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 3 1
1 1 1 1 1

 , Ki,j
2 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


The matrix Ki,j

1 means that any topic in agent i is coupled
to all the topics in j, while the matrix Ki,j

2 means that any
topic in agent i is coupled to all the topics in j, but xi,p is
not coupled to xj,p (i.e., no direct coupling).

1There are several opinion dynamics models in sociology that include this
mechanism; for example, see [21].

The anti-consensus can be simply modeled by adding the
minus sign to the elements of the coupling matrix, i.e., −ki,jp,q .
Thus, there are four types of couplings: proportional coupling,
proportional anti-coupling, inverse-proportional coupling, and
inverse-proportional anti-coupling. The dynamics with anti-
consensus terms is called non-cooperative opinion dynamics,
while the dynamics without anti-consensus terms is called
cooperative opinion dynamics. Note that in existing traditional
consensus works, the inverse proportional diagonal terms, i.e.,
(2), are only used for the consensus couplings.

The dynamics (1) can be concisely rewritten as:

ẋ = −L(x1, . . . , xn)x (6)

where the Laplacian is computed as

L =


∑
j∈Ni

A1,j −A1,2 . . . −A1,n

−A2,1
∑
j∈Ni

A2,j . . . −A2,n

...
...

. . .
...

−An,1 −An,2 . . .
∑
j∈Ni

An,n


(7)

Note that with the model (5), the Laplacian matrix is of
symmetric. Also remark that in the dynamics (6), the Laplacian
L is dependent upon the sign of xj,p − xi,p; thus, the entries
of L are functions which may be discontinuous when the
sign changes abruptly2. To be a continuous function, the sign
function may be modified as a sigmoid function as:

sign(xj,p − xi,p) ,
2

1 + e−ke(xj,p−xi,p)
− 1 (8)

where ke is a sufficiently large positive constant. With the
sigmoid function (8), the dynamics (6) is globally Lipschitz
continuous; so ẋ = −L(x1, . . . , xn)x has a globally unique
solution.

In the case of the inverse-proportional structure laws, we
can see that ai,jp,q = ai,jq,p, and ai,jp,q = aj,ip,q . Then, the Laplacian
matrix L is of symmetric. Consequently, for the inverse-
proportional consensus couplings, we can rewrite (1) as:

ẋi,1
ẋi,2

...
ẋi,d

 =

n∑
j∈Ni


sgni,j1,1k

i,j
1,1 . . . sgni,j1,dk

i,j
1,d

sgni,j2,1k
i,j
2,1 . . . sgni,j2,dk

i,j
2,d

...
. . .

...
sgni,jd,1k

i,j
d,1 . . . sgni,jd,dk

i,j
d,d



×


xj,1 − xi,1
xj,2 − xi,2

...
xj,d − xi,d

 (9)

where sgni,jp,q , sign(xj,p − xi,p) × sign(xj,q − xi,q) and
sgni,jp,q = sgni,jq,p.

Remark 1. If there are some inverse-proportional anti-
consensus couplings between some topics, then some elements
in (9) will have negative signs. For example, if the 1-st topic
and 2-nd topic are anti-consensus coupled, then the terms

2However, although L is state-dependent, every entry of L is bounded as
a consequence of how the Ai,j are defined in (2)-(5). Thus, the eigenvalues
of L are always bounded.



sgni,j1,2k
i,j
1,2 and sgni,j2,1k

i,j
2,1 need to be modified as −sgni,j1,2k

i,j
1,2

and −sgni,j2,1k
i,j
2,1. Nonetheless, in such case, the Laplacian

matrix L still could be positive semidefinite.

Remark 2. The dynamics given in (9) should be distinguished
from the traditional scalar-based consensus dynamics [22],
[23], state-dependent weights [24], [25], and matrix-weighted
consensus laws [19], [26]. Table I compares the features of the
consensus laws and opinion dynamics (9)3. The basic dynam-
ics in the table is ẋi =

∑
j∈Ni

wij(xj −xi), where wij is the
weights for the coupling between agents i and j. According
to the weights wij , there are various convergence properties
and different analysis technique needs to be developed.

III. ANALYSIS

It will be shown in this section that the positive definiteness
of the Laplacian matrix in (7) is closely related with the
positive definiteness of the coupling matrix Ki,j . When the
coupling matrices are positive semidefinite, we provide exact
conditions for complete opinion consensus and cluster con-
sensus. However, even when L(x) is indefinite, since L(x) is
time-varying, the system (6) still can be stable and a consensus
might be reached. Let us first focus on the case of positive
semidefinite Laplacian, and then, we consider general cases
that include indefinite Laplacian matrices. For the analysis, for
a matrix A, we use N (A) and R(A) to denote the nullspace
and the range of A, respectively. Also because L(x) is state-
dependent, it may be necessary to use the following concept.

Definition 7. The state-dependent symmetric Laplacian L(x)
is called uniform positive semidefinite if L(x) is positive
semidefinite for all x. Specifically, we can define L(x) to be
uniformly positive semidefinite if 0 ≤ λi(L(x)) < ∞ for all
x, where λi is an eigenvalue of the Laplacian.

As per the above definition, the eigenvalues of L(x) should
be bounded; but this is clear from (7)-(8) since all the absolute
values of every entry of L(x) are bounded. Without nota-
tional confusion, in what follows, when we mention positive
semidefiniteness (or positive definiteness) of Laplacian, it
means uniform positive semidefiniteness (or uniform positive
definiteness).

A. Case of Uniform Positive Semidefinite Laplacian

It is not straightforward to verify whether the Laplacian
L(x) in (7) is positive semidefinite or not since it is a block
matrix. In L(x), the block element matrices could be posi-
tive definite, positive semidefinite, negative definite, negative
semidefinite, or indefinite. Thus, an analysis for the dynamics
(6) would be more difficult than the traditional scalar-based
consensus. For the analysis, let us define the incidence matrix
H = [hij ] ∈ Rm×n for the interaction graph G = (V, E) as:

hki =


−1 if vertex i is the tail of the k-th edge
1 if vertex i is the head of the k-th edge
0 otherwise

(10)

3In [25], the discrete dynamics was studied; but for a comparison purpose,
it is transformed into continuous-time case.

where the direction of the edge k is arbitrary. Let us also define
the incidence matrix in d-dimensional space as H̄ = H ⊗ Id
and write the weighting matrix for the k-th edge (i.e, k-th Ai,j)
as Ak-th ∈ Rd×d. Let us also write the coupling matrix Ki,j

corresponding to Ak-th as Kk-th. As aforementioned, if there is
no direct coupling between the same topics of two neighboring
agents, the coupling matrix Ki,j can be considered as a
constant adjacency matrix for the coupling graph Gi,j . The
block diagonal matrix composed of Ak-th, k = 1, . . . ,m
is denoted as blkdg(Ak-th) and the block diagonal matrix
composed of Kk-th, k = 1, . . . ,m is denoted as blkdg(Kk-th).

Let us first study the case of inverse proportional coupling.
For this result, the following lemma is necessary.

Lemma 1. For the inverse proportional coupling, the Lapla-
cian L(x) is positive semidefinite if and only if blkdg(Kk-th)
is positive semidefinite.

Proof. Due to the same reason as Lemma 1 of [26], we can
write L = H̄T blkdg(Ak-th)H̄. It is shown that the weighting
matrix Ak-th can be written as

Ak-th = diag(Si,j)Kk-thdiag(Si,j) (11)

where the edge (i, j) is the k-th edge and diag(Si,j) is given
as

diag(Si,j) = diag(sign(xj,k − xi,k))

=

 sign(xj,1 − xi,1) · · · 0
...

. . .
...

0 · · · sign(xj,d − xi,d)


(12)

Hence, the Laplacian matrix can be written as

L = H̄T blkdg(diag(Si,j))blkdg(Kk-th)blkdg(diag(Si,j))H̄
(13)

Therefore, it is obvious that the Laplacian matrix L is positive
semidefinite if and only if the matrix blkdg(Kk-th) can be
decomposed as blkdg(Kk-th) = K̄T K̄ with a certain matrix K̄.
It means that the Laplacian matrix L is positive semidefinite
if and only if blkdg(Kk-th) is positive semidefinite.

Theorem 1. The Laplacian L(x) is positive semidefinite if and
only if the coupling matrices Ki,j are positive semidefinite.

Proof. The proof is immediate from Lemma 1.

It is well-known that the adjacency matrix of a complete
graph with d nodes has eigenvalues d− 1 with multiplicity 1
and −1 with multiplicity d − 1. Then, with this fact, we can
obtain the following result.

Theorem 2. Let us suppose that there is no direct coupling
between the same topics of two neighboring agents; but a
topic is coupled to all other topics with coupling strengths
ki,jp,q = 1 for all the couplings. Then, under the condition that
all diag(Si,j) are not equal to zero (i.e., there exists at least
one topic p such that xj,p 6= xi,p), the Laplacian L(x) has
negative eigenvalues.

Proof. It is clear that the matrix Kk-th can be considered
as an adjacency matrix characterizing the topic couplings of



TABLE I
COMPARISONS OF CONSENSUS LAWS AND OPINION DYNAMICS.

Scalar-based consensus State-dependent consensus Matrix-weighted consensus Opinion dynamics (9)
Weights (wij ) aij aij(xi, xj) Aij Aij(xi, xj)

Property of weights positive, negative or zero positive or zero p.d, p.s.d, or zero p.d, p.s.d, n.d., n.s.d., i.d., or zero
Laplacian s.m. s.d.s b.s.m s.d.b.s.m

Convergence Consensus Consensus Cluster or consensus Cluster or consensus
p.d. = positive definite. p.s.d. = positive semidefinite. n.d. = negative definite. n.s.d = negative semidefinite. i.d. = indefinite. s.m.= symmetric matrix.

s.d.s= state-dependent symmetric matrix. b.s.m. = block symmetric matrix. s.d.b.s.m. = state-dependent block symmetric matrix

the k-th edge. Let us denote this matrix as Kk-th
− . Then, the

matrix Kk-th
− has an eigenvalue d− 1 with multiplicity 1 and

the eigenvalue −1 with multiplicity d − 1. Thus, the matrix
L = H̄T blkdg(diag(Si,j))blkdg(Kk-th

− )blkdg(diag(Si,j))H̄
has eigenvalues located in the open left half plane because
blkdg(Kk-th

− ) has eigenvalue −1 with multiplicity of m(d−1)
where m = |E|.

The opposite circumstance occurs when all the topics are
coupled, including the same topics, which is summarized in
the next result.

Corollary 1. Suppose that all the topics are coupled for all
edges (i, j) of graph G with coupling strengths ki,jp,q = 1. Then,
the Laplacian L(x) is positive semidefinite.

Proof. In this case, the matrix Kk-th can be considered as a
rank 1 matrix defined as Kk-th , Kk-th

+ = Kk-th
− + Id, because

the matrix Kk-th
+ is a matrix with all elements being equal to

1. Thus, the eigenvalues of Kk-th
+ are d with multiplicity 1 and

all others being equal to zero. Therefore, the matrix L positive
semidefinite.

Now, let us suppose that the matrix blkdg(Kk-th) is pos-
itive semidefinite; then it can be written as blkdg(Kk-th) =
UTU for some matrix U . Then, by denoting U =
Ublkdg(diag(Si,j))H̄, we can write L(x) = UTU. It is
clear that nullspace(H̄) ⊆ nullspace(L) = nullspace(U),
because blkdg(Kk-th) is positive semidefinite. Noticing that the
nullspace of incidence matrix is N (H̄) = R(1n⊗Id) , R, we
can see that the set R is always a subspace of N (L). To find
the nullspace of L, the following lemma will be employed.

Lemma 2. [27] When a matrix A is positive semidefinite, for
any vector x, it holds that Ax = 0 if and only if xTAx = 0.

We remark that if a matrix A is indefinite, the above lemma
(i.e., Lemma 2) does not hold. For example, let us consider
the following matrix:

A =


1 0 0 0
0 1 0 0
0 0 −4 0
0 0 0 −4

 (14)

which is nonsingular and has 1, 1,−4,−4 as its eigenvalues.
Then, the vector x = (1, 1, 1/2, 1/2)T makes that xTAx = 0,
while Ax 6= 0. It may be also important to note that, since the
elements of the coupling matrix Ki,j are all non-negative, and
sign(xj,p − xi,p)(xj,p − xi,p) ≥ 0, Lemma 2 may be further
generalized. However, a further generalization is not obvious.
From Lemma 2, we can see that a vector x in the nullspace of

A is equivalent to a vector x that makes xTAx = 0, when the
matrix A is positive semidefinite. With this fact and with (8),
since ai,jp,q = ki,jp,qsgni,jp,q = ki,jp,qsign(xj,p − xi,p)× sign(xj,q −
xi,q) = ki,jp,q

[
2

1+e−ke(xj,p−xi,p) − 1
] [

2

1+e−ke(xj,q−xi,q) − 1
]
,

we can write xTLx as follows:

xTLx =
∑

(i,j)∈E

(xj − xi)TAij(xj − xi)

=
∑

(i,j)∈E

d∑
p=1

d∑
q=1

ai,jp,q(xj,p − xi,p)(xj,q − xi,q)

=
∑

(i,j)∈E

d∑
p=1

d∑
q=1

ki,jp,q

×
(

2

1 + e−ke(xj,p−xi,p)
− 1

)
(xj,p − xi,p)

×
(

2

1 + e−ke(xj,q−xi,q)
− 1

)
(xj,q − xi,q)

=
∑

(i,j)∈E

σ(xj − xi)TKi,jσ(xj − xi) (15)

where σ(xj − xi) is defined as

σ(xj − xi) ,(σ(xj,1 − xi,1), . . . , σ(xj,d − xi,d))T (16)

with σ(xj,p − xi,p) , sign(xj,p − xi,p)(xj,p − xi,p) =∣∣∣ 2

1+e−ke(xj,p−xi,p) − 1
∣∣∣ |xj,p − xi,p|. Thus, to have∑

(i,j)∈E σ(xj − xi)
TKi,jσ(xj − xi) = 0, based on

Lemma 2, it is required to satisfy σ(xj − xi) ∈ N (Ki,j) for
all (i, j) ∈ E . Therefore, summarizing this discussion, we can
obtain the following lemma.

Lemma 3. Suppose that the blkdg(Kk-th) is positive semidef-
inite, which is equivalent to the uniform positive semi-
definiteness of L. Then, the nullspace of L is given as:

N (L) =span{R, {x = (xT1 , x
T
2 , · · · , xTn )T ∈ Rdn

| σ(xj − xi) ∈ N (Ki,j), ∀(i, j) ∈ E}} (17)

Let the Laplacian be uniform positive semidefinite; but
as discussed already, the Laplacian L(x) is state-dependent.
Thus, we may need to pay attention on the convergence of
the Laplacian dynamics (6). For example, as x → 1n ⊗ Id,
the Laplacian converges to L→ 0 according to (13). In such
circumstance, to examine the convergence, we can use the
Lyapunov function V = 1

2x
Tx. Then, the derivative of V

is given as xTLx, which is given in (15). Then, by LaSalle’s
invariance principle, the states would converge to the nullspace
of L(x), which is given in (17).



Remark 3. Lemma 3 implies that if blkdg(Kk-th) is positive
definite, then N (L) = R. Thus, a complete opinion consensus
is achieved.

Remark 4. In (15), if Ki,j is nonsingular, then it has only
the trivial nullspace. Thus, it appears that a complete opinion
consensus might be achieved. However, as discussed with the
A matrix in (14), the set of vectors x making xTLx = 0 is
not equivalent to the set of vectors x making Lx = 0.

In Lemma 3, there are possibly two subspaces for the
nullspace. The subspaceR is the standard consensus space; but
the subspace spanned by x satisfying σ(xj − xi) ∈ N (Ki,j)
needs to be elaborated since the elements of the coupling
matrix Ki,j are zero or positive constants, and the elements
of the vector σ(xj−xi) are also positive except the zero. The
following example provides some intuitions for the coupling
matrix.

Example 4. Let us consider that there are five topics, and the
coupling matrix between agents i and j is given as:

Ki,j =


0 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (18)

which means that only the topics 1 and 2 are coupled. But,
the above matrix is not positive semidefinite. Thus, the basic
condition of Lemma 3 is not satisfied. Let us consider another
coupling matrix as

Ki,j =


1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1

 (19)

which is positive semidefinite. It follows that

Ki,jσ(xj − xi) =


1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1




σ(xj,1 − xi,1)
σ(xj,2 − xi,2)
σ(xj,3 − xi,3)
σ(xj,4 − xi,4)
σ(xj,5 − xi,5)



=


σ(xj,1 − xi,1) + σ(xj,2 − xi,2)
σ(xj,1 − xi,1) + σ(xj,2 − xi,2)

0
σ(xj,4 − xi,4) + σ(xj,5 − xi,5)
σ(xj,4 − xi,4) + σ(xj,5 − xi,5)


Consequently, to satisfy Ki,jσ(xj −xi) = 0, we need to have
xj,1 = xi,1, xj,2 = xi,2, xj,4 = xi,4, and xj,5 = xi,5; but,
xj,3 and xi,3 can be chosen arbitrarily.

From the above example, we can observe that the coupling
matrices Ki,j , (i, j) ∈ E would provide all possible consensus

solutions in the topics among agents. Let us add another
coupling between topics 1 and 3 into Ki,j in (19) as:

Ki,j =


1 1 1 0 0
1 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 0 1 1

 (20)

Then, against from an intuition, the matrix Ki,j is no more
positive semidefinite (actually it is indefinite since it has
negative, zero, and positive eigenvalues). As there are more
couplings between topics, the Laplacian matrix L has lost the
positive semidefinite property. Thus, as far as the coupling
matrix Ki,j is positive semidefinite, the nullspace of Ki,j

enforces xj and xi to be synchronized. That is, in the multi-
plication Ki,jσ(xj − xi), if the term σ(xj,p − xi,p) appears,
then they will be synchronized; otherwise, if it does not appear,
the synchronization xj,p → xi,p is not enforced. Now, we can
summarize the discussions as follows.

Lemma 4. Let us assume that the Laplacian L(x) is positive
semidefinite, and for two neighboring agents i and j, the topics
p and q are coupled, i.e., Ki,j

p,q 6= 0. Then, the opinion values
xi,p and xj,p will reach a consensus and the opinion values
xi,q and xj,q will also reach a consensus. If the same topic
p is coupled between neighboring agents, i.e., Ki,j

p,p 6= 0, then
xi,p and xj,p will reach a consensus.

Given a coupling matrix Ki,j , let us define a consensus
matrix, Ci,j = [ci,jp,q], between agents i and j as

ci,jp,p = ci,jq,q =

{
1 if Ki,j

p,q = 1

0 if Ki,j
p,q = 0

(21)

Now, we define the topic consensus graph Gp,con =
(Tp,con, Ep,con) for the topic p as follows:

Tp,con , {x1,p, x2,p, . . . , xn,p} (22)

Ep,con , {(i, j) | ∃(i, j) if ci,jp,p = 1; @(i, j)

otherwise if ci,jp,p = 0} (23)

So, xj,p is a neighbor of xi,p if and only if (i, j) ∈ Ep,con.
That is, xj,p ∈ Nxi,p if and only if ci,jp,p = 1. With the above
definition, we can make the following main theorem.

Theorem 3. Let us assume that the Laplacian L(x) is positive
semidefinite. Then, for the topic p, the agents in Tp,con will
reach a consensus if and only if the topic consensus graph
Gp,con is connected.

Proof. If the consensus graph Gp,con is connected, it can be
considered that there is at least one path between xi,p and xj,p
for any pair of i and j. Thus, the set of p-topic agents, i.e.,
Tp,con , {x1,p, x2,p, . . . , xn,p}, is connected, and the p-topic
will reach a consensus by Lemma 4. The only if is also direct
from Lemma 4. That is, if the topic opinions in Tp,con are
not connected, it means that there are clusters, which are not
connected. Thus, the consensus of the agents in Tp,con is not
possible.

Example 5. Let us consider Fig. 3 that illustrates the in-
teraction topology of a network. In this case, the elements



Agent 1 Agent 2 Agent 3 Agent 4

Topic 1

Topic 2

Topic 3

Fig. 3. Interaction topology of a network and coupling between neighboring
topics.

of coupling matrix are given as K1,2
1,1 = K3,4

1,1 = K2,3
1,2 =

K2,3
2,1 = K1,2

2,2 = K1,2
3,3 = K3,4

2,3 = K3,4
3,2 = 1. Thus, we have

c1,21,1 = c3,41,1 = c2,31,1 = c2,32,2 = c1,22,2 = c1,23,3 = c3,42,2 = c3,43,3 = 1.
Then, from this consensus matrix, we can obtain the topic
consensus graphs Gp,con = (Tp,con, Ep,con) for p = 1, 2, 3
with the following edge sets:

E1,con , {(1, 2), (3, 4), (2, 3)}
E2,con , {(2, 3), (1, 2), (3, 4)}
E3,con , {(1, 2), (3, 4)}

Therefore, the consensus graphs G1,con and G2,con are con-
nected, while the consensus graph G3,con is not connected.

Now, by virtue of Theorem 3, we can conclude that if the
Laplacian L(x) is positive semidefinite and all the topics are
connected in the sense of Theorem 3 (i.e., from the topic
consensus graph Gp,con = (Tp,con, Ep,con), then a complete
consensus will be ensured. Otherwise, given Gp,con, although
the Laplacian L(x) is positive semidefinite, if the topic p is not
connected, then a partial opinion consensus will be achieved.
The number of partial opinion clusters will be dependent on
the number of clusters on the topic p. For example, in Fig. 2,
the topic p = 1 has two clusters, the topic p = 2 has two
clusters, and the topic p = 3 has one cluster. Let us define
disconnection as follows.

Definition 8. For a topic p, we call there is no disconnection
if and only if the opinion values x1,p, x2,p, . . . , xn,p are con-
nected. If the opinion values are divided into cp components
(there is no connection between components), then there are
cp − 1 disconnections.

Then, for Fig. 2, we can say that the topic p = 1 has one
disconnection (i.e., between agents 3 and 4), the topic p = 1
also has one disconnection (i.e., between agents 1 and 2), and
the topic p = 3 does not have a disconnection. With the above
definition, although it looks trivial, we can obtain the following
observation.

Observation 1. Let there be d topics, and each topic has
ci, i = 1, . . . , d, clusters. Then there are Tc =

∑d
k=1(ci −

1) + 1 partial opinion clusters at maximum.

Proof. Suppose that for the topic d = 1, we have c1 clusters.
It means that there are c1 − 1 disconnections in the set
T1,con , {x1,1, x2,1, . . . , xn,1}. Similarly, for the topic d = 2
with c2 clusters, there are c2 − 1 disconnections in the set

T2,con. Thus, by combining the topics d = 1 and d = 2, there
could be at maximum (c1 − 1) + (c2 − 1) disconnections in
T1,con and T2,con. Thus, if we consider all the topics, there are
at maximum (c1−1)+(c2−1) disconnections in

∑d
k=1(ci−1),

which implies that there could be Tc =
∑d
k=1(ci − 1) + 1

partial opinion clusters at maximum.

The results thus far are developed for the inverse-
proportional structures. Next, let us consider the case of the
proportional structures. For this, we use (5). Then, the weight-
ing matrix can be decomposed as (11), with the diagonal
matrix diag(Si,j) given as:

diag(Si,j) = diag
( sign(xj,k − xi,k)

c1‖xj,k − xi,k‖+ c0

)
(24)

Also, xTLx can be expressed as follows:

xTLx =
∑

(i,j)∈E

η(xj − xi)TKi,jη(xj − xi), (25)

where η(xj − xi) ,
( σ(xj,1−xi,1)
c1‖xj,1−xi,1‖+c0 ,

σ(xj,2−xi,2)
c1‖xj,2−xi,2‖+c0 ,

. . . ,
σ(xj,d−xi,d)

c1‖xj,d−xi,d‖+c0

)T
. Thus, the nullspace of the Laplacian

L in (25) is same to the nullspace of L in (15). Consequently,
all the results in the inverse-proportional structure couplings
are exactly applied to the cases of the proportional structure
couplings. For the non-cooperative opinion dynamics, the
elements of coupling matrices could be negative, i.e., there
exist −ki,jp,q < 0. It is obvious that Ki,j will be no more
positive semidefinite if there exists a negative diagonal term.
Thus, as far as the coupling matrices Ki,j are positive semidef-
inite, with some negative off-diagonal elements, the results
for cooperative networks will be still applied. It means that
there could be anti-coupling (i.e., anti-cross coupling) between
different topics; but if there is an anti-coupling (i.e., anti-direct
coupling) between the same topics, then a consensus is not
achieved4.

B. General Cases

The results in the previous section are quite clear and
provide precise conditions for the characterization of opinion
dynamics. However, the results are developed when the matrix
blkdg(Kk-th) is positive semidefinite. As shown in (20), when
the matrix blkdg(Kk-th) is not positive semidefinite, although
it is against from intuition, there can be no theoretical guaran-
tee for opinion consensus. For general case, we would like
to directly analyze the stability of the inverse-proportional
structures modeled by (2) and (3). Let us take the Lyapunov
candidate V = 1

2‖x‖
2, which is radially unbounded and con-

4Since the Laplacian matrix has negative eigenvalues, the opinion vector
may diverge.



tinuously differentiable, for the inverse-proportional structures.
The derivative of V is computed as:

V̇ = −xTLx

= −
∑

(i,j)∈E

σ(xj − xi)TKi,jσ(xj − xi)

= −
∑

(i,j)∈E

d∑
p=1

ki,jp,p(σ(xj,p − xi,p))2

︸ ︷︷ ︸
,φ

−
∑

(i,j)∈E

d∑
p=1

d∑
q=1, q 6=p

ki,jp,qσ(xj,p − xi,p)σ(xj,q − xi,q)︸ ︷︷ ︸
,ψ

(26)
≤ 0

From the above inequality, it is clear that V̇ = 0 if and only if
xj,p = xi,p for all topics, i.e., ∀p ∈ T , the opinion consensus
is achieved, which is summarized as follows:

Theorem 4. Let us suppose that the underlying interaction
graph G is all-topic coupled, i.e, Gp is p-coupled for all p ∈
{1, . . . , d}. Then, a complete opinion consensus is achieved.

Proof. To make V̇ = 0, it is required to have φ = 0 and
ψ = 0. Since G is all-topic coupled, φ = 0 implies ψ = 0.
But, ψ = 0 does not imply φ = 0. Thus, it is true that V̇ = 0
if xj,p = xi,p for all topics and for all (i, j) ∈ E . Suppose
that there exists an edge such that xj,p 6= xi,p for a specific
topic p. Then, V̇ 6= 0. Thus, V̇ = 0 only if xj,p = xi,p
for all topics and for all (i, j) ∈ E . Consequently, the set
D = {x : xj,p = xi,p, ∀i, j ∈ V, ∀p ∈ T } is the largest
invariant set. Finally, by the LaSalle’s invariance principle, the
proof is completed.

Remark 5. It is remarkable that the above results are true for
both the homogeneous-coupling and heterogeneous-coupling
networks, as far as the interaction graph G is all-topic
coupled.

Remark 6. It is noticeable that the condition of Theorem 4
is only a sufficient condition for a complete consensus. Thus,
we may be able to achieve a complete opinion consensus even
if the network is not all-topic coupled. Let us suppose that
two topics p̄ and q̄ are not p-coupled. For example, the two
topics are not directly coupled at the edge (̄i, j̄). Since the
overall network is connected, there must be terms such as
kī,j̄p̄,q̄σ(xj̄,p̄−xī,p̄)σ(xj̄,q̄−xī,q̄) in ψ. Thus, to make V̇ = 0, it is
required to have either σ(xj̄,p̄−xī,p̄) = 0 or σ(xj̄,q̄−xī,q̄) = 0.
Therefore, even if the two topics p̄ and q̄ are not p-coupled, the
neighboring agents ī and j̄ may reach a consensus. We will
illustrate this case by an example in the simulation section.

From (26), we can see that if there is no cross couplings,
i.e., ψ = 0, then it is a usual consensus protocol in different
layers. On the other hand, if there is no direct coupling, i.e.,
φ = 0, then there is no coupling in the same topics among
agents. In the case of ψ = 0 with ki,jp,q = 0 whenever p 6= q,

it is still true that V̇ = 0 if and only if xj,p = xi,p; thus, the
typical consensus is achieved. Let φ = 0, with ki,jp,p = 0 for all
p. There are some undesired equilibrium cases. For example,
given a coupling graph Gi,j , let there exist paths from the topic
node 1 to all other topic nodes. That is, the graph Gi,j is a star
graph with root node 1. Then, V̇ , with φ = 0, can be changed
as:

V̇ = −
∑

(i,j)∈E

σ(xj,1 − xi,1)

[
d∑
q=2

ki,j1,qσ(xj,q − xi,q)

]
(27)

So, if sgmd(xj,1 − xi,1) = 0 for all (i, j) ∈ E , then we have
V̇ = 0. Thus, for a star graph, if the root topic has reached
a consensus, all other topics may not reach a consensus.
Actually, when φ = 0, a complete consensus is not achieved,
due to the following reason:

Claim 1. Let us suppose that, ∀(i, j) ∈ E , ki,jp,p = 0, ∀p. Then,
V̇ will be almost zero (for the meaning of “almost”, see the
footnote 1) with at least one topic having xj,p 6= xi,p if and
only if the coupling graphs Gi,j , ∀(i, j) ∈ E , are complete
graphs.

Proof. (If ) When it is a complete graph, without loss of
generality, let the first topic, p = 1, be reached a consen-
sus. Then, we need to have

∑d
p=2

∑d
q=2, q 6=p k

i,j
p,qσ(xj,p −

xi,p)σ(xj,q − xi,q) = 0 to make V̇ = 0. Similarly, suppose
that the second topic has been reached a consensus, i.e.,
p = 2. Then, we need to have

∑d
p=3

∑d
q=3, q 6=p k

i,j
p,qσ(xj,p −

xi,p)σ(xj,q − xi,q) = 0. By induction, when p = d − 1, we
need to have ki,jd,d−1σ(xj,d−xi,d)σ(xj,d−1−xi,d−1) = 0. So,
to make ki,jd,d−1σ(xj,d − xi,d)σ(xj,d−1 − xi,d−1) = 0, either
σ(xj,d − xi,d) or σ(xj,d−1 − xi,d−1) needs to be zero.5 Thus,
at least one topic does not need to reach a consensus.
(Only if ) Without loss of generality, let us suppose that there
is no couple between the topics p = d − 1 and p = d; but
there are couplings between all other remaining topics. Then,
by following the above procedure (“if ” procedure), when
p = d − 2, we have ki,jd−1,d−2σ(xj,d−1 − xi,d−1)σ(xj,d−2 −
xi,d−2)+ki,jd,d−2σ(xj,d−xi,d)σ(xj,d−2−xi,d−2) = 0. Thus, if
it is assumed that σ(xj,d−2−xi,d−2) = 0, then the two topics,
p = d− 1 and p = d, do not need to reach a consensus.

Remark 7. In Claim 1, since ki,jp,p = 0 for all p and for all
edges, and the coupling graphs are complete graphs, it can
be classified as a homogeneous-coupling network.

The above claim implies that a complete opinion consensus
for all topics is not ensured for general graphs, when φ =
0. Also under the condition of φ = 0, when the coupling
graphs are not complete graphs, it is likely that more than

5Actually, this does not imply that only one equality holds; the two
equalities may hold. Indeed, suppose that, at time t, all other conditions have
been satisfied, and i and j are still updating their opinions on topics d and
d−1 using the couplings σ(xj,d(t)−xi,d(t)) and σ(xj,d−1(t)−xi,−1d(t)).
If those two coupling gains are equal, then the consensus speeds of i and j
on topics d and d− 1 are equal. Thus, the topics d and d− 1 might achieve
a consensus simultaneously. Although this case might rarely happen, it may
occur; that is why we call it “almost zero with at least one topic having
xj,p 6= xi,p”.



one topics would not reach consensus. Thus, for a complete
opinion consensus, it is required to have φ 6= 0.

Observation 2. Consider a homogeneous-coupling network.
Let φ 6= 0; but ki,jp,p = 0 for some p ∈ T , ∀(i, j) ∈ E . Then, a
complete opinion consensus is not ensured.

Proof. Let us divide the set T as T = T ◦ ∪ T × and T ◦ ∩
T × = ∅, where ki,jp,p 6= 0 when p ∈ T ◦ and ki,jp,p = 0 when
p ∈ T ×. Then, for all the topics p ∈ T ◦, we need to have
σ(xj,p−xi,p) = 0 to make V̇ = 0. Then, to make ψ = 0, it is
required to ki,jp,qσ(xj,p−xi,p)σ(xj,q −xi,q) = 0 when p ∈ T ◦
and q ∈ T ×, or ki,jp,qσ(xj,p − xi,p)σ(xj,q − xi,q) = 0 when
p, q ∈ T ×. For the former case, since σ(xj,p − xi,p) = 0, it
does not need to have σ(xj,q −xi,q) = 0. Thus, for the topics
q ∈ T ×, a consensus may not be achieved. For the latter case,
due to the same reason as the proof of Claim 1, there will be
some topics that do not reach a consensus.

Theorem 4 and Observation 2 lead a conclusion that each
topic needs to be p-coupled to have a complete consensus.
However, as remarked in Remark 6, it is not argued that the p-
coupling for all topics, i.e., all-topic coupled, is the necessary
and sufficient condition for a complete opinion consensus.
From the equation (26), we can infer that the interdependent
couplings between topics are required to speed up the opinion
consensus. So, to have an opinion consensus on a topic, the
agents of the society need to discuss directly on the same topic.
But, if they have some opinion couplings with other topics,
the consensus of the topic may be achieved more quickly.

Next, let us consider the proportional structures modeled
by (4) and (5). For the proportional structures, using the same
Lyapunov candidate V = 1

2‖x‖
2, we can obtain the derivative

of V as:

V̇ = −
∑

(i,j)∈E

d∑
p=1

d∑
q=1

ki,jp,q

× σ(xj,p − xi,p)σ(xj,q − xi,q)
(c1‖xj,p − xi,p‖+ c0)(c1‖xj,q − xi,q‖+ c0)

≤ 0

(28)

Since the denominator of the right-hand side of (28) is always
positive, the equilibrium set for V̇ = 0 is decided if and only if
σ(xj,p−xi,p)σ(xj,q−xi,q) = 0 for all p, q ∈ T . Consequently,
we have the same results as the inverse-proportional structure
couplings.

Observation 3. Let us consider general heterogeneous-
coupling network, i.e., Gi1,j1 6= Gi2,j2 for some edges
(i1, j1) 6= (i2, j2). If some topics are not p-coupled, then a
complete opinion consensus is not ensured.

Proof. Let us suppose that there is no direct coupling between
agents j̄ and ī, on a specific topic p̄. Then, in φ of (26), the
term (xj̄,p̄−xī,p̄)2 is missed. But, the term σ(xj̄,p̄−xī,p̄) may
be included in ψ in the form of σ(xj̄,p̄ − xī,p̄)σ(xj̄,p − xī,p)
if there are cross couplings between the topic p̄ and any other
topics p. If there is a direct coupling on the topic p between
agents j̄ and ī, then the term σ(xj̄,p−xī,p) will be zero; thus,
σ(xj̄,p̄ − xī,p̄) does not need to be zero to make V̇ zero. Or,

Agent 1 Agent 2 Agent 3 Agent 4

Topic 1

Topic 2

Topic 3

Fig. 4. A network composed of four agents with three topics.

if there is no direct coupling on the topic p between agents
j̄ and ī, still either σ(xj̄,p̄ − xī,p̄) or σ(xj̄,p − xī,p) does not
need to be zero also. Thus, a complete opinion consensus is
not ensured.

The results of Observation 2 and Observation 3 leave
a question about the clustered opinions. Let us consider a
network depicted in Fig. 4. From the term φ in (26), all the
topics between agents 1 and 2, and all the topics between
agents 3 and 4 reach an opinion consensus. Due to the
interdependent couplings between agents 2 and 3, we have
the interdependency terms as ψ = k2,3

1,2σ(x2,1−x3,1)σ(x2,2−
x3,2) + k3,2

2,1σ(x2,2 − x3,2)σ(x2,1 − x3,1) + k2,3
2,3σ(x2,2 −

x3,2)σ(x2,3 − x3,3) + k3,2
3,2σ(x2,3 − x3,3)σ(x2,2 − x3,2). Thus,

by Barbalat’s lemma, to make V̇ zero, we need to have ψ = 0.
From the above equation, for example, if σ(x2,2 − x3,2) = 0,
then ψ becomes zero. The largest invariant set for having
V̇ = 0 is obtained as D = Dd ∪ Du, where the desired set is
given

Dd = {x : x1 = x2 = x3 = x4}

and undesired set is given as

Du = {x : x1 = x2, x3 = x4, x2 6= x3}

In the undesired set, the opinions of agents 2 and 3 may be
related as (i) x2,2 = x3,2, but x2,1 6= x3,1 and x2,3 6= x3,3, (ii)
x2,2 6= x3,2, but x2,1 = x3,1 and x2,3 = x3,3, (iii) x2,3 6= x3,3,
but x2,1 = x3,1 and x2,2 = x3,2, or (iv) x2,1 6= x3,1, but
x2,2 = x3,2 and x2,3 = x3,3. Thus, a part of opinions reaches
a consensus, while a part of opinions may reach clustered
consensus.

It is clear that if there are some topics that are p-coupled,
then a complete clustered consensus cannot take place. Also,
even though the network is not p-coupled for all p, if the
network is connected, then a complete clustered consensus
is not ensured since the connected neighboring topics would
reach a consensus. Thus, a complete opinion consensus rarely
occurs as far as the network is connected. But, a partial opinion
consensus would occur easily if it is not all-topic coupled.
In fact, if the network is not all-topic coupled, the network
would have opinion-based clustered consensus. It means that
if agents of network are connected, some opinions would be
agreed among agents, but some opinions would be divided into
clusters. Or, most of opinions would be clustered, depending
on interaction network topology G and the topic topologies
Gp.



Agent i Agent j

Topic p

Topic q

Topic r

Topic p

Topic q

Topic r

Fig. 5. A network with inner-couplings: There are couplings between the
topics p and q in agent i, and between topic q and r in agent j.

1

2

3

4

5

Fig. 6. Underlying topology for numerical simulations.

Observation 4. Suppose that a network is connected. Even
though φ = 0, a complete clustered consensus is not ensured.

Proof. Due to the term ψ including σ(xj,p−xi,p)σ(xj,q−xi,q),
at least one of the topics p and q needs to be agreed. Thus, a
complete clustered opinion consensus does not occur.

Now, with the statements of Observation 2, Observation 3
and Observation 4, we can see that if agents of a society
are not all-topic coupled, but just connected in the sense of
interaction graph G, then both a complete opinion consensus
and complete clustered consensus are not ensured. Finally, it
is remarkable that for the general cases with general Laplacian
matrix, only the analysis for cooperative opinion dynamics is
feasible, different from the cases in Section III-A. That is, if
there exists at least one negative ki,jp,q , V̇ could be positive in
(26). This is the weak point of the results of Section III-B
over the results of Section III-A.

Remark 8. There may exist inner-agent couplings among the
topics of an agent. That is, for example, Fig. 1 may be changed
as Fig. 5 with inner-couplings. In such case, the opinion model
(1) should be changed as

ẋi =

n∑
j∈Ni

Ai,j(xj − xi) + F ixi (29)

where the matrix Fi ∈ Rd×d defines the inner-couplings. The
elements of Fi may be modeled in a cooperative or anti-
cooperative manner as done in Section II. However, with
addition of inner-coupling terms, overall analysis becomes
more difficult. So, this topic remains as another work.

IV. SIMULATIONS

A. Case of Positive Semidefinite Laplacian

Let us consider five agents with the underlying interaction
network topology as depicted in Fig. 6. The initial opinions
of agents are given as x1 = (1, 2, 3)T , x2 = (2, 4, 4)T ,

x3 = (3, 1, 5)T , x4 = (4, 3, 2)T , x5 = (5, 6, 1)T . The initial
opinions of agents for the three topics are different each other.
To verify the results of Section III-A, the following coupling
matrices are considered.

K1,2 =

 1 1 0
1 1 0
0 0 0

 ;K1,3 =

 1 0 0
0 1 1
0 1 1


K2,3 =

 2 0 1
0 2 1
1 1 2

 ;K3,4 =

 1 1 1
1 1 1
1 1 1


K4,5 =

 1 0 1
0 1 0
1 0 1

 (30)

which are all positive semidefinite. From the above coupling
matrices, it is shown that the topic consensus graph Gp,con for
all p = 1, 2, 3 is connected. Thus, as expected from Theorem 3,
a consensus for all topics is achieved. Fig. 7 shows that all
the values of the topics of agents reach a consensus as time
passes. Next, let us change K1,3 and K3,4 as

K1,3 =

 0 0 0
0 1 1
0 1 1

 ;K3,4 =

 0 0 0
0 1 1
0 1 1



which are still positive semidefinite. However, due to the new
K3,4, there is a disconnection in topic 1 between agents 3 and
4. Thus, the topic 1 is not connected in the topic consensus
graph G1,con. As expected from Theorem 1, there will be
two clusters. Fig. 8 shows that the topic 1 does not reach
a consensus; there are two clusters (one cluster with agents
1, 2, and 3, and another cluster with agents 4 and 5).

Next, let us consider the following coupling matrices which
have anti-couplings in off diagonal terms. Clearly, it is a non-
cooperative opinion network. But, even with negative cross-
couplings, all the topics are p-coupled and the Laplacian of
this dynamics is still positive semidefinite. Fig. 9 shows that
all the topics reach a consensus, as expected.

K1,2 =

 2 −1 0
−1 2 1
0 1 1

 ;K1,3 =

 1 0 0
0 1 1
0 1 1


K2,3 =

 2 0 −1
0 2 1
−1 1 2

 ;K3,4 =

 5 1 0.1
1 1 −1

0.1 −1 5


K4,5 =

 1 0 1
0 1 0
1 0 1
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Fig. 7. Consensus under positive semidefinite Laplacian: Left - Topic 1 (i.e., xi,1, i = 1, . . . , 5). Center - Topic 2 (i.e., xi,2, i = 1, . . . , 5). Right - Topic
3 (i.e., xi,3, i = 1, . . . , 5).

 

Fig. 8. Partial opinion consensus with a disconnected topic consensus graph.

 

Fig. 9. A non-cooperative network: A complete opinion consensus is achieved with anti-cross couplings.

B. General Cases

Let the coupling topologies for each edge be given as:

K1,2 =

 1 1 0
1 1 1
0 1 1

 ;K1,3 =

 1 1 0
1 1 1
0 1 1


K2,3 =

 1 1 0
1 1 1
0 1 1

 ;K3,4 =

 1 1 0
1 1 1
0 1 1


K4,5 =

 1 1 0
1 1 1
0 1 1


which are indefinite matrices. Since all the topics are p-
coupled, it is an all-topic coupled network. Also, since the
coupling matrices for all edges are equivalent, it is a homoge-

neous network. With the above coupling matrices, as expected
from Theorem 4, the topics of agents reach a complete opinion
consensus. Next, let us change the matrix K3,4 as

K3,4 =

 0 1 0
1 0 1
0 1 1

 (31)

In this case, the topic 1 and 2 are not p-coupled, although the
underlying interaction network is connected. As observed in
Observation 3, Fig. 10 shows that the topic 1 does not reach a
consensus, while the topic 2 still reaches a consensus. In the
topic 1, agents 3, 4 and 5 reach a consensus, while agents 4
and 5 reach a consensus. But, when the matrix A3,4 is changed



again as

K3,4 =

 1 1 0
1 0 1
0 1 1

 (32)

all the topics have reached a consensus although it is not all-
topic coupled. Let us change the weight matrices K2,3 and
K1,3 as

K1,3 =

 0 1 0
1 1 1
0 1 0

 ;K2,3 =

 0 1 0
1 1 1
0 1 0

 (33)

In this case, the network is not all-topic coupled. As shown
in Fig. 11, the topics 1 and 3 do not reach a consensus, while
the topic 2 reaches a consensus. Next, let us consider φ = 0
and Gi,j ∀(i, j) ∈ E are complete graphs. Fig. 12 shows the
simulation result. All the topics do not reach a consensus.

V. CONCLUSION

The opinion dynamics with direct- and cross-coupling topics
may be considered as a consensus problem of multi-layer
networks. Each topic can be considered as a basic layer and
the term ai,jp,q may describe a cross-layer connection between
the layer p and layer q, and between agent i and agent j.
The basic layer is the direct connections that are essential for
achieving a consensus on this layer. This paper shows that the
opinion dynamics with multiple cross-coupling topics, which
is the consensus dynamics in multi-layer networks, possesses
some new properties different from the usual consensus in
one layer. Clustering phenomenon occurs quite often, even
though the number of connections between agents is large. In
general, adding a direct connection ai,jp,p forces a consensus
between agents i and j on the topic p. On the other hand,
adding a set of cross-layer connections {ai,jp,q}q 6=p,q=1,...,d may
not be so significantly helpful for the agents i and j to
reach a consensus on topic p. But, from simulations, it is
shown that the cross-layer connections are still beneficial for a
consensus on the topics. Of course, as analyzed in the case of
positive semidefinite Laplacian matrices, the cross couplings
are also very helpful for a consensus. It was also revealed
that a complete opinion consensus still could be achieved for
non-cooperative networks when there are some negative cross-
couplings in off diagonal terms.

In our future efforts, we would like to evaluate the polar-
ization phenomenon of bipartite graphs under the setup of
cross-couplings, which may be a general one of [10], [11]
in multidimensional spaces. It is also interesting to change the
overall formulation in discrete-time cases; then the discontinu-
ity arising in the sign functions can be handled more easily. We
are also interested in the problem of switches in the coupling
matrices (for example, a coupling matrix could switch from
a positive semidefinite property to indefinite property). Then,
the topology will be time-variant. In our future efforts, we
would like to solve this problem in a more general setup.
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Fig. 10. The topics 1 and 2 are not p-connected, due to zero diagonal terms in K3,4: Left - Topic 1 (i.e., xi,1, i = 1, . . . , 5). The agents 4 and 5 reach a
consensus, and agents 1, 2 and 3 reach a consensus for the topic 1. Center - Topic 2 (i.e., xi,2, i = 1, . . . , 5). Right - Topic 3 (i.e., xi,3, i = 1, . . . , 5).
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Fig. 11. Not all-topic connected, with zero diagonal terms in K1,3 and K2,3; only the topic 2 is p-connected. The topics 1 and 3 do not reach a consensus
(clustered), while the topic 2 reaches a consensus. For both the topics 1 and 3, agents 1 and 2 reach a consensus, and agents 3, 4, and 5 reach a consensus.
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Fig. 12. φ = 0 with complete interdependency graphs. The agents do not reach a consensus even for a topic.
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