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theorems based on interacting Fock

spaces

Abstract

Cabanal-Duvillard and Ionescu [11] have proved that any symmet-
ric probability measure with moments of any order can be obtained
as central limit theorem of self-adjoint, weakly independent and sym-
metrically distributed (in a quantum sense) random variables. Results
of this type will be called ”universal central limit theorem”.
Using Interacting Fock Space (IFS) techniques we extend this result in
two directions: (i) we prove that the random variables can be taken to
be generalized Gaussian in the sense of Accardi and Bożejko [3] and we
give a realization of such random variables as sums of creation, anni-
hilation and preservation operators acting on an appropriate IFS; (ii)
we extend the above mentioned result to the non symmetric case. The
non trivial difference between the symmetric and the non symmetric
case is explained at the end of the introduction below.
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§1 Introduction

The main technical tool, used in the present paper, is the Interacting Fock
Space (IFS). This notion emerged from the stochastic limit of quantum elec-
trodynamics (QED) without dipole approximation [1].

The functoriality of the construction of the IFS suggested, since the be-
ginning of the theory, that it might be a natural tool to construct examples
of inequivalent notions of stochastic independence.

On the other hand, the proliferation of notions of stochastic independence
has motivated the development of different points of view concerning these
notions. In particular we mention:

(i) the axiomatic point of view, based on various notions of coproduct and
developed by Schürmann [23], Speicher [26], Ben Ghorbal [6], Muraki
[22],

(ii) the reductionistic point of view, developed by Lenczewski, which re-
duces all notions of independence to tensor independence [17], see also
[13],

(iii) the individualistic point of view, which concentrates on a specific notion
of independence and extensively develops the corresponding probabil-
ity theory in analogy with the classical one. This has been followed
by Voiculescu [27], Bożejko and Speicher [10], Speicher [24], Bercovici
[8], for free probability; by Lu [18, 19] and especially Muraki [21], for
monotone probability; by Speicher and Woroudi [25], Ben Ghorbal and
Schürmann [7] for boolean probability;

(iv) the constructive approach, which emphasizes concrete and explicit rep-
resentations of the random variables involved. Examples of this ap-
proach can be found in the paper [9] by Bozejko, Kümmerer, Speicher
on q–Gaussian processes and in several other papers of the Polish QP–
school; in the papers by Accardi, Hashimoto, Obata [4], Hashimoto
[15], Hashimoto, Hora and Obata [16], Lu [19], which use the IFS as a
basic tool.

From the Lenczewski approach [17] it begun to emerge the idea that the
various notions of quantum independence are in fact masked forms of classi-
cal dependencies. This point of view received two independent confirmations:
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one in the result, proved by Cabanal Duvillard and Ionescu [11], that any
symmetric probability measure on R, with moments of any order can be
obtained as the central limit distribution, in the sense of convergence in mo-
ments of a sequence of symmetrically distributed algebraic random variables
satisfying a notion of stochastic independence. Another one was obtained by
Accardi and Bożejko [3] who introduced a universal convolution and proved
that every symmetric probability law on R with moments of any order is
infinitely divisible with respect to this convolution.

The result of [3] was based on interacting Fock space techniques while the
result of Cabanal–Duvillard and Ionescu exploited the combinatorial tech-
niques of [12] combined with an extension of the notion of (ϕ, ψ)–independence,
due to Bożejko and Speicher [10]. This construction was generalized by
Mlotkowski [20]. Between the results obtained in [3, 11, 20] and the central
limit theorem proved in the present paper, there are three main differences:

1. we prove that any mean–zero distribution with moments of all orders,
not only the symmetric ones, can be obtained as central limits, in the
sense of convergence of moments, of self-adjoint random variables;

2. we explicitly realize both the approximating random variables and their
limits as sums of creation, annihilation and number operators in suit-
able IFS;

3. with respect to the reference state, the random variables considered
here do not satisfy the weak independence condition, used in [11] nei-
ther, in the case of non symmetric distribution, the symmetrically dis-
tributed condition, used in the same paper.

The present paper also suggests a general notion of independence, natu-
rally abstracting the properties of the special class of interacting Fock spaces
which is used here (cf. section 4), and different from the notion of weak inde-
pendence in the sense of Cabanal–Duvillard and Ionescu. This development
will be discussed in [5].

It was known from the Accardi–Bożejko paper [3] that the mixed moments
of any probability measure with moments of any order can be expressed in
terms of singletons and (non crossing) pair partitions (Gaussianization) and
that the symmetric case is characterized by the absence of singletons. The
functoriality of the IFS construction provides a natural and easy way to
extend this construction from single random variables to processes.
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A nontrivial difference between the symmetric and the non symmetric
central limit theorem is that we are unable to prove the latter with identically
distributed random variables. We were able to reduce this dishomogeneity
to a simple multiplication by a constant (cf. section (§5) formula (5.2)), but
not to eliminate it completely. It is not known whether this is a limitation of
our method or the manifestation of an intrinsic difference between the two
cases. The analogy with the classical case suggests the conjecture that the
latter hypothesis is true.

This paper is organized as follows in section §2 we recall the definition
of IFS and of the basic operators acting on a such spaces, i.e. creation,
annihilation and preservation operators. In section §3 one give a formula
for the moments of a quantum stochastic process of the form of A(f) +
A+(f) + Λα. In section §4, we introduce the notion of “1–mode–type IFS”
(1–MT–IFS) and show that on any 1–MT-IFS, the vacuum distribution of
A(f)+A+(f)+Λα depends only on the module of f but not on f itself. This
is the main difference between IFS and 1–MT-IFS, for more details see [19].
Section §5 is devoted to the proof of our main result i.e. Theorem 5.1. First,
we prove an estimate on the mixed moments (Lemma 5.2) which allows to
apply Lemma 2.4 of [4]. This, combined with a quantum extension of the
moment formula proved in Theorem 5.1 of [3], allows to conclude the proof
of our Theorem 5.1 in the symmetric case. Up to this point we work with
identically distributed random variables. Then we extend the proof to the
non symmetric case trying to emphasize the steps of the proof that prevent us
from using only identically distributed random variables (cf. formula (5.12)).
Corollary (5.1) specializes the above result to the associated classical process
and corresponds to the nonsymmetric extension of the Cabanal-Duvillard
and Ionescu result.

§2 Standard IFS

In this and following sections we recall from [2] the definition and some
properties of the standard IFS. Then, using these notions, we formulate the
main results of this paper.

Definition 2.1 Let (X,X , µ) be a measure space and let {λn}∞n=1 be a family
of functions with the following properties:

(i) for any n ∈ N, λn : (Xn,X n)→ R+ is bounded, positive, measurable;
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(ii) for any measurable function Fn : (Xn,X n)→ C if∫
|Fn (xn, . . . , x1)|2 λn (xn, . . . , x1)µ (dxn) · · ·µ (dx1) = 0

then for any measurable function f : (X,X )→ C,∫
|f (x)|2 |Fn (xn, . . . , x1)|2 λn+1 (x, xn, . . . , x1)µ (dx)µ (dxn) · · ·µ (dx1) = 0

We define, for each n ∈ N, the (not necessarily finite) measure µn on Xn

by

µn (E) :=

∫
E

λn (xn, . . . , x1)µ (dxn) · · ·µ (dx1) , for E ∈ Xn,

and the associated L2–space:

Hn := L2 (Rn, µn) , ∀n ≥ 2

with pre-scalar product such that for any Fn, Gn ∈ Hn

〈Fn, Gn〉 :=

∫
λn (xn, . . . , x1)

(
FnGn

)
(xn, . . . , x1)µ (dxn) · · ·µ (dx1) .

By taking the quotient and completing Hn becomes an Hilbert space and with
the convention that

H0 := C, H := H1

The space

Γ
(
H, {λn}n

)
:=

∞⊕
n=0

Hn, Φ := 1⊕ 0⊕ 0⊕ · · · (2.1)

is called the (standard) interacting Fock space with weight functions
{λn}∞n=1. In particular if the {λn}∞n=1 are constant, then the corresponding
space Γ (H, {λn}n) is called a 1–mode type free interacting Fock space (1–
MT-IFS in short).

Definition 2.2 On the standard interacting Fock space Γ (H, {λn}n), for any
f ∈ H, for any n ∈ N and for any Fn ∈ Hn the creation operator A+ (f) is
defined by:(

A+ (f)Fn
)

(xn+1, xn, . . . , x1) := f (xn+1) · Fn (xn, . . . , x1)
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It can be proved that A+ (f) is well defined as a linear operator A+
f : Hn →

Hn+1 and that it has an adjoint A (f) : Hn → Hn−1 (on an appropriate
domain, cf. [2]) called the annihilation operator

A(f) := (A+(f))∗

If we assume that for any natural integer n and k = 1, 2, . . . , n+ 1, there
is a Cn,k such that

λn+1 (xn+1, ..., x2, x1) ≤ Cn,kλ1 (xk) · λn (xn+1, ..., xk+1, xk−1, ..., x1)

then, for each n ∈ N, A+ (f) : Hn → Hn+1 is a linear bounded operator (see
[2] for more details).

Definition 2.3 For any X ∈ B (H) , for any α = {αn}∞n=0 ⊂ R with α0 := 0,
for any n ∈ N and for any f1, . . . , fn ∈ H, one defines

Λα (X) (f1 ⊗ f2 ⊗ · · · ⊗ fn) := αn (Xf1)⊗ f2 ⊗ · · · ⊗ fn
the number operator with intensity ({αn}∞n=0 , X).

For simplicity we shall adopt throughout this paper the following conven-
tions:

• if X is the identity operator, Λα (X)will be denoted simply

Λα := Λα (1) (2.2)

• for any f ∈ H we write

Λα (f) := Λα (Mf ) (2.3)

where Mf is the multiplication by f , i.e. Mfg := fg, for any g ∈ H.

For any ε ∈ {−1, 0, 1} , f ∈ H, α ∈ `∞
(
RN
)

we will denote

Aε (f) = Aεf :=


A+ (f) , if ε = 1
Λα (f) , if ε = 0
A (f) , if ε = −1

(2.4)

The properties of standard IFS imply that, for any n ∈ N, ε (1) , . . . , ε (n) ∈
{−1, 1}, f1, . . . , fn ∈ H, for any sequence (αn) with α0 = 0, and for any
X ∈ B (H), the following identity holds (in the sense that both sides are well
defined and the identity holds):

Λα (X)Aε(n) (fn) · · ·Aε(1) (f1) Φ = αmA
ε(n) (gn) · · ·Aε(1) (g1) Φ (2.5)

where
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• among the vectors g1, . . . , gn, there is exactly one index i such that

gi = Xfi, gj = fj ∀j 6= i

• also the indexm is uniquely determined by the family {ε (1) , . . . , ε (n)}.

As a consequence any product of creation, annihilation and number oper-
ators applied to the vacuum can be always reduced to a multiple of a product
of only creation and annihilation operators applied to the vacuum.

The Φ–statistics of the operator stochastic process {A (f) , A+ (g) ,Λα (X) :
f, g ∈ H,X ∈ B (H)} is coded into its mixed moments〈

Aε(1) (f1) · · ·Aε(n) (fn)
〉

:=
〈
Φ, Aε(1) (f1) · · ·Aε(n) (fn) Φ

〉
(2.6)

through the algebraic rules (2.5) and:

A (f) Φ = 0,
〈
A (f)A+ (g)

〉
= 〈f, g〉

The extension of the Cabanal-Duvillard-Ionescu theorem, mentioned in
the introduction, can be formulated as follows (cf. Corollary (5.1)): for any
mean–zero probability measure µ on R with moments of any order, there
exists an IFS Γ (H, {λn}n) and a family of operator random variables {Qk}∞k=1

such that, for any m ∈ N

lim
N→∞

〈(
1√
N

N∑
k=1

Qk

)m〉
=

∫
xmdµ

Moreover, both the family {λn}n and the construction of {Qk}∞k=1 are de-
termined by the Jacobi parameters of the measure µ. This result will be
obtained as a corollary of a more general quantum central limit theorem (cf.
Theorem (5.1)).

§3 Moments of creators, annihilators and num-

ber operators in IFS

Lemma 3.1 For any n ∈ N and ε belonging to the set

{−1, 0, 1}n := {ε = (ε (n) , · · · , ε (1)) : ε (i) ∈ {−1, 0, 1} , ∀i = 1, . . . , n }
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i) if among
{
Aε(n) (fn) , · · · , Aε(1) (f1)

}
there are same number of annihi-

lators and creators, then there exists a constant c such that

Aε(n) (fn) · · ·Aε(1) (f1) Φ = cΦ (3.1)

ii) if among
{
Aε(n) (fn) , · · · , Aε(1) (f1)

}
there are more annihilators than

creators, then
Aε(n) (fn) · · ·Aε(1) (f1) Φ = 0

iii) if the cardinality of the set {i : ε (i) = ±1} is odd , then

Aε(n) (fn)Aε(n−1) (fn−1) · · ·Aε(1) (f1) Φ = 0

iv) if either ε (1) ∈ {0,−1} or ε (n) ∈ {1, 0} , the scalar product〈
Aε(n) (fn)Aε(n−1) (fn−1) · · ·Aε(1) (f1)

〉
is equal to zero.

Proof. It clearly follows from the definitions.

�

Definition 3.1 For n ∈ N and ε = (ε (n) , · · · , ε (1)) ∈ {−1, 0, 1}n we define
the depth function (of the string ε) dε : {1, ..., n} → {0,±1, ...,±n} by

dε (j) =

j∑
k=1

ε (k) (3.2)

= |{ε (k) : ε (k) = 1; k < j}| − |{ε (k) : ε (k) = −1; k < j}|

Thus dε(j) gives the relative number of creators (annihilators, if negative)
in the product Aε(n) · · ·Aε(1) which are at the right of Aε(j) or, equivalently,
the number of pairs which contain j in their “interior”.

Definition 3.2 {−1, 0, 1}n+ is defined as the totality of all {−1, 0, 1}n satis-
fying the following conditions:

i)
∑n

k=1 ε (k) = dε (n) = 0;

8



ii) ε (1) = 1 and ε (n) = −1;

iii) for all i = 1, . . . , n, dε (i) ≥ 0.

Lemma 3.2 For any n ∈ N, {fk}nk=1 ⊂ H and ε ∈ {−1, 0, 1}n , the scalar
product 〈

Aε(n) (fn)Aε(n−1) (fn−1) · · ·Aε(1) (f1)
〉

(3.3)

can be nonzero only if ε ∈ {−1, 0, 1}n+ .

Remark 3.1 If we restrict our consideration only to creation and annihila-
tion operators, the analogue of the set {−1, 0, 1}n+ , is denoted by {−1, 1}n+.

Condition i), which can be realized only if n is even, means that within
the set {

Aε(n) (fn) , Aε(n−1) (fn−1) , · · · , Aε(1) (f1)
}

the number of creators is equal to the number of annihilators. Condition
iii) means that for any i, in the set

{
Aε(i) (fi) , A

ε(i−1) (fi−1) , · · · , Aε(1) (f1)
}

there are more creators than annihilators. As a consequence, ε (1) must be
equal to 1. Moreover, since one must verify contemporarily both

|{h : h ≤ n− 1, ε (h) = 1}| ≥ |{h : h ≤ n− 1, ε (h) = −1}|

and
n∑
k=1

ε (k) = 0,

ε (n) has to be equal to −1.
When one considers not only creation and annihilation, but also number

operators, the cardinality of number operators is arbitrary, so that n is not
necessarily even.

Proof of Lemma 3.2. Condition ii) is clear. iii) follows from the iden-
tity:

Aε(i)(fi) . . . A
ε(1)(f1)Φ ∈ H∑i

j=1 ε(j)
; i ∈ {2, . . . , n}

with the convention that

Hν = 0 , for ν < 0
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If i) does not holds, then either the number of creators from the left is less
than that of the annihilators or the converse is true.In the former case (3.3)
is zero because of iii). In the latter the adjoint of (3.3) is

〈Aε′(1)(f̂1) . . . Aε
′(n)(f̂n)〉

where

ε′(j) =

{
1− ε(j) , if ε(j) = ±1

ε(j) , if ε(j) = 0

f̂j =

{
fj , if ε(j) = ±1

f j , if ε(j) = 0

and this is zero because of iii).
�

Definition 3.3 For any pair partition {(ip, jp)}np=1 of the set {1, 2, · · · , 2n} ,{(
aip , ajp

)}n
p=1

will be called a pair partition of the set {a1, a2, · · · , a2n}.{(
aip , ajp

)}n
p=1

is called non-crossing if {(ip, jp)}np=1 is non-crossing.

We shall adopt the convention that, for any pair partition (non-crossing
or crossing)

{(
aip , ajp

)}n
p=1

, we have in < · · · < i1 and ip > jp for all p =
1, 2, · · · , n.

We have shown that for any ε ∈ {−1, 0, 1}n+ , the cardinality of the set
{i : ε (i) = ±1} must be even and we shall denote this set by {i1, i2, · · · , i2N}
with the order i2N < · · · < i1. Define

ε′ (h) := ε (ih) , ∀h = 1, 2, · · · , 2N

then ε′ ∈ {−1, 1}2N
+ and, as proved in [1], ε′ determines a unique non-crossing

pair partition of the set {1, 2, · · · , 2N} , hence a non-crossing pair partition
of {i1, i2, · · · , i2N}. In the following this pair partition will be called the non-
crossing pair partition determined by ε. It is clear that any ε ∈ {−1, 0, 1}n+
determines exactly one ε′ and therefore exactly one pair partition.

Lemma 3.3 In the notation (2.4), one has:〈
Φ,
(
A(f) + A+(f) + Λα

)m
Φ
〉

=
∑

ε∈{−1,0,1}m+

〈
Φ, Aε(m) . . . Aε(1)Φ

〉
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=
∑

0≤j≤m−2
m−j∈2N

m−1∑
ij ,...,i1=2

ij<...<i1

∑
ε∈{−1,0,1}m,j+

ε(is)=0 ∀s=1,2,...,j

j∏
s=1

αdε(s)

〈
Φ,

∏
1≤h≤mh/∈{is}

j
s=1

Aε(h) (f) Φ

〉

(3.4)
where, for any j ∈ {h : h = 0, 1, · · · ,m− 2} such that m− j is even and for
any s = 1, . . . , j, we define

{−1, 0, 1}m,j+ :=
{
ε ∈ {−1, 0, 1}m+ ; ] {h : h = 1, 2, · · · ,m, ε (h) = 0} = j

}
Proof. Expanding the power (A(f) + A+(f) + Λα)

m
, we find that〈

Φ,
(
A(f) + A+(f) + Λα

)m
Φ
〉

=
∑

ε∈{−1,0,1}m

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
By Lemma 3.2, for any ε ∈ {−1, 0, 1}m \ {−1, 0, 1}m+ , the scalar product〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
is equal to zero and so one gets the first identity in

(3.4).
For any ε ∈ {−1, 0, 1}m , denoting

j := |{h : h = 1, 2, · · · ,m, ε (h) = 0}|

we see that j can take values in the set {0, 1, 2, · · · ,m} , that is,∑
ε∈{−1,0,1}m

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
=

m∑
j=0

∑
ε∈{−1,0,1}m,j+

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
If j = m, i.e if ε (i) = 0 for any i = 1, 2, · · · ,m, by the definition ε /∈

{−1, 0, 1}m+ . If j = m− 1, then among all operators
{
Aε(m), · · · , Aε(1)

}
there

is exactly one creator or annihilator and all others are number operator, so∑m
k=1 ε (k) = ±1 and by the definition ε /∈ {−1, 0, 1}m+ . In conclusion, as ε

runs over {−1, 0, 1}m+ , the index j should run over the set {0, 1, 2, · · · ,m− 2}.
Moreover, since in the set

{
Aε(1), · · · , Aε(m)

}
, the number of creation and

annihilation operators is m − j , the scalar product
〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
is

equal to zero if m− j is odd. In other words,∑
ε∈{−1,0,1}m

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
=

∑
0≤j≤m−2
m−j∈2N

∑
ε∈{−1,0,1}m,j+

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
(3.5)
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For any j = 0, 1, · · · ,m − 2 such that m − j is even and for any ε ∈
{−1, 0, 1}m,j+ , we denote {i1, · · · , ij} = {h : ε (h) = 0} with the order ij <
· · · < i1. By the definition of {−1, 0, 1}m+ , 1 /∈ {i1, · · · , ij} andm /∈ {i1, · · · , ij},
i.e. 2 ≤ ij < · · · < i1 ≤ m− 1. So∑

0≤j≤m−2
m−j∈2N

∑
ε∈{−1,0,1}m,j+

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
=

∑
0≤j≤m−2
m−j∈2N

∑
ij<...<i1∈{2,...,m−1}

∑
ε∈{−1,0,1}m,j+ :ε(is)=0 ∀s=1,2,··· ,j

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
For any j = 0, 1, · · · ,m−2 such that m−j is even, for any 2 ≤ ij < · · · <

i1 ≤ m− 1 and for any ε ∈ {−1, 0, 1}m,j+ such that ε (is) = 0 ∀s = 1, 2, · · · , j,
by definition, the scalar product

〈
Φ, Aε(m) · · ·Aε(1)Φ

〉
must have the form〈

Φ, Aε(m) (f) · · ·Aε(ij+1) (f) ΛαA
ε(ij−1) (f) · · · (3.6)

· · ·Aε(i1+1) (f) ΛαA
ε(i1−1) (f) · · ·Aε(1) (f) Φ

〉
By definition, the vector ΛαA

ε(i1−1) (f) · · ·Aε(1) (f) Φ is a certain αn multi-
plied by Aε(i1−1) (f) · · ·Aε(1) (f) Φ, where the number n must be equal to the
difference between the number of creators among{

Aε(i1−1) (f) , · · · , Aε(1) (f)
}

and that of annihilators, i.e. dε (1) . So we have that

ΛαA
ε(i1−1) (f) · · ·Aε(1) (f) Φ = αdε(1)A

ε(i1−1) (f) · · ·Aε(1) (f) Φ

By induction we prove, that the scalar product (3.6) is equal to

j∏
s=1

αdε(s)
〈
Φ, Aε(m) (f) · · ·Aε(ij+1) (f)Aε(ij−1) (f) · · ·

· · ·Aε(i1+1) (f)Aε(i1−1) (f) · · ·Aε(1) (f) Φ
〉

and this proves the second identity in (3.4).

�

Remark 3.2 In the notations of Lemma 3.3, if instead of the operator Λα =
Λα (I) one considers Λα (χ) , where χ is the indicator of any measurable set
including the support of f , the identity (3.4) remains true.

Remark 3.3 A similar version of the above result is given in [3] Theorem
5.1, where a different notation is used.
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§4 1-mode type IFS

The simplest class of standard IFS is that for which the functions (λn)n in
Definition 2.1 are constants. The sequence {αn}∞n=1 ⊂ R is arbitrary while
condition (ii) of Definition 2.1 becomes in this case: {λn}∞n=1 ⊂ R+ and
λn = 0 ⇒ λn+1 = 0 ∀n. Any pair of sequences satisfying these conditions
will be called a pair of Jacobi sequences.

In the notation (2.4) this class is characterized by the following relations:

AfA
+
g = ωΛ+1 〈f, g〉 for any f, g ∈ H (4.1)

AfΦ = 0 for any f ∈ H (4.2)

ωΛ =
∞∑
n=0

ωnPn (4.3)

Pn denotes the projection on the n−particle space in the decomposition (2.1)
and

ωn :=
λn
λn−1

(4.4)

This means that all the mixed moments of Aεf (ε ∈ {−1, 0, 1}) are uniquely
determined by f and by the basic relation

αΛA
ε(n) (fn) · · ·Aε(1) (f1) Φ = αdε(n)A

ε(n) (fn) · · ·Aε(1) (f1) Φ (4.5)

where dε is the depth function defined in (3.2).

Lemma 4.1 If the functions {λn}∞n=1 are constants then for any m ∈ N and
for any ε ∈ {−1, 1}m , the scalar product〈

Φ, Aε(m) (f) · · ·Aε(1) (f) Φ
〉

has the form
‖f‖m · C (ε; {λn}∞n=1)

where ‖ · ‖ is the norm in L2(X,µ), C (ε; {λn}∞n=1) is a constant uniquely
determined by ε and {λn}mn=1. Moreover it is equal to zero if either m is odd
or m is even and ε ∈ {−1, 1}m \ {−1, 1}m+ .
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Proof. If m is odd, the conclusion is trivial and so we consider only the
case m = 2N for some N ∈ N. As proved in Lemma 3.2, one knows that〈
Φ, Aε(2N) (f) · · ·Aε(1) (f) Φ

〉
= 0 if ε ∈ {−1, 1}2N \ {−1, 1}2N

+ . In the case of

N = 1 and ε ∈ {−1, 1}2
+〈

Φ, Aε(2) (f)Aε(1) (f) Φ
〉

=
〈
Φ, A (f)A+ (f) Φ

〉
= λ1 ‖f‖2

We suppose the statement is true for any k ≤ N and prove it for k = N + 1.
For any ε ∈ {−1, 1}2(N+1)

+ , by denoting

h := min {k ∈ {1, ..., 2N + 2} , ε (k) = −1}

we know that, just by definition, h 6= 1 and ε (h− 1) = · · · = ε (1) = 1.
Moreover since

A (f)A+ (fn) · · ·A+ (f1) Φ = ωn 〈f, fn〉A+ (fn−1) · · ·A+ (f1) Φ (4.6)

we have that 〈
Φ, Aε(2(N+1)) (f) · · ·Aε(1) (f) Φ

〉
= 〈f, f〉ωdε(h)

〈
Φ, Aε(2(N+1)) (f) · · ·Aε(h+2) (f)Aε(h+1) (f) · · ·Aε(1) (f) Φ

〉
The proof follows now by induction .

�

Corollary 4.1 For any f, g ∈ H the moments of A(f) + A+(f) and of
A(g) + A+(g) are the same if and only if ‖f‖ = ‖g‖.

Proof. Our conclusion is easy to see as follows〈
Φ,
(
A(f) + A+(f)

)m
Φ
〉

=
∑

ε∈{−1,1}m+

〈
Φ, Aε(m) (f) . . . Aε(1) (f) Φ

〉
= ‖f‖m

∑
ε∈{−1,1}m+

C (ε; {λn}∞n=1)

= ‖g‖m
∑

ε∈{−1,1}m+

C (ε; {λn}∞n=1) =
〈
Φ,
(
A(g) + A+(g)

)m
Φ
〉

�
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Corollary 4.2 For any f, g ∈ H and χf , χg two indicators such that χf
(resp. χg) is the indicator of a measurable set including the support of f
(resp. g), the moments of A(f)+A+(f)+Λα (χf ) and A(g)+A+(g)+Λα (χg)
are the same if and only if ‖f‖ = ‖g‖ .

Proof. For any m ∈ N〈
Φ,
(
A(f) + A+(f) + Λα (χf )

)m
Φ
〉

=
∑

0≤j≤m−2
m−j∈2N

m−1∑
ij ,...,i1=2

ij<···<i1

∑
ε∈{−1,0,1}m,j+

ε(is)=0 ∀s=1,2,...,j

αdε(s)

〈
Φ,

∏
1≤h≤m
h/∈{is}

j
s=1

Aε(h) (f) Φ

〉

and 〈
Φ,
(
A(g) + A+(g) + Λα (χg)

)m
Φ
〉

=
∑

0≤j≤m−2
m−j∈2N

m−1∑
ij ,...,i1=2

ij<···<i1

∑
ε∈{−1,0,1}m,j+

ε(is)=0 ∀s=1,2,...,j

j∏
s=1

αdε(s)

〈
Φ,

∏
1≤h≤m
h/∈{is}

j
s=1

Aε(h) (g) Φ

〉

For any 0 ≤ j ≤ m−2 such that m−j ∈ 2N, for any 2 ≤ ij < . . . < i1 ≤ m−1
and for any ε ∈ {−1, 0, 1}m,j+ such that ε (is) = 0 ∀s = 1, 2, · · · , j, it follows
from Lemma 4.1 that〈

Φ,
∏

1≤h≤m
h/∈{is}

j
s=1

Aε(h) (f) Φ

〉
=

〈
Φ,

∏
1≤h≤m

h/∈{is}
j
s=1

Aε(h) (g) Φ

〉

if and only if ‖f‖ = ‖g‖. Hence〈
Φ,
(
A(f) + A+(f) + Λα (χf )

)m
Φ
〉

=
〈
Φ,
(
A(g) + A+(g) + Λα (χg)

)m
Φ
〉

if and only if ‖f‖ = ‖g‖.
�

Remark 4.1 Both Corollaries 4.1 and 4.2 strongly depend on the fact that
the (λn) are constant. There are many standard IFS in which the distri-
bution of A(f) + A+(f) + Λα (χf ) (even A(f) + A+(f) ) depends not only
on ‖f‖ but also on f itself. For example, if we take H := L2 ([0, 1]) and
λn (x1, · · · , xn) := x2x

2
3 · · ·xn−1

n for any n, then the distribution of A(χ[0,1]) +

A+(χ[0,1]) is the arcsine law but A(
√

2χ[0,1/2])+A+(
√

2χ[0,1/2]) has a different
distribution. For more example see [2, 18, 19] and references therein.
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Corollary 4.3 Let ‖f‖ = 1. Then the polynomial distribution of A+
f +Af +

αN is the (polynomially unique) probability measure with Jacobi parameters
(ωn), (αn).

Proof. Let {a±,H1,Φ1} denote the 1–mode interacting Fock space with
Jacobi parameters (ωn), (αn). The identity (4.6) and (4.4) imply that

AfA
+
f =

λN
λN−1

=ωN (4.7)

Since AfΦ = 0, it follows that the map

a+nΦ1 7→ A+n
f Φ

extends to a unitary isomorphism U , from H1 to the closed subspace gener-
ated by the vectors {A+n

f Φ : n ∈ N}. By construction U satisfies

Ua+ = A+
f U

UΦ1 = Φ

and this implies the statement.

Lemma 4.2 If the {λn}∞n=1 are constant, then for any N ∈ N, for any

ε ∈ {−1, 1}2N
+ and for any {f1, · · · , f2N} ⊂ H, with the convention λ0 := 1,

one has:

〈
Φ, Aε(2N) (f2N) · · ·Aε(1) (f1) Φ

〉
=

N∏
k=1

〈flk , frk〉ωdε(rk)
(4.8)

where {lk, rk}Nk=1 is the unique non–crossing pair partition determined by

ε ∈ {−1, 1}2N
+ .

Proof. If N = 1, (4.8) is clear. Suppose that it holds for N = n. Then,
for N = n+ 1 one has:〈

Φ, Aε(2n+2) (f2n+2) · · ·Aε(1) (f1) Φ
〉

=
〈
Φ, Aε(2n+2) (f2n+2) · · ·Aε(ln+1)

(
fln+1

)
Aε(rn+1)

(
frn+1

)
· · ·Aε(1) (f1) Φ

〉
.
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By the non-crossing principle rn+1 = ln+1−1 and ε (h) = 1 for any h ≤ rn+1.
So the quantity above is equal to〈
Aε(2n+2) (f2n+2) · · ·Aε(ln+1)+1

(
fln+1+1

)
A
(
fln+1+1

)
A+
(
frn+1

)
A+
(
frn+1−1

)
· · ·A+ (f1)

〉
=
〈
fln+1 , frn+1

〉
ωdε(ln+1)×

×
〈
Aε(2n+2) (f2n+2) · · ·Aε(ln+1+1)

(
fln+1+1

)
A+
(
frn+1−1

)
· · ·A+ (f1)

〉
=
〈
fln+1

, frn+1

〉
ωdε(ln+1)×

×
〈
Aε(2n+2) (f2n+2) · · ·Aε(ln+1+1)

(
fln+1+1

)
Aε(rn+1−1)

(
frn+1−1

)
· · ·A+ (f1)

〉
(4.8) now follows from the induction assumption.

�

§5 Central limit theorem

The main goal in this section is to show our central limit theorem. For
any pair of Jacobi sequences {αn}∞n=1 ⊂ R, {λn}∞n=1 ⊂ R+, in the no-
tations (2.2), (2.3) we consider the following operators on the 1–MT-IFS
Γ (L2 (R+) , {λn}∞n=1):

Ak := A(χ[k,k+1)) ; A+
k := A+(χ[k,k+1)), Λk := Λα, k = 0, 1, . . . (5.1)

and for any bounded sequence {ck}∞k=1 ⊂ R we consider

Qk = Ak + A+
k + ckΛk, k = 0, 1, 2, . . . (5.2)

and c0 := 1.

Lemma 5.1 The family
{
Ak, A

+
k

}∞
k=1

satisfies the singleton condition with
respect to the state 〈Φ, ·Φ〉.

Proof. Clear from (4.8).
�

Lemma 5.2 (Uniform boundedness of the mixed moments). For any N ∈ N,
for any {k1, . . . , km} ⊂ N and for any ε ∈ {−1, 1}2N

+∣∣∣〈Aε(2N)
k2N

. . . A
ε(1)
k1

〉∣∣∣ ≤ [λ (N)]2N (5.3)
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with the conventions: λ0 := 1 and, for any m ∈ N:

λ (m) := max

{
1, λ1,

λ2

λ1

, λ2,
λ3

λ2

, λ3, · · · ,
λm
λm−1

, λm

}
.

Proof. If N = 1,
〈
A
ε(2)
k2

A
ε(1)
k1

〉
is different from zero only if ε (2) = −1

and ε (1) = 1. Moreover∣∣∣〈Aε(2)
k2

A
ε(1)
k1

〉∣∣∣ =
∣∣〈Ak2A+

k1

〉∣∣ = λ1

〈
χ[k2,k2+1], χ[k1,k1+1]

〉
≤ λ1 ≤ λ (1)

Suppose that the result is true for N. For any ε ∈ {−1, 1}2(N+1)
+ , we denote

{lh, rh}N+1
h=1 the non–crossing pair partition determined by ε. We know, by

the non-crossing principle, that rN+1 = lN+1− 1, ε (h) = 1 for any h ≤ rN+1,
and∣∣∣〈Aε(2N+2)

k2N+2
. . . A

ε(1)
k1

〉∣∣∣ =
∣∣∣〈Aε(2N+2)

k2N+2
. . . A

ε(lN+1+1)
klN+1+1

AklN+1
A+
krN+1

A+
krN+1−1

. . . A+
k1

〉∣∣∣
= ω

dε(lN+1)

∣∣∣〈χ[klN+1
,klN+1

+1], χ[krN+1
,krN+1

+1]

〉
×

×
〈
A
ε(2N+2)
k2N+2

. . . A
ε(lN+1+1)
klN+1+1

A+
krN+1−1

. . . A+
k1

〉∣∣∣
≤ ω

dε(lN+1)

∣∣∣〈Aε(2N+2)
k2N+2

. . . A
ε(lN+1+1)
klN+1+1

A
ε(rN+1−1)
krN+1−1

. . . A
ε(1)
k1

〉∣∣∣
and by the induction assumption one has that∣∣∣〈Aε(2N+2)

k2N+2
. . . A

ε(lN+1+1)
klN+1+1

A
ε(rN+1−1)
krN+1−1

. . . A
ε(1)
k1

〉∣∣∣ ≤ [λ (N)]2N

Therefore ∣∣∣〈Aε(2N+2)
k2N+2

. . . A
ε(1)
k1

〉∣∣∣ ≤ [λ (N)]2N · ω
dε(lN+1)

Moreover dε (ln+1) + 1 = dε (rn+1) and, since ε (h) = 1 for any h ≤ rN+1 and
since |{h : ε (h) = 1}| = N+1, one gets that dε (ln+1)+1 = dε (rN+1) ≤ N+1
. Consequently

ω
dε(lN+1)

≤ λ (N + 1)

By definition the sequence {λ (N)}∞N=1 is increasing, hence∣∣∣〈Aε(2N+2)
k2N+2

. . . A
ε(1)
k1

〉∣∣∣ ≤ [λ (N)]2N · ω
dε(lN+1)

≤ λ (N + 1)2(N+1)

�
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Theorem 5.1 Let µ be a mean–zero probability measure on (R,B) with mo-
ments of any order and with Jacobi coefficients given by {ωn}n , {αn}n . De-
note Γ (L2 (R+) , {λn}n) the 1–mode type free IFS with ωn = λn

λn−1
for any

n and consider the operators
{
Ak, A

+
k ,Λk

}∞
k=0

defined by (5.1), (5.2) on
Γ (L2 (R+) , {λn}n) , where {ck}∞k=1 ⊂ R is a bounded sequence which satisfies
the condition

1√
N

N∑
k=1

ck → 1 (5.4)

(e.g. ck =
√
k −
√
k − 1 for any k) if the sequence (αn) does not vanish

identically.
Then
i) for any k = 0, 1, 2 · · · , the distribution of Ak +A+

k + Λk with respect to
the state 〈Φ, ·Φ〉 is exactly the measure µ;

ii) the operator quantum stochastic process{
1√
N

N∑
k=1

Ak ,
1√
N

N∑
k=1

A+
k ,

1√
N

N∑
k=1

ckΛk

}∞
k=1

converges in the sense of the mixed moments for N →∞, to{
A0, A

+
0 ,Λ0

}
Proof. i) follows from Corollary 4.2, Corollary 4.3 and [3]. To prove ii)

we first deal with the symmetric case i.e. when the sequence (αn), hence
(Λk), identically vanishes and the quantum operator process is reduced to{

(1/
√
N)
∑N

k=1A
±
k

}
. Our goal consists in showing that for any m ≥ 1 and

for any ε = (ε (1) , · · · , ε (m)) ∈ {−1,+1}m

lim
N→∞

1

N
m
2

∑
1≤β1,...,βm≤N

〈
A
ε(m)
βm
· · ·Aε(1)

β1

〉
=
〈
A
ε(m)
0 · · ·Aε(1)

0

〉
(5.5)

The operator process
{
Ak, A

+
k

}∞
k=0

satisfies the singleton condition and the
boundedness of the mixed moments as shown in Lemma 5.1 and Lemma 5.2
respectively. Hence from [4], Lemma 2.4 it follows that the limit (5.5) is
nonzero only if m = 2p and, in this case, the left hand side of (5.5) is equal
to:

lim
N→∞

1

Np

∑
β:{1,...,2p}→{1,...,N}
|Range(β)|=p

|β−1(β(j))|=2 ∀j=1,...,2p

〈
A
ε(2p)
βm
· · ·Aε(1)

β1

〉
(5.6)
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where |·| denotes cardinality. Each map β in the above summation induces
a pair partition of the set {1, 2, . . . , 2p}. We denote by P.P. (2p) the set of
all these partitions and use the notations

β−1 (β (j)) =: {lj, rj} , lj > rj, j = 1, . . . , p

Moreover we know from Lemma 3.1 that a term in the sum (5.6) can be
nonzero only if ε ∈ {−1,+1}2p

+ . In particular only non crossing pair partitions
may give nonzero contributions. Hence the quantity (5.6) can be rewritten
as

lim
N→∞

1

Np

∑
{lj ,rj}p

j=1
∈N.C.P.P.(2p)

〈
Aβ2p · · ·A

ε(lj)
βlj
· · ·Aε(rj)βrj

· · ·A+
β1

〉
, (5.7)

where N.C.P.P. (2p) denotes the set of all non crossing pair partitions of
{1, 2, . . . , 2p} and the first operator on the left is an annihilator (and cor-
responds to an lj-index) while the first operator on the right is a creator (
and corresponds to an rj-index). Let βl1 be the index of the first annihilator
from the right in (5.7). Hence the operator with index βl1 − 1 is a creator.
If βl1 − 1 6= βr1 , then one has

Aβl1A
+
βl1−1 = 0

because we are dealing with disjoint intervals. Therefore the nonzero contri-
butions can come only from those pairs satisfying βl1 − 1 = βr1 . Using (4.7)
and the depth function (3.2), (5.7) becomes

ωdε(l1) lim
N→∞

1

Np

∑
{lj ,rj}p

j=1
∈N.C.P.P.(2p)

〈
Aβ2(p−1)

· · · Âε(l1)
βl1

Â
ε(r1)
βr1
· · ·A+

β1

〉

Iterating the same procedure for any lj (j = 1, . . . , p) (5.7) takes the form

p∏
j=1

ωdε(lj) lim
N→∞

1

Np

∑
{lj ,rj}p

j=1
∈N.C.P.P.(2p)

(5.8)

Now we observe that, as a set:

{1, . . . , 2p} = {l1, r1, . . . , lp, rp}
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so any map of the sum in (5.8) can be written in the following way:

β : {l1, r1, . . . , lp, rp} → {1, . . . , N} , |Range β| = p,

β−1 (β (j)) = {lj, rj} , j = 1, . . . , p

Moreover, since any ε ∈ {−1,+1}2p
+ determines exactly one non-crossing pair

partition of {1, . . . , 2p} and lp < · · · < l1, then, for any j = 1, . . . , p, βrj is
uniquely determined once one knows βlj . So to assign β is equivalent to assign
an injective map

β : {l1, . . . , lp} → {1, . . . , N}

Therefore (5.8) is equal to

p∏
j=1

ωdε(lj) lim
N→∞

1

Np
|{β : {l1, . . . , lp} → {1, . . . , N} : β injective}| (5.9)

where | · | denotes cardinality. Since

|{β : {l1, . . . , lp} → {1, . . . , N} : β injective}| = N !

(N − p)!

in the limit (5.9) we have

lim
N→∞

1

Np
N (N − 1) · · · (N − (p+ 1))

p∏
j=1

ωdε(lj) =

p∏
j=1

ωdε(lj)

On the other hand, in the above notations,〈
A
ε(2p)
0 · · ·Aε(1)

0

〉
=
〈
A0 · · ·Aε(l1)

0 A
ε(r1)
0 · · ·A+

0

〉
(5.10)

= ωdε(l1)

〈
A0 · · · Âε(l1)

0 Â
ε(r1)
0 · · ·A+

0

〉
and iterating for any j, one obtains〈

A
ε(2p)
0 · · ·Aε(1)

0

〉
=

p∏
j=1

ωdε(lj) (5.11)

Now let us prove (5.5) in the non-symmetric case.
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In this case ε = (ε (1) , · · · , ε (m)) ∈ {−1, 0,+1}m+ and A
ε(j)
βj

= cβjΛ. The

proof is by induction on m ≥ 1. If m = 1, then (5.5) is verified because each
side is identically equal to zero. Now we suppose that (5.5) is verified for any
h ≤ m − 1 and prove it for h = m. We denote by IZ the set of indices in ε
corresponding to number operators, i.e.

IZ := {j ∈ {1, ...,m} : ε (j) = 0}

Denote s = |IZ | the number of singletons, then 0 ≤ s ≤ m − 2, because
1,m /∈ IZ and m− s = 2p, because of iii) of Lemma 3.1. If IZ = ∅, then the
thesis follows because we find the symmetric case. If IZ 6= ∅, then there exist
k = 1, ...m such that ε (k) = 0. Denoting z1 = min {k ∈ {1, ...,m} : k ∈ IZ} ,
the right hand side of (5.5) can be written as〈

A
ε(m)
0 · · ·Aε(z1)

0 · · ·Aε(1)
0

〉
= αdε(z1)

〈
A
ε(m)
0 · · · Âε(z1)

0 · · ·Aε(1)
0

〉
The left hand side of (5.5) can be written as

lim
N→∞

1

N
m
2

∑
1≤β1,...,βm≤N

〈
A
ε(m)
βm
· · ·Aε(z1)

βz1
· · ·Aε(1)

β1

〉

= lim
N→∞


αdε(z1)

1√
N

∑
βz1∈FN,z1

cβz1


 1

N
m−1

2

∑
1≤β1,...,βm≤N

βk 6=βz1

〈
A
ε(m)
βm
· · · Âε(z1)

βz1
· · ·Aε(1)

β1

〉


(5.12)
where FN,z1 is the subset of {1, . . . , N} in which βz1 can be chosen. FN,z1 =
{1, . . . , N} \ {βm, β1} (because 1,m /∈ IZ ). Hence |FN,z1| = N − 2. As a

consequence 1√
N

∑
z1∈FN,z1

cβz1 has the same asymptotic of 1√
N

N∑
k=1

ck for N →∞

because {ck} is a bounded sequence in R. Moreover we notice that∑
1≤β1,...,βm≤N

βk 6=βz1

〈
A
ε(m)
βm
· · · Âε(z1)

βz1
· · ·Aε(1)

β1

〉
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in (5.12) can be written as∑
1≤β′1,...,β′m−1≤N

〈
A
ε′(m−1)

β
′
m−1

· · ·Aε
′(1)

β
′
1

〉

where ε′ =
(
ε (1) , ..., ε̂ (z1), ..., ε (m)

)
and β′ : {1, . . . ,m− 1} → {1, . . . , N}

such that β′k = βk if k = 1, . . . , z1 − 1 and β′k = βk+1 if k = z1, . . . ,m− 1.
By hypothesis of induction we know that

lim
N→∞

1

N
m−1

2

∑
1≤β′1,...,β′m−1≤N

〈
A
ε′(m−1)

β
′
m−1

· · ·Aε
′(1)

β
′
1

〉
=
〈
A
ε′(m−1)
0 · · ·Aε

′(1)
0

〉
and the right hand side above is〈

A
ε(m)
0 · · · Âε(z1)

0 · · ·Aε(1)
0

〉
As a consequence (5.12) is equal to

αdε(z1)

〈
A
ε(m)
0 · · · Âε(z1)

0 · · ·Aε(1)
0

〉

�

Corollary 5.1 In the same notations of Theorem 5.1 we have that for any
m ≥ 0

lim
N→∞

〈(
1√
N

N∑
k=1

Qk

)m〉
=

∫
xmdµ

where, for any k ∈ N, the operator classical stochastic process Qk is defined
by:

Qk = Ak + A+
k + ckΛk

Proof. For any m ≥ 1〈(
1√
N

N∑
k=1

Qk

)m〉
=

1

N
m
2

∑
ε∈{−1,0,1}m+

∑
1≤k1,...,km≤N

〈
A
ε(m)
km
· · ·Aε(1)

k1

〉
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∫
xmdµ =

〈(
A0 + A+

0 + Λ0

)m〉
=

∑
ε∈{−1,0,1}m+

〈
A
ε(m)
0 · · ·Aε(1)

0

〉
Since the sum

∑
ε∈{−1,0,1}m+

involves only a finite number of terms the thesis

follows by applying Theorem 5.1 to each element of the sum.

�
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