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Resistance-associated variants (RAVs) have been shown to influence treatment response to direct-acting antivi-
rals (DAAs) and first generation NS3/4A protease inhibitors (PIs) in particular. Interpretation of hepatitis C virus
(HCV) genotypic drug resistance remains a challenge, especially in patients who previously failed DAA therapy
and need to be retreated with a second DAA based regimen. Bayesian network (BN) learning on HCV sequence
data from patients treated with DAAs could provide insight in resistance pathways against PIs for HCV subtypes
1a and 1b, in a similarway as applied before for HIV. The publicly available ‘Rega-BN’ tool chainwas developed to
study associative analyses for various pathogens. Our first analysis, comparing sequences from PI-naïve and PI-
experienced patients, determined that NS3 substitutions R155K and V36M arise with PI-exposure in HCV1a in-
fected patients, and were defined as major and minor resistance-associated variants respectively. NS3 variant
174H was newly identified as potentially related to PI resistance. In a second analysis, NS3 sequences from PI-
naïve patients who cleared the virus during PI therapy and from PI-naïve patients who failed PI therapy were
compared, showing that NS3 baseline variant 67S predisposes to treatment-failure and variant 72I to treatment
success. This approach has the potential to better characterize the role of more RAVs, if sufficient therapy anno-
tated sequence data becomes available in curated public databases. In addition, polymorphisms present in base-
line sequences that predispose patients to therapy failure can be identified using this approach.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The majority of hepatitis C virus (HCV) infected patients develops
chronic hepatitis resulting in many people being at risk for liver-
associated diseases (Bartosch et al., 2003). Worldwide, an estimated
80 million people are currently infected with HCV (Gower et al.,
2014), about half of whom are not aware of their infection, hampering
the desired scale-up of antiviral treatment. Since HCV manifests as
seven genotypes (GTs) and N50 subtypes (Smith et al., 2014), develop-
ing a pan-genotypic drug proved to be challenging. However, concerted
efforts led to the current generation of anti-HCV drugs with dramatical-
ly improved treatment success rates (Zeuzem et al., 2011; Cuypers et al.,
2016b). As a result, highly efficient direct-acting antivirals (DAAs) were
approved for HCV treatment starting from 2011, including NS3/4A pro-
tease inhibitors (PIs), NS5A inhibitors and NS5B polymerase inhibitors.
Combination therapies currently available achieve sustained virological
response (SVR) rates higher than 90–95% in all HCV genotypes (Welsch
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et al., 2012; Foster et al., 2015; Zeuzem et al., 2015a). Unfortunately, for
those that cannot clear their infection, viral drug resistance-associated
variants (RAVs) are a threat, whether emerging during course of treat-
ment, naturally occurring or acquired at infection (Chevaliez, 2011,
Franco et al., 2014, Halfon and Locarnini, 2011, Romano et al., 2012,
Wyles, 2013). Many uncertainties exist regarding the clinical impact of
RAVs, making interpretation of HCV genotypic drug resistance a chal-
lenge. Some naturally occurring polymorphisms or treatment-associat-
ed substitutions have been shown to impact treatment response only in
the context of specific HCV genotypes or subtypes (Barnard et al., 2013;
Sarrazin et al., 2007; Sullivan et al., 2013; Susser et al., 2009). Howpoly-
morphisms are influencing therapy outcome depends also on the viral
genetic sequence and drug context. Such knowledge is currently scarce,
but urgently needed to establish proper HCV drug resistance interpreta-
tion algorithms that could help in the design of retreatment strategies.
This is especially true in the case of NS5A RAVs, which tend to persist
after failing therapy (Krishnan et al., 2015; Black et al., 2015;
Dvory-Sobol et al., 2015).

The most abundant source of HCV genetic sequence data that can be
used to investigate the relationship between amino acid variants and
treatment success is for patients treated with the earliest DAAs, mean-
ing PIs targeting NS3. The first 181 amino acids of the NS3 protein
make up the enzyme serine protease that is responsible for cleaving
the viral polyprotein, after activation by cofactor NS4A. Generations
can be distinguished within the PI class based on binding properties
with the catalytic triad of the NS3 protease (Salam and Akimitsu,
2013). The first-generation PIs are linear α-ketoamide compounds
telaprevir and boceprevir, which covalently bind the enzyme and dis-
play only antiviral activity towards HCV genotype 1 (Raney et al.,
2010). The second-generation PIs such as faldaprevir and simeprevir,
bind the catalytic triad in a non-covalentmanner, and show antiviral ac-
tivity towards non-1HCV genotypes too (De Luca et al., 2014). Themost
recent PIs feature a higher genetic barrier to resistance, as well as
broader antiviral activity, e.g. paritaprevir and grazoprevir (Andreone
et al., 2014; Cuypers et al., 2016b; Zeuzem et al., 2015a).

Associations between variants and treatment-exposure can be iden-
tified by the use of general linear regression analysis in a fast and easy
way. However, basic statistics are not able to uncover in-depth multi-
variate associations and their dependencies, which is where graphical
modeling techniques, such as Bayesian network (BN) learning, have
been proven successful (Lee and Abbott, 2003). Each node in the net-
work corresponds to a variable, and an arc between nodes encodes an
unconditional dependence, which represents a direct influence be-
tween these variables. Bayesian network learning is a probabilistic
model that describes statistical independencies between multiple vari-
ables (Pearl, 1998) by using a minimum number of arcs (Heckerman,
1999). During such a search, the benefit of adding an arc is evaluated
against the additional cost of that arc (Deforche et al., 2006). In the con-
text of HIV drug resistance (Deforche et al., 2006, 2007, 2008; Theys et
al., 2010), resistance variants and epistatic interactions of resistance
mutations and natural polymorphisms have been mapped, increasing
the understanding of resistance pathways and prediction systems.
Therefore, applying BN learning on HCV sequence data of patients treat-
ed with DAAs can increase the knowledge about epistatic interactions
between amino acid variants, and their relation to exposure/response
to treatment.

This proof-of-concept study will identify interactions between
amino acid variants, drug-exposure and therapy response using a BN
learning method that was implemented as a user-friendly tool chain.
Therapy-annotated sequence data for patients treated with PIs were
pooled, with themajority from the era when these PIs were used in tri-
ple therapy combinations with pegylated interferon-alpha (pegIFN-α)
and ribavirin (RBV) (Zeuzem et al., 2011). Despite the fact that treat-
ment regimens based on boceprevir or telaprevir are now contra-indi-
cated for HCV due to their moderate antiviral activity, association with
severe side effects (AASLD and EASL guidelines, Bacon et al., 2011,
Hézode et al., 2009) and low genetic barrier to resistance (Barnard et
al., 2013; Sullivan et al., 2013), they still serve as a benchmark for thede-
velopment of the newer generations of PIs. Mapping epistatic interac-
tions between amino acids within NS3, and between amino acid
variants and PI-exposure or therapy response will also be of value for
other PIs, for which not enough virus sequence data is currently
available.
2. Material and methods

2.1. Study population

NS3 protease sequences were gathered from Italy (Department of
Experimental Medicine and Surgery of the University of Tor Vergata,
Rome), Slovenia (University of Ljubljana) and Belgium (University Hos-
pitals Leuven, Leuven). These three clinical databases were used in
order to reduce potential bias from local epidemics. All the viral se-
quences were newly generated or obtained from samples taken from
patients who were treated with a NS3/4A protease inhibitor based
regimen. In total, 154 patients were included and for each patient one
PI-naïve and/or one PI-experienced sequencewas retained. Themedian
agewas 53 years (interquartile range (IQR): 45–63), and themajority of
the patients were male (61%). The majority of patients were treated
with first generation NS3/4A PIs telaprevir (52.8%) or boceprevir
(31.6%), and rarely with second- or newer-generation PIs simeprevir,
faldaprevir or paritaprevir (15.6%). All PIs were administered to the pa-
tients in the context of triple therapywith pegIFN-α and RBV, except for
patients on triple DAA combination (paritaprevir boosted with ritona-
vir, combined with NS5A inhibitor ombitasvir and NS5B polymerase in-
hibitor dasabuvir).

HCV RNA viral load was quantified using commercial assays COBAS
Ampliprep/TaqMan HCV Quantitative Test v2.0 (Roche Diagnostics,
Pleasanton, USA) or Abbott Real Time HCV assay (Abbott Laboratories,
Abbott Park, IL, USA). HCV genotype was determined by line probe as-
says (InnoLipa, Versant HCV Genotype 2.0 Assay, Siemens, Healthcare
Diagnostic Inc., Tarrytown, NY, USA) according to the manufacturer's
instructions. The UZ Leuven ethical committee approved this study
(number ML9219 andML10770). Samples from Italy were anonymized
and research was not conducted within the context of a clinical trial, so
this studywas exempt from ethical approval (Italian law - art. 6 and art.
9, leg. 211/2003 and 196/2003). Similarly, in accordance with national
legislation of the Republic of Slovenia, informed consent was not re-
quired for research using archival clinical samples if clinical samples
are coded and tested anonymously.
2.2. Protease sequences

Viral sequences encoding the first 181 amino acids in the NS3 gene
were determined by in house amplification and sequencing protocols
for HCV1a and HCV1b separately (Cento et al., 2012). All sequences ob-
tained in the context of this study, were submitted to Genbank (acces-
sion numbers KX852142-KX852220 and KX825921-KX825931). Viral
sequences originating from Italian patients were published already
(Cento et al., 2015a, 2015b).

Additional sequences from before start of therapy of PI-treated pa-
tients were selected from the public database GenBank (https://www.
ncbi.nlm.nih.gov/), at least those annotated with HCV genotype, subse-
quent treatment regimen and therapy response, resulting in 319
additional sequences from patients that were still PI-naïve. The corre-
sponding sequences of these patients after PI-experience, or any other
PI-treated patients, were not available in Genbank. The sequence length
of the 319Genbank sequenceswas shorter than 181 amino acids, specif-
ically 84 or 85 amino acids, resulting in the analysis of separate datasets
that each focused on a different part of the NS3 protease gene.

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov


Table 1
PI-exposure of all 193 sequences from the 154 patients included in the study cohort.
Listed per PI, sampleswere ordered based on sampling time (PI-naïve and PI-experienced,
either on- or post-PI treatment).

Treatment-annotated sequences – 154 patients

PI-naïve PI-experienced

PIa PI-naïveb On-treatment Post-treatment Total

Boceprevir 36 5 20 61
Telaprevir 76 14 12 102
Simeprevir 3 1 0 4
Faldaprevir 12 0 4 16
Paritaprevir 10 0 0 10
Total 137 20 36 193

a All protease inhibitors were co-administrated with pegIFN-α + RBV, except for
paritaprevir that was boostedwith ritonavir and combinedwith ombitasvir and dasabuvir.

b For each PI naïvepatient, the future PI treatment regimen and treatment response (SVR
or failure) was known.

Table 2
The selection of samples according to their timing with respect to the PI treatment period.
For all samples, the total range, median and interquartile range (IQR) of the difference be-
tween the sampling dates and the start or end date of PI treatment, are summarized.

PI-naïve - number
of days before start
of treatment

On-treatment –
number of days
on treatment

Post-treatment –
number of days
after stop of
treatment

Total range 0–2431 15–274 5–369
Median 0 53 96
IQR 0–22 26–91 63–196
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2.3. Subtyping

HCV genotypes and subtypes were assigned using the Oxford HCV
automated subtyping tool version 2 (Alcantara et al., 2009; De Oliveira
et al., 2005), COMET (Struck et al., 2014) and by manual phylogenetic
analysis using reference sequences from the Los Alamos HCV sequence
database (Kuiken et al., 2008). Sequences were aligned against refer-
ence sequence H77 (NC_004102) using an in-house developed codon
aware alignment tool (Cuypers et al., 2015). To improve the quality,
alignments were manually edited in Seaview V4.0 (Gouy et al., 2010).
Phylogenetic analysis was performed using a maximum-likelihood ap-
proach and GTR gamma as model of substitution with RAxML V8.0.20
(Stamatakis, 2014), generating 1000 bootstrap replicates to evaluate
the tree robustness.

2.4. Selective pressure

Selective pressure was investigated using the fixed effects model
(FEL) and the mixed effects model of evolution (MEME) methods im-
plemented in HyPhy v2.2.1 (Murrell et al., 2012; Pond et al., 2005),
which accommodates site-by-site variation. The latter also models var-
iable dN/dS ratios across lineages at an individual site, starting from a
maximum-likelihood inferred tree. TheMEMEmethod ismore sensitive
in detecting potential selective pressure occurring only along some
branches, however only when a measurable proportion of lineages are
experiencing non-synonymous evolution (Murrell et al., 2012). An
amino acid position was considered to be under positive selective pres-
sure if the ratio of non-synonymous and synonymous amino acid sub-
stitutions at that codon (dN/dS ratio) was N1 (p b 0.05). Amino acid
positionswith dN/dS b1, and p-value b0.05, were classified as positions
under negative selective pressure. The number of sites under positive
and negative selective pressure for sequences from PI-naïve, PI-experi-
enced on-treatment and PI-experienced post-treatment patients, were
compared for, using the two-tailed z-test.

2.5. Assignment of sequences according to treatment groups

Sequences were grouped based on exposure to a specific NS3/4A
protease inhibitor (Table 1). All sequences allocated to the ‘PI-experi-
enced’ group were from patients treated with boceprevir, telaprevir or
faldaprevir since no sequenceswith simeprevir or paritaprevir exposure
were available in our dataset. The sequence with a sample date closest
to start of PI treatment was chosen for PI-naïve sequences. In cases
where more than one PI-experienced sequence was available, the latest
on-treatment sequence, or if not available, the first post-treatment se-
quence was selected. Sequences were excluded when the duration of
HCV antiviral treatment during which the sample was taken, was
b14 days (Cento et al., 2015a, 2015b). Table 2 summarizes more de-
tailed information for all samples concerning the time of sampling com-
pared to the start and end date of PI treatment. For the PI-naïve
sequences, treatment regimen details are listed in Table 3, while the
majority of strains fromGenbank originated frompatientswho received
telaprevir (83.4%) as antiviral treatment, and a minority that was treat-
ed with boceprevir (16.6%).

2.6. Known drug resistance-associated variants (RAVs)

RAVs were determined using the Geno2pheno [hcv] v2.0 tool
(Kalaghatgi et al., 2016) and based on a study published by Lontok et
al., 2015. The followingNS3 amino acid positionswere retained for anal-
ysis: 36, 41, 43, 54–56, 80, 87, 107, 117, 122, 132, 155, 156, 158, 168,
170, 174 and 175.While some of these variants may be naturally occur-
ring variants, others arose under treatment and could be called resis-
tance-associated substitutions (RASs) (Pawlotsky, 2016). We chose to
use the term RAVs to cover both types of variants.
2.7. Identification of treatment-associated variants

Comparison of sequences from PI-naïve and PI-experienced patients
was done cross-sectionally using sequence data of all 154 patients. A
longitudinal approach was not feasible given the limited number of pa-
tients with both PI-naïve and PI-experienced sequences. This compari-
son was carried out using a tool-chain adapted from one developed by
Deforche et al. (2006) (Libin, 2014). A Fisher's exact test was used to se-
lect amino acid changes that were significantly linked with PI-exposure
(at significance level of 0.05), hereafter referred to as treatment-associ-
ated variants. These variants served as input for the BN learning proce-
dure. In general, resistance-associated variants are expected to be
associated to treatment, while treatment-associated variants do not al-
ways confer resistance (Theys et al., 2013).
2.8. Bayesian network learning

Treatment-associated variants (see Section 2.6)were complemented
with all known resistance-associated variants (see Section 2.5), and
served as input for the BN learning procedure. The first network focused
on interactions between amino acid variants and PI-exposure compar-
ing sequences from PI-naïve and PI-experienced patients. The goal of
the second network was to explore natural RAVs in PI-naïve patients,
potentially related with treatment outcome. The subsequent PI regimen
and therapy response was known for all PI-naïve patients included in
this network.

BN learningwas performed using the B-course software (Myllymäki
et al., 2002) using the simulated annealing algorithm and by maximiz-
ing the posterior probability of themodel (Deforche et al., 2006). During
such a search, the benefit of adding an arc is evaluated against the addi-
tional cost of that arc (Deforche et al., 2006). Dependencies were visual-
ized in a directed acyclic graph and formed thequalitative component of
the network (Theys et al., 2010). Each node corresponded to a variable,
and an arc between nodes encoded an unconditional dependence,
which represented a direct influence. Robustness of network features



Table 3
PI treatment outcome of all 456 PI-naïve sequences.
Listed per subset of PI-naïve sequences, samples were ordered based on the specific PI
they were starting treatment with, and the respective PI treatment outcome (PI-failure
and PI treatment success). Three different subsets are described, depending on their cov-
erage of the HCV protein NS3 (more details in the ‘Results’ Section 3.2): 1) coverage from
NS3 amino acid positions 1 to 86; 2) a second subset of PI-naïve sequenceswith sequence
information for NS3 positions 29 to 113; and 3) sequences covering the smallest part of
the NS3 protease gene, from amino acid positions 29 to 85.

PI-naïve sequences

PIa Subset 1 Subset 2 Subset 3

PI-failure Boceprevir 52 31 63
Telaprevir 180 75 234
Faldaprevir 9 9 9

PI treatment success Boceprevir 16 27 27
Telaprevir 52 107 107
Simeprevir 3 3 3
Faldaprevir 3 3 3
Paritaprevir 10 10 10

Total 325 265 456

a All protease inhibitors were co-administrated with pegIFN-α + RBV, except for
paritaprevir thatwas boostedwith ritonavir and combinedwith ombitasvir anddasabuvir.

18 L. Cuypers et al. / Infection, Genetics and Evolution 53 (2017) 15–23
was assessed with a non-parametric bootstrap using 100 replicates
(Friedman et al., 1999). Only arcs, but ignoring arc direction, with a
bootstrap support over 65% were considered robust (Deforche et al.,
2006).

In HIV research, a mutation that confers phenotypic resistance on its
own and plays a key role in drug resistance is considered to be a major
mutation (Shafer, 2002). A minor mutation increases resistance only in
presence of a major mutation, or compensates for a possible fitness im-
pact of othermutations, and therefore is selected only in the presence of
other mutations. We used the same scheme for HCV RAVs. Semantic
meaning of the BN with respect to drug resistance can be postulated
for the presence of arcs in the network between amino acids and for
the network structure around the drug node (Deforche et al., 2006).
As a minor mutation interacts epistatically with a corresponding
major mutation, the BN indicates this relationship by an arc between
these mutations. The presence of a minor mutation is dependent on
the presence of the correspondingmajormutation, and thus not expect-
ed to be directly connected to the treatment node in the network. In
contrast, a major mutation is connected to the treatment node. Other
epistatic interactions can also be identified, which means that the asso-
ciation of an amino acid variant with treatment-experience can be de-
pendent on the presence of the genetic background. Arc coloring
reflected the estimated semantic meaning, in order to improve the in-
terpretation of the graph.

A tool chain called ‘Rega-BN’ that includes all pre-processing steps,
the identification of treatment-associated variants, and the Bayesian
network procedure itself, was developed. This tool is freely available
(www.github.com/rega-cev/rega-bn), and can be used for various
pathogens.

3. Results

3.1. Investigation of RAVs associated with PI-exposure

3.1.1. Patients and sequences
For this part of the analysis, only the sequences from the 154 pa-

tients sampled in Belgium, Italy and Slovenia were included, most of
which newly generated for this project. Subtyping was performed
using the commercial InnoLipa assay and the results from the subtyping
tools Oxford, COMET, and manual phylogenetic analysis with RAxML,
were fully concordant. All sequences could be assigned to either
HCV1a (33%) or HCV1b (67%) subtypes. Sequenceswere categorized ac-
cording to the PI administered, with the majority of patients treated
with either boceprevir or telaprevir, respectively 61 and 102 NS3 se-
quences. The remaining sequences included in the study cohort were
from patients treated with simeprevir (4), faldaprevir (16) and
paritaprevir (10). In the boceprevir group, 59% of the sequences were
classified as PI-naïve (36 sequences: 22% HCV1a – 78% HCV1b) and
41% (25 sequences: 28% HCV1a – 72% HCV1b) as PI-experienced. For
telaprevir, a higher number of sequences was available: 76 PI-naïve
(38% HCV1a – 62% HCV1b), and 26 PI-experienced sequences (50%
HCV1a – 50% HCV1b).

3.1.2. Known resistance-associated variants
Fig. 1 shows the prevalence of previously reported resistance-associ-

ated variants, in naïve and treatment-experienced patients, treatedwith
boceprevir or telaprevir, and selected for the study cohort. However,
specific RAVs like V36A/G, T54C/G, V55A, R155G/I and A156V, known
to confer drug resistance to boceprevir and telaprevir, were absent in
our selected dataset.

3.1.3. Treatment-associated variants
The following amino acid variantswere significantly associatedwith

PI-exposure (selected by the Fisher's exact test as explained in Section
2.6): 20 NS3 amino acid positions with 22 different treatment-associat-
ed variants (7S, 35I, 36M, 40A, 42T, 48I/V, 56F, 61T, 62R, 64I, 66S, 71V,
72I, 86P, 89Q, 132V, 147A, 155K, 170I/V and 175L). All these variants,
complemented with other known RAVs, were added as variables to
map their dependency on PI-exposure using the Bayesian network
approach.

3.1.4. Selective pressure analysis
Using the FEL and MEME method, the complete dataset and three

partial datasets were analyzed separately: NS3 sequences from PI-
naïve patients, sequences sampled on-treatment and sequences from
post-treatment samples. Positive selective pressure was not detected
in any of the datasets, by none of the two methods. A large difference
was observed between the number of positions found to be under neg-
ative selective pressure, higher for the FEL compared to the MEME
method. Using FEL, 91.1%, 87.3%, 77.9% and 70.0% of the amino acid po-
sitions were identified to be under negative selective pressure, for the
entire dataset, PI-naïve sequences, on-treatment, and post-treatment
data, respectively. Using the MEME method, a lower number of posi-
tions was found to be under negative selective pressure, for the PI-
naïve dataset these were positions 6, 14, 18, 49, 60, 121 and 173
(3.9%), for the on-treatment datasets positions 7, 66, 95, 174 and 178
(2.8%), and for the post-treatment sequences 95, 122, 174 and 178
(2.2%). Since there was a partial overlap, this results in 13 sites (7.2%)
for the complete dataset. Among these positions, two have been report-
ed as resistance-associated: positions 122 and 174.

3.1.5. Interpreting the inferred Bayesian network of PI naïve and PI experi-
enced patients

Using all 193 HCV1a and HCV1b sequences of the study cohort, NS3
variant R155Kwas identified as amajor drug resistancemutation, given
the robust unconditional dependency on PI-exposure (ePI) in the net-
work (Fig. 2). Resistance-associated variant V36M appeared to be di-
rectly dependent on R155K, and could thus be considered a minor
drug resistance mutation. Variant R155M interacted with variant
V36L, with the latter influenced by background polymorphism R117C,
with neither of these three variants being drug-related. Additionally,
PI-exposure was directly related to variant 174H (b70% - not shown
in the network). Although this variant is not known to result in drug re-
sistance and this link was only supported by a low number of bootstrap
replicates, this association could suggest 174H is a PI resistance muta-
tion. In a separate HCV1a network of 40 PI-naïve and 20 PI-experienced
sequences, the direct influence between major drug resistance muta-
tion R155K and PI-exposure as well as variant V36M, was confirmed.
This was not the case for HCV1b, where an interaction between variant
V170I and PI-exposure was observed, however supported by a non-ro-
bust arc (networks not shown).

http://www.github.com/rega-cev/rega-bn


Fig. 1. Prevalence (%) of resistance-associated variants known to confer drug resistance to boceprevir and/or telaprevir. For each variant, the three bars represent the prevalence in naïve
(left bar– full color), boceprevir (centered bar - striped) and telaprevir (right bar - blocked) treatedpatients. HCV1a andHCV1b sequences are indicated in blue and black, respectively (see
inset legend). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Investigation of baseline variants predictive for therapy failure

3.2.1. Patients and sequences
The 137 PI-naïve sequences used in the first network together with

the 319 additional PI-naïve sequences from Genbank resulted in a
dataset of 456 sequences. Subtyping classified 44.7% of these sequences
as HCV subtype 1a while the remaining 252 strains were classified as
HCV1b.

3.2.2. Potential treatment-predictive variants
All NS3 sequences from PI-naïve patients who cleared HCV with PI

treatment were compared to sequences from PI-naïve patients who
failed PI therapy (Table 3),with thefirst subset of this analysis including
325 sequences covering NS3 amino acid positions 1 to 86. Respectively,
84 and 241 sequences fromPI-naïve patients that cleared their virus and
patients who failed PI treatment respectively, were compared. A set of
11 amino acids with 13 variants (35I, 40A, 42T, 48V, 56F, 61T, 62R,
64I, 66S, 71I/V, 72I/T) was identified to be significantly associated
with PI treatment outcome (Fisher's exact test). For the second subset
of 265 PI-naïve sequences with sequence information for NS3 positions
29 to 113 (respectively 150 and 115 strains of patients that successfully
ended treatment vs patients that failed to clearHCV after PI therapy), 13
amino acidswith 15 variants (35I, 40A, 42T, 48V, 61T, 62R, 64I, 66S, 67S,
71I/V, 72I/T, 86Q, 89Q) were significant and selected (Fisher's exact
test). The last network included all sequences (respectively 150 vs 306
strains of PI-naïve patients that cleared HCV and failed PI treatment)
but covered the smallest part of the NS3 protease (29–85), resulting in
the selection of 11 amino acids with 13 variants (same selection as the
first subset) as input for Bayesian network learning.

3.2.3. Interpreting the inferred Bayesian network of pre-therapy HCV
sequences

Two Bayesian networks of respectively 325 and 456 PI-naïve NS3 se-
quences coveringNS3 amino acids 1–86 and 29–85, both suggested that
72I is predictive of treatment success although the connecting arc had a
lowbootstrap support (b70% - Fig. 3A). No other amino acid variantwas
predictive of treatment failure or success. Polymorphism 72I was not
only linked to PI therapy success, but also to the wild-type variants
64I and 66S, both by the presence of well-supported arcs. On NS3 resi-
due 72, amino acid Threoninewas also included in the network, howev-
er not directly associated with treatment outcome. A third partial BN of
265 PI-naïve NS3 sequences covering NS3 residues 29–113 identified
variant 67S as a major predictor of PI treatment failure, supported by
100 bootstrap replicates (Fig. 3B).

4. Discussion

4.1. The value of Bayesian network learning

To our knowledge, this is the first study that implemented Bayesian
network learning to assess drug resistance pathways for HCV. At least
three other studies that apply this approach on HCV sequence data
have been published, however these focused on the prediction of liver
fibrosis progression (Lara et al., 2014), the prediction of treatment out-
come based on early virological response and liver inflammation stage
(Bijedic et al., 2012), or on the presence of nucleotide features
(KayvanJoo et al., 2014). Bayesian network learning provides an intui-
tive framework that produces results that can be easily understood by
clinicians and virologists. A tool chain that includes all pre-processing
steps aswell as the Bayesian network analysis, was developed to reduce
the threshold for researchers with a biological background to perform
such associative analyses (Libin, 2014), and is freely available (www.
github.com/rega-cev/rega-bn). This tool chain is fully automated and
has already been applied to HIV and HCV (Libin, 2014; Cuypers et al.,
2016a), and is built in a generic way to accommodate the analysis of dif-
ferent pathogens.

4.2. Selection of patients and sequences

In order to study dependencies between amino acid variants and PI-
exposure or treatment success/failure, HCV genetic sequences from in-
fected patients sampled before, during and after treatmentwere collect-
ed retrospectively. Themajority of patients in the participating hospitals
were treatedwith a first-generation PI in the context of a clinical trial or
other study, not the ideal sampling strategy to obtain samples before
and during PI-exposure. Inmany cases, only a PI-naïve sample from be-
fore the start of the study was available as access to samples taken

http://www.github.com/rega-cev/rega-bn
http://www.github.com/rega-cev/rega-bn


Fig. 2. Annotated Bayesian network showing dependencies between PI-associated
variants and PI-exposure (ePI) in the HCV1a and HCV1b pooled dataset. An arc
represents a direct dependency between the corresponding variables with thickness
proportional to bootstrap support (85–100%: full line - 70–85%: full thin line – b70% no
arc drawn). The color code of amino acid variants is defined based on their link with PI-
exposure (ePI) and their prevalence in the PI-naïve population: natural polymorphisms
with a prevalence N25% (green), natural polymorphisms with a prevalence b25%
(orange), and resistance-associated variants that are directly linked to ePI or with one
variant in between them and ePI (red). An antagonistic arc with a wild type was treated
the same as a synergistic arc with mutations at this position. Arc direction has no causal
meaning, but may indicate a non-additive multivariate effect. Only the part of the
network around the treatment node is visualized to simplify the graph. Variables not
connected with any arc were not shown in the network. For all remaining NS3 positions
in the network, the wild-type variants in HCV1a (reference H77) and HCV1b (reference
Con1) are listed before the amino acid position, separated by a slash (for example L/
M175 meaning that Leucine is the wild type amino acid in HCV1a and Methionine in
HCV1b). If both subtypes share the same wild-type, only one amino acid is listed. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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during the course of the clinical trialwas not allowed. As summarized in
Table 2, the overall time range between sampling and starting PI treat-
mentwas broad, potentially introducing a bias in the analysis. Especially
for post-treatment samples (median 96 days, but with a range up to
369 days after stop of treatment), sampling time was less appropriate.
As such, treatment-associated variants may have been missed, since it
has been reported that NS3 variants tend to disappear within one year
after end of therapy (Barnard et al., 2013; Sullivan et al., 2013), and
even shorter in the case of newer generation DAAs (Krishnan et al.,
2015). For on-treatment sequences, several samples taken at early
time points (b14 days) could not be included in the study since it has
been shown that RAVs are only detected in plasma after two weeks
when using population-based Sanger sequencing (Cento et al., 2015b).
A second limitation was the small overall number of NS3 sequences
available for the analysis. We were unable to extend the dataset with
PI-experienced data from public databases since at the time of analysis,
no NS3 sequences annotated with detailed information regarding the
HCV genotype and subtype, treatment regimen and treatment response
were available.We strongly encourage the submission of viral sequence
data annotated with clinical information. This will reduce bias in a sim-
ilar analysis. Despite these limitations, this study, with 473 patients and
512 sequences annotated with treatment information, is the largest of
its kind. This allowed us to draw some conclusions regarding particular
amino acid variants, as well as demonstrate the value of our approach.

4.3. Resistance-associated variants in the dataset

In contrast to HIV, where several genotypic drug-resistance interpre-
tation systems already exist (Vercauteren and Vandamme, 2006), few
exist for HCV and the information required to design detailed interpreta-
tion algorithms forHCV is lacking. Themost extensive genotypic interpre-
tation system for HCV drug resistance variants is the Geno2pheno tool,
based on in vitro and in vivo data (Barnard et al., 2013; Lontok et al.,
2015; Sarrazin et al., 2007; Sullivan et al., 2013; Susser et al., 2009). This
algorithm reports 50 variants to NS3/4A protease inhibitors, 38 of which
are prevalent in our dataset, with only variants V36A/G/L, T54C/G,
V55A, R155G/I/M and A156S/T/V, known to confer resistance to
boceprevir or telaprevir, missing. The scarcity of data in investigations of
HCV drug resistance compared to HIV, will not soon be overcome, since
genotypic resistance testing is not routinely performed in case of virolog-
ical failure or before start of treatment, with a few exceptions. One such
exception is in the case of HCV1a cirrhotic patients, where the highly
prevalent variant Q80K (Fig. 1, Cuypers et al., 2015, Sarrazin et al., 2015)
needs to be monitored before starting the combination of simeprevir
and sofosbuvir (Lawitz et al., 2015). Another exception is in cases where
the treating physician of HCV1a infected patients wants to initiate treat-
ment with grazoprevir and elbasvir. In these cases, genotyping can sup-
port the decision to extend treatment and to associate ribavirin when
high-level resistance NS5A variants are present at baseline (AASLD and
EASL guidelines 2015, and EASL guidelines 2016).

4.4. Absence of positive selective pressure

To detect selective pressure, both the FEL and MEME methods were
used, while only results obtained with FEL were reported in previous
studies (Cuypers et al., 2015 and Cuypers et al., 2016a, 2016c). It is
known that the FEL method might score too many sites under negative
selective pressure if some lineages have a different selective pressure
than others. The MEMEmethod is more sensitive in detecting potential
positive selective pressure, for example from drugs, along some
branches, provided that ameasurable proportion of lineages experience
non-synonymous evolution (Murrell et al., 2012). It is therefore not sur-
prising that fewer siteswere found to be consistently under negative se-
lective pressure using MEME versus FEL, in the PI-naïve dataset here
3.9% versus 87.3%, in agreement with 32%–83% reported in previous
studies of drug naïve sequences, by Cuypers et al. (2015) and (2016a,
2016c). When re-analyzing the larger datasets formerly used in
Cuypers et al. (2015) (data not shown), the proportion of sites under
negative selective pressure was also consistently lower using MEME
versus FEL. Therefore, the large difference observed heremight bemain-
ly due to a few lineages with some positions not under negative selec-
tive pressure, in the context of the majority of lineages experiencing
negative selective pressure for those sites, or alternatively, due to the
lack of necessary divergence for MEME to adequately detect sites
under negative selective pressure (Murrell et al., 2012). Also, in this
dataset, none of the sites was detected to be under positive selective
pressure, similar as in a previous larger dataset fromDAA-naïve patients
forwhichpositively selected sites inNS3were identifiedonlywithin the
helicase region and not in the protease region (Cuypers et al., 2015).
These findings are in agreement with previous data suggesting that
HCV mainly experiences neutral evolution (Cuypers et al., 2015,
2016c). This might explain the low number of amino acid variants



Fig. 3. Annotated Bayesian network predicting the link of variant 67S with PI treatment failure (toPI), based on NS3 sequences from PI-naïve patients. A) PI-naïve NS3 sequences covering
the first 86 NS3 residues resulted into the same network as obtained by using PI-naïve NS3 sequences covering NS3 residues 29–85 (visualized only once). B) PI-naïve sequences covering
NS3 residues 29–113 identified variant P67S as a major predictor of PI-treatment failure. The rest of this network is not visualized, as only dependencies between wild-type amino acid
variants were identified. For more information, see the caption of Fig. 2.
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identified to be associated with PI-exposure using Bayesian network
learning, in comparison with what is generally seen in for example
HIV drug resistance analyses (Deforche et al., 2006, 2007, 2008) for
which a larger number of positions was identified to be under positive
selective pressure (Snoeck et al., 2011).

4.5. Associations between NS3 drug-resistance variants and PI-exposure

Due to the limited availability of NS3 sequences, all sequences avail-
able in the study cohort were used for Bayesian network learning in a
cross-sectional approach comparing drug-naïve and drug-experienced
sequences. Treatment-associated variants were selected based on the
results of the Fisher's exact test. The network identified an association
between drug resistance mutation R155K (Bartels et al., 2008; Larrat
et al., 2015; Lontok et al., 2015) and PI-exposure, suggesting this is a
major mutation, while V36M is a minor drug resistance-associated var-
iant, dependent also on the presence of R155K. These associations were
confirmed in a separate HCV1a analysis, but no in the HCV1b analysis,
probably due to R155K being less prevalent since two nucleotide substi-
tutions (instead of one) are required in HCV1b patients (Lim et al.,
2012). Cross-resistance between first- and second-generation PIs has
been reported for this variant (Kieffer et al., 2012). All HCV1a patients
in this dataset who harbored variant R155K during course of treatment,
failed to clearHCV infectionwith a triple therapy based on boceprevir or
telaprevir, andwere classified as null-responders. Drug resistance-asso-
ciated variants R155Mand V36L interacted, and both are known to con-
fer resistance towards telaprevir in HCV1a infected patients (Lontok et
al., 2015). Additionally, variant V36L was identified to be dependent
on polymorphisms on NS3 position 117 (Susser et al., 2012).

4.6. NS3 baseline variants predictive of treatment outcome

NS3 sequences of PI-naïve patientswho clearedHCVwere compared
to sequences of PI-naïve patients who failed PI therapy. PI-naïve
sequences from Genbank, annotated with treatment outcome, were
added to improve statistical power. Two networks covering NS3 protease
residues 1 to 86 and 29 to 85 both suggested a predictive value of amino
acid 72I for PI treatment success, although supported by b70% bootstrap
replicates. Polymorphism 72T on the other hand was previously identi-
fied as a compensatory mutation in the NS3/4A protease region (Lopez-
Labrador et al., 2008), however, in the Bayesian network itwas not direct-
ly linked to treatment outcome. Amino acid variants located at position
42, 62, 64 and 66, were observed around regions with higher amino
acid entropy (Cuypers et al., 2015; Lopez-Labrador et al., 2008). A third
Bayesian network covering NS3 residues 29 to 113 showed variant 67S
to be predictive of PI treatment failure, in agreement with previous find-
ings that HCV1a infected patients carrying this variant failed triple thera-
py (Cento et al., 2014).Mutation P67Swas formerly identified in replicons
isolated from one single resistant clone (Trozzi et al., 2003). As already
suggested in a former study (Cento et al., 2014), concomitance of variants
P67S and N174G (variable not shown in the network) was observed.

5. Conclusion

A tool chain was developed to allow researchers to perform associa-
tive analyses using Bayesian network learning without extensive bioin-
formatics skills. However, limitations in the study design, lack of
positive selective pressure and limited access to treatment-annotated
sequence data, reduced the number of dependencies identified in this
study, yet important associations were found. A direct influence be-
tween variant R155K and PI-exposure in HCV1a infected patients was
observed, as well as an epistatic interaction between variants 155K
and 36M. NS3 polymorphism 67S at baseline was associated with sub-
sequent PI-failure, while baseline variant 72I seemed to be predictive
of treatment success. Given the genetic changes inNS3 under treatment,
and the absence of positive selective pressure, it seems that HCVmainly
experiences neutral evolution, even during therapy. Bayesian network
learning of large HCV sequence data from patients treated with DAAs
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has the potential to provide insights on the specific role of RAVs. This is
especially interesting in case of retreatment with NS5A inhibitors since
NS5A RAVs tend to persist for a long time.
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