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Abstract

The rise of multi-core systems has necessitated the need for concurrent programming.

However, developing correct, efficient concurrent programs is notoriously difficult.

Software Transactional Memory systems (STMs) are a convenient programming in-

terface for a programmer to access shared memory without worrying about concur-

rency issues such as priority-inversion, deadlock, livelock, etc. Another advantage of

STMs is that they facilitate compositionality of concurrent programs with great ease.

Different concurrent operations that need to be composed to form a single atomic

unit is achieved by encapsulating them in a single transaction (a piece of code).

Most of the STMs proposed in the literature are based on read/write primitive

operations on memory buffers. We represent them as Read-Write STMs (RWSTMs).

These read/write primitives result in unnecessary aborts. Instead, semantically rich

higher-level methods such as hash table lookup, insert or delete, etc. aid in ignoring

unimportant lower-level read/write conflicts and allow better concurrency. We call

them Object-based STMs (OSTMs).

In this thesis, we adapt the transaction tree model from databases to propose

OSTM which enables efficient composition. We extend the traditional notion of

conflicts and legality to higher-level methods using STMs and lay down detailed

correctness proof to show that it is conflict-opacity or co-opaque. We implemented

an efficient OSTM for two Concurrent Data Structures (CDS), hash table and list

as HT-OSTM and list-OSTM respectively. Both the OSTMs export the higher-level

operations as transaction interface but it is generic to other data structures as well.

Experimental analysis of HT-OSTM outperforms state-of-the-art hash table based

STMs (ESTM, RWSTM) by a factor of 3.8, 2.2 for lookup intensive workload (70%

lookup, 10% insert, 20% delete) and by a factor of 6.7, 5.3 for update intensive

workload (50% lookup, 25% insert, 25% delete) respectively. Similarly, list-OSTM

outperforms state-of-the-art list based STMs, Trans-list, NOrec-list, and Boosting-

list by a factor of 1.76, 1.89, 1.33 for lookup intensive workload and by a factor of 1.77,

1.77, 2.54 for update intensive workload respectively. Along with this, HT-OSTM and

list-OSTM incurred negligible aborts as compared to state-of-the-art STMs considered

in this thesis.

It has been shown in the literature of databases and RWSTMs that storing mul-

tiple versions corresponding to each key provides greater concurrency. So, to achieve

greater concurrency than OSTM, we combine multiple versions with object semantics

idea for harnessing greater concurrency in STMs. We propose the new and efficient

notion of Multi-Version Object-based STMs or MVOSTMs. Specifically, we intro-
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duce and implement MVOSTM for two efficient CDS, hash table and list object,

represented as HT-MVOSTM and list-MVOSTM respectively but it is generic for

other data structures as well. Initially, HT-MVOSTM and list-MVOSTM use an

unbounded number of versions for each key that suffers from memory consumption.

To address this issue, we developed two variants for both hash table and list data

structures: (1) A Garbage Collection (GC) method in MVOSTM to delete the un-

wanted versions of a key, denoted as MVOSTM-GC . (2) Finite version MVOSTM (or

KOSTM ) which maintains at most K-versions corresponding to each key by replacing

the oldest version when (K + 1)th version is created by the current transaction.

Experimental results show that hash table based KOSTM (HT-KOSTM) performs

best among its variants (HT-MVOSTM and HT-MVOSTM-GC) and outperforms

state-of-the-art hash table based STMs (HT-OSTM proposed by us, ESTM, RWSTM,

HT-MVTO, HT-KSTM) by a factor of 3.5, 3.8, 3.1, 2.6, 1.8 for workload W1 (90%

lookup, 5% insert, and 5% delete), by a factor of 1.4, 3, 4.85, 10.1, 7.8 for workload

W2 (50% lookup, 25% insert, and 25% delete), and by a factor of 2, 4.25, 19, 69, 59

for workload W3 (10% lookup, 45% insert, and 45% delete) respectively.

Similarly, list based KOSTM (list-KOSTM) performs best among its variants (list-

MVOSTM and list-MVOSTM-GC) and outperforms state-of-the-art list based STMs

(list-OSTM proposed by us, Trans-list, Boosting-list, NOrec-list, list-MVTO, list-

KSTM) by a factor of 2.2, 20, 22, 24, 12, 6 for workload W1, by a factor of 1.58,

20.9, 25.9, 29.4, 26.8, 19.68 for workload W2, and by a factor of 2, 35, 41, 47, 148,

112 for workload W3 respectively. We proved that MVOSTM s satisfy opacity and

ensure that the transaction with lookup only methods does not abort if unbounded

versions are used. To the best of our knowledge, this is the first work to explore the

idea of using multiple versions in OSTMs to achieve greater concurrency.

To the MVOSTMs explained above, we performed a few more optimizations to

harness greater concurrency further. We proposed the notion of Optimized Multi-

Version OSTMs (OPT-MVOSTMs). We propose the OPT-MVOSTMs for two effi-

cient CDS, hash table and list objects as OPT-HT-MVOSTM and OPT-list-MVOSTM

respectively but it is generic for other data structures as well. For memory utilization,

we propose two variants of both the algorithms as OPT-HT-MVOSTM-GC (garbage

collection on unwanted versions), OPT-HT-KOSTM (finite K-versions) and OPT-

list-MVOSTM-GC , OPT-list-KOSTM .

Experimental analysis shows that OPT-HT-KOSTM performs best among its

variants (OPT-HT-MVOSTM and OPT-HT-MVOSTM-GC) and outperforms all the

state-of-the-art hash table based STMs (HT-KOSTM proposed by us, HT-OSTM
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proposed by us, ESTM, RWSTM, HT-MVTO, HT-KSTM) by a factor of 1.05, 3.62,

3.95, 3.44, 2.75, 1.85 for workload W1, by a factor of 1.07, 1.44, 3.36, 5.45, 10.84, 8.42

for workload W2, and by a factor of 1.07, 2.11, 5.1, 19.8, 70.3, 60.23 for workload W3

respectively.

Similarly, OPT-list-KOSTM performs best among its variants (OPT-list-MVOSTM

and OPT-list-MVOSTM-GC) and outperforms state-of-the-art list based STMs (list-

KOSTM proposed by us, list-OSTM proposed by us, Trans-list, Boosting-list, NOrec-

list, list-MVTO, list-KSTM) by a factor of 1.2, 2.56, 25.38, 23.57, 27.44, 13.1, 6.8 for

W1, by a factor of 1.12, 2.11, 21.54, 26.27, 30.1, 27.89, 20.1 for W2, and by a factor of

1.11, 2.91, 36.1, 42.2, 48.89, 149.92, 114.89 for W3 respectively. We rigorously proved

that OPT-MVOSTM s satisfy opacity.

In this thesis, we proposed multiple Object-based STM systems (OSTM, MVOSTM,

OPT-MVOSTM). We proved that all the proposed OSTMs satisfy the popular cor-

rectness criteria as opacity. Experimental evaluation shows that all the proposed

OSTMs achieved significant performance gain while reducing the number of aborts

as compare to state-of-the-art STMs.
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Chapter 1

Introduction

A couple of decades ago, the performance of the single processor systems were relying

on Moore’s law. It says “The number of transistors on a single chip continues to

double in approx two years”. By following the Moore’s law, the processing speeds

of the systems has been improved consistently over the year. But around 2003-

04, it was realized that single processor systems have reached their limits. Seymon

Peyton Jones [1] said that, “The free lunch is over” i.e. we can not achieve better

speed anymore by purchasing next-generation processor. To address this issue, the

hardware manufacturers began to pack more processors, called as ‘cores’ per CPU.

Thus, nowadays multi-core systems have become ubiquitous. These systems as

explained above, have more than one processors in a single chip. To harness the

power of multi-core systems fully, the developed software should be parallel in nature.

Therefore its a job of a software and operating system developer to develop efficient

parallel software systems.

The solution to harness these multi-core system effectively is by multi-threaded

parallel programming. But developing a correct multi-threaded program can be diffi-

cult due to synchronization issues. Here, more than one processors are on a single chip

which connects using shared memory. Multiple threads may access the same shared

memory location or shared variables simultaneously. This can possibly lead to syn-

chronization issues which may cause incorrect output. Multi-threaded programming

poses with some synchronization challenges as follows:

• Collaboration between threads normally involves sharing of data in memory or

on secondary storage.

• Uncontrolled writes can lead to inconsistent data values called as race condition.

• Synchronized memory access is required since processors cannot modify multiple

shared memory locations atomically.
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• The granularity of access to shared memory, which is a deciding factor for the

efficiency of the concurrent systems.

Consider Table 1.1 which demonstrates the issues with multi-threaded program-

ming in money transfer. Here, we consider two threads Th1 and Th2 which execute

concurrently. Thread Th1 transfers money from account A1 to A2. While Th2 com-

putes the balance of all accounts in the bank. Initially, both the accounts A1 and A2

have a balance of $500.

Now, suppose Th1 wants to transfer $500 from account A1 to A2. It achieves

this by debiting an amount of $500 from A1 and crediting it to A2. Now suppose

Th1 has debited the amount from A1 and is yet to credit to A2. At this point Th2

comes in between and calculate the sum of both the accounts. So, Th2 sees that $500

missing in the bank. Hence, Th2 sees a “Wrong sum”. This is due to concurrent

multi-threaded execution. Thus to avoid these issues, threads need to collaborate

and access common accounts in a synchronized manner.

Table 1.1: Difficulty in money transfer using multi-threading

Th1 Time Th2

Read A1 1

A1 = A1 - 500 2

Write A1 3

4 Sum = 0

5 Read A1

6 Read A2

7 Sum = Sum + A1

8 Sum = Sum + A2

Read A2 9

A2 = A2 + 500 10

Write A2 11

Wrong Sum

Traditionally locks have been used to solve these synchronization issue between

the threads. Locks ensure that a block of code which consists of multiple variables

are executed as a critical section. It may be accessed by multiple threads but locks

ensure that at a time only one thread will execute the critical section and access the

variable. Locks solve the synchronization issues that arise with shared variable and

multi-threading. If properly coded, locks ensure accessing the shared data items by
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only one thread at a time. Any thread wants to access the shared variable will first

have to acquire the corresponding lock and then access the variable. After the access

is complete, the thread releases the lock. But, lock cause other problems. They are

prone to livelocks, deadlocks, priority inversion, etc. If not coded properly, they can

either bring down the performance of the multi-core systems or cause the program to

be incorrect or both.

Table 1.2: Difficulty in money transfer using locks

Th1 Time Th2

Lock A1 1

Read A1 2

A1 = A1 - 500 3

Write A1 4

Unlock A1 5

6 Sum = 0

7 Lock A1, Lock A2

8 Read A1

9 Read A2

10 Unlock A1, Unlock A2

11 Sum = Sum + A1

12 Sum = Sum + A2

Lock A2 13

Read A2 14

A2 = A2 + 500 15

Write A2 16

Unlock A2 17

Wrong Sum

Table 1.2 illustrates the difficulty with multi-threaded programming using locks

in money transfer example. The scenario is the same as explained in Table 1.1. Here

each thread acquires the lock before accessing any shared variable which in this case

are accounts A1 and A2. After performing the respective operations such as read and

write, thread releases the locks. Here, Th1 wants to transfer the $500 from A1 to A2

and Th2 wants to view the sum of both the accounts. However, Th1 acquired the

lock on A1 before accessing it and debited the $500 followed by releasing the lock.

But, before crediting $500 to A2 by Th1, suppose another thread Th2 acquires the

lock on A1 and A2. Following this, Th2 reads the values of A1, A2 to compute the
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sum of both the account. Unfortunately, this still results with “Wrong sum”. So, we

can observe that incorrect locking leads to an inconsistent state. For other real-world

software systems these kind of error may cause crashes or other undesirable outputs.

To handle these inconsistencies with programming, a popular locking mechanism

identified in database literature is two-phase locking (2PL) [2,3]. As the name suggests

it is having two phases. First is the locking phase where thread acquires the locks on

all the shared variables and works on it. In the second phase, the thread releases the

locks on all the shared variables after working on it. Once thread will release the lock

on any shared variables, it will never acquire the lock again. This property of 2PL

makes the transaction to be atomic. But improper use of two-phase locking also leads

system into deadlock. Consider an example where Th1 acquired the lock on account

A1 and Th2 acquired the lock on A2. After that, both the threads are waiting on

each other to acquire the lock on next shared variable. Here, Th1 and Th2 is waiting

for account A2 and A1 respectively. This situation leads system into deadlock.

To overcome these difficulties with parallel programming, researchers have devel-

oped the paradigm of Software Transactional Memory systems (STMs) which helps

programmers to develop the correct concurrent programs without compromising on

the efficiency of the multi-core systems which is explained in Section 1.1.

1.1 Alternative to Locks: Software Transactional

Memory systems (STMs)

An alternative to locks is Software Transaction Memory Systems (STMs) [4] which

exploit the cores of multi-core systems efficiently. STMs are a convenient program-

ming interface for a programmer to access shared memory without worrying about

concurrency issues such as priority-inversion, deadlock, livelock, etc. It is a promis-

ing research alternative which has gained a lot of interest by academia and industry.

Another advantage of STMs is that they facilitate compositionality of concurrent pro-

grams with great ease. Different concurrent operations that need to be composed to

form a single atomic unit is achieved by encapsulating them in a single transaction.

The transaction of STMs is a sequence of instructions/code which executed in the

memory. This transaction is the same as the transaction defined in a database that

executes the sequence of instructions on the shared variables and updates it. Along

with this, a transaction of databases satisfies the ACID (Atomicity, Consistency,

Isolation, and Durability) property and correctness criteria as serializability [5]. The

transaction of STMs also satisfies all these properties except durability because STM
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system are used to develop concurrent systems in the main memory.

The STM system is a new parallel programming paradigm in which transaction

uses modern language constructs like atomic to get rid of synchronization issues. The

idea of transactions can be implemented in hardware, software, and hybrid (combi-

nation of hardware and software) systems. The execution of money transfer using

STMs is shown below:

Th1()

{
i n i t i a l i z a t i o n ( ) ;

atomic

{
Read A1

A1 = A1 - 500

Write A1

Read A2

A2 = A2 + 500

Write A2

}
}

The consistent programming for money transfer is continued as follows:-

Th2()

{
i n i t i a l i z a t i o n ( ) ;

atomic

{
Read A1

Read A2

Sum = Sum + A1

Sum = Sum + A2

}
}

In the past few years, several STMs have been proposed which address the synchro-
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nization issues and provide greater concurrency. STMs hide the synchronization and

communication difficulties among the multiple threads from the programmer while

ensuring correctness and hence making programming easy. Another important fea-

ture that STMs facilitate is compositionality of concurrent programs with great ease.

It composes different concurrent operations in a single atomic unit by encapsulating

them in a transaction.

The atomic property of transactions helps to correctly compose together several

different individual operations. For example, consider a real-world application on

hash table that needs to perform the move operation. Move operation consists of

delete and inserts method of the hash table. The implementation of move operation

requires that a delete followed by insert method from the same or different hash table

object appear to happen together. STM system ensures the compositionality of move

operation by combining both delete and insert in a single transaction.

1.2 Read-Write STMs

Most of the STMs proposed in the literature (such as NOrec [6], ESTM [7]) are

based on read/write operations on transaction objects (t-objects) or keys on shared

memory. We denote them as Read-Write STMs or RWSTMs. These STMs typically

export following methods: (1) STM begin(): begins a transaction with a unique id,

(2) STM read(k) (or r(k)): reads the value of key k from shared memory, (3) STM -

write(k, v) (or w(k, v)): writes the value of key k as v in its local log. This thesis

considers the optimistic execution of STMs in which transactions are writing into its

local log until the successful validation. (4) STM tryC () (or tryC()): validates and

tries to commit the transaction by writing values to the shared memory. If validation

is successful, then it returns commit. Otherwise, it returns abort.

1.3 Motivation towards Object-based STMs

It has shown in databases that object-level systems provide greater concurrency

than read/write systems [3, Chap 6]. They include more semantically rich oper-

ations such as enqueue/dequeue on queue objects, push/pop on stack objects and

insert/lookup/delete on sets, trees or hash table objects depending upon the under-

lying data structure used to implement Object-based STMs (OSTMs). Along the

same lines, we proposed a model to achieve composability with greater concurrency

for STMs by considering higher-level objects which harness the richer semantics of

object-level methods. We motivate this with an interesting example.
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Figure 1.1: Motivational example for OSTMs

Object-based STMs: Consider an OSTMs operating on the hash table object

called as Hash table Object STM or HT-OSTM which exports the following methods

- (1) STM begin(): begins a transaction with unique id (same as in RWSTM ), (2)

STM insert(k, v) (or ins(k, v)): inserts a value v for key k in its local log, (3) STM -

delete(k) (or del(k)): deletes the value associated with the key k, (4) STM lookup(k)

(or lu(k)): looks up the value associated with the key k from shared memory and, (5)

STM tryC () (or tryC()): validates and tries to commit the transaction by updating

values to the shared memory. If validation is successful, then it returns commit.

Otherwise, it returns abort.

A simple way to implement the concurrent OSTM is using a list (a single bucket)

where each element of the list stores the 〈key, value〉 pair. The elements of the list

are sorted by their keys similar to the set implementations discussed in [8, Chap 9].

It can be seen that the underlying list is a concurrent data structure manipulated

by multiple transactions. So, we may use the lazy-list based concurrent set [9] to

implement the operations of the list denoted as: list insert, list del and list lookup.

Thus, when a transaction invokes STM insert(), STM delete() and STM lookup()

methods, the STM internally invokes the list insert , list del and list lookup methods

respectively.

Benefit of OSTM s over RWSTM s: Consider an instance of list in which the

nodes with keys 〈k2 k5 k7〉 are present in the hash table as shown in Figure 1.1(a) and

transactions T1 and T2 are concurrently executing STM lookup1(k2), STM delete2(k5),

and STM lookup1(k7) as shown in Figure 1.1(b). In this setting, suppose a transac-

tion T1 of OSTM invokes methods STM lookup() on the keys k2, k7. This would

internally cause the OSTM to invoke list lookup method on keys 〈k2〉 and 〈k2, k5, k7〉
respectively.

Concurrently, suppose transaction T2 invokes the method STM delete() on key

k5 between the two STM lookup() of T1. This would cause, OSTM to invoke list -

del method of list on k5. Since, we are using lazy-list approach on the underlying
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list, list del marks element k5 for logical deletion (same as lazy deletion [9]) and

points the next field of element k2 to k7 for physical deletion of the node k5. Thus

list del of k5 would execute the following sequence of read/write level operations-

r(k2)r(k5)w(k5)w(k2) where r(k5), w(k5) denote read and write on the element k5

with some value respectively. The execution of OSTM denoted as a history can be

represented as a transactional forest as shown in Figure 1.1(b). Here the execution

of each transaction is a tree.

In this execution, we denote the read/write operations (leaves) as layer-0 and

STM lookup(), STM delete() methods as layer-1. Consider the history (execution)

at layer-0 (while ignoring higher-level operations), denoted as H0. It can be verified

that this history is not opaque [10]. This is because between the two reads of k2 by

T1, T2 writes to k2. It can be seen that if history H0 is input to a RWSTM one of

the transactions among T1 and T2 would be aborted to ensure correctness (in this

case opacity [10]). Figure 1.1(c) shows the presence of a cycle in the conflict graph

of H0. On the other hand consider the history H1 at layer-1 consisting of STM -

lookup(), STM delete() methods while ignoring the underlying read/write operations.

We ignore the underlying read and write operations since they do not overlap (referred

to as pruning in [3, Chap 6]). Since these methods operate on different keys, they are

not conflicting and can be re-ordered either way. Thus, we get that H1 is opaque [10]

with equivalent serial history T1T2 (or T2T1) and the corresponding conflict graph

shown in Figure 1.1(d).

b) H1: Transactional tree historya) Underlying hash table

T1 T2

r2(k2) r1(k8)r1(k2) w1(k2) r2(k8) w2(k2) w2(k6)

−∞ k2 k8 k9

Layer-0: Reads & Writes

w1(k4)

Layer-1: Insert

+∞

ins1(k4) ins2(k6)

Figure 1.2: Not linearizable at lower-level as well as higher-level

The important idea in the above argument is that some conflicts at lower-level

operations do not matter at higher level operations. Thus, such lower level conflicting

operations may be ignored. The conflicts at lower-level do not matter at higher-level

referred as benign-conflicts [11]. With object level modeling of histories, we get a

higher number of acceptable schedules than read/write model. The history, H1 in

Figure 1.1(b) clearly shows the advantage of considering STMs with higher level
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STM insert(), STM delete() and STM lookup() operations.

While some lower-level conflict does matter at higher-level as shown in Figure 1.2.

Here, we cannot ignore the underlying read and write conflicts at higher-level since

they are overlapping to each other and unable to make it isolate/atomic. So, we

cannot re-ordered in any way and prune this from lower-level to higher-level (referred

to as pruning in [3, Chap 6]). Thus, to accept this history at higher-level one of the

transaction have to return abort same as lower-level.

So, we can conclude that some conflicts at lower-level do not matter at higher-level

which motivates us to work on Object-based STMs to achieves the greater concurrency

than RWSTMs..

Experimental analysis of HT-OSTM outperforms state-of-the-art hash table based

STMs (ESTM [7], RWSTM [3]) by a factor of 3.8, 2.2 for lookup intensive work-

load (70% lookup, 10% insert, 20% delete) and by a factor of 6.7, 5.3 for update

intensive workload (50% lookup, 25% insert, 25% delete) respectively. Similarly, list-

OSTM outperforms state-of-the-art list based STMs (Trans-list [12], NOrec-list [6]

and Boosting-list [13]) by a factor of 1.76, 1.89, 1.33 for lookup intensive workload

and by a factor of 1.77, 1.77, 2.54 for update intensive workload respectively. Along

with this, HT-OSTM and list-OSTM incurred negligible aborts as compared to state-

of-the-art STMs as shown in Section 3.7 of Chapter 3.

1.4 Advantages of Multi-Version STMs

It has been shown in the literature of databases and RWSTMs [14, 15] that greater

concurrency can be obtained by storing multiple versions for each transactional-

object (t-object) or key. Such RWSTMs are known as Multi-Version RWSTMs (MV-

RWSTMs). MV-RWSTM system reduces the number of aborts and increases the

throughput as compared to Single-Version RWSTMs (SV-RWSTMs or RWSTMs)

which maintains only one version for each key. We demonstrate this with another

interesting example.

Figure 1.3 (a) illustrates the concurrent execution of two transactions T1 and T2

under SV-RWSTMs. Here, T1 reads the t-object x from shared memory and returns

the value as 0. We have assumed that all the t-objects are initialized with value 0.

After reading x by T1, transaction T2 wrote into two t-objects x and y with the value

10 and committed successfully while returning C2. Now, T1 wants to read y and

returns abort because T1 is reading the older value of x whereas a newer value of y,

so T1 can not be atomic. This is reflected by a cycle in the corresponding conflict

graph between T1 and T2, as shown in Figure 1.3 (c). Hence, for the execution to be
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correct, SV-RWSTMs will abort T1.

Figure 1.3 (b) demonstrates the execution under MV-RWSTMs. It has the same

scenario as Figure 1.3 (a) but maintains multiple versions corresponding to each key.

It shows the concurrent execution of two transactions T1 and T2 which access (read

and write) two t-objects x and y while maintaining multiple versions corresponding

to x and y. T1 read x and returns the value as 0. After that T2 writes to x and y with

value 10 and returns commit as C2. Then T1 read y and returns the value as 0 and

finally, T1 returns commit as C1. So, we can observe that if the MV-RWSTM system

maintains multiple versions corresponding to y here as 0 as well as 10 then T1 can

return commits while reading the older value of y as 0 instead of newer value 10. In

that sense, T1 can be atomic and returns commit. Hence, while maintaining multiple

versions both the transactions can return commit with equivalent serial schedule T1T2.

The corresponding conflict graph is shown in Figure 1.3 (d) does not have a cycle.

So, we can conclude that maintaining multiple versions corresponding to each key

reduces the number of aborts and improves concurrency.

(d) MV−RWSTMs(a) Single−version RWSTMs (SV−RWSTMs) (b) Multi−version RWSTMs (MV−RWSTMs)

(c) SV−RWSTMs

r1(y, 0) C1A1

T1

T2

T1

T2
T1 T2

T1 T2r1(x, 0)

w2(y, 10)w2(x, 10)

r1(x, 0)

w2(x, 10) w2(y, 10)

r-w

w-r

r-w

r1(y, Abort)

C2C2

Figure 1.3: Advantages of multi-version over single-version RWSTMs

1.4.1 Motivation towards Multi-Version Object-based STMs

To further achieve greater concurrency with OSTMs, we have been motivated by

the concept of multiple version explored in databases and RWSTMs. By storing

multiple versions for each t-object (or key), greater concurrency can be obtained

[15] as illustrated above. Specifically, maintaining multiple versions can ensure that

more read operations succeed because the reading operation will have an appropriate

version to read. So, in this subsection we explain how by using multiple version

in OSTMs, denoted as Multi-Version OSTMs (MVOSTMs), we have been able to

identify a novel and efficient way to achieve greater concurrency on OSTMs. In

Chapter 4, we show the benefit of MVOSTMs over single and multi-version RWSTMs

as well as single-version OSTMs.

The potential benefit of MVOSTM s over OSTM s and multi-version RW-

STM s: We now illustrate the advantage of MVOSTM s as compared to Single-

Version OSTM s (SV-OSTM s or OSTMs) using hash table object having the same
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operations as discussed above for OSTM: ins, lu, del. Figure 1.4 (a) represents a his-

tory H with two concurrent transactions T1 and T2 operating on a hash table ht. T1

first tries to perform a lu on key k2. But due to the absence of key k2 in ht, it obtains

a value of null. Then T2 invokes ins method on the same key k2 and inserts the value

v2 in ht. Then T2 deletes the key k1 from ht and returns v0 implying that some other

transaction had previously inserted v0 into k1. The second method of T1 is lu on the

key k1. With this execution, any SV-OSTM system has to return abort for T1’s lu

operation to ensure correctness, i.e., opacity. Otherwise, if T1 would have obtained

a return value null for k1, then the history would not be opaque anymore. This is

reflected by a cycle in the corresponding conflict graph between T1 and T2, as shown

in Figure 1.4 (c). Thus to ensure opacity, SV-OSTM system has to return abort for

T1’s lookup on k1.

(c) SV−OSTMs

(d) MVOSTMs(a) Single−version OSTMs (SV−OSTMs) (b) Multi−version OSTMs (MVOSTMs)

lu1(ht, k1, v0) T1 T2

del-lu

lu-ins

C2

C1

ins2(ht, k2, v2) C2

A1

T1

T2

T1

T2

ins2(ht, k2, v2) del2(ht, k1, v0)

lu1(ht, k2, null) lu1(ht, k1, Abort) lu1(ht, k2, null)

T1 T2
lu-ins

del2(ht, k1, v0)

Figure 1.4: Advantages of multi-version over single-version OSTM

In an MVOSTM based on hash table, denoted as HT-MVOSTM, whenever a

transaction inserts or deletes a key k, a new version is created. Consider the above

example with a HT-MVOSTM , as shown in Figure 1.4 (b). Even after T2 deletes k1,

the previous value of v0 is still retained. Thus, when T1 invokes lu on k1 after the delete

on k1 by T2, HT-MVOSTM returns v0 (as previous value). With this, the resulting

history is opaque with equivalent serial history being T1T2. The corresponding conflict

graph is shown in Figure 1.4 (d) does not have a cycle.

Thus, MVOSTM reduces the number of aborts and achieves greater concurrency

than SV-OSTM s while ensuring the compositionality. We believe that the benefit

of MVOSTM over multi-version RWSTM is similar to SV-OSTM over single-version

RWSTM as explained in Section 1.3.

MVOSTM is a generic concept which can be applied to any data structure. In this

subsection of the thesis, we have considered two efficient Concurrent Data Structures

or CDS, hash table and list based MVOSTM s as HT-MVOSTM and list-MVOSTM

respectively. In the initial version of the algorithm developed, HT-MVOSTM and

list-MVOSTM use an unbounded number of versions for each key. To address this

issue, we developed two variants for both hash table and list data structures: (1) A

Garbage Collection (GC) method in MVOSTM to delete the unwanted versions of a
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key, denoted as MVOSTM-GC . Garbage collection gave a performance gain of 15%

over MVOSTM without garbage collection in the best case. Thus, the overhead of

garbage collection is less than the performance improvement due to improved memory

usage. (2) Placing a limit of K on the number of versions in MVOSTM , resulting

in KOSTM . This gave a performance gain of 21% over MVOSTM without garbage

collection in the best case.

Experimental results show that hash table based KOSTM (HT-KOSTM) performs

best among its variants (HT-MVOSTM and HT-MVOSTM-GC) and outperforms

state-of-the-art hash table based STMs (HT-OSTM [16] proposed by us in Chapter 3,

ESTM [7], RWSTM [3], HT-MVTO [15], HT-KSTM [15]) by a factor of 3.5, 3.8, 3.1,

2.6, 1.8 for workload W1 (90% lookup, 5% insert, and 5% delete), by a factor of 1.4,

3, 4.85, 10.1, 7.8 for workload W2 (50% lookup, 25% insert, and 25% delete), and by

a factor of 2, 4.25, 19, 69, 59 for workload W3 (10% lookup, 45% insert, and 45%

delete) respectively.

Similarly, list based KOSTM (list-KOSTM) performs best among its variants (list-

MVOSTM and list-MVOSTM-GC) and outperforms state-of-the-art list based STMs

(list-OSTM [16] proposed by us in Chapter 3, Trans-list [12], Boosting-list [13], NOrec-

list [6], list-MVTO [15], list-KSTM [15]) by a factor of 2.2, 20, 22, 24, 12, 6 for

workload W1, by a factor of 1.58, 20.9, 25.9, 29.4, 26.8, 19.68 for workload W2,

and by a factor of 2, 35, 41, 47, 148, 112 for workload W3 respectively. We proved

that MVOSTM s satisfy opacity [10] and ensure that the transaction with lookup

only methods does not abort if unbounded versions are used. To the best of our

knowledge, this is the first work to explore the idea of using multiple versions in

OSTMs to achieve greater concurrency.

1.4.2 Optimized Multi-Version Object-based STMs

We made a few modifications to optimize the Multi-Version OSTMs (explained in

SubSection 1.4.1) and propose the new notion of Optimized Multi-Version OSTMs

(OPT-MVOSTMs) to harness the greater concurrency further while achieving the

compositionality. In this subsection of the thesis, we have developed OPT-MVOSTMs

for two efficient CDS, hash table and list objects as OPT-HT-MVOSTM and OPT-

list-MVOSTM respectively. The detailed descriptions are explained in Chapter 5

of this thesis. OPT-MVOSTM is generic for other data structures as well. For

efficient space utilization in OPT-MVOSTMs with unbounded versions, we devel-

oped Garbage Collection (GC) for OPT-MVOSTM (i.e. OPT-MVOSTM-GC ) and

bounded K-version OPT-MVOSTM (i.e. OPT-KOSTM ) for both hash table and list

data structures.

12



Experimental analysis shows that OPT-HT-KOSTM performs best among its

variants (OPT-HT-MVOSTM and OPT-HT-MVOSTM-GC) and outperforms all the

state-of-the-art hash table based STMs (HT-KOSTM [17] proposed by us in Chap-

ter 4, HT-OSTM [16] proposed by us in Chapter 3, ESTM [7], RWSTM [3], HT-

MVTO [15], HT-KSTM [15]) by a factor of 1.05, 3.62, 3.95, 3.44, 2.75, 1.85 for

workload W1, by a factor of 1.07, 1.44, 3.36, 5.45, 10.84, 8.42 for workload W2, and

by a factor of 1.07, 2.11, 5.1, 19.8, 70.3, 60.23 for workload W3 respectively.

Similarly, OPT-list-KOSTM performs best among its variants (OPT-list-MVOSTM

and OPT-list-MVOSTM-GC) and outperforms state-of-the-art list based STMs (list-

KOSTM [17] proposed by us in Chapter 4, list-OSTM [16] proposed by us in Chap-

ter 3, Trans-list [12], Boosting-list [13], NOrec-list [6], list-MVTO [15], list-KSTM

[15]) by a factor of 1.2, 2.56, 25.38, 23.57, 27.44, 13.1, 6.8 for W1, by a factor of

1.12, 2.11, 21.54, 26.27, 30.1, 27.89, 20.1 for W2, and by a factor of 1.11, 2.91, 36.1,

42.2, 48.89, 149.92, 114.89 for W3 respectively. We rigorously proved that OPT-

MVOSTM s satisfy opacity [10].

Contributions of the Thesis:

• We proposed an efficient Object-based STM (OSTM) system for two Concur-

rent Data Structures (CDS), hash table and list as HT-OSTM and list-OSTM

respectively in Chapter 3 but it is generic to other data structures as well.

– We proposed a generic framework for composing higher-level objects based

on the notion of conflicts for objects in databases [3, Chap 6].

– We developed a subclass of opacity [10] as conflict opacity or co-opacity

for higher-level objects in Section 3.2.

– We rigorously proved that proposed OSTMs satisfy the correctness criteria

as co-opacity [18] in Section 3.6.

– A simple modification of HT-OSTM gives us a concurrent list based OSTM

or list-OSTM. Our experiments demonstrate that both HT-OSTM and list-

OSTM provide greater concurrency and reduces the number of aborts as

compared to state-of-the-art STMs in Section 3.7.

• To achieve the greater concurrency further, we proposed a novel and efficient

technique as Multi-Version Object-based STM system, MVOSTM in Chapter 4.

– Specifically, we developed it for two Concurrent Data Structures (CDS),
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hash table and list objects as HT-MVOSTM and list-MVOSTM respec-

tively but it is generic for other data structures as well in Section 4.3.

– We proved that HT-MVOSTM and list-MVOSTM satisfy opacity [10],

standard correctness-criterion for STMs in Section 4.5.

– For efficient space utilization in MVOSTM with unbounded versions, we

developed Garbage Collection (GC) for MVOSTM (i.e. MVOSTM-GC )

and bounded version MVOSTM (i.e. KOSTM ) for both hash table and

list data structures.

– Our experiments demonstrate that both hash table based KOSTM (HT-

KOSTM) and list based KOSTM (list-KOSTM) achieve greater perfor-

mance and reduce the number of aborts as compared to single-version

OSTMs, single and multi-version RWSTM s in Section 4.6. To the best of

our knowledge, this is the first work to explore the idea of using multiple

versions in OSTM s to achieve greater concurrency.

• We performed a few optimizations on the MVOSTM and proposed a new notion

of Optimized Multi-Version Object-based STM system as OPT-MVOSTM to

harness the greater concurrency further in Chapter 5.

– We developed OPT-MVOSTM for two CDS, hash table and list objects

called as OPT-HT-MVOSTM and OPT-list-MVOSTM respectively in Sec-

tion 5.2. OPT-MVOSTM is generic for other data structures as well.

– We proved that OPT-HT-MVOSTM and OPT-list-MVOSTM satisfy stan-

dard correctness-criterion of STMs, opacity [10] in Section 5.4.

– For efficient space utilization in OPT-MVOSTM with unbounded ver-

sions, we developed Garbage Collection (GC) for OPT-MVOSTM (i.e.

OPT-MVOSTM-GC ) and bounded version OPT-MVOSTM (i.e. OPT-

KOSTM ) for both hash table and list data structures.

– We did the experimental analysis of both hash table based OPT-KOSTM

(OPT-HT-KOSTM ) and list based OPT-KOSTM (OPT-list-KOSTM )

with state-of-the-art STMs. Proposed OPT-HT-KOSTM and OPT-list-

KOSTM provide greater concurrency and reduces the number of aborts

as compared to single and multi-version OSTMs, single and multi-version

RWSTM s while maintaining multiple versions corresponding to each key

in Section 5.5.
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1.5 Organization of the Thesis

In this thesis, we proposed multiple Object-based STM systems (OSTM, MVOSTM,

OPT-MVOSTM). We proved that all the proposed OSTMs satisfy opacity as popular

correctness criteria of STMs. Experimental evaluation shows that all the proposed

OSTM systems achieved significant performance gain while reducing the number of

aborts as compare to state-of-the-art STMs. The organization of the thesis is as

follow:

Chapter 2 explains the system model and the background of the thesis. It includes

assumptions about the processors/threads followed by definitions of Events, Global

States, Methods, Histories, Sequential Histories, Transactions, Real-time Order &

Serial Histories, Valid & Legal Histories, Linearizability, and Opacity as a popular

correctness criterion of STMs.

Chapter 3 is organized as follows. Section 3.1 illustrates the motivation towards

OSTM over RWSTMs. In Section 3.2, we build a new notion of legality, conflicts to

describe opacity, co-opacity and the graph characterization. Section 3.3 represents

the OSTMs design and data structure. Section 3.4 shows the working of OSTMs and

its algorithms. We explain the detailed pseudocode of OSTM in Section 3.5. We

formally prove the correctness of OSTMs in Section 3.6. In Section 3.7 we show the

experimental evaluation of OSTMs with state-of-art-STMs. Finally, we summaries

this chapter in Section 3.8.

Chapter 4 is organized as follows. Section 4.1 illustrates the advantage of MVOSTM

over single-version OSTM, single and multi-version RWSTM. Section 4.2 shows the

Graph Characterization of Opacity. Section 4.3 represents the MVOSTMs design

and data structure. Section 4.4 shows the working of MVOSTMs and its algorithms.

We formally prove the correctness of MVOSTMs in Section 4.5. In Section 4.6 we

show the experimental evaluation of MVOSTMs with state-of-art-STMs. Finally, we

summaries this chapter in Section 4.7.

Chapter 5 is organized as follows. Section 5.1 shows the optimization on MVOSTM

to harness the greater concurrency than single and multi-version OSTM, single and

multi-version RWSTM. Section 5.2 represents the OPT-MVOSTMs design and data

structure. Section 5.3 shows the working of OPT-HT-MVOSTMs and its algorithms.

We formally prove the correctness of OPT-MVOSTMs in Section 5.4. In Section 5.5

we show the experimental evaluation of OPT-MVOSTMs with state-of-art-STMs.

Finally, we summaries this chapter in Section 5.6.

Chapter 6 describes the contributions of this thesis followed by direction for future

research. This thesis mainly proposed three Object-based STM systems (OSTMs,

MVOSTMs, OPT-MVOSTMs) and proved their correctness followed by the perfor-
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mance evaluation with state-of-the-art STMs. The direction for future research of

this thesis can be (1) Nesting for Object-based STM systems, (2) Object-based STM

systems as an Application to Blockchain, and (3) Distributed Object-based STMs

(DOSTMs).
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Chapter 2

System Model and Background

In this thesis, we assume that our system consists of finite set of P processors, ac-

cessed by a finite number of n threads that run in a completely asynchronous manner

and communicate using shared objects. The threads communicate with each other

by invoking higher-level methods on the shared objects and getting corresponding

responses. Consequently, we make no assumption about the relative speeds of the

threads. We also assume that none of these processors and threads fail or crash

abruptly.

Events: We assume that the threads execute atomic events and the events by dif-

ferent threads are (1) read/write on shared/local memory objects, (2) method in-

vocations (or inv) event & responses (or rsp) event on higher-level shared-memory

objects.

Global States: We define the global state or state of the system as the collection of

local and shared variables across all the threads in the system. The system starts with

an initial global state. We assume that all the events executed by different threads are

totally ordered. Each update event transitions the global state of the system leading

to a new global state.

Methods: The n processes access a collection of t-objects via atomic transactions.

Each transaction has a unique identifier typically denoted as Ti. Within a transac-

tion, a process can invoke transactional methods on a hash table t-object. A hash

table(ht) consists of multiple key-value pairs of the form 〈k, v〉. The keys and values

are respectively from sets K and V . The methods that a transaction Ti can invoke

are: (1) STM inserti(ht, k, v) or insi(ht, k, v): this method inserts the pair 〈k, v〉 into

object ht and return ok. If ht already has a pair 〈k, v′〉 then v′ gets replaced with v.

(2) STM deletei(ht, k, v) or deli(ht, k, v): if ht has a 〈k, v〉 pair then this operation

deletes the pair and returns v. If no such 〈k, v〉 pair is present in ht, then the operation
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returns nil. (3) STM lookupi(ht, k, v) or lui(ht, k, v): if ht has a 〈k, v〉 pair then this

operation returns v. If no such 〈k, v〉 pair is present in ht, then the method returns

nil. It can be seen that the return value of STM lookup() is similar to STM delete().

For simplicity, we assume that all the values inserted by transactions through

STM insert() method are unique. We denote STM insert() and STM delete() as up-

date methods or upd methods since both these change the underlying data-structure.We

denote STM delete() and STM lookup() as return-value methods or rv methods as

these return values which are different from ok.

In addition to these return values, each of these methods can always return an

abort value A which implies that the transaction Ti is aborted. A method mi returns

A if mi along with all the methods of Ti executed so far are not consistent (w.r.t

correctness-criterion which is formally defined later).

The Object-based STM systems (OSTM, MVOSTM, and OPT-MVOSTM) sup-

port two other methods: (4) STM tryCi(): this method tries to validate all the opera-

tions of the Ti. All proposed OSTM systems return ok if Ti is successfully committed.

Otherwise, it returns A implying abort. This method is invoked by a process after

completing all its transactional operations. (5) STM tryAi(): this method returns A

and OSTM systems abort Ti.

When any method of Ti returns A , we denote that method as well as Ti as aborted.

We assume that a process does not invoke any other operations of a transaction Ti,

once it has been aborted. We denote a method which does not return A as unaborted.

Having described about methods of a transaction, we describe about the events

invoked by these methods. We assume that each method consists of a inv and rsp

event. Specifically, the inv & rsp events of the methods of a transaction Ti are: (1)

STM inserti(ht, k, v): inv(STM inserti(ht, k, v)) and rsp(STM inserti(ht, k, v, ok/A )).

(2) STM deletei(ht, k, v): inv(STM deletei(ht, k)) and rsp(STM deletei(h, k, v/nil/A )).

(3) STM lookupi(h, k, v): inv(STM lookupi(h, k)) and rsp(STM lookupi(h, k, v/nil/A )).

(4) STM tryCi(): inv(STM tryCi()) and rsp(STM tryCi(ok/A )). (5) STM tryAi():

inv(STM tryAi()) and rsp(STM tryAi(A )).

For clarity, we have included all the parameters of inv event in rsp event as well.

In addition to these, each method invokes read/write primitives (operations) of Ti are

represented as: ri(x, v) implying that Ti reads value v for x; wi(x, v) implying that Ti

writes value v onto x. Depending on the context, we ignore some of the parameters of

the transactional methods and read/write primitives. We assume that the first event

of a method is inv and the last event is rsp.

Formally, we denote a method m by the tuple 〈evts(m), <m〉. Here, evts(m) are

all the events invoked bym and the<m a total order among these events. For instance,
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the method lu11(k5) of Figure 2.1 is represented as: inv(lu11(h, k5)) r111(k2, o2)r112(k5, o5)

rsp(lu11(h, k5, o5)). In our representation, we abbreviate STM insert() as ins, STM -

delete() as del and STM lookup() as lu. From our assumption, we get that for any

read/write primitive rw of m, inv(m) <m rw <mrsp(m).

Histories: A history is a sequence of events belonging to different transactions.

The collection of events is denoted as evts(H). Similar to a transaction, we denote a

history H as tuple 〈evts(H), <H〉 where all the events are totally ordered by <H . The

set of methods that are in H is denoted by methods(H). A method m is incomplete

if inv(m) is in evts(H) but not its corresponding response event. Otherwise m is

complete in H.

Coming to transactions in H, the set of transactions in H is denoted as txns(H).

The set of committed (resp., aborted) transactions in H is denoted by committed(H)

(resp., aborted(H)). The live transactions in H are those which are neither committed

nor aborted. On the other hand, the terminated transactions are those which have

either committed or aborted.

We denote two histories H1, H2 as equivalent if their events are the same, i.e.,

evts(H1) = evts(H2). A history H is qualified to be well-formed if: (1) all the

methods of a transaction Ti in H are totally ordered, i.e. a transaction invokes

a method only after it receives a response of the previous method invoked by it

(2) Ti does not invoke any other method after it received an A response or after

STM tryC(ok) method. We only consider well-formed histories for all the proposed

Object-based STM systems.

Sequential Histories: A method mij (jth method of a transaction Ti) in a history

H is said to be isolated or atomic if for any other event epqr (rth event of method

mpq) belonging to some other method mpq (of transaction Tp) either epqr occurs before

inv(mij) or after rsp(mij). Formally, 〈mij ∈ methods(H) : mij is isolated ≡ (∀mpq ∈
methods(H),∀epqr ∈ mpq : epqr <H inv(mij)∨rsp(mij) <H epqr)〉. For instance in H1

shown in Figure 1.1(ii), del2(k2) is isolated. In fact all the methods of H1 are isolated.

Consider history H2 shown in Figure 2.2. It can be seen that all the three methods

in H2, (lu11, del21, lu12) are not isolated.

A history H is said to be sequential (term used in [18, 19]) or linearized [20] if

all the methods in it are complete and isolated. Thus, it can be seen that H1 is

sequential whereas H2 is not.

Since in sequential histories all the methods are isolated, we treat each method

as whole without referring to its inv and rsp events. For a sequential history H, we

construct the completion of H, denoted H, by inserting STM tryAk(A ) immediately
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after the last method of every transaction Tk ∈ incomp(H). Since all the methods in

a sequential history are complete, this definition only has to take care of completing

transactions.

Consider a sequential history H. Let mij(ht, k, v/nil) be the first method of Ti

in H operating on the key k. Since all the methods of a transaction are sequential

and ordered, we can clearly identify the first method of Ti on key k. Then, we denote

mij(ht, k, v) as H.firstKeyMth(〈ht, k〉, Ti). For a method mix(ht, k, v) which is not

the first method on 〈ht, k〉 of Ti in H, we denote its previous method on k of Ti as

mij(ht, k, v) = H.prevKeyMth(mix, Ti).

Transactions: Following the notations used in database multi-level transactions [3],

we model a transaction as a two-level tree. Figure 2.1 shows a tree execution of

a transaction T1. The leaves of the tree denoted as layer-0 consist of read, write

primitives on atomic objects. Hence, they are atomic. For simplicity, we have ignored

the inv & rsp events in level-0 of the tree. Level-1 of the tree consists of methods

invoked by transaction. In the transaction shown in Figure 2.1, level-1 consists of

STM lookup() and STM delete() methods operating on the hash table as also shown

in Figure 1.1(i).

T1

Layer-1: Lookup & Delete

r111(k2) r121(k2) w122(k2) Layer-0: Reads & Writesr112(k5)

del12(k2)lu11(k5)

Figure 2.1: T1 : A sample transaction on hash table (of Figure 1.1(i))

Thus a transaction is a tree whose nodes are methods and leaves are events. Having

informally explained a transaction, we formally define a transaction T as the tuple

〈evts(T ), <T 〉. Here evts(T ) are all the read/write events (primitives) at level-0 of the

transaction. <T is a total order among all the events of the transaction. For instance,

the transaction T1 of Figure 2.1 is: inv(lu11(ht, k5)) r111(k2, o2)r112(k5, o5) rsp(lu11(ht,

k5, o5)) inv(del12(ht, k2)) r121(k2, o2) w122(k2, o2) rsp(del12(ht, k2, o2)). Given all level-

0 events, it can be seen that the level-1 methods and the transaction tree can be

constructed.
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We denote the first and last events of a transaction Ti as Ti.f irstEvt and Ti.lastEvt.

Given any other read/write event rw in Ti, we assume that Ti.f irstEvt <Ti rw <Ti

Ti.lastEvt.

All the methods of Ti are denoted as methods(Ti). We assume that for any method

m in methods(Ti), evts(m) is a subset of evts(Ti) and <m is a subset of <Ti . Formally,

〈∀m ∈ methods(Ti) : evts(m) ⊆ evts(Ti) ∧ <m⊆<Ti〉.
We assume that if a transaction has invoked a method, then it does not invoke a

new method until it gets the response of the previous one. Thus all the methods of

a transaction can be ordered by <Ti . Formally, (∀mp,mq ∈ methods(Ti) : (mp <Ti

mq) ∨ (mq <Ti mp))〉.

T1 T2

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

c22

r111(k2) r211(k2) r112(k5) r212(k5) r213(k7) w214(k5) r121(k2) w215(k7) r122(k5) r123(k8)

lu11(k5) del21(k7) lu12(k8)

Figure 2.2: H2 : A non-sequential History.

T1
T2

r111(k2) r112(k5)

Layer-1: Lookups &

Layer-0: Reads & Writes

r122(k5) r123(k8)r121(k2)

c22

w215(k7)r211(k2) r212(k5) r213(k7) w214(k5)

c13

lu11(k5) lu12(k8)
del21(k7)

Deletes

Figure 2.3: A serial History
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Real-time Order & Serial Histories: Given a history H, <H orders all the events

in H. For two complete methods mij,mpq in methods(H), we denote mij ≺MR
H mpq if

rsp(mij) <H inv(mpq). Here MR stands for method real-time order. It must be noted

that all the methods of the same transaction are ordered. Similarly, for two transac-

tions Ti, Tp in term(H), we denote (Ti ≺TRH Tp) if (Ti.lastEvt <H Tp.f irstEvt). Here

TR stands for transactional real-time order.

We define a history H as serial [5] or t-sequential [19] if all the transactions in

H have terminated and can be totally ordered w.r.t ≺TR, i.e. all the transactions

execute one after the other without any interleaving. Intuitively, a history H is serial

if all its transactions can be isolated. Formally, 〈(H is serial) =⇒ (∀Ti ∈ txns(H) :

(Ti ∈ term(H)) ∧ (∀Ti, Tp ∈ txns(H) : (Ti ≺TRH Tp) ∨ (Tp ≺TRH Ti))〉. Since all the

methods within a transaction are ordered, a serial history is also sequential. Refer

Figure 2.3 in to shows a serial history.

Valid Histories: A rv method (STM delete() and STM lookup()) mij on key k is

valid if it returns the value updated by any of the previous committed transaction

that updated key k. A history H is said to valid if all the rv methods of H are valid.

We formally prove validity for MVOSTM and OPT-MVOSTM in Section 4.5 and

Section 5.4 and then show that proposed STMs histories are opaque.

Legal Histories To simplify our analysis, we assume that there exists an initial

transaction T0 that invokes STM delete() method on all the keys of all the hash

tables used by any transaction.

We define legality of rv methods (STM delete() & STM lookup()) on sequential

histories which we later use to define correctness criterion. Consider a sequential

history H having a rv method rvmij(ht, k, v) (with v 6= nil) belonging to transaction

Ti. We define this rvm method to be legal if:

Rule1 If the rvmij is not first method of Ti to operate on 〈ht, k〉 and mix is the previous

method of Ti to operate on 〈ht, k〉. Formally, rvmij 6= H.firstKeyMth(〈ht, k〉, Ti)
∧(mix(ht, k, v

′) = H.prevKeyMth(〈ht, k〉, Ti)) (where v′ could be nil). Then,

(a) if mix(ht, k, v
′) is a STM insert() method i.e. STM insertix(ht, k, v

′) then

v = v′.

(b) if mix(ht, k, v
′) is a STM lookup() method i.e. STM lookupix(ht, k, v

′) then

v = v′.

(c) if mix(ht, k, v
′) is a STM delete() method i.e. STM deleteix(ht, k, v

′/nil)

then v = nil.

In this case, we denote mix as the last update method of rvmij, i.e., mix(ht, k, v
′)

= H.lastUpdt(rvmij(ht, k, v)).
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Rule2 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is not nil. Formally,

rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v 6= nil). Then,

(a) There is a STM insert() method STM insertpq(ht, k, v) in methods(H)

such that Tp committed before rvmij. Formally, 〈∃STM insertpq(ht, k, v) ∈
methods(H) : STM tryCp() ≺MR

H rvmij〉.
(b) There is no other update method upxy of a transaction Tx operating on

〈ht, k〉 in methods(H) such that Tx committed after Tp but before rvmij.

Formally, 〈@upxy(ht, k, v′′) ∈ methods(H) : STM tryCp() ≺MR
H STM tryCx()

≺MR
H rvmij〉.

In this case, we denote STM tryCp() as the last update method of rvmij, i.e.,

STM tryCp(ht, k, v)= H.lastUpdt(rvmij(ht, k, v)).

Rule3 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is nil. Formally,

rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v = nil). Then,

(a) There is STM delete() method STM deletepq(ht, k, v
′) in methods(H) such

that Tp (which could be T0 as well) committed before rvmij. Formally,

〈∃STM deletepq(ht, k, v
′) ∈ methods(H) : STM tryCp() ≺MR

H rvmij〉. Here

v′ could be nil.

(b) There is no other update method upxy of a transaction Tx operating on

〈ht, k〉 in methods(H) such that Tx committed after Tp but before rvmij.

Formally, 〈@upxy(ht, k, v′′) ∈ methods(H) : STM tryCp() ≺MR
H STM tryCx()

≺MR
H rvmij〉.

In this case, we denote STM tryCp() as the last update method of rvmij, i.e.,

STM tryCp(ht, k, v) = H.lastUpdt(rvmij(ht, k, v)).

We assume that when a transaction Ti operates on key k of a hash table ht, the

result of this method is stored in local logs of Ti for later methods to reuse. Thus,

only the first rv method operating on 〈ht, k〉 of Ti accesses the shared-memory. The

other rv methods of Ti operating on 〈ht, k〉 do not access the shared-memory and

they see the effect of the previous method from the local logs. This idea is utilized in

Rule1. With reference to Rule2 and Rule3, it is possible that Tx could have aborted

before rvmij. For Rule3, since we are assuming that transaction T0 has invoked a

STM delete() method on all the keys used of all hash table objects, there exists at

least one STM delete() method for every rv method on k of ht. We formally prove

legality for OSTM in Section 3.6 and then show that proposed STMs histories are

opaque.
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Coming to STM insert() methods, since a STM insert() method always returns

ok as they overwrite the node if already present therefore they always take effect on

the ht. Thus, we denote all STM insert() methods as legal. We denote a sequential

history H as legal or linearized [20] if all its rvm methods are legal. While defining

legality of a history, we are only concerned about rvm (STM lookup() and STM -

delete()) methods since all STM insert() methods are by default legal.

(ii)

(iii)

(i)

Ci

Ci

Ci

Ti

Ti

Ti

insix(ht, k5, v5) luij(ht, k5, v5)

delix(ht, k5, v5) luij(ht, k5, nil)

luix(ht, k5, v5) luij(ht, k5, v5)

Figure 2.4: STM lookup() returns the same value as previous method of the same
transaction on same key

Intuitive examples for Legality: If rv method is not the first method of a transac-

tion on any key then it will return the same value as the previous method of the same

transaction on the same key. In Figure 2.4(i), previous method for luij(ht, k5, v5)

of transaction Ti on same key k5 is insix(ht, k5, v5). So, luij(ht, k5, v5) will return

the same value which will be inserted by previous method insix(ht, k5, v5). Same

technique will be followed in Figure 2.4(ii) and Figure 2.4(iii).

Tp

Cp

Ti

Ci

{

tryC

tryC

{

Tx

delxy(ht, k, v) Cx

inspq(ht, k, vp)

luij(ht, k, vp)

Figure 2.5: STM lookup() returns the same value as previous closest conflicting
method of committed transaction

If rv method is the first method of a transaction on any key and value is not null

then the previous closest method of committed transaction should be inserted on the
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Tp

Cp

Ti

Ci

tryC

tryC

{
Tx

insxy(ht, k, v) Cx

{

delpq(ht, k, vp)

luij(ht, k, null)

Figure 2.6: STM lookup() returns the same value as previous closest conflicting
method of committed transaction

same key. In Figure 2.5, previous closest method for luij(ht, k, vp) of transaction Ti

on same key k is inspq(ht, k, vp) of transaction Tp. So, luij(ht, k, vp) will return the

same value which has been inserted by inspq(ht, k, vp) and there can’t be any other

transaction upd method working on the same key between Tp and Ti. Figure 2.6

represents, previous closest method of committed transaction Tp is delpq(ht, k, vp) on

key k so luij(ht, k, null) of transaction Ti returns nil for same key k.

Correctness-Criteria & Opacity: A correctness-criterion is a set of histories. A

history H satisfying a correctness-criterion has some desirable properties. A popular

correctness-criterion is opacity [10]. A sequential history H is opaque if there exists

a serial history S such that: (1) S is equivalent to H, i.e. , evts(H) = evts(S) (2) S

is legal and (3) S respects the transactional real-time order of H, i.e., ≺TRH ⊆≺TRS .

Linearizability: A linearizable [20] history H has following properties: (1) In order

to get a valid sequential history the invocation and response events can be reordered.

(2) The obtained sequential history should satisfy the sequential specification of the

objects. (3) The real-time order should respect in sequential reordering as in H.
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Chapter 3

Object-based Software

Transactional Memory systems

3.1 Introduction

Software Transaction Memory systems (STMs) are a convenient programming inter-

face for a programmer to access shared memory without worrying about concurrency

issues [4, 21] and are natural choice for achieving composability [22].

Most of the STMs proposed in the literature are specifically based on read/write

primitive operations (or methods) on memory buffers (or memory registers). These

STMs typically export the following methods: (1) STM begin(), (2) STM read(k) (or

r(k)), (3) STM write(k, v) (or w(k, v)), (4) STM tryC () (or tryC()) as explained in

Section 1.2 of Chapter 1. We refer to these as Read-Write STMs or RWSTM. As a

part of the validation, the STMs typically check for conflicts among the operations.

Two operations are said to be conflicting if at least one of them is a write (or update)

operation. Normally, the order of two conflicting operations cannot be commutated.

On the other hand, Object-based STMs or OSTM operate on higher level objects

rather than read & write operations on memory locations. They include more seman-

tically rich operations such as enqueue/dequeue on queue objects, push/pop on stack

objects and insert/lookup/delete on sets, trees or hash table objects depending upon

the underlying data structure used to implement OSTM.

It was shown in databases that object-level systems provide greater concurrency

than read/write systems [3, Chap 6]. Along the same lines, we propose a model to

achieve composability with greater concurrency for STMs by considering higher-level

objects which leverage the richer semantics of object level methods. We motivated

this with an interesting example in Section 1.2 of Chapter 1.
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Consider an OSTM operating on the hash table object called as Hash Table Object

STM or HT-OSTM which exports the following methods - (1) STM begin(), (2)

STM insert(k, v) or ins(k, v), (3) STM delete(k) or del(k), (4) STM lookup(k) or

lu(k) and, (5) STM tryC () explained in Section 1.3 of Chapter 1.

The atomic property of transactions helps to correctly compose together several

different individual operations. The above examples demonstrate that the concur-

rency in such STM can be enhanced by considering the object level semantics.

For correctness our framework considers, opacity [10] a popular correctness-criterion

for STMs which is different from serializability commonly used in databases. It can

be proved that verifying the membership of opacity similar to view-serializability is

NP-Complete [5]. Hence, using conflicts we developed a subclass of opacity- conflict

opacity or co-opacity for objects. We then developed polynomial time graph charac-

terization for co-opacity based on conflict-graph acyclicity. The proposed correctness-

criterion, co-opacity is similar to the notion of conflict-opacity developed for RW-

STM by Kuznetsov & Peri [18]. To show the efficacy of this framework, we develop

OSTM based on the idea of Basic Timestamp Order (BTO) scheduler developed

in databases [3, Chap 4]. For showing correctness of OSTM , we prove that all the

methods are linearizable [20] while the transactions are co-opaque by showing that

the corresponding conflict graph is acyclic. We have considered two Concurrent Data

Structures (CDS), hash table and list based OSTM as HT-OSTM and list-OSTM

(simple modification of HT-OSTM while considering the bucket size as 1), but we

believe that this notion of conflicts can be extended to other high-level objects such

as Stacks, Queues, Tries etc.

Contributions of the Chapter is as follows:

• We proposed a generic framework for composing higher-level objects based on

the notion of conflicts for objects in databases [3, Chap 6].

• We developed a subclass of opacity [10] as conflict opacity or co-opacity for

higher-level objects in Section 3.2.

• We rigorously proved that proposed OSTMs satisfy the correctness criteria as

co-opacity [18] in Section 3.6.

• A simple modification of HT-OSTM gives us a concurrent list based STM or

list-OSTM. Finally, we compared the performance of HT-OSTM against state-

of-the-art hash table based STMs (ESTM [7] and RWSTM [3]). The list-OSTM

is compared with state-of-the-art list based STMs (Trans-list [12], NOrec-list
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[6] and Boosting-list [13]). The results show that HT-OSTM and list-OSTM

reduces the number of aborts to minimal and show significant performance gain

in comparison to state-of-the-art STMs in Section 3.7.

Related Work: Our work differs from databases model in with regard to correctness-

criterion used for safety. While databases consider Conflict Serializable Schedule or

CSR [3, Chap. 3], we consider linearizability [20] to prove the correctness of the

methods of the transactions and opacity to show the correctness of the transactions.

Earliest work of using the semantics of concurrent data structures for object level

granularity include that of open nested transactions [23] and transaction boosting of

Herlihy et al. [13] which is based on serializability (strict or commit order serializ-

ability) of generated schedules as correctness criteria. Herlihy’s model is pessimistic

and uses undo logs for rollback. Our model is more optimistic in that sense and the

underlying data structure is updated only after there is a guarantee that there is no

inconsistency due to concurrency. Thus, we do not need to do rollbacks which keeps

the log overhead minimal. This also solves the problem of irrevocable operations

being executed during a transaction which might abort later otherwise.

Hassan et al. [24] have proposed Optimistic Transactional Boosting (OTB) that

extends original transactional boosting methodology by optimizing and making it

more adaptable to STMs. They further have implemented OTB on set data structure

using lazy-linked list [24]. Although there seem similarities between their work and

our implementation, we differ w.r.t the correctness-criterion which is co-opacity a

subclass of opacity [18] in our case. Furthermore, we also differ in the development of

the conflict-based theoretical framework which can be adapted to build other object-

based STMs.

Zhang et al. [12] recently proposed a method to transform lockfree CDS to trans-

actional lockfree linked CDS and base the correctness on strict serializability. The

transactions are synchronized using CAS and they compare their work against STM

based approaches. Our evaluation shows that list-OSTM implementation compre-

hensibly beats Zhang’s transactional lock free list (Trans-list) data structure in Sec-

tion 3.7.

Fraser et al. [25] proposed OSTM based on shadow copy mechanism, which in-

volves a level of indirection to access the shared objects through OSTMOpenForRead-

ing and OSTMOpenForWriting as exported methods. Contrary to it, our OSTM

model exports the higher object level methods like STM lookup(), STM insert() and

STM delete() while hiding the internal read and write lower level primitives. The

exported methods in OSTM by Fraser et al. [25] may allow OSTMOpenForReading

to see the inconsistent state of the shared objects but our OSTM model precludes this
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possibility by validating the access during execution of rv method (i.e. the methods

which do not modify the underlying objects and only return some value by performing

a search on them).Thus, we can say our motivation and implementation is different

from Fraser OSTM and only the name happens to coincide.

Roadmap. This chapter is organized as follows. In Section 3.2, we build a new notion

of legality, conflicts to describe opacity, co-opacity and the graph characterization.

Section 3.3 represents the OSTMs design and data structure. Section 3.4 shows the

working of OSTMs and its algorithms. We explain the detailed pseudocode of OSTM

in Section 3.5. We formally prove the correctness of OSTMs in Section 3.6. In

Section 3.7 we show the experimental evaluation of OSTMs with state-of-art-STMs.

Finally, we summaries this chapter in Section 3.8.

3.2 A New Conflict Notion and Conflict-Opacity

for OSTMs

In this section, we define the correctness of OSTM by extending opacity [10]. We

then define a tractable subclass of opacity, co-opacity which is defined using conflict

like CSR [3, Chap. 3] in databases.

Opacity is a popular correctness-criterion for STMs. But, as observed in Sec-

tion 3.1, it can be proved that verifying the membership of opacity similar to view-

serializability (VSR) in databases is NP-Complete [5]. To circumvent this issue,

researchers in databases have identified an efficient sub-class of VSR, called conflict-

serializability (CSR), based on the notion of conflicts. The membership of CSR can

be verified in polynomial time using conflict graph characterization. Along the same

lines, we develop the notion of conflicts for OSTM and identify a sub-class of opacity,

co-opacity. The proposed correctness-criterion is extension of the notion of conflict-

opacity developed for RWSTM by Kuznetsov & Peri [18].

We say two transactions Ti, Tj of a sequential history H for OSTM are in conflict

if atleast one of the following conflicts holds:

• tryC-tryC conflict:(1) Ti & Tj are committed and (2) Ti & Tj update the same

key k of the hash table, ht, i.e., (〈ht, k〉 ∈ updtSet(Ti))∧(〈ht, k〉 ∈ updtSet(Tj)),
where updtSet(Ti) is update set of Ti. (3) Ti’s STM tryC () completed before

Tj’s STM tryC (), i.e., STM tryCi() ≺MR
H STM tryCj().

• tryC-rv conflict:(1) Ti is committed (2) Ti updates the key k of hash table,

ht. Tj invokes a rv method rvmjy on the same key k of hash table ht which is

the first method on 〈ht, k〉. Thus, (〈ht, k〉 ∈ updtSet(Ti)) ∧ (rvmjy(ht, k, v) ∈
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rvSet(Tj)) ∧ (rvmjy(ht, k, v) = H.firstKeyMth(〈ht, k〉, Tj)), where rvSet(Tj)

is return value set of Tj. (3) Ti’s STM tryC () completed before Tj’s rvm, i.e.,

STM tryCi() ≺MR
H rvmjy.

• rv-tryC conflict:(1) Tj is committed (2) Ti invokes a rv method on the same

key k of hash table ht which is the first method on 〈ht, k〉. Tj updates the key

k of the hash table, ht. Thus, (rvmix(ht, k, v) ∈ rvSet(Ti)) ∧ (rvmix(ht, k, v) =

H.firstKeyMth(〈ht, k〉, Ti)) ∧ (〈ht, k〉 ∈ updtSet(Tj)) (3) Ti’s rvm completed

before Tj’s STM tryC (), i.e., rvmix ≺MR
H STM tryCj().

(rv−tryC)
rt edge

(rv−tryC),

rt edge

(tryC−tryC)

(tryC−rv), rt edge

T2

T3

b) CGa) History in time line view

C4

T1
lu1(ht, k1, null) ins1(ht, k4, v1)

lu2(ht, k2, null)

C1

C2

ins3(ht, k3, v3) C3

lu4(ht, k4, null) ins4(ht, k2, v4)

T4

T2

T1 T3

T4

del2(ht, k4, v1)

ins3(ht, k1, v1)

Figure 3.1: Graph Characterization of history H5

A rv method rvmij conflicts with a STM tryC () method only if rvmij is the first

method of Ti that operates on hash table with a given key. Thus the conflict notion is

defined only by the methods that access the shared memory. (STM tryCi(), STM tryCj

()), (STM tryCi(), STM lookupj()), (STM lookupi(), STM tryCj()), (STM tryCi(), STM

deletej()) and (STM deletei(), STM tryCj()) can be the possible conflicting methods.

For example, consider the historyH5 : lu1(ht, k1, null), lu2(ht, k2 , null), ins3(ht, k1, v1),

ins1(ht, k4, v1), c1, ins3(ht, k3, v3), c3, del2(ht, k4, v1), c2, lu4(ht, k4, null), ins4(ht, k2, v4),

c4 in Figure 3.1. (lu1(ht, k1, null), ins3(ht, k1, v1)) and (lu2(ht, k2, null), ins4(ht, k2, v4))

are a conflict of type rv-tryC. Conflict type of (ins1(ht, k4, v1), del2(ht, k4, v1)) and

(ins1(ht, k4, v1), lu4(ht, k4, null)) are tryC-tryC and tryC-rv respectively.

Conflict Opacity: Using this conflict notion, we can now define conflict-opaque or

co-opacity. A sequential history H is co-opaque if there exists a serial history S such

that: (1) S is equivalent to H (complete history), i.e. , evts(H) = evts(S) (2) S is

legal and (3) S respects the transactional real-time order of H, i.e., ≺TRH ⊆≺TRS and

(4) S preserves conflicts (i.e. ≺COH ⊆≺COS ).

Thus from the above definition, it can be seen that any history that is co-opaque is

also opaque.

Graph Characterization: We now develop a graph characterization of co-opacity.
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For a sequential history H, we define conflict-graph of H, CG(H) as the pair (V,E)

where V is the set of txns(H) and E can be of following types: (a) conflict edges:

{(Ti, Tj) : (Ti, Tj) ∈ conflict(H)} where, conflict(H) is an ordered pair of transactions

such that the transactions have one of the above pair of conflicts. (b) real-time edge(or

rt edge): {(Ti, Tj): Transaction Ti precedes Tj in real-time, i.e., Ti ≺TRH Tj}.

3.3 OSTM Design and Data Structure

We design OSTM for a concurrent closed addressed hash table based on conflict

notion defined in Section 3.2 and called as HT-OSTM . The HT-OSTM exports STM -

begin(), STM insert(), STM delete(), STM lookup(), STM tryC() methods and has

B number of buckets, which we refer to as size of the hash table. We propose list-

OSTMs while considering the bucket size as 1 in HT-OSTM. The main part of interest

from concurrency perspective is each bucket of the hash table implemented as lazy

red-blue list (or lazyrb-list), the shared memory data structure.

Lazyrb-list: 〈 key, value, lock, marked, max ts, RL, BL〉. It is a linked

structure with immutable head and tail sentinel nodes. Each node of the list has

key, value, marked ( to have lazy deletion as popular in lazylists [8, 9] ) and lock (

to implement exclusive access to the node ) field. The key represents unique id of

the node so that a transaction could differentiate between two nodes. The key values

may range from −∞ ( key of head node ) to +∞ ( key of tail node ). The value field

may accommodate any type ranging from a basic integer to a complex class type.

Lazyrb-list node has two links - BL (blue links) and RL (red links). First, the

nodes which are not marked (not deleted) are reachable by BL from the head. Second,

the nodes which are marked (i.e. logically deleted) and are only reached by RL.

Thus, the name lazyrb-list (lazy red-blue list). All marked nodes are reachable via

RL and all the unmarked nodes are reachable via BL & RL from the head. Thus

nodes reachable by BL are the subset of the nodes reachable by RL. Every node of

lazyrb-list is in increasing order of its key to avoid the deadlock.

Furthermore, every lazyrb-list node also has a timestamp field (max ts) to record

the ids of the transactions which most recently executed some method. Augmenting

the underlying shared data structure with timestamps help in identifying conflicts

by simulating the graph characterization of a generated history which is discussed

with Figure 3.1 in Section 3.2. Thus, a transaction can decide if another conflicting

transaction can cause a cycle in the execution and hence violate co-opacity [18].
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lu1(ht, k2, v0)

ins2(ht, k2, v1)

T1

T2
C2del2(ht, k1, v0)

lu1(ht, k1, null) A1

Figure 3.2: History H is not co-opaque

Now, we explain why we need to maintain deleted nodes through Figure 3.2 and

3.3. History H shown in Figure 3.2 is not co-opaque because there is no serial ex-

ecution of T1 and T2 that can be shown co-opaque. In order to make it co-opaque

lu1(ht, k1, null) needs to be aborted. And lu1(ht, k1, null) can only be aborted if HT-

OSTM scheduler knows that a conflicting operation del2(ht, k1, v0) has already been

scheduled and thus violating co-opacity. One way to have this information is that

if the node represented by k1 records the timestamp of the delete method so that

the scheduler realizes the violation of the time-order [3] and aborts lu1(ht, k1, null)

to ensure co-opacity.

lu1(ht, k2, v0)

ins2(ht, k2, v1)

T1

T2
C2

lu1(ht, k1, Abort) A1

del2(ht, k1, v0)

Figure 3.3: Co-opacity History H1

Thus, to ensure correctness, we need to maintain information about the nodes

deleted from the hash table. This can be achieved by only marking node deleted

from the list of hash table. But do not unlink it such that the marked node is still

part of the list. This way, the information from deleted nodes can be used for ensuring

co-opacity. In this case, after aborting lu1(ht, k1), we get that the history is co-opaque

with T1 and T2 being the equivalent serial history as shown in Figure 3.3. The deleted

keys (nodes with marked field set) can be reused if another transaction comes and

inserts the same key back.

But, the major hindrance in maintaining the deleted nodes as part of the or-

dinary lazy-list is that it would reduce search efficiency of the data structure. For

example, in Figure 3.4 searching k8 would unnecessary cause traversal over marked

(marked for lazy deletion) nodes represented by k1, k3 and k6. We solve this problem

in lazyrb-list by using two pointers. (1) BL (blue link): used to traverse over the

actual inserted nodes and (2) RL (red link) used to traverse over the deleted nodes.
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Hence, in Figure 3.5 to search for k8 we can directly use BL saving significant search

computations.

k3 k6 k7 k8−∞ +∞k1

Figure 3.4: Searching k8 over lazylist

k1 k3 k6

+∞−∞ k8k7

Figure 3.5: Searching k8 over lazyrb-list

A question may arise that how would we maintain the timestamp of a node which

has not yet been inserted? Such a case arises when STM lookup() or STM delete()

is invoked from rv method, and node corresponding to the key, say k is not present

in BL and RL. Then the rv method will create a node for key k and insert it into

underlying data structure as deleted (marked field set) node.

k1 k3 k6

+∞

k10

−∞ k8k7

Figure 3.6: Execution under lazyrb-list

For example, lookup wants to search key k10 in Figure 3.5 which is not present in

the BL as well as RL. Therefore, lookup method will create a new node corresponding

to the key k10 and insert it into RL (refer the Figure 3.6). We discuss in detail the

invariants and properties of the lazyrb-list and ensure that no duplicate nodes are

inserted while proving the operational level correctness in Section 3.6.

Transaction local log. Each transaction maintains local log called txlog. It stores

transaction id and status: live, commit or abort signifying that transaction is ex-

ecuting, has committed or has aborted due to some method failing the validation,

respectively.

Each entry of the txlog is called log record (shortened as L rec) stores the meta

information of each method a transaction encounters as updtSet() and rvSet() for-

malized in Section 3.2. The L rec is a tuple of type 〈key, value, status, preds, currs〉.
A method may have OK and FAIL as it’s status. The preds and currs are the array
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of nodes in RL and BL identified during the traversal over the lazyrb-list by each

method. It depicts the location over the lazyrb-list where the method would take

effect.

3.4 The Working of OSTM

In this section, we explain the high-level idea of all the methods exported by HT-

OSTM and the detailed description of it is provided in the Section 3.5.

STM tryC() :
Validation

* Time order validation

Commit into underlying data-structure.

* Intra transaction validation

* Method validation

Ti
Ci

Validate at instant.
STM lookup() :

STM begin() : STM insert() :
Execute w/o touching
shared memory.

STM Delete() :

Modify at commit.
Update txlog.

* Init txlog.

Validate at instant.
Update txlog.

Update txlog.
* Unique id.
Prepare a transaction

Return value method execution phase Update method execution phase

Figure 3.7: Transaction lifecycle of HT-OSTM

Through out its life a HT-OSTM transaction may execute STM begin(), STM -

insert(), STM lookup(), STM delete() and STM tryC() methods which are also ex-

ported to the user. STM delete(), STM lookup() are rv methods while STM insert(),

STM delete() are upd methods. Each transaction has a 1) rv method execution phase:

where upd method and rv method locally identify and logs the location to be worked

upon and other meta information which would be needed for successful validation.

Within rv method execution phase rv methods do lock free traversal and then val-

idate while STM insert() merely log there execution to be validated and updated

during transaction commit. 2) upd method execution phase: where it validates the

upd method executed during its lifetime and validates whether the transaction will

commit and finally make changes in hash table atomically or it will abort and flush

its log. Figure 3.7 depicts the transaction life cycle.

rv method execution phase:

1. If mij(k) ∈ {STM begin()}

(a) It invoked by a thread to being a new transaction Ti.

(b) It creates a local log and assign a unique id to each transaction.
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2. ∀ mij(k) ∈ {STM lookup(), STM delete()}

(a) If legality Rule1 is applicable.

i. Update the txlog and return.

(b) If legality Rule2 and Rule3 is applicable.

i. Traverse the underlying data structure to identify pred and curr nodes

for both the RL and BL as done in lazy-lists or skip lists. Then, acquire

ordered locks on the nodes.

ii. Validate. If the Validate() returns A , the mij(k) aborts followed by

subsequently Ti is aborted and retried from step 1. Otherwise, if

Validate() returns retry then mij(k) is retried from step 2.(b).

iii. If validation succeeds, create a new L rec in txlog and update the

L rec. And, insert a node in RL if the node is not present in lazyrb-list

as explained in Figure 3.6.

iv. Release locks and return.

3. If mij(k) ∈ {STM insert()}

(a) Update the txlog and return.

We validate STM lookup() immediately and do not validate again in STM tryC()

unlike the implementation of Optimistic Transactional Boosting (OTB) by Hassan et

al. [24]. This is required to ensure that the execution is opaque.

Validate():

1. First the current operation validates for any possible interference due to con-

current transactions through method validation.

Method Validation Rule: If the preds are marked and the next node of

pred is not curr, implies a conflicting concurrent operation has also made

changes. Thus, the current operation has to retry. Otherwise method

validation is said to succeed.

2. Time order validation is performed when method validation succeeds.

Time Order Validation Rule [3, Chap 4]: When a transaction Ti

with timestamp i want to access a node n. Also, Let Tj be a conflicting

transaction with timestamp j which accessed n previously. Now, If i < j

then Ti is aborted. Else this method returns ok.

3. Return abort or retry or ok.
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STM delete() in rv method execution phase behaves as STM lookup() but it is

validated twice. First, in rv method execution similar to STM lookup() and secondly

in upd method execution to ensure co-opacity. We adopt lazy delete approach for

STM delete(). Thus, nodes are marked for deletion and not physically deleted for

STM delete() method. In the current work we assume that a garbage collection

mechanism is present and we do not worry about it.

upd method execution phase. During this phase a transaction executes STM -

tryC(). It begins by ordering the txlog in increasing order of the keys. This way locks

can be acquired in increasing order of keys to avoid deadlock. We re-validate upd -

method in txlog to ensure that the pred and curr for the methods has not changed

since the point they were logged during rv method execution phase. Please note that

txlog only contains the log record (L rec) for upd method. Because we do not validate

the lookup and failed delete again in STM tryC().

(a)

(b)

(c)

(d)

−∞ k3 k8 +∞
−∞ k8 +∞

−∞
−∞

k4

k3

k4

k3

k4 k5

k5 k8 +∞
k5 k8 +∞

k3

k4

(i) When k5 is not present in BL and RL (ii) When k5 is present in RL

Figure 3.8: Insert of k5 in STM tryC(). (i) BL & RL of k5 is set to K8 then BL of
k3 linked to K5 & RL of k4 is linked to k5. (ii) Only BL of k5 is set to K8 then BL

of k3 linked to K5.

Now after successful validation, we update the shared lazyrb-list using the log

records (L rec) of the txlog one by one. There may be two cases when a node is

inserted into lazyrb-list by the STM insert(). First, the node is not reachable by

both RL and BL (not present in underlying data structure). Figure 3.8(i) represents

this case when k5 is neither reachable by BL and nor in RL. It adds k5 to lazyrb-list

at location preds〈k3, k4〉 and currs〈k8, k8〉 (in the notation, first and second index

is the key reachable by BL and RL, respectively). Figure 3.8(i)(a) is lazyrb-list

before addition of k5 and Figure 3.8(i)(b) is lazyrb-list state post addition. Second,

if the node is reached only by RL. Figure 3.8(ii) represents this case where k5 is

reached only by RL. It adds k5 to lazyrb-list at location pred〈k3, k4〉 and curr〈k5, k8〉.
Figure 3.8(i)(c) is lazyrb-list before addition of k5 with BL and Figure 3.8(i)(d) is

lazyrb-list state post addition.
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During STM delete() if a node to be removed is reachable with BL then its marked

field is set and the links are modified such that it is not reachable by BL. Figure 3.9

shows a case where a node k5 needs to be deleted from the lazyrb-list in Figure 3.9

(a). So, here the node k5 sets its marked field and then is detached from the BL

(Figure 3.9 (b)).

(a) (b)−∞ −∞

k3

k1 +∞k5
+∞

k5

k1

k3

Figure 3.9: Delete of k5 in STM tryC(). k5 is unlinked from BL by linking BL of k1

to ∞.

3.5 Detailed Pseudocode of OSTM

In this section we explain the working of proposed HT-OSTM methods in detail along

with thread local and shared memory data structure. In proposed HT-OSTM , we

use thread local data structure (orDS) which is private to each thread for logging

the local execution and shared memory DS which is concurrently accessed by mul-

tiple transactions to communicate the meta information logged for validation of the

methods.

3.5.1 Thread local Data Structure

Each transaction Ti maintains local log of type L txlog, which consists of transaction

id and status as L t id and L tx status respectively. Transactions can have live,

commit or abort as there status signifying that transaction is executing, has success-

fully committed or has aborted due to some method failing the validation respectively.

The local log also maintains a list (L list) of meta information of each method a

transaction executes in its life time. Each record of the L list is of type L rec which

logs 1) L key and L val a method operates on, 2) L opn: name of the method (or

operation), 3) L op status: method’s status (OK, FAIL) and 4) G preds, G currs:

its location over the lazyrb-list.

We say a method identifies its location over the lazyrb-list when it finds the prede-

cessor and successor nodes over theBL andRL respectively. We represent predecessor

as preds〈km, kn〉 (km is blue node reachable by BL and kn is red node reachable by

RL) and successor as currs〈kp, kq〉 (kp is red node reachable by RL and kq is blue node

reachable by BL) respectively. Here, 〈km, kq〉 are predecessor (preds[0]) and current
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(currs[1]) node for BL and 〈kn, kp〉 are predecessor (preds[1]) and current (currs[0])

node for RL.

c l a s s L tx log {
p r i v a t e :

i n t L t i d ;

STATUS L t x s t a t u s ;

/∗A log record i s un ique ly i d e n t i f i e d us ing L key and

L o b j i d in l o c a l r ecord L rec ∗/
vec to r <L key , L rec> L l i s t ;

pub l i c :

L tx log ( ) ; ˜ L tx log ( ) ; f i n d ( ) ;

s e tS ta tu s ( ) ; g e t L i s t ( ) ; s o r t ( ) ; tryAbort ( ) ;

} ;

c l a s s L rec {
pub l i c :

i n t L ob j id , L key , L va l ;

node∗ G preds , G currs , G node ;

STATUS L op s ta tus ;

OP NAME L opn ;

getOpn ( ) ; getPreds&Currs ( ) ; getOpStatus ( ) ;

getKey&Objid ( ) ; getVal ( ) ; getAptCurr ( ) ;

se tVal ( ) ; s e tPreds&Currs ( ) ;

setOpStatus ( ) ; setOpn ( ) ;

} ;

/∗Types o f method exported by the OSTM∗/
enum OP NAME = {INSERT, DELETE, LOOKUP}
/∗A t r a n s a c t i o n can ABORT/COMMIT and a method can ABORT,

OK, FAIL ∗/
enum STATUS = {ABORT = 0 , OK, FAIL , COMMIT}
/∗To know whether v a l i d a t i o n i s r eques ted from STM tryC ( )

or rv method ( STM lookup ( )/ STM delete ( ) )∗/

enum VALIDATION TYPE = {RV, TRYC}
/∗To r e c o g n i z e on which l i s t method has to be performed ∗/
enum LIST TYPE = {RL, BL, RL BL}
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We use word location with G preds and G currs interchangeably in rest of the the-

sis. Each local and shared variables start with the prefix of “L” and “G” respectively

to distinguish among them. Class L rec also shows the getter and setter methods for

each of the member variables which are self explanatory. Interested reader can find

there description at Table 3.1.

Functions Description

setOpn() Set method name into transaction local log

setVal() Set value of the key into transaction local log

setOpStatus() Set status of method into transaction local log

setPred&Curr()
Set location of G preds and G currs according to the node

corresponding to the key into transaction local log

getOpn() Get method name from transaction local log

getVal() Get value of the key from transaction local log

getOpStatus() Get status of the method from transaction local log

getKey&Objid()
Get key and obj id corresponding to the method from trans-

action local log

getPred&Curr()
Get location of G preds and G currs according to the node

corresponding to the key from transaction local log

Table 3.1: Utility methods for each transaction to manipulate its log

3.5.2 Shared memory Data Structure

s t r u c t G node{
i n t G key , G val ;

bool G marked ;

s t r u c t G max ts ;

l o ck G lock ;

G node∗ G rednext , G bluenext ;

} ;

/∗Hash tab l e where each bucket i s a lazyrb - l i s t chain ∗/
G node∗ shared ht [ ] ;

HT-OSTM shared memory is the chained hash table where each node of the chain

(lazyrb-list) is a key-value pairs of the form 〈k, v〉. Most of the notations used here

are derived from [26]. A global node (G node) n when created is initialized as follows:
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(1) G key and G val is the key and value of the method that creates the node (2)

G marked is set to false (3) G lock is null (4) G rednext (RL) and G bluenext (BL)

are set to nil (5) Maximum timestamp (G max ts) is initialized to 0.

We adapt timestamp validation [3] to ensure schedules generated by proposed

HT-OSTM are serial. Therefore we maintain G max ts lookup(ht, k), G max ts -

insert(ht, k) and G max ts delete(ht, k) that represent timestamp of last commit-

ted transaction which executed STM lookup(ht, k), STM insert(ht, k) and STM -

delete(ht, k) respectively. G max ts, G node and L rec form the part of the meta

information for the HT-OSTM .

/∗ Sto r e s the timestamp o f l a s t t r a n s a c t i o n that performed

lookup , i n s e r t or d e l e t e r e s p e c t i v e l y ∗/
s t r u c t G max ts { lookup ; i n s e r t ; d e l e t e ; } ;

3.5.3 Pseudocode of OSTM

In this subsection we explain the detailed functionality of each method of proposed

HT-OSTM along with there pseudocode.

Pseudocode convention: In each algorithm ↓ represents the input parameter and ↑
shows the output parameter (or return value) of the corresponding methods (such in

and out variables are italicized). Each local and shared variables start with the prefix

of “L” and “G” respectively to distingwish among them. Color of preds (preds[0],

preds[1]) and currs (currs[1], currs[0]) in algorithm depicts the red or blue node which

are accessed by red or blue links in the shared memory respectively.

rv method execution phase: First, we explain the functionality of each method

of proposed HT-OSTM in rv method execution phase as follows:

STM init(): This is the first function a transaction executes in its life cycle. It

initialize the global counter (G cnt) as 1 at Line 3 and return it.

STM begin(): It initiates the L txlog (local log) for the transaction (Line 8) and

provides an unique id to the transaction (Line 10) using shared counter.

Then transaction may encounter the upd method or rv method.

STM insert(): In rv method execution phase, STM insert() simply checks if there

is a previous method that executed on the same key. If there is already a previous

method that has executed within the same transaction it simply updates the new

value, operation name (L opn) as insert and operation status L op status to OK

(Line 22, Line 23 and Line 24 respectively). In case the STM insert() is the first
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Algorithm 1 STM init(): This method invokes at the start of the STM system.
Initialize the global counter (G cnt) as 1 at Line 3 and return it.

1: procedure STM init(G cnt ↑)
2: /* Initializing the global counter */
3: G cnt ← 1;
4: return 〈G cnt〉;
5: end procedure

Algorithm 2 STM begin(): It invoked by a thread to being a new transaction Ti. It
creates transaction local log and allocate unique id at Line 8 and Line 10 respectively.

6: procedure STM begin(G cnt ↓, L t id ↑)
7: /* Creating a local log for each transaction */
8: L txlog← create new L txlog();
9: /* Getting transaction id (L t id) from G cnt */

10: L txlog.L t id ← G cnt;
11: /* Incremented global counter atomically G cnt */
12: G cnt ← get&inc(G cnt ↓); //Φlp(LinearizationPoint)
13: return 〈L t id〉;
14: end procedure

method on key it creates a new log record for the L list of L txlog at Line 19.

Finally the STM insert() gets to modify the underlying hash table using list ins() at

the upd method execution phase in STM tryC().

Algorithm 3 STM insert(): Updates the log record and actual insertion happens
in the STM tryC().

15: procedure STM insert(L t id ↓, L obj id ↓, L key ↓, L val ↓, L op status ↑)
16: /*First identify the node corresponding to the key into local log using find()

function */

17: if (!L txlog.find(L t id ↓, L obj id ↓, L key ↓, L rec ↑)) then

18: /* Create local log record and append it into increasing order of keys */

19: L rec ← create new L rec〈L obj id ↓, L key ↓〉;
20: end if

21: /* Updating the local log */

22: L rec.setV al(L obj id ↓, L key ↓, L val ↓) ; //Φlp

23: L rec.setOpn(L obj id ↓, L key ↓, INSERT ↓) ;

24: L rec.setOpStatus(L obj id ↓, L key ↓, OK ↓) ;

25: return 〈void〉;
26: end procedure
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STM lookupi(ht, k): If this is the subsequent operation by a transaction Ti for a

particular key k on hash table ht i.e. an operation on k has already been scheduled

with in the same transaction Ti, then this STM lookup() returns the value from the L -

list and does not access shared memory (Line 29 to Line 38 in Algorithm 4). If the last

operation was an STM insert() (or STM lookup()) on same key then the subsequent

STM lookup() of the same transaction returns the previous value (Line 33) inserted

(or observed) without accessing shared memory, and if the last operation was an

STM delete() then STM lookup() returns the value NULL (Line 37). Thus in this

process subsequent methods also have same conflicts as the first method on same key

within the same transaction (conflict inheritance).

Algorithm 4 STM lookup(): Returns the value corresponding to the key if exist

27: procedure STM lookup(L t id ↓, L obj id ↓, L key ↓, L val ↑, L op status ↑)
28: /* First identify the node corresponding to the key into local log */

29: if (L txlog.find(L t id ↓, L obj id ↓, L key ↓, L rec ↑)) then

30: L opn ← L rec.getOpn(L obj id ↓, L key ↓) ;

31: /* If previous operation is insert/lookup then current method would have

value/op status same as previous log record */

32: if ((INSERT == L opn )||( LOOKUP == L opn)) then

33: L val ← L rec.getV al(L obj id ↓, L key ↓) ;

34: L op status ← L rec.getOpStatus(L obj id ↓, L key ↓) ;

35: /* If previous operation is delete then current method would have value

as NULL and op status as FAIL */

36: else if (DELETE == L opn) then

37: L val ← NULL ;

38: L op status ← FAIL ;

39: end if

40: else

41: /* Common function for rv method, if node corresponding to the key is

not the part of local log then search into underlying data structure */

42: commonLu&Del(L t id ↓, L obj id ↓, L key ↓, L val ↑, L op status ↑);
43: /* update the local log */

44: L rec.setOpn(L obj id ↓, L key ↓, LOOKUP ↓) ;

45: L rec.setOpStatus(L obj id ↓, L key ↓, L op status ↓) ;

46: end if

47: return 〈L val, L op status〉;
48: end procedure
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If STM lookup() is the first operation on a particular key then it has to do a wait

free traversal (Line 82 in Algorithm 6) with the help of list lookup() (Algorithm 8)

to identify the target node (preds and currs) to be logged in L list for subsequent

methods in rv method execution phase (discussed above for the case where STM -

lookup() is the subsequent method). If the node is present as blue (or red) node then

it updates the operation status as OK (or FAIL) and returns the value respectively

(Line 88 to Line 96 in Algorithm 6). If node corresponding to the key is not found

then it inserts that node (Line 97 to Line 102 in Algorithm 6) corresponding to the

key into RL of lazyrb-list. The inserted node can be accessed only via red links.

Hence, it will not visible to any subsequent STM lookup(). The node is inserted

to take care of situations as illustrated in Figure 3.2 and Figure 3.3 of Section 3.3.

Finally, it updates the meta information in L list and releases the locks acquired

inside list lookup() (Line 105 to Line 109).

We prefer STM lookup() to be validated instantly and is never validated again in

STM tryC() as the design choice to aid performance. Let’s consider HT-OSTM his-

tory in Figure 3.10(a), if we would have validated lu(ht, k1, v0) again during STM tryC(),

T1 would abort due to time order violation [3], but we can see that this history is

acceptable where T1 can be serialized before T2 (Figure 3.10(b)). Thus, HT-OSTM

prevents such unnecessary aborts. Another advantage for this design choice is that

T1 doesn’t have to wait for STM tryC() to know that the transaction is bound to

abort as can be seen in Figure 3.10(c). Here lu(ht, k1, Abort) instantly aborts as soon

as it realizes that time order is violated and schedule can no more be ensured to be

correct saving significant computations of T1. This gain becomes significant if the

application is lookup intensive where it would be inefficient to wait till STM tryC()

to validate the STM lookup() only to know that transaction has to abort.

(a) Invalid schedule of two time validation (c) Early detection of invalid schedule(b) Valid schedule of one time validation

tryC{

lu1(ht, k1, Abort)lu1(ht, k1, v0)

C2ins2(ht, k1, v1) C2

A1
lu1(ht, k1, Abort)

T1

T2

T1

T2

A1
lu1(ht, k1, v0)

C2

C1
T1

T2
ins2(ht, k1, v1) ins2(ht, k1, v1)

Figure 3.10: Advantages of lookup validated once

STM delete(): In rv method execution phase, STM delete() (Algorithm 5) executes

as similar to rv method and in upd method execution phase executes as upd method.

In rv method execution phase, the STM delete() first checks if there is already a

previous method on same key using the local log. In case there is already a method

that executed on same key, STM delete() does not need to touch shared memory and
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sees the effect of the previous method and returns accordingly (Line 51 to Line 69).

For example if previous executed method is an STM insert() then the current STM -

delete() method will return OK (Line 54 to Line 58). If the previous executed method

is an STM delete() then the current STM delete() should returns FAIL (Line 60

to Line 63). In case previous method was STM lookup() then current STM delete()

returns the status same as that of the previous STM lookup() method also overwriting

the log for the L value and L opn. In case the current STM delete() is not the first

method on key then it touches the shared memory to identify the correct location

over the hash table from Line 71 to Line 76. list lookup() gives the correct location for

the current STM delete() to take effect over the hash table in form of preds and currs

(Line 82) along with the validation status which reveals weather the STM delete()

will succeed or abort. If the L op status is Abort, the method simply aborts the

transaction. Otherwise, STM delete() updates the local log and the timestamps of the

corresponding nodes in the lazyrb-list of the hash table from Line 86 to Line 103. From

Line 88 to Line 91, STM delete() observes that the node to be deleted is reachable

from BL i.e. it is currs[1] thus it updates its timestamp field and returns L op status

to OK with the value of currs[1] (the update corresponding to this case takes place

in STM tryC() as represented in Figure 3.9 of Section 3.4 above).

Algorithm 5 STM delete(): Actual deletion of node corresponding to the key
happens in the STM tryC() if it exist in BL.

49: procedure STM delete(L t id ↓, L obj id ↓, L key ↓, L val ↑, L op status ↑)
50: /* First identify the node corresponding to the key into local log */

51: if (L txlog.find(L t id ↓, L obj id ↓, L key ↓, L rec ↑)) then

52: L opn ← L rec.getOpn(L obj id ↓, L key ↓) ;

53: /* If previous local method is insert and current operation is delete then

overall effect should be of delete, update log accordingly */

54: if (INSERT == L opn) then

55: L val ← L rec.getV al(L obj id ↓, L key ↓) ;

56: L rec.setV al(L obj id ↓, L key ↓, NULL ↓) ;

57: L rec.setOpn(L obj id ↓, L key ↓, DELETE ↓) ;

58: L op status ← OK ;

59: /* If previous local method is delete and current operation is delete

then overall effect should be of delete, update log accordingly */

60: else if (DELETE == L opn) then

61: L rec.setV al(L obj id ↓, L key ↓, NULL ↓) ;

62: L val ← NULL ;
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63: L op status ← FAIL ;

64: else

65: /* If previous local method is lookup and current operation is delete

then overall effect should be of delete, update log accordingly */

66: L val ← L rec.getV al(L obj id ↓, L key ↓) ;

67: L rec.setV al(L obj id ↓, L key ↓, NULL ↓) ;

68: L rec.setOpn(L obj id ↓, L key ↓, DELETE ↓) ;

69: L op status ← L rec.getOpStatus(L obj id ↓, L key ↓) ;

70: end if

71: else

72: /* Common function for rv method, if node corresponding to the key is

not the part of local log then search into underlying DS */

73: commonLu&Del(L t id ↓, L obj id ↓, L key ↓, L val ↑, L op status ↑);
74: /* Update the local log */

75: L rec.setOpn(L obj id ↓, L key ↓, DELETE ↓) ;

76: L rec.setOpStatus(L obj id ↓, L key ↓, L op status ↓) ;

77: end if

78: return 〈L val, L op status〉;
79: end procedure

From Line 93 to Line 96, STM delete() observes that the node to be deleted

is reachable by RL i.e. it is currs[0] thus it updates its timestamp field and sets

L op status to FAIL (as the node is dead node or marked for deletion) and value

returned is NULL. Otherwise, in Line 97 to Line 102 the node is not at all present

in lazyrb-list. Thus first STM delete() adds a node in RL and updates its timestamp

and returns the value as NULL and sets the L op status as FAIL (Figure 3.12 and

Figure 3.13 represents the case). Line 108 and Line 109 sets the value and location

in local log respectively. At Line 105 the locks acquired (in invoked list lookup()) to

update shared memory timestamps are released in order.

Algorithm 6 commonLu&Del(): This method is called by rv methods (STM -
lookup() and STM delete()) to identify the node corresponding to the key from un-
derlying data structure.

80: procedure commonLu&Del(L t id ↓, L obj id ↓, L key ↓, L val ↑
, L op status ↑)

81: /* If node corresponding to the key is not present in local log then search into

underlying DS with the help of list lookup */
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82: list lookup(L obj id ↓, L key ↓, G pred ↑, G curr ↑) ;

83: if (L op status == ABORT) then

84: /* Release local memory in case list lookup() returns abort */

85: return ABORT ;

86: else

87: /* If node corresponding to the key is part of BL */

88: if (currs[1].key == L key) then

89: L op status ← OK ;

90: currs[1].max ts.lookup ← TS(L t id) ;

91: L val ← currs[1].val ;

92: /*If node corresponding to the key part of RL*/

93: else if (currs[0].key == L key) then

94: L op status ← FAIL ;

95: currs[0].max ts.lookup ← TS(L t id) ;

96: L val ← NULL ;

97: else

98: /* If node corresponding to the key is not part of RL as well as BL

then create the node into RL with the help of list Ins() */

99: list ins(G pred ↓, G curr ↓, G node ↑, RL ↓) ;

100: L op status ← FAIL ;

101: G node.max ts.lookup ← TS(L t id) ;

102: L val ← NULL ;

103: end if

104: /* Release all the locks */

105: releasePred&CurrLocks(G preds[] ↓, G currs[] ↓);
106: /* Create local log record and append it into increasing order of keys */

107: L rec ← create new L rec〈L obj id ↓, L key ↓〉;
108: L rec.setV al(L obj id ↓, L key ↓, NULL ↓) ;

109: L rec.setPred&Curr(L obj id ↓, L key ↓, G pred ↓, G curr ↓) ;

110: end if

111: return 〈L val, L op status〉
112: end procedure

upd method execution phase: Finally a transaction after executing the desig-

nated operations reaches the upd method execution phase executed by the STM -

tryC() method. It starts with modifying the log to L ordered list which contains the

log records in sorted order of the keys (so that locks can be acquired in an order,
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refer Line 117 of Algorithm 7) and contains only the upd method (because we do

not validate the lookup again for the reasons explained above in Figure 3.10). From

Line 119 to Line 129 (in Algorithm 7) we re-validate the modified log operation to

ensure that the location for the operations has not changed since the point they were

logged during rv method execution phase. If the location for an operation has changed

this block ensures that they are updated.

Now, STM tryC() enters the phase where it updates the shared memory using local

data stored from Line 132 to Line 167 in Algorithm 7. Figure 3.8 and Figure 3.9 of

Section 3.4 explain the execution of insert and delete in update phase of STM tryC()

using list ins() and list del() respectively. Figure 3.8(i) represents the case when k5 is

neither present in BL and nor in RL (Line 152 to Line 156 in Algorithm 7). It adds k5

to lazyrb-list at location preds〈k3, k4〉 and currs〈k8, k8〉. Figure 3.8(i)(a) is lazyrb-list

before addition of k5 and Figure 3.8(i)(b) is lazyrb-list state post addition. Similarly,

Figure 3.8(ii) represents the case when k5 is present in RL (Line 147 to Line 151

in Algorithm 7). It adds k5 to lazyrb-list at location pred〈k3, k4〉 and curr〈k5, k8〉.
Figure 3.8(i)(c) is lazyrb-list before addition of k5 into BL and Figure 3.8(i)(d) is

lazyrb-list state post addition. In case of del(k5) from lazyrb-list when k5 is present

in BL (Line 161 to Line 167 in Algorithm 7) Figure 3.9(a) represent the lazyrb-list

state before k5 is deleted at location preds〈k1, k3〉 and currs〈k5, k5〉 and Figure 3.9(b)

represents the lazyrb-list state after deletion.

(c)(a)

(b) (d)

−∞ k3 k8 +∞

−∞

−∞ k3

k4

k5 k7 k8 +∞

tryC

k4

k3

k4

k5 k8 +∞
T1

C1

s2

ins1(ht, k5, v5) ins1(ht, k7, v7)

s s1

Figure 3.11: Problem in execution without intraTransValidation() (ins1(k5) and
ins1(k7)). (i) lazyrb-list at state s. (ii) lazyrb-list at state s1. (iii) lazyrb-list at state

s2 (lost update problem).

In upd method execution phase two consecutive updates within same transaction hav-

ing overlapping preds and currs may overwrite the previous method such that only

effect of the later method is visible (lost update). This happens because the previous

method while updating, changes the lazyrb-list causing the preds and currs of the

next method working on the consecutive key to become obsolete. Figure 3.11 explains
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this lucidly. Suppose, T1 is in update phase of STM tryC() at state s where ins1(k5)

and ins1(k7) are waiting to take effect over the lazyrb-list. The lazyrb-list at s is as in

Figure 3.11(a) also ins1(k5) and ins1(k7) have preds〈k3, k4〉 and currs〈k8, k8〉 as there

location. Now, Lets say ins1(k5) adds k5 between k3 and k8 and changes lazyrb-list

(as in Figure 3.11(b)) at state s1 in Figure 3.11(d). But, at s1 BL preds and currs

of ins1(k7) are still k3 and k8 thus it wrongly adds k7 between k3 and k8 overwrit-

ing ins1(k5) as shown in Figure 3.11(c) with dotted links. We correct this through

intraTransValidation() which updates current upd method’s preds and currs with

the help of its L rec. We discuss intraTransValidation() in detail in at Algorithm 14.

Now, we illustrate the helping methods of rv method and upd method as follows:

k1 k3 k6

+∞−∞ k8k7

Figure 3.12: k10 is not present in BL as well as RL

k1 k3 k6

+∞

k10

−∞ k8k7

Figure 3.13: Adding k10 into RL

Algorithm 7 STM tryC (): Actual effect of STM delete() and STM insert() will
take place in this method after successful validation.

113: procedure STM tryC (L t id ↓, L tx status ↑)
114: /* Get the txlog of the current transaction by t id */

115: L list ← L txlog.getList(L t id ↓);
116: /* Sort the local log in increasing order of keys & copy into ordered list */

117: L ordered list ← L txlog.sort(L list ↓) ;
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118: /* Identify the new preds and currs for all update methods of a transaction

(tx) and validate it */

119: while (L reci ← next(L ordered list)) do

120: (L key, L obj id) ← L rec.getKey&Objid(L reci ↓) ;

121: /* Search correct location for the operation over list lookup() and lock

the corresponding G preds[] and G currs[] */

122: list lookup(L obj id ↓, L key ↓, G pred ↑, G curr ↑) ;

123: /* If list lookup() return op status as ABORT then method will return

ABORT */

124: if (L op status = ABORT) then

125: /* release local memory in case list lookup() returns abort */

126: return ABORT ;

127: end if

128: /* Modify log record to help upcoming update method of same tx */

129: L rec.setPred&Curr(L obj id ↓, L key ↓, G pred ↓, G curr ↓) ;

130: end while

131: /* Get each update method one by one & take effect in underlying DS */

132: while (L reci ← next(L ordered list)) do

133: (L key, L obj id) ← L rec.getKey&Objid(L reci ↓) ;

134: /* Get the operation name to local log record */

135: L opn ← L reci.L opn ;

136: /* If operation is insert then after successful completion of it node

corresponding to the key should be part of BL */

137: if (INSERT == L opn) then

138: /* If node corresponding to the key is part of BL */

139: if (currs[1].key == L key) then

140: /* Get the value from local log */

141: L val ← L rec.getV al(L obj id ↓, L key ↓) ;

142: /* update the value into underlying DS */

143: currs[1].val ← L val ;

144: /* Update the max ts of insert for node corresponding to the key

into underlying DS */

145: currs[1].max ts.insert ← TS(L t id) ;

146: /* If node corresponding to the key is part of RL */

147: else if (currs[0].key == L key) then

148: /* Connect the node corresponding to the key to BL as well */

149: list ins(G pred ↓, G curr ↓, G node ↑, RL BL ↓) ;
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150: /* Update the max ts of insert for node corresponding to the key

into underlying DS */

151: currs[0].max ts.insert ← TS(L t id) ;

152: else

153: /* If node corresponding to the key is not part of BL as well as

RL then create the node using list ins() and add it into BL */

154: list ins(G pred ↓, G curr ↓, G node ↑, BL ↓) ;

155: /* Update the max ts of insert for node corresponding to the key

into underlying DS */

156: G node.max ts.insert ← TS(L t id) ;

157: /* Need to update the node field of log so that it can be released

finally */

158: L reci.node ← preds[0].BL

159: end if

160: /* If operation is delete then after successful completion of it node

corresponding to the key should not be part of BL */

161: else if (DELETE == L opn) then

162: /* If node corresponding to the key is part of BL */

163: if (currs[1].key == L key) then

164: /* Delete the node corresponding to the key from the BL with the

help of list del() */

165: list del(preds[] ↓, currs[] ↓) ;

166: /* Update the max ts of delete for node corresponding to the key

into underlying DS */

167: currs[1].max ts.delete ← TS(L t id) ;

168: end if

169: end if

170: /* Modify the preds and currs for the consecutive update methods which

are working on overlapping zone in lazyskip-list */

171: intraTransValdation(L reci ↓, G preds[] ↑, G currs[] ↑) ;

172: end while

173: /* release all the locks */

174: releaseOrderedLocks(L list ↓) ;

175: /* set the tx status as OK */

176: L tx status ← OK ;

177: return 〈L tx status〉;
178: end procedure
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Algorithm 8 list lookup(): Identify the location of node corresponding to the key in
the underlying data structure.

179: procedure list lookup(L t id ↓, L obj id ↓, L key ↓, L val type ↓, G preds[] ↑
, G currs[] ↑, L op status ↑)

180: /* By default setting the L op status as RETRY */

181: STATUS L op status ← RETRY;

182: while (L op status == RETRY) do

183: /* Get the head of the bucket in hash table */

184: G head ← getListHead(L obj id ↓, L key ↓);
185: /* Initialize (init) preds[0] to head */

186: preds[0] ← G head ;

187: /* Init currs[1] to preds[0].BL */

188: currs[1] ← preds[0].BL;

189: /* Searching node corresponding to the key into BL */

190: while (currs[1].key < L key) do

191: preds[0] ← currs[1] ;

192: currs[1] ← currs[1].BL;

193: end while

194: /*Init preds[1] to preds[0]*/

195: preds[1] ← preds[0] ;

196: /*Init currs[0] to preds[0].RL*/

197: currs[0] ← preds[0].RL;

198: /*Searching node corresponding to the key into RL*/

199: while (currs[0].key < L key) do

200: preds[1] ← currs[0] ;

201: currs[0] ← currs[0].RL;

202: end while

203: /* Acquire the locks on increasing order of keys */

204: acquirePred&CurrLocks(G preds[] ↓, G currs[] ↓);
205: /* Validate the location recorded in G preds[] & G currs[]. Also verify if

the transaction has to be aborted. */

206: validation(L t id ↓, L key ↓, G preds[] ↓, G currs[] ↓, L val type ↓,
L op status ↑);

207: /* If validation returns op status as RETRY or ABORT then release all

the locks */

208: if ((L op status == RETRY) ∨ (L op status == ABORT)) then

209: /* Release all the locks */

210: releasePred&CurrLocks(G preds[] ↓, G currs[] ↓)
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211: end if

212: end while

213: return 〈G preds[], G currs[], L op status〉 ;

214: end procedure

Algorithm 9 list ins(): Inserts or overwrites a node in underlying hash table at
location corresponding to preds and currs.

215: procedure list ins(G preds[] ↓, G currs[] ↓, L list type ↓)
216: /* Inserting the node from red list to blue list */

217: if ((L list type) = (RL BL)) then

218: currs[0].marked ← FALSE ;

219: currs[0].BL← currs[1] ;

220: preds[0].BL← currs[0] ;

221: /* Inserting the node into red list only */

222: else if ((L list type) == RL) then

223: node = Create new node() ;

224: /* After creating the node acquiring the lock on it */

225: node.lock();

226: node.marked ← TRUE ;

227: node.RL← currs[0] ;

228: preds[1].RL← node ;

229: else

230: /* Inserting the node into red as well as blue list */

231: node = Create new node() ;

232: /* After creating the node acquiring the lock on it */

233: node.lock();

234: node.RL← currs[0] ;

235: node.BL← currs[1] ;

236: preds[1].RL← node ;

237: preds[0].BL← node ;

238: end if

239: return 〈void〉;
240: end procedure

list ins(): It adds a new node to the lazyrb-list in the hash table (Algorithm 9).

There can be following cases: If node is present in RL and has to be inserted

to BL: such a case implies that the list ins() is invoked in upd method execution
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phase for the corresponding STM insert() in local log represented by the block from

Line 217 to Line 220. Here we first reset the currs[0] mark field and update the BL to

the currs[1] and preds[0] BL to currs[0]. Thus the node is now reachable by BL also.

Figure 3.14(i) represents the case. If node is meant to be inserted only in RL:

This implies that the node is not present at all in the lazyrb-list and is to be inserted

for the first time. Such a case can be invoked from rv method of rv method execution

phase, if rv method is the first method of its transaction. Line 222 to Line 228 depict

such a case where a new node is created and its marked field is set, depicting that its

a dead node meant to be reachable only via RL. In Line 227 and Line 228 the RL field

of the node is updated to currs[0] and RL field of the preds[1] is modified to point

to the node respectively. Figure 3.14(ii) represents the case. If node is meant to

be inserted in BL: In such a case it may happen that the node is already present

in the RL (already covered by Line 217 to Line 220) or the node is not present at

all. The later case is depicted in Line 229 to Line 237 which creates a new node and

add the node in both RL and BL note that order of insertion is important as the

lazyrb-list can be concurrently accessed by other transactions since traversal is lock

free. Figure 3.14(iii) represents the case.

(i)

(ii)

(iii)

−∞ k8 +∞ −∞ k5 k8 +∞k3

k4

−∞ +∞
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k3

−∞

−∞ k3 k8 +∞
−∞ k3

k4

k5 k8 +∞

k3

k4 k5

k3

k1 +∞

k4

Figure 3.14: Execution of list ins(): (i) key k5 is present in RL and adding it into
BL, (ii) key k5 is not present in RL as well as BL and adding it into RL, (iii) key

k5 is not present in RL as well as BL and adding it into RL as well as BL

list del(): It removes a node from BL. It can be invoked from upd method execution

phase for corresponding STM delete() in txlog. It simply sets the marked field of the

node to be deleted (currs[1]) and changes the BL of preds[0] to currs[1].BL as shown

in Line 243 and Line 245 of Algorithm 10 respectively. Figure 3.9 of Section 3.4 shows

the deletion of node corresponding to k5.
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Algorithm 10 list del(): Deletes a node from blue link in underlying hash table
at location corresponding to preds & currs.

241: procedure list del(G preds[] ↓, G currs[] ↓)
242: /* Mark the node〈obj id, key〉 for deletion */

243: currs[1].marked ← TRUE ;

244: /* Update the blue link for physical deletion */

245: preds[0].BL← currs[1].BL;

246: return 〈void〉;
247: end procedure

Validation(): rv method and upd method do the validation in rv method execution

phase and upd method execution phase respectively. validation invokes toValidation()

and then does the time order validation (or toValidation()) in the mentioned order.

toValidation() is the property of the method and toValidation() is the property of

the transaction. Thus validating the method before the transaction intuitively make

sense.

Algorithm 11 validation(): First, do the method validation. If its successful then
it will do the time order validation for the transaction.

248: procedure validation(L t id ↓, L key ↓, G preds[] ↓, G currs[] ↓, L val type ↓
, L op status ↑)

249: /* Validate against concurrent updates */

250: L op status ← methodValidation(G preds[] ↓, G currs[] ↓);
251: /* After successful method validation validate the transaction to ensure

opacity */

252: if (RETRY 6= L op status) then

253: L op status ← toValidation(L key ↓, G curr ↓, L val type ↓) ;

254: end if

255: return 〈L op status〉 ;

256: end procedure

Algorithm 12 methodValidation(): Identify the conflicts among the concurrent
methods of the different transactions.

257: procedure methodValidation(G preds[] ↓, G currs[] ↓)
258: if ((preds[0].marked)||(currs[1].marked)||(preds[0].BL) 6=

currs[1]||(preds[1].RL) 6= currs[0]) then

259: return 〈RETRY 〉 ;

260: else
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261: return 〈OK〉 ;

262: end if

263: end procedure

Algorithm 13 toValidation(): Time order validation for each transaction.

264: procedure toValidation(L t id ↓, L key ↓, G currs[] ↓, L val type ↓
, L op status ↑)

265: /* Get the appropriate shared current node (sh curr) corresponding to key

from RL or BL */

266: L rec.getAptCurr(G currs[] ↓, L key ↓, sh curr ↑) ;

267: /* If sh curr is not NULL and node corresponding to the key is equal to

sh curr.key then check for TS */

268: if ((sh curr 6= NULL) ∧ ((sh curr.key) == L key)) then

269: /* If val type is RV then transaction validation for rv method */

270: if ((L val type = RV ) ∧ (TS(L t id) < sh curr.max ts.insert(k)) ||
271: (TS(L t id) < sh curr.max ts.delete(k))) then

272: L op status ← ABORT ;

273: /* Transaction validation for upd method */

274: else if ((TS(L t id) < sh curr.max ts.insert(k)) || TS(L t id) < sh curr

.max ts.delete(k)) || TS(L t id) < sh curr.max ts.lookup(k))) then

275: L op status ← ABORT ;

276: end if

277: end if

278: return 〈L op status〉 ;

279: end procedure

toValidation(): In toValidation(), rv method always conflicts with the upd method

(as established in conflict notion Section 3.2). If the node corresponding to the key

is present in the lazyrb-list (Line 268) we compare with timestamp of the transaction

that last executed the conflicting method on same key. If the current method that

invoked the toValidation() is rv method then Line 271 handles the case. Otherwise, if

the invoking method is upd method then Line 274 handles the case. Figure 3.15 and

Figure 3.16 show the execution of toValidation(). Here lu1(ht, k1) will return Abort

in Figure 3.16 because del2(ht, k1) of T2 has already updated the timestamp at the

node corresponding to k1. So, when lu1(ht, k1) does its toValidation() at Line 274,

TS(T1) < curr.max ts.delete(k) holds true (since, T1 < T2) leading to abort of T1
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at Line 275. This gives us a equivalent sequential schedule which can be shown co-

opaque. Figure 3.15 shows the schedule where no sequential schedule is possible if

toValidation() is not applied as there is no way to recognize the time-order violation.

lu1(ht, k2, v0)

ins2(ht, k2, v1)

T1

T2
C2del2(ht, k1, v0)

lu1(ht, k1, null) A1

Figure 3.15: Non opaque history. Without timestamp validation

lu1(ht, k2, v0)

ins2(ht, k2, v1)

T1

T2
C2

lu1(ht, k1, Abort) A1

del2(ht, k1, v0)

Figure 3.16: Opaque history H1. With timestamp validation

intraTransValidation(): It handles the case where two consecutive updates within

same transaction having overlapping preds and currs may overwrite the previous

method such that only effect of the later method is visible. This happens because

the previous method while updating, changes the lazyrb-list causing the preds and

currs of the next method working on the consecutive key to become obsolete. Thus,

intraTransValidation() corrects this by finding the new preds and currs of the current

method on the consecutive key. There might be two cases (i) if previous method is

STM insert() or (ii) previous method is STM delete(). For case(i) we find the preds[0]

(at Line 285 to Line 287 using previous log record) and for case(ii) we find preds[0]

using previous log record’s preds[0] (Line 292) and finally find the new preds[1] and

currs[0] between the new found preds[0] and currs[1] at Line 297 to Line 299.
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del1(ht, k5, v0)
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Figure 3.17: intraTransValidation for conflicting concurrent methods on key k5
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Algorithm 14 intraTransValidation(): Identify the consecutive upd methods
working on same location of the same transaction and update the preds and currs of
second upd method based on previous upd method.

280: procedure intraTransValidation(L rec ↓, G preds[] ↑, G currs[] ↑)
281: L rec.getAllPreds&Currs(L rec ↓, G preds[] ↑, G currs[] ↑) ;

282: /* If preds[0] is marked or currs[1] is not reachable from preds[0].BL then

modify the next consecutive upd method preds[0] based on previous upd-

method */

283: if ((preds[0].marked)|| (preds[0].BL) != currs[1]) then

284: /* Find k < i; such that L reck contains previous update method on

same bucket */

285: if ((L reck.L opn) == INSERT) then

286: L reci.preds[0].unlock() ;

287: preds[0] ← (L reck.preds[0].BL) ;

288: L reci.preds[0].lock() ;

289: else

290: /* upd method preds[0] will be previous method preds[0] */

291: L reci.preds[0].unlock() ;

292: preds[0] ← (L reck.preds[0]) ;

293: L reci.preds[0].lock() ;

294: end if

295: end if

296: /* If currs[0] & preds[1] is modified by previous operation then update them

also */

297: if (preds[1].RL != currs[0]) then

298: L reci.preds[1].unlock()

299: preds[1] ← (L reck.preds[1].RL) ;

300: L reci.preds[1].lock()

301: end if

302: return 〈G preds[], G currs[]〉;
303: end procedure

This can be illustrated with Figure 3.17. Consider the history in Figure 3.17(iii)

where two conflicting transactions T1 and T2 are trying to access key k5, here s1,

s2 and s3 represent the state of the lazyrb-list at that instant. Let at s1 both the

methods record the same preds〈k1, k3〉 and currs〈k5, k5〉 with the help of list lookup()

for key k5 (refer Figure 3.17(i)). Now, let del1(k5) acquire the lock on the preds and

currs before the lu2(k5) and delete the node corresponding to the key k5 from BL
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leading to state s2 (in Figure 3.17(iii)) and commit. Figure 3.17(ii) shows the state s2

where key k5 is the part of RL. Now, intraTransValidation() (in Algorithm 14) will

identify that location of lu2(k5) is no more valid due to (preds[0].BL 6= currs[1]) at

Line 283 of Algorithm 14. Thus, list lookup() will retry to find the updated location

for lu2(k5) at state s3 (in Figure 3.17(iii)) and eventually T2 will commit.

find(): It is an utility method that returns true to the method that has invoked it,

if the calling method is not the first method of the transaction on the key. This is

done by linearly traversing the log and finding an entry corresponding to the key. If

the calling method is the first method of the transaction for the key then find return

false as it would not find any entry in the log of the transaction corresponding to the

key. Since we consider that there can be multiple objects (hash table) so we need to

find unique 〈obj id, key〉 pair (refer Line 308).

Algorithm 15 find(): Checks whether any operation corresponding to 〈obj id, key〉
is present in L list.

304: procedure find(L t id ↓, L obj id ↓, L key ↓, L rec ↑)
305: L list ← L txlog.getList(L t id ↓) ;

306: /* Every method first identify the node corresponding to key in local log */

307: while (L reci ← next(L list)) do

308: if ((L reci.f irst == L obj id)&&(L reci.f irst == L key)) then

309: return 〈TRUE,L rec〉 ;

310: end if

311: end while

312: return 〈FALSE,L rec = NULL〉 ;

313: end procedure

get aptcurr(): While executing the toValidation() the timestamp field of the cor-

responding node has to be updated. Such a node can be either the marked (dead

currs[0]) or the unmarked (live currs[1]). get aptcurr is the utility method which

returns the appropriate node corresponding to the key.

Algorithm 16 get aptcurr(): Returns a curr node from underlying DS which
corresponds to the key of L reci.

314: procedure get aptcurr(G currs[] ↓, L key ↓, sh curr ↑)
315: /* By default set curr to NULL */

316: sh curr ← NULL;
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317: /* If node corresponding to the key is part of BL then curr is currs[1] */

318: if (currs[1].key == L key) then

319: sh curr ← currs[1] ;

320: /* If node corresponding to key is part of RL then curr is currs[0] */

321: else if (currs[0].key == L key) then

322: sh curr ← currs[0] ;

323: end if

324: return 〈sh curr〉 ;

325: end procedure

release ordered locks(): It is an utility method to release the locks in order.

Algorithm 17 release ordered locks(): Release all locks taken during list lookup().

326: procedure release ordered locks(L ordered list ↓)
327: /* Releasing all the locks on preds, currs and node */

328: while (L reci ← next(L ordered list)) do

329: L reci.preds[0].unlock() ;//Φlp

330: L reci.preds[1].unlock() ;

331: if (L reci.node) then

332: L reci.node.unlock()

333: end if

334: L reci.currs[0].unlock() ;

335: L reci.currs[1].unlock() ;

336: end while

337: return 〈void〉;
338: end procedure

Algorithm 18 acquirePred&CurrLocks(): Acquire all locks taken during list -
lookup().

339: procedure acquirePred&CurrLocks(G preds[] ↓, G currs[] ↓)
340: preds[0].lock();

341: preds[1].lock();

342: currs[0].lock();

343: currs[1].lock();

344: return 〈void〉;
345: end procedure
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Algorithm 19 releasePred&CurrLocks(): Release all locks taken during list -
lookup().

346: procedure releasePred&CurrLocks(G preds[] ↓, G currs[] ↓)
347: preds[0].unlock();//Φlp

348: preds[1].unlock();

349: currs[0].unlock();

350: currs[1].unlock();

351: return 〈void〉;
352: end procedure

Optimization: If STM delete() returns FAIL in rv method execution phase then

no need to validate it in STM tryC() (upd method execution phase). This is similar

to the case of STM lookup() is being validated once. Since a failed STM delete()

method implies that it would not change the underlying hash table and in behaviour

it is similar to a lookup as discussed in Figure 3.18.

(a) Invalid schedule of two time validation (b) Valid schedule of one time validation

tryC{

C2ins2(ht, k1, v1)

T1

T2

A1
del1(ht, k1, fail)

C2ins2(ht, k1, v1)

C1
T1

T2

del1(ht, k1, fail)del1(ht, k1, Abort)

Figure 3.18: Advantage of validating STM delete() once, if its returning FAIL in
rv method execution phase

3.6 Correctness of OSTMs

In this section we rigorously prove the correctness of proposed HT-OSTM at opera-

tional level and transactional level. We prove that all the methods are linearizable

at operational level while the transactions are co-opaque by showing that the corre-

sponding conflict graph is acyclic at transactional level.

3.6.1 Operational Level

For a global state, S, we denote evts(S) as all the events that has lead the system to

global state S. We denote a state S ′ to be in future of S if evts(S) ⊂ evts(S ′). In

this case, we denote S @ S ′. We have the following definitions and lemmas:

Definition 1 PublicNodes: Which is having a incoming RL, except head node.
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Definition 2 Abstract List (Abs): At any global abstract state S, S.Abs can be de-

fined as set of all public nodes that are accessible from head via red links union of set

of all unmarked public nodes that are accessible from head via blue links. Formally,

〈S.Abs = S.Abs.RL
⋃
S.Abs.BL〉, where,

S.Abs.RL := {∀n|(n ∈ S.PublicNodes) ∧ (S.Head→∗RL S.n)}.
S.Abs.BL = {∀n|(n ∈ S.PublicNodes) ∧ (¬S.n.marked) ∧ (S.Head→∗BL S.n)}

Observation 1 Consider a global state S which has a node n. Then in any future

state S ′ of S, n is a node in S ′ as well. Formally, 〈∀S, S ′ : (n ∈ S.nodes) ∧ (S @

S ′)⇒ (n ∈ S ′.nodes)〉.

With Observation 1 , we assume that nodes once created do not get deleted (ignoring

garbage collection for now).

Observation 2 Consider a global state S which has a node n, initialized with key k.

Then in any future state S ′ the key of n does not change. Formally, 〈∀S, S ′ : (n ∈
S.nodes) ∧ (S @ S ′)⇒ (n ∈ S ′.nodes) ∧ (S.n.key = S ′.n.key)〉.

Observation 3 Consider a global state S which is the post-state of return event of the

function list lookup() invoked in the STM delete() or STM tryC() or STM lookup()

methods. Suppose the list lookup() method returns (preds[0], preds[1], currs[0],

currs[1]). Then in the state S, we have,

3.1 (preds[0] ∧ preds[1] ∧ currs[0] ∧ currs[1]) ∈ S.PublicNodes

3.2 (S.preds[0].locked) ∧ (S.preds[1].locked) ∧ (S.currs[0].locked) ∧ (S.currs[1].locked)

3.3 (¬S.preds[0].marked)∧(¬S.currs[1].marked) ∧ (S.preds[0].BL= S.currs[1]) ∧
(S.preds[1].RL= S.currs[0])

In Observation 3, list lookup() method returns only if validation succeed at Line 206.

Lemma 4 Consider a global state S which is the post-state of return event of the

function list lookup() invoked in the STM delete() or STM tryC() or STM lookup()

methods. Suppose the list lookup() method returns (preds[0], preds[1], currs[0],

currs[1]). Then in the state S, we have,

4.1 ((S.preds[0].key) < key ≤ (S.currs[1].key)).

4.2 ((S.preds[1].key) < key ≤ (S.currs[0].key)).
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Proof:

4.1 (S.preds[0].key < key ≤ S.currs[1].key) :

Line 186 of list lookup() method of Algorithm 8 initializes S.preds[0] to point

head node. Also, (S.currs[1] = S.preds[0].BL) by line 188. As in penultimate

execution of line 190 (S.currs[1].key < key) and at line 191 (S.preds[0] =

S.currs[1]) this implies,

(S.preds[0].key < key) (3.1)

The node key doesn’t change as known by Observation 2. So, before executing

of line 195, we know that,

(key ≤ S.currs[1].key) (3.2)

From eq(3.1) and eq(3.2), we get,

(S.preds[0].key < key ≤ S.currs[1].key) (3.3)

From Observation 3.2 and Observation 3.3 we know that these nodes are locked

and from Observation 2, we have that key is not changed for a node, so the

lemma holds even when list lookup() method of Algorithm 8 returns.

4.2 (S.preds[1].key < key ≤ S.currs[0].key) :

Line 195 of list lookup() method of Algorithm 8 initializes S.preds[1] to point

S.preds[0]. Also, (S.currs[0] = S.preds[0].RL) by line 197. As in penultimate

execution of line 199 (S.currs[0].key < key) and at line 200 (S.preds[1] =

S.currs[0]) this implies,

(S.preds[1].key < key) (3.4)

The node key doesn’t change as known by Observation 2. So, before executing

of line 204, we know that

(key ≤ S.currs[0].key) (3.5)

From eq(3.4) and eq(3.5), we get,

(S.preds[1].key < key ≤ S.currs[0].key) (3.6)
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From Observation 3.2 and Observation 3.3 we know that these nodes are locked

and from Observation 2, we have that key is not changed for a node, so the

lemma holds even when list lookup() method of Algorithm 8 returns.

Lemma 5 For a node n in any global state S, we have that,〈∀n ∈ S.nodes : (S.n.key <

S.n.RL.key)〉.

Proof: We prove by Induction on events that change the RL field of the node (as

these affect reachability), which are Lines 227, 228, 234 & 236 of list ins() method

of Algorithm 9. It can be seen by observing the code that list del() method of Algo-

rithm 10 do not have any update events of RL.

Base condition: Initially, before the first event that changes the RL field, we know

the underlying lazyrb-list has immutable S.head and S.tail nodes with (S.head.BL =

S.tail) and (S.head.RL = S.tail). The relation between there keys is (S.head.key <

S.tail.key) ∧ (head, tail) ∈ S.nodes.
Induction Hypothesis: Say, upto k events that change the RL field of any node,

(∀n ∈ S.nodes : S.n.key < S.n.RL.key).

Induction Step: So, as seen from the code, the (k + 1)th event which can change

the RL field be only one of the following:

1. Line 227 of list ins() method: By observing the code, we notice that

Line 227 (RL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. Line 223 of the list ins() method creates a new

node, node with key and at line 226 set the (S.node.marked = true) (because

inserting the node only into the red link). Line 227 then sets (S.node.RL =

S.currs[0]). Since this event doest not change the RL field of any node reach-

able from the head of the list (because node /∈ S.PublicNodes), the lemma is

not violated.

2. Line 228 of list ins() method: By observing the code, we notice that

Line 228 (RL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. From Lemma 4.2, we know that when list -

lookup() method of Algorithm 8 returns then,

(S.preds[1].key) < key ≤ (S.currs[0].key) (3.7)

To reach line 228 of list ins() method, line 97 of commonLu&Del() method of

Algorithm 6 should ensure that,

(S.currs[0].key 6= key)
eq(3.7)
===⇒ (S.preds[1].key) < key < (S.currs[0].key) (3.8)
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From Observation 3.3, we know that,

(S.preds[1].RL = S.currs[0]) (3.9)

Also, the atomic event at line 228 of list ins() sets,

(S.preds[1].RL = node)
eq(3.8)
===⇒ (S.preds[1].key < node.key)

=⇒ (S.preds[1].key < S.preds[1].RL.key)
(3.10)

Where (S.node.key = key). Since (preds[1], node) ∈ S.nodes and hence,

(S.preds[1].key < S.preds[1].RL.key).

3. Line 234 of list ins() method: By observing the code, we notice that

Line 234 (RL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. Line 231 of the list ins() method creates a new

node, node with key. Line 234 then sets (S.node.RL = S.currs[0]). Since this

event doest not change the RL field of any node reachable from the head of the

list (because node /∈ S.PublicNodes), the lemma is not violated.

4. Line 236 of list ins() method: By observing the code, we notice that Line

236 (RL field changing event) can be executed only after the list lookup() Al-

gorithm 8 method returns. From Lemma 4.2, we know that when list lookup()

method of Algorithm 8 returns then,

(S.preds[1].key) < key ≤ (S.currs[0].key) (3.11)

To reach line 236 of list ins() method, line 152 of STM tryC() method of Algo-

rithm 7 should ensure that,

(S.currs[0].key 6= key)
eq(3.11)
====⇒ (S.preds[1].key) < key < (S.currs[0].key)

(3.12)

From Observation 3.3, we know that,

(S.preds[1].RL = S.currs[0]) (3.13)

Also, the atomic event at line 236 of list ins() sets,

(S.preds[1].RL = node)
eq(3.12)
====⇒ (S.preds[1].key < node.key)

=⇒ (S.preds[1].key < S.preds[1].RL.key)
(3.14)
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where (S.node.key = key). Since (preds[1], node) ∈ S.nodes and hence,

(S.preds[1].key < S.preds[1].RL.key).

Lemma 6 In a global state S, any public node n is reachable from Head via red

links. Formally, 〈∀S, n : n ∈ S.PublicNodes =⇒ S.Head→∗RL S.n〉.

Proof: We prove by Induction on events that change the RL field of the node (as

these affect reachability), which are Lines 227, 228, 234 & 236 of list ins() method

of Algorithm 9. It can be seen by observing the code that list del() method of Algo-

rithm 10 do not have any update events of RL.

Base condition: Initially, before the first event that changes the RL field of any

node, we know that (head, tail) ∈ S.PublicNodes ∧ ¬(S.head.marked) ∧ ¬(S.tail.

marked) ∧ (S.head →∗RL S.tail).
Induction Hypothesis: Say, upto k events that change the next field of any node,

(∀n ∈ S.PublicNodes, (S.head →∗RL S.n)).

Induction Step: So, as seen from the code, the (k + 1)th event which can change

the RL field be only one of the following:

1. Line 227 of list ins() method: Line 223 of the list ins() method creates

a new node, node with key and at line 226 set the (S.node.marked = true) (be-

cause inserting the node only into the red link). Line 227 then sets (S.node.RL

= S.currs[0]). Since this event doest not change the RL field of any node reach-

able from the head of the list (because node /∈ S.PublicNodes), the lemma is

not violated.

2. Line 228 of list ins() method: By observing the code, we notice that

Line 228 (RL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. From line 227 & 228 of list ins() method,

(S.node.RL = S.currs[0])∧(S.preds[1].RL = S.node)∧(node ∈ S.PublicNodes)
∧(S.node.marked = true) (because inserting the node only into the red link). It

is to be noted that (from Observation 3.2), (preds[0], preds[1], currs[0], currs[1])

are locked, hence no other thread can change marked field of S.preds[1] and

S.currs[0] simultaneously. Also, from Observation 2, a node’s key field does

not change after initialization. Before executing line 228, preds[1] is reachable

from head by RL (from induction hypothesis). After line 228, we know that

from preds[1], public marked node, node is also reachable. Thus, we know

that node is also reachable from head. Formally, (S.Head →∗RL S.preds[1]) ∧
(S.preds[1]→∗RL S.node)⇒ (S.Head→∗RL S.node).

65



3. Line 234 of list ins() method: Line 231 of the list ins() method creates

a new node, node with key. Line 234 then sets (S.node.RL = S.currs[0]). Since

this event doest not change the RL field of any node reachable from the head

of the list (because node /∈ S.PublicNodes), the lemma is not violated.

4. Line 236 of list ins() method: By observing the code, we notice that

Line 236 (RL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. From line 234 & 236 of list ins() method,

(S.node.RL = S.currs[0])∧(S.preds[1].RL = S.node)∧(node ∈ S.PublicNodes)
∧ (node.marked = false) (because new node is created by default with un-

marked field). It is to be noted that (from Observation 3.2), (preds[0], preds[1],

currs[0], currs[1]) are locked, hence no other thread can change marked field of

S.preds[1] and S.currs[0] simultaneously. Also, from Observation 2, a node’s

key field does not change after initialization. Before executing line 236, preds[1]

is reachable from head by RL (from induction hypothesis). After line 236,

we know that from preds[1], public unmarked node, node is also reachable.

Thus, we know that node is also reachable from head. Formally, (S.Head→∗RL
S.preds[1]) ∧ (S.preds[1]→∗RL S.node)⇒ (S.Head→∗RL S.node).

Corollary 7 Each node is associated with an unique key, i.e. at any given state S,

there cannot be two nodes with same key.

As every node is reachable by red links and has a strict ordering and from Observa-

tion 1 and Observation 2 we get this.

Corollary 8 Consider the global state S such that for any public node n, if there

exists a key strictly greater than n.key and strictly smaller than n.RL.key, then

the node corresponding to the key does not belong to S.Abs. Formally, 〈∀S, n, key
: S.PublicNodes ∧ (S.n.key < key < S.n.RL.key) =⇒ node(key) /∈ S.Abs〉.

Observation 9 Consider a global state S which has a node n is reachable from head

via RL. Then in any future state S ′ of S, node n is also reachable from head via RL

in S ′ as well. Formally, 〈∀S, S ′ : (n ∈ S.nodes) ∧ (S @ S ′) ∧ (S.head →∗RL S.n) ⇒
(n ∈ S ′.nodes) ∧ (S ′.head→∗RL S ′.n)〉.

Proof: From Observation 1, we have that for any node n, n ∈ S.nodes ⇒ n ∈
S ′.nodes. Also, we have that in absence of garbage collection no node is deleted from

memory and the red links are preserved during delete update events (refer list del()

method of Algorithm 10).
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Lemma 10 For a node n in any global state S, we have that,〈∀n ∈ S.nodes :

(S.n.key < S.n.BL.key)〉.

Proof: We prove by Induction on events that change the BL field of the node (as

these affect reachability), which are Line 219, 220, 235 & 237 of list ins() method of

Algorithm 9 and Line 245 of list del() method of Algorithm 10 .

Base condition: Initially, before the first event that changes the BL field, we know

the underlying lazyrb-list has immutable S.head and S.tail nodes with (S.head.BL =

S.tail) and (S.head.RL = S.tail). The relation between there keys is (S.head.key <

S.tail.key) ∧ (head, tail) ∈ S.nodes.
Induction Hypothesis: Say, upto k events that change the BL field of any node,

(∀n ∈ S.nodes : (S.n.key < S.n.BL.key)).

Induction Step: So, as seen from the code, the (k + 1)th event which can change

the BL field be only one of the following:

1. Line 219 & 220 of list ins() method: By observing the code, we notice

that Line 219 & 220 (BL field changing event) can be executed only after the

list lookup() method of Algorithm 8 returns. From Lemma 4.1 and Lemma 4.2,

we know that when list lookup() method of Algorithm 8 returns then,

((S.preds[0].key) < key ≤ (S.currs[1].key)) ∧ ((S.preds[1].key) < key

≤ (S.currs[0].key))
(3.15)

To reach line 219 of list ins() method, line 147 of STM tryC() method of Algo-

rithm 7 should ensure that,

(S.currs[1].key 6= key) ∧ (S.currs[0].key = key)
eq(3.15)
====⇒

((S.preds[0].key) < key < (S.currs[1].key))

∧((S.preds[1].key) < (key = S.currs[0].key))

(3.16)

From Observation 3.3, we know that,

(S.preds[0].BL = S.currs[1]) ∧ (S.preds[1].RL = S.currs[0]) (3.17)

The atomic event at line 219 of list ins() sets,

(S.currs[0].BL = S.currs[1])
eq(3.16),Lemma 6
==========⇒

Lemma 5
(S.currs[0].key)

< (S.currs[1].key) =⇒ (S.currs[0].key) < (S.currs[0].BL.key)
(3.18)
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Also, the atomic event at line 220 of list ins() sets,

(S.preds[0].BL = S.currs[0])
eq(3.16)
====⇒ (S.preds[0].key)

< (S.currs[0].key) =⇒ (S.preds[0].key) < (S.preds[0].BL.key).
(3.19)

Where (S.currs[0].key = key). Since (preds[0], currs[0]) ∈ S.nodes and hence,

(S.preds[0].key < S.preds[0].BL.key).

2. Line 235 of list ins() method: By observing the code, we notice that

Line 235 (BL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. Line 231 of the list ins() method creates a new

node, node with key. Line 235 then sets (S.node.BL = S.currs[1]). Since this

event doest not change the BL field of any node reachable from the head of the

list (because node /∈ S.PublicNodes), the lemma is not violated.

3. Line 237 of list ins() method: By observing the code, we notice that

Line 237 (BL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. From Lemma 4.1 and Lemma 4.2, we know

that when list lookup() method of Algorithm 8 returns then,

(S.preds[0].key) < key ≤ (S.currs[1].key) ∧ (S.preds[1].key) < key

≤ (S.currs[0].key)
(3.20)

To reach line 237 of list ins() method, line 152 of STM tryC() method of Algo-

rithm 7 should ensure that,

(S.currs[0].key 6= key) ∧ (S.currs[1].key 6= key)
eq(3.20)
====⇒

(S.preds[0].key) < key < (S.currs[1].key)

∧(S.preds[1].key) < key < (S.currs[0].key)

(3.21)

From Observation 3.3, we know that,

(S.preds[0].BL = S.currs[1]) (3.22)

Also, the atomic event at line 237 of list ins() sets,

(S.preds[0].BL = S.node)
eq(3.21)
====⇒ (S.preds[0].key < S.node.key)

=⇒ (S.preds[0].key < S.preds[0].BL.key)
(3.23)
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Where (S.node.key = key). Since (preds[0], node) ∈ S.nodes and hence,

(S.preds[0].key < S.preds[0].BL.key).

4. Line 245 of list del() method: By observing the code, we notice that

Line 245 (BL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. From Lemma 4.1, we know that when list -

lookup() method of Algorithm 8 returns then,

(S.preds[0].key) < key ≤ (S.currs[1].key) (3.24)

To reach line 245 of list del() method, line 163 of STM tryC() method of Algo-

rithm 7 should ensure that,

(S.currs[1].key = key)
eq(3.24)
====⇒ (S.preds[0].key) < (key = S.currs[1].key)

(3.25)

From Observation 3.3, we know that,

(S.preds[0].BL = S.currs[1]) (3.26)

We know from Induction hypothesis,

(currs[1].key < currs[1].BL.key) (3.27)

Also, the atomic event at line 245 of list del() sets,

(S.preds[0].BL = S.currs[1].BL)
eq(3.25),eq(3.27)
=========⇒ (S.preds[0].key

< S.currs[1].BL.key) =⇒ (S.preds[0].key < S.preds[0].BL.key)
(3.28)

Where (S.currs[1].key = key). Since (preds[0], currs[1]) ∈ S.nodes and hence,

(S.preds[0].key < S.preds[0].BL.key)

Lemma 11 In a global state S, any unmarked public node n is reachable from Head

via blue links. Formally, 〈∀S, n : (S.PublicNodes)∧(¬S.n.marked) =⇒ (S.Head→∗BL
S.n)〉.

Proof: We prove by Induction on events that change the BL field of the node (as

these affect reachability), which are Line 219, 220, 235 & 237 of list ins() method of

Algorithm 9 and line 245 of list del() method of Algorithm 10.

Base condition: Initially, before the first event that changes the BL field of any
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node, we know that (head, tail) ∈ S.PublicNodes ∧ ¬(S.head.marked) ∧ ¬(S.tail.

marked) ∧ (S.head →∗BL S.tail).
Induction Hypothesis: Say, upto k events that change the next field of any node,

∀n ∈ S.PublicNodes, (¬S.n.marked) ∧ (S.head →∗BL S.n).

Induction Step: So, as seen from the code, the (k + 1)th event which can change

the BL field be only one of the following:

1. Line 219 & 220 of list ins() method: By observing the code, we notice

that Line 219 & 220 (BL field changing event) can be executed only after the

list lookup() method of Algorithm 8 returns. It is to be noted that (from Ob-

servation 3.2), (preds[0], preds[1], currs[0], currs[1]) are locked, hence no other

thread can change S.preds[0].marked and S.currs[1].marked simultaneously.

Also, from Observation 2, a node’s key field does not change after initialization.

Before executing line 219, from Observation 3.3 ,

(S.preds[0].marked = false) ∧ (S.currs[1].marked = false) (3.29)

And from Lemma 6 and induction hypothesis,

(S.Head→∗RL S.currs[0]) ∧ (S.Head→∗BL S.currs[1]) (3.30)

After line 219, we know that from currs[0], public unmarked node, currs[1] is

also reachable, implies that,

(S.currs[0]→∗BL S.currs[1]) (3.31)

Also, before executing line 220, from induction hypothesis and Lemma 6 ,

(S.Head→∗BL S.preds[0]) ∧ (S.Head→∗RL S.currs[0]) (3.32)

After line 220, we know that from preds[0], public unmarked node (from line

218 of list ins() method), currs[0] is also reachable via BL, implies that,

(S.preds[0]→∗BL S.currs[0]) ∧ (S.currs[0].marked = false) (3.33)

From eq(3.31) and eq(3.33),

(S.preds[0]→∗BL S.currs[0]) ∧ (S.currs[0]→∗BL S.currs[1])∧
(S.currs[0].marked = false)

(3.34)
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Since (preds[0], currs[0]) ∈ S.PublicNode and hence, (S.Head→∗BL S.preds[0])

∧ (S.preds[0]→∗BL S.currs[0])∧ (S.currs[0].marked = false)⇒ (S.Head→∗BL
S.currs[0]).

2. Line 235 of list ins() method: Line 231 of the list ins() method creates a

new node, node with key. Line 235 then sets (S.node.BL = S.currs[1]). Since

this event doest not change the BL field of any node reachable from the head

of the list (because node /∈ S.PublicNodes), the lemma is not violated.

3. Line 237 of list ins() method: By observing the code, we notice that

Line 237 (BL field changing event) can be executed only after the list lookup()

method of Algorithm 8 returns. It is to be noted that (from Observation 3.2),

(preds[0], preds[1], currs[0], currs[1]) are locked, hence no other thread can change

S.preds[0].marked and S.currs[1].marked simultaneously. Also, from Observa-

tion 2, a node’s key field does not change after initialization. Before executing

line 235, from Observation 3.3,

(S.preds[0].marked = false) ∧ (S.currs[1].marked = false) (3.35)

And from induction hypothesis,

(S.Head→∗BL S.currs[1]) (3.36)

After line 235, we know that from node, public unmarked node, currs[1] is also

reachable via BL, implies that,

(S.node→∗BL S.currs[1]) (3.37)

Also, before executing line 237, from induction hypothesis,

(S.Head→∗BL S.preds[0]) (3.38)

After line 237, we know that from preds[0], public unmarked node (because new

node is created by default with unmarked field), node is also reachable via BL,

implies that,

(S.preds[0]→∗BL S.node) ∧ (S.node.marked = false) (3.39)
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From eq(3.37) and eq(3.39),

(S.preds[0]→∗BL S.node) ∧ (S.node→∗BL S.currs[1]) ∧ (S.node.marked = false)

(3.40)

Since (preds[0], node) ∈ S.PublicNode and hence, (S.Head →∗BL S.preds[0]) ∧
(S.preds[0]→∗BL S.node)∧(S.node.marked = false)⇒ (S.Head→∗BL S.node).

Corollary 12 All public node n, is reachable from head via blue list is subset of all

public node n, is reachable from head via red list. Formally, 〈∀S, n : (n ∈ S.nodes) ∧
(S.head→∗BL S.n) ⊆ (S.head→∗RL S.n)〉.

Proof: From Lemma 6 , we know that all public nodes either marked or unmarked

are reachable from head by RL, also from Lemma 11 we have that all unmarked

public nodes are reachable by BL. Unmarked public nodes are subset of all public

nodes thus the corollary.

Definition 3 First unlocking point of each successful method is the Linearization

Point, LP .

Linearization Points: Here, we list the linearization points (LPs) of each method.

Note that each method of the list can return either OK, FAIL or ABORT . So, we

define the LP for all the methods:

1. STM begin(): (G cnt++) at Line 8 of STM begin().

2. STM insert(ht, k, OK/FAIL/ABORT): Linearization point for the STM in-

sert() follows the LPs of the STM tryC().

3. STM delete(ht, k, OK/FAIL/ABORT): preds[0].unlock() at Line 105 of STM -

delete().

4. STM tryC(ht, k, OK/FAIL/ABORT): L reci.preds[0].unlock() at Line 329 of

releaseOrderedLocks(). Which is called at Line 174 of STM tryC().

Lemma 13 Consider a concurrent history, EH , for any successful method which is

call by transaction Ti, after the post-state of LP event of the method, node correspond-

ing to the key should be part of RL and max ts of that node should be equal to method

transaction timestamp. Formally, 〈(node(key) ∈ ([EH .Post(mi.LP )].Abs.RL)) ∧
(node.max ts = TS(Ti))〉.

Proof:

72



1. For rv method: By observing the code, each rv method first invokes list -

lookup() method of Algorithm 8 (line 82 of commonLu&Del() method of Algo-

rithm 6). From Lemma 5 & Lemma 10 we have that the nodes in the underlying

data structure are in increasing order of there keys, thus the key on which the

method is working has a unique location in underlying data structure from

Corollary 7. So, when the list lookup() is invoked from a method, it returns

correct location (preds[0], preds[1], currs[0], currs[1]) of corresponding key as

observed from Observation 3 & Lemma 4 and all are locked, hence no other

thread can change simultaneously (from Observation 3.2).

In the pre-state of LP event of rv method, if (node.key ∈ S.Abs.RL), means key

is already there in RL and timestamp of that node is less then the rv method

transactions timestamp, from toValidation() method of Algorithm 13 , then in

the post-state of LP event of rv method, node.key should be the part of RL

from Observation 9 and key can’t be changed from Observation 2 and it just

updates the max ts field for corresponding node key by method transaction

timestamp else abort.

In the pre-state of LP event of rv method, if (node.key /∈ S.Abs.RL), means key

is not there in RL then, in the post-state of LP event of rv method, insert the

node corresponding to the key into RL by using list ins() method of Algorithm 9

and update the max ts field for corresponding node key by method transaction

timestamp. Since, node.key should be the part of RL from Observation 9 and

key can’t be change from Observation 2 , in post-state of LP event of rv method.

2. For upd method: By observing the code, each upd method also first invokes

list lookup() method of Algorithm 8 (line 122 of STM tryC() method of Al-

gorithm 7). From Lemma 5 and Lemma 10 we have that the nodes in the

underlying data structure are in increasing order of there keys, thus the key on

which the method is working has a unique location in underlying data struc-

ture from Corollary 7. So, when the list lookup() is invoked from a method, it

returns correct location (preds[0], preds[1], currs[0], currs[1]) of corresponding

key as observed from Observation 3 & Lemma 4 and all are locked, hence no

other thread can change simultaneously (from Observation 3.2).

(a) If upd method is insert: In the pre-state of LP event of upd method,

if (node.key ∈ S.Abs.RL), means key is already there inRL and timestamp

of that node is less then the upd method transactions timestamp, from

toValidation() method of Algorithm 13, then in the post-state of LP event

of upd method, node.key should be the part of BL and it just update the
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max ts field for corresponding node key by method transaction timestamp

else abort.

In the pre-state of LP event of upd method, if (node.key /∈ S.Abs.RL),

means key is not there in RL then in the post-state of LP event of

upd method, it will insert the node corresponding to the key into the

RL as well as BL, from list ins() method of Algorithm 9 at line 149 of

STM tryC() method of Algorithm 7 and update the max ts field for cor-

responding node key by method transaction timestamp. Once a node is

created it will never get deleted from Observation 9 and node correspond-

ing to a key can’t be modified from Observation 2.

(b) If upd method is delete: In the pre-state of LP event of upd method,

if (node.key ∈ S.Abs.RL), means key is already there inRL and timestamp

of that node is less then the upd method transactions timestamp, from

toValidation() method of Algorithm 13 , then in the post-state of LP

event of upd method, node.key should be the part of RL, from list del()

method of Algorithm 10 at line 165 of STM tryC() method of Algorithm 7

and it just update the max ts field for corresponding node key by method

transaction timestamp else abort.

In the pre-state of LP event of upd method, (node.key /∈ S.Abs.RL) this

should not be happen because execution of STM delete() method of Algo-

rithm 5 must have already inserted a node in the underlying data struc-

ture prior to STM tryC() method of Algorithm 7 . Thus, (node.key ∈
S.Abs.RL) and update the max ts field for corresponding node key by

method transaction timestamp else abort.

In HT-OSTM we have a upd method execution phase where all buffered upd method

take effect together after successful validation of each of them. Following problem

may arise if two upd method within same transaction have at least one shared node

amongst its recorded (preds[0], preds[1], currs[0], currs[1]), in this case the previous

upd method effect might be overwritten if the next upd method preds and currs are

not updated according to the updates done by the previous upd method. Thus pro-

gram order might get violated. Thus to solve this we have intra trans validation after

each upd method in STM tryC(), during upd method execution phase.

Lemma 14 intraTransValidation() preserve the program order within a transaction.

Proof: We are taking contradiction that intraTransValidation() is not preserving pro-

gram order means two consecutive upd method of same transaction which are having
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at least one shared node amongst its recorded (preds[0], preds[1], currs[0], currs[1])

then effect of first upd method will be overwritten by the next upd method.

By observing the code at line 171 of STM tryC() method of Algorithm 7, current

upd method will go for intraTransValidation() and at line 283 of intraTransValidation()

method of Algorithm 14, current upd method will validate its (preds[0].marked) and

(preds[0].BL! = currs[1]). If any condition is true then, at line 285 of intraTransVali-

dation() method of Algorithm 14, will check for previous upd method. If the previous

upd method is insert then the current upd method update its preds[0] to previous

upd method, node.key else set current upd method preds[0] to previous upd method

preds[0].

After that at line 297 of intraTransValidation() method of Algorithm 14, current

upd method validate its (preds[1].RL! = currs[0]). If condition is true then current

upd method set its preds[1] to previous upd method, node.key.

If we will not update the current method preds and currs using intraTransValida-

tion() then effect of first upd method will be overwritten by the next upd method.

Observation 15 For any global state S, the intraTransValidation() in STM tryC()

preserves the properties of list lookup() as proved in Observation 3 and Lemma 4.

Lemma 16 Consider a concurrent history, EH , after the post-state of LP event of

successful STM tryC() method, where each key belonging to the last upd method of

that transaction, then,

16.1 If upd method is insert, then node corresponding to the key should be part of BL

and node.val should be equal to value v. Formally, 〈(node(key) ∈ ([EH .Post(mi.LP )].

Abs.BL) ∧ (node.val = v)〉.

16.2 If upd method is delete, then node corresponding to the key should not be part

of BL. Formally, 〈(node(key) /∈ ([EH .Post(mi.LP )].Abs.BL)〉.

Proof: By observing the code, each upd method also first invokes list lookup() method

of Algorithm 8 (line 122 of STM tryC() method of Algorithm 7). From Lemma 5 and

Lemma 10 we have that the nodes in the underlying data structure are in increasing

order of there keys, thus the key on which the method is working has a unique location

in underlying data structure from Corollary 7. So, when the list lookup() is invoked

from a method, it returns correct location (preds[0], preds[1], currs[0], currs[1]) of

corresponding key as observed from Observation 3 & Lemma 4 and all are locked,

hence no other thread can change simultaneously (from Observation 3.2).
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16.1 If upd method is insert: In the pre-state of LP event of upd method at

Line 139, 147 of STM tryC() method of Algorithm 7, if (node.key ∈ S.Abs.RL),

means key is already there in RL and timestamp of that node is less then

the upd method transactions timestamp, from toValidation() method of Algo-

rithm 13, then in the post-state of LP event of upd method, node.key should

be the part of BL and it will update the value as v.

In the pre-state of LP event of upd method at Line 152 of STM tryC() method

of Algorithm 7, if (node.key /∈ S.Abs.RL), means key is not there in RL then in

the post-state of LP event of upd method, it will insert the node corresponding

to the key into the BL, from list ins() method of Algorithm 9 at line 154 of

STM tryC() method of Algorithm 7 and update the value as v. Once a node is

created it will never get deleted from Observation 9 and node corresponding to

a key can’t be modified from Observation 2.

16.2 If upd method is delete: In the pre-state of LP event of upd method at

Line 163 of STM tryC() method of Algorithm 7, if (node.key ∈ S.Abs.BL),

means key is already there in BL and timestamp of that node is less then

the upd method transactions timestamp, from toValidation() method of Algo-

rithm 13, then in the post-state of LP event of upd method, node.key should

not be the part of BL, from list del() method of Algorithm 10 at line 165 of

STM tryC() method of Algorithm 7.

In the pre-state of LP event of upd method, (node.key /∈ S.Abs.RL) this

should not be happen because execution of STM delete() method of Algorithm 5

must have already inserted a node in the underlying data structure prior to

STM tryC() method of Algorithm 7 .

Lemma 17 Consider a concurrent history, EH , where S be the pre-state of LP

event of successful rv method (rvm), in that, if node corresponding to the key is

the part of BL and node.val is equal to v then, rv method return OK and value

v. Formally, 〈(node(key) ∈ ([EH .P re(mi.LP )].Abs.BL)) ∧ (S.node.val = v) =⇒
rvm(key,OK, v)〉.

Proof: Let the rv method is STM lookup() method of Algorithm 4 and it is the first

key method of the transaction, we ignore the abort case for simplicity.

From line 82 of commonLu&Del() method of Algorithm 6, when list lookup() method

of Algorithm 8 returns we have (preds[0], preds[1], currs[0], currs[1] ∈ S.PublicNodes)
and are locked (from Observation 3.1 and Observation 3.2) until STM lookup() method
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of Algorithm 4 return. Also, from Lemma 4.1,

(S.preds[0].key < key ≤ S.currs[1].key) (3.41)

To return OK, S.currs[1] should be reachable from the head via blue list from Def-

inition 2, in the pre-state of LP of rv method. And after observing code, at line 88

of commonLu&Del() method of Algorithm 6,

(S.currs[1].key = key)
eq(3.41)
====⇒ (S.preds[0].key < (key = S.currs[1].key)) (3.42)

Also, from Observation 3.3,

(S.preds[0].BL = S.currs[1]) (3.43)

And (currs[1] ∈ S.nodes), we know (currs[1] ∈ S.Abs.BL) where S is the pre-

state of the LP event of the method. From Lemma 16.1, there should be a prior

upd method which have to be insert and currs[1].val is equal to v. Since Observa-

tion 2 tells, no node changes its key value after initialization. Hence (node(key) ∈
([EH .P re(mi.LP )].Abs.BL) ∧ (S.node.val = v)).

*Same argument can be extended to STM delete() method.

Lemma 18 Consider a concurrent history, EH , where S be the pre-state of LP event

of successful rv method, in that, if node corresponding to the key is not the part of BL

then, rv method return FAIL. Formally, 〈(node(key) /∈ ([EH .P re(mi.LP )].Abs.BL))

=⇒ rvm(key, FAIL)〉.

Proof: Let the rv method is STM lookup() method of Algorithm 4 and it is the first

key method of the transaction, we ignore the abort case for simplicity.

1. From line 82 of commonLu&Del() method of Algorithm 6, when list lookup()

method of Algorithm 8 returns we have (preds[0], preds[1], currs[0], currs[1] ∈
S.PublicNodes) and are locked (from Observation 3.1 and Observation 3.2)

until STM lookup() method of Algorithm 4 return. Also, from Lemma 4.2,

(S.preds[1].key < key ≤ S.currs[0].key) (3.44)

To return FAIL, S.currs[0] should not be reachable from the head via bluelist

from Definition 2, in the pre-state of LP of rv method. And after observing
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code, at line 93 of commonLu&Del() method of Algorithm 6,

(S.currs[0].key = key)
eq(3.44)
====⇒ (S.preds[1].key < (key = S.currs[0].key))

(3.45)

Also, from Observation 3.3,

(S.preds[1].RL = S.currs[0]) (3.46)

And (currs[0] ∈ S.nodes), we know (currs[0] ∈ S.Abs.RL) where S is the pre-

state of the LP event of the method and (S.currs[0].marked = true). Thus,

(currs[0] /∈ S.Abs.BL) from Definition 2 . Hence (node(key) /∈ ([EH .P re(mi.LP )].

Abs.BL)

2. From line 82 of commonLu&Del() method of Algorithm 6, when list lookup()

method of Algorithm 8 returns we have (preds[0], preds[1], currs[0], currs[1] ∈
S.PublicNodes) and are locked (from Observation 3.1 and Observation 3.2)

until STM lookup() method of Algorithm 4 return. Also, from Lemma 4.2,

(S.preds[1].key < key ≤ S.currs[0].key) (3.47)

And after observing code, at line 97 of commonLu&Del() method of Algo-

rithm 6,

(S.currs[1].key 6= key) ∧ (S.currs[0].key 6= key)
eq(3.47)
====⇒

(S.preds[1].key < key < S.currs[0].key)
(3.48)

Also, from Observation 3.3,

(S.preds[1].RL = S.currs[0]) (3.49)

From eq(3.48), we can say that, (node(key) /∈ S.Abs) and from Corollary 8,

we conclude that node(key) not in the state after list lookup() returns. Since

Observation 2 tells, no node changes its key value after initialization. Hence

(node(key) /∈ ([EH .P re(mi.LP )].Abs.BL)).

*Same argument can be extended to STM delete() method.

Observation 19 Only the successful STM tryC() method working on the key k can

update the Abs.BL.
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By observing the code, only the successful STM tryC() method of Algorithm 7 is

changing the BL. There is no line which is changing the BL in STM delete() method

of Algorithm 5 and STM lookup() method of Algorithm 4. Such that rv method is

not changing the BL.

Observation 20 If STM tryC() and rv method want to update Abs on the key k,

then first it has to acquire the lock on the node corresponding to the key k.

If node corresponding to the key k is not the part of Abs then STM tryC() and

rv method have to create the node corresponding to the key k and before adding

it into the shared memory (Abs), it has to acquire the lock on the particular node

corresponding to the key k.

Observation 21 Two concurrent conflicting methods of different transaction can’t

acquire the lock on the same node corresponding to the key k simultaneously.

Observation 22 Consider two concurrent conflicting method of different transac-

tions say mi of Ti and mj of Tj working on the same key k, then, if ul(mi(k)) (un-

locking of mi(k)) happen before the l(mj(k)) (locking of mj(k)) then LP (mi) happen

before LP (mj). Formally, 〈(ul(mi(k)) ≺ l(mj(k)))⇒ (LP (mi) ≺ LP (mj))〉

If two concurrent conflicting methods are working on the same key k and want

to update Abs then they have to acquire the lock on the node corresponding to

the key k from Observation 20 and one of them succeed from Observation 21. If

ul(mi(k)) happen before the l(mj(k)) then from Definition 3, LP (mi) happen before

the LP (mj).

Lemma 23 Consider two state, S1, S2 s.t. S1 @ S2 and S1.BL.value(k) 6= S2.BL.

value(k) then there exist S ′ s.t. S ′ @ S2 and S ′ contain the STM tryC() method on the

same key k. Formally, 〈(S1.BL.value(k) 6= (S2.BL.value(k)) ⇒ ∃(S ′s.t., S1.BL ≺
S ′.LP (STM tryC()) ≺ S2.BL)〉. Where S1 is the post-state of LP event of STM tryC()

method and S2 is the pre-state of LP event of rv method.

Proof: In the state S1 and S2, if the value corresponding to the key k is not same then

from Observation 19, we know that only the successful STM tryC() method working

on the same key k can update the Abs.BL. For updating the Abs on the key k it

has to acquire the lock on the node corresponding to the key k from Observation 20.

Such that, l(STM tryC(k)) happen before the l(S2(k)) from Observation 21 , then,

ul(STM tryC(k)) happen before the l(S2(k)) then LP (STM tryC()) happen before

the LP (S2) from Observation 22.
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Lemma 24 Consider a concurrent history, EH , let there be a successfull STM tryC()

method of a transaction Ti which last updated the node corresponding to k. Now,

Consider a successful rv method of a transaction Tj on key k then,

24.1 If in the pre-state of LP event of the rv method, node corresponding to the key

k is part of BL and value is v. Then the last upd method of STM tryC() would

be insert on same key k and value v and it should be the previous closest to the

rv method.

24.2 If in the pre-state of LP event of the rv method, node corresponding to the key

k is not part of the BL. Then the last upd method in STM tryC() would be

delete on same key k and it should be the previous closest to the rv method.

Proof:

24.1 For proving this we are taking a contradiction that in the pre-state of rv method,

node corresponding to the key k is the part of BL and value as v, for that, there

exist a previous closest successful STM tryC() method should having the last

upd method as insert on the same key k from Corollary 7, node corresponding

to the key k is unique and value is v′. If the value of the node corresponding to

the key k is different for both the methods then from Lemma 23, there should be

some other transaction STM tryC() method working on the same key k and its

LP should lies in between these two methods LP . Therefore that intermediate

STM tryC() should be the previous closest method for the rv method and it

will return the same value as previous closest method inserted.

24.2 For proving this we are taking contradiction that previous closest successful

STM tryC() method should having the last upd method as insert on the same

key k. If the last upd method is insert on the same key k then after the post-state

of successful STM tryC() method, node corresponding to the key k should be the

part of BL from Lemma 16.1. But we know that in the pre-state of rv method,

node corresponding to the key k is not the part of BL. Such that previous

closest successful STM tryC() method should not having last upd method as

insert on the same key k. Hence contradiction.

Corollary 25 The sequential history generated by HT-OSTM at operation level is

legal.

Corollary 26 The legal sequential history generated by HT-OSTM at operation level

is Linearizable.
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Construction of sequential history based on the LP of concurrent methods

of a concurrent history, EH , and execute them in there LP order for returning the

same return value.

Lemma 27 Consider a sequential history, ES, for any successful method which is call

by transaction Ti, after the post-state of the method, node corresponding to the key

should be part of RL and max ts of that node should be equal to method transaction

timestamp. Formally, 〈(node(key) ∈ (P.Abs.RL)) ∧ (P.node.max ts = TS(Ti))〉,
where P is the post-state of the method.

Proof:

1. For rv method: By observing the code, each rv method first invokes list -

lookup() method of Algorithm 8 (line 82 of commonLu&Del() method of Al-

gorithm 6). From Lemma 5 and Lemma 10 we have that the nodes in the

underlying data structure are in increasing order of there keys, thus the key on

which the method is working has a unique location in underlying data struc-

ture from Corollary 7. So, when the list lookup() is invoked from a method, it

returns correct location (preds[0], preds[1], currs[0], currs[1]) of corresponding

key as observed from Observation 3 & Lemma 4 and all are locked, hence no

other thread can change simultaneously (from Observation 3.2).

In the pre-state of rv method, if (node.key ∈ S.Abs.RL), means key is already

there in RL and timestamp of that node is less then the rv method transactions

timestamp, from toValidation() method of Algorithm 13 , then in the post-state

of rv method, node.key should be the part of RL from Observation 9 and key

can not be change from Observation 2 and it just update the max ts field for

corresponding node key by method transaction timestamp else abort.

In the pre-state of rv method, if (node.key /∈ S.Abs.RL), means key is not

there in RL then, in the post-state of rv method, insert the node corresponding

to the key into RL by using list ins() method of Algorithm 9 and update the

max ts field for corresponding node key by method transaction timestamp.

Since, node.key should be the part of RL from Observation 9 and key can not

be change from Observation 2, in post-state of rv method.

2. For upd method: By observing the code, each upd method also first invokes

list lookup() method of Algorithm 8 (line 122 of STM tryC() method of Al-

gorithm 7). From Lemma 5 and Lemma 10 we have that the nodes in the

underlying data structure are in increasing order of there keys, thus the key on
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which the method is working has a unique location in underlying data struc-

ture from Corollary 7. So, when the list lookup() is invoked from a method, it

returns correct location (preds[0], preds[1], currs[0], currs[1]) of corresponding

key as observed from Observation 3 & Lemma 4 and all are locked, hence no

other thread can change simultaneously (from Observation 3.2).

(a) If upd method is insert: In the pre-state of upd method, if (node.key ∈
S.Abs.RL), means key is already there in RL and timestamp of that node

is less then the upd method transactions timestamp, from toValidation()

method of Algorithm 13, then in the post-state of upd method, node.key

should be the part of BL and it just update the max ts field for corre-

sponding node key by method transaction timestamp else abort.

In the pre-state of upd method, if (node.key /∈ S.Abs.RL), means key is

not there in RL then in the post-state of upd method, it will insert the

node corresponding to the key into the RL as well as BL, from list ins()

method of Algorithm 9 at line 154 of STM tryC() method of Algorithm 7

and update the max ts field for corresponding node key by method trans-

action timestamp. Once a node is created it will never get deleted from

Observation 9 and node corresponding to a key can not be modified from

Observation 2.

(b) If upd method is delete: In the pre-state of upd method, if (node.key ∈
S.Abs.RL), means key is already there in RL and timestamp of that node

is less then the upd method transactions timestamp, from toValidation()

method of Algorithm 13, then in the post-state of upd method, node.key

should be the part of RL, from list del() method of Algorithm 10 at line

165 of STM tryC() method of Algorithm 7 and it just update the max ts

field for corresponding node key by method transaction timestamp else

abort.

In the pre-state of upd method, (node.key /∈ S.Abs.RL) this should not be

happen because execution of STM delete() method of Algorithm 5 must

have already inserted a node in the underlying data structure prior to

STM tryC() method of Algorithm 7. Thus, (node.key ∈ S.Abs.RL) and

update the max ts field for corresponding node key by method transaction

timestamp else abort.

Corollary 28 After the post-state of any successful method on a key ensures that

underlying RL contains a unique node corresponding to the key and max ts field is

updated by methods transactions timestamp.
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3.6.2 Transactional Level

From Section 3.6.1 we are guaranteed to have a linearizable history. Now we prove

that such linearizable history obtained from HT-OSTM is opaque.

Observation 29 H is a sequential history obtained from HT-OSTM, as shown at

operational level using LP.

Definition 4 CG(H) is a conflict graph of H.

Lemma 30 Conflict graph of a serial history is acyclic.

Proof: If conflict graph of serial history contains an conflict edge (T1, T2), then

T1.lastEvt ≺H T2.f irstEvt. Now, assume that conflict graph of a serial history is

cyclic, then there exist a cycle path in the form (T1, T2 · · · Tk, T1), (k ≥ 1). So,

transitively,

((T1.lastEvt ≺H Tk.f irstEvt) ∧ (Tk.lastEvt ≺H T1.f irstEvt))⇒
(T1.lastEvt ≺H T1.f irstEvt)

(3.50)

This contradict our assumption as eq(3.50) is impossible, from definition of pro-

gram order of a transaction. Thus, cycle is not possible in serial history.

Observation 31 H2 is an history generated by applying topological sort on CG(H1).

Observation 32 Topological sort maintains conflict-order and real-time order of the

original history H1.

Definition 5 conflict(H) is a set of ordered pair (Ti, Tj), such that there exists con-

flicting methods mi, mj in Ti and Tj respectively, such that mi ≺MR
H mj. And it is

represented as ≺COH .

Lemma 33 H1 is legal and CG(H1) is acyclic. then,

33.1 H1 is equivalent to H2 ⇒ (methods(H1) = methods(H2)).

33.2 ≺COH1 ⊆ ≺COH2 . i.e. H1 preserves the conflicts of H2

Proof: Lemma 33.2

We should show that ∀(Ti, Tj), such that ((Ti, Tj) ∈ ≺COH1 ⇒ ((Ti, Tj) ∈ ≺COH2 ).

Lets assume that there exists a conflict (Ti, Tj) in ≺COH1 but not in ≺COH2 . But, from
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Observation 31 and Observation 32 we know that (Ti, Tj) ∈ ≺COH2 . Thus, ≺COH1 ⊆ ≺COH2 .

The relation is of improper subset because topological sort may introduce new real-

time orders in H2 which might not be present in H1.

Lemma 34 Let H1 and H2 be equivalent histories such that ≺COH1
⊆ ≺COH2

. Then, H1

is legal =⇒ H2 is legal.

Proof: We know H1 is legal, without loss of generality, let us say (rvmj(ht, k, v) ∈
methods(H1)), such that (updp(ht, k, vp) = H1.lastUpdt(rvmj(ht, k, v))) where, (v =

vp 6= nil), if (updp(ht, k, vp)

= STM insertp(ht, k, vp)) or (v = nil), if (updp(ht, k, vp) = STM deletep(ht, k, vp)).

From the conflict-notion conflict(H1) has,

updp(ht, k, vp) ≺MR
H1

rvmj(ht, k, v) (3.51)

Let us assume H2 is not legal. Since, H1 is equivalent to H2 from Lemma 33.1 such

that (rvmj(ht, k, v) ∈methods(H2)). SinceH2 is not legal, there exist a (updr(ht, k, vr)

∈methods(H2)) such that (updr(ht, k, vr) = H2.lastUpdt(rvmj(ht, k, v))). So conflict(H2)

has,

updr(ht, k, vr) ≺MR
H2

rvmj(ht, k, v) (3.52)

We know, (≺COH1
⊆ ≺COH2

) so,

updp(ht, k, vp) ≺MR
H2

rvmj(ht, k, v) (3.53)

From Lemma 33.1 (updr(ht, k, vr) ∈ methods(H1)). Since H1 is legal updr(ht, k, vr)

can occur only in one of following conflicts,

updr(ht, k, vr) ≺MR
H1

updp(ht, k, vp) (3.54)

or

rvmj(ht, k, v) ≺MR
H1

updr(ht, k, vr) (3.55)

In H1 eq(3.55) is not possible, because if (eq(3.55) ∈ conflict(H1)) implies (eq(3.55)

∈ conflict(H2)) from (≺COH1
⊆ ≺COH2

) and in H2 eq(3.52) and eq(3.55) cannot occur

together. Thus only possible way updr(ht, k, vr) can occur in H1 is via eq(3.54).

From eq(3.54) we have,

updr(ht, k, vr) ≺MR
H2

updp(ht, k, vp) (3.56)

84



From eq(3.52), eq(3.53) and eq(3.56) we have,

updr(ht, k, vr) ≺MR
H2

updp(ht, k, vp) ≺MR
H2

rvmj(ht, k, v)

This contradicts that H2 is not legal. Thus if H1 is legal −→ H2 is legal.

Observation 35 Each transaction is assigned a unique timestamp in STM begin()

method using a shared counter which always increases atomically.

Observation 36 Each successful method of a transaction is assigned the timestamp

of its own transaction.

Lemma 37 Consider a global state S which has a node n, initialized with max ts.

Then in any future state S ′ the max ts of n should be greater then or equal to S.

Formally, 〈∀S, S ′ : (n ∈ S.Abs) ∧ (S @ S ′) ⇒ (n ∈ S ′.Abs) ∧ (S.n.max ts ≤
S ′.n.max ts)〉.

Proof: We prove by Induction on events that change the max ts field of a node

associated with a key, which are Line 90, 95 & 101 of commonLu&Del() method of

Algorithm 6 and Line 145, 151, 156 & 167 of STM tryC() method of Algorithm 7.

Base condition: Initially, before the first event that changes the max ts field of a

node associated with a key, we know the underlying lazyrb-list has immutable S.head

and S.tail nodes with (S.head.BL = S.tail) and (S.head.RL = S.tail).

Lets assume, a node corresponding to the key is already the part of underlying

RL which is having a timestamp of m1 as T1 from Observation 36. Let say m2 of

T2 wants to perform on that node, by observing the code at line 6 of toValidation()

method of Algorithm 13, if timestamp TS(T2) < curr.max ts.m1(), T2 will return

abort, else to succeed, TS(T2) > curr.max ts.m1() should evaluate to true. Thus, for

successful completion of m2 of T2, TS(T2) should be greater then the TS(T1). Hence,

node corresponding to the key, max ts field should be updated in increasing order of

TS values.

Induction Hypothesis: Say, upto k events that change the max ts field of a node

associated with a key always in increasing TS value.

Induction Step: So, as seen from the code, the (k + 1)th event which can change

the max ts field be only one of the following:

1. Line 90, 95 & 101 of commonLu&Del() method of Algorithm 6: By ob-

serving the code, line 69 of commonLu&Del() method of Algorithm 6 first

invokes list lookup() method of Algorithm 8 for finding the node correspond-

ing to the key. Inside the list lookup() method of Algorithm 8, it will do the

toValidation() method of Algorithm 13, if (curr.key = key).

85



From induction hypothesis, node corresponding to the key is already the part

of underlying RL which is having a timestamp of mk of Tk from Observa-

tion 36. Let say mk+1 of Tk+1 wants to perform on that node, by observing

the code at Line 271 of toValidation() method of Algorithm 13, if TS(Tk+1) <

curr.max ts.mk(), Tk+1 will return abort, else to succeed, TS(Tk+1) > curr.max -

ts.mk() should evaluate to true. Thus, for successful completion of mk+1 of Tk+1,

TS(Tk+1) should be greater then the TS(Tk). Hence, node corresponding to the

key, max ts field should be updated in increasing order of TS values.

2. Line 145, 151, 156 & 167 of STM tryC() method of Algorithm 7: By ob-

serving the code, line 122 of STM tryC() method of Algorithm 7 first invokes

list lookup() method of Algorithm 8 for finding the node corresponding to the

key. Inside the list lookup() method of Algorithm 8, it will do the toValidation()

method of Algorithm 13, if (curr.key = key).

From induction hypothesis, node corresponding to the key is already the part

of underlying RL which is having a timestamp of mk as Tk from Observa-

tion 36. Let say mk+1 of Tk+1 wants to perform on that node, by observing

the code at Line 274 of toValidation() method of Algorithm 13, if TS(Tk+1) <

curr.max ts.mk(), Tk+1 will return abort, else to succeed, TS(Tk+1) > curr.max -

ts.mk() should evaluate to true. Thus, for successful completion of mk+1 of Tk+1,

TS(Tk+1) should be greater then the TS(Tk). Hence, node corresponding to the

key, max ts field should be updated in increasing order of TS values.

Corollary 38 Every successful methods update the max ts field of a node associated

with a key always in increasing TS values.

Lemma 39 If STM begin(Ti) occurs before STM begin(Tj) then TS(Ti) preceds

TS(Tj). Formally, 〈∀T ∈ H : (STM begin(Ti) ≺ STM begin(Tj)) ⇔ (TS(Ti) <

TS(Tj))〉.

Proof: (Only if) If (STM begin(Ti) ≺ STM begin(Tj)) then (TS(Ti) < TS(Tj)).

Lets assume (TS(Tj) < TS(Ti)). From Observation 35,

STM begin(Tj) ≺H STM begin(Ti) (3.57)

but we know that,

STM begin(Tj) �H STM begin(Ti) (3.58)

Which is a contradiction thus, (TS(Ti) < TS(Tj)).
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(if) If (TS(Ti) < TS(Tj)) then (STM begin(Ti) ≺ STM begin(Tj)). Let us assume

(STM begin(Tj) ≺ STM begin(Ti)). From Observation 35,

TS(Tj) < TS(Ti) (3.59)

but we know that,

TS(Tj) > TS(Ti) (3.60)

Again, a contradiction.

Lemma 40 If (Ti, Tj) ∈ conflict(H) ⇒ TS(Ti) < TS(Tj).

Proof: (Ti, Tj) can have two kinds of conflicts from our conflict notion.

1. If (Ti, Tj) is an real-time edge: Since, Ti & Tj are real time ordered.

Therefore,

Ti.lastEvt ≺H Tj.f irstEvt (3.61)

And from program order of Ti,

Ti.f irstEvt ≺H Ti.lastEvt⇒ STM begin(Ti) ≺H Ti.lastEvt (3.62)

From eq(3.61) and eq(3.62) implies that,

Ti.f irstEvt ≺H Tj.f irstEvt⇒ STM begin(Ti) ≺H STM begin(Tj)

Lemma 39
======⇒ TS(Ti) < TS(Tj)

(3.63)

2. If (Ti, Tj) is a conflict edge: We prove this case by contradiction, lets

assume (Ti, Tj) ∈ conflict(H) & TS(Tj) < TS(Ti). Given that (Ti, Tj) ∈ con-

flict(H) and from Definition 5 we get, mi ≺MR
H mj.

mi can be rv methods or upd methods (which are taking the effects in STM -

tryC() method of Algorithm 7) and we know that after the LP of mi of Ti,

node corresponding to the key should be there in RL (from Corollary 28 &

Definition 2) and the timestamp of that node corresponding to key should be

equal to timestamp of this method transaction timestamp from Corollary 28

and Observation 36 .

From Lemma 5 and Lemma 10 we have that the nodes in the underlying data

structure are in increasing order of there keys, thus the key on which the op-

eration is working has a unique location in underlying data structure from

Corollary 7. So, when the list lookup() is invoked from a method mj of Tj, it
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returns correct location (preds[0], preds[1], currs[0], currs[1]) of corresponding

key as observed from Observation 3 and Lemma 4.

Now, mj similar to mi take effect on the same node represented by key k (from

Observation 2 & Corollary 7) and from Observation 9 we know that the node

corresponding to the key k is still reachable via RL. Thus, we know that Ti

and Tj will work on same node with key k.

By observing the code at Line 271 and Line 274 of toValidation() method of

Algorithm 13, we know since, TS(Tj) < curr.max ts.mi(), Tj will return abort

from Corollary 38. In Algorithm 13 for toValidation() to succeed, TS(Tj) >

curr.max ts.mi() should evaluate to true from Corollary 38. Thus, TS(Tj) <

TS(Ti), a contradiction. Hence, If (Ti, Tj) ∈ conflict(H) ⇒ TS(Ti) < TS(Tj).

Lemma 41 If (T1, T2 · · · Tn) is a path in CG(H), this implies that (TS(T1) < TS(T2)

< · · · < TS(Tn)).

Proof: The proof goes by induction on length of a path in CG(H).

Base Step: Assume ( T1, T2 ) be a path of length 1. Then, from Lemma 40 (TS(T1)

< TS(T2)).

Induction Hypothesis: The claim holds for a path of length (n− 1). That is,

TS(T1) < TS(T2) < · · · < TS(Tn−1) (3.64)

Induction Step: Let Tn is a transaction in a path of length n. Then, (Tn−1, Tn) is

path in CG(H). Thus, it follows from Lemma 40 that,

TS(Tn−1) < TS(Tn)
eq(3.64)
====⇒ (TS(T1) < TS(T2) < · · · < TS(Tn)) (3.65)

Hence, the lemma.

Theorem 42 CG(H) is acyclic.

Proof: Assume that CG(H) is cyclic, then there exist a cycle say of form ( T1, T2

· · · Tn, T1 ), for all (n ≥ 1). From Lemma 41,

TS(T1) < TS(T2) · · · < TS(Tn) < TS(T1) =⇒ TS(T1) < TS(T1) (3.66)

But, this is impossible as each transaction has unique timestamp, refer Observa-

tion 35. Hence the theorem.

Theorem 43 A legal history H is co-opaque iff CG(H) is acyclic.
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Proof: (Only if) If H is co-opaque and legal, then CG(H) is acyclic: Since H is

co-opaque, there exists a legal t-sequential history S equivalent to H̄ and S respects

≺RTH and ≺COH (from co-opacity [18]). Thus from the conflict graph construction we

have that (CG(H̄)=CG(H)) is a sub graph of CG(S). Since S is sequential, it can be

inferred that CG(S) is acyclic using Lemma 30. Any sub graph of an acyclic graph is

also acyclic. Hence CG(H) is also acyclic.

(if) If H is legal and CG(H) is acyclic then H is co-opaque: Suppose that CG(H)

= CG(H̄) is acyclic. Thus we can perform a topological sort on the vertices of the

graph and obtain a sequential order. Using this order, we can obtain a sequential

schedule S that is equivalent to H̄. Moreover, by construction, S respects ≺RTH = ≺RT
H̄

and ≺COH = ≺CO
H̄

.

Since every two operations related by the conflict relation in S are also related by

≺CO
H̄

, we obtain ≺CO
H̄
⊆ ≺COS . Since H is legal, H̄ is also legal. Combining this with

Lemma 34, We get that S is also legal. This satisfies all the conditions necessary for

H to be co-opaque.

3.7 Experimental Evaluations

This section describes the experimental analysis of proposed OSTMs with state-of-

the-art STMs. We have two main goals in this section: (1) Evaluate the benefit of

proposed OSTMs over the state-of-the-art Object-based STMs, and (2) Analyze the

benefit of proposed OSTMs over Multi-Version and Single-Version Read-Write STMs.

Experimental system: The Experimental system is a large-scale 2-socket Intel(R)

Xeon(R) CPU E5-2690 v4 @ 2.60GHz with 14 cores per socket and two hyper-threads

(HTs) per core, for a total of 56 threads. Each core has a private 32KB L1 cache and

256 KB L2 cache (which is shared among HTs on that core). All cores on a socket

share a 35MB L3 cache. The machine has 32GB of RAM and runs Ubuntu 16.04.2

LTS. All code was compiled with the GNU C++ compiler (G++) 5.4.0 with the build

target x86 64-Linux-gnu and compilation option -std=c++1x -O3. We consider the

same experimental setup in Chapter 4 and Chapter 5 as well.

STM implementations: To show the performance of proposed OSTM against state-

of-the-art STMs, we have taken the implementation of NOrec-list [6], Boosting-list

[13], Trans-list [12], ESTM [7], and RWSTM [3] directly from the TLDS framework1.

We implemented our algorithms in C++. We use Counter Application defined in

SubSection 3.7.1 where each STM algorithm first creates N-threads, each thread, in

turn, spawns a transaction. Each transaction exports STM begin(), STM insert(),

1TLDS Framework: https://ucf-cs.github.io/tlds/
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STM lookup(), STM delete() and STM tryC () methods as described in Section 3.4.

Methodology:2 We have considered two types of workloads: (1) Lookup Intensive

(70% lookup, 10% insert, 20% delete) and (2) Update Intensive (50% lookup, 25%

insert, 25% delete) workloads. The experiments are conducted by varying number

of threads from 2 to 64 in power of 2, with 1000 keys randomly chosen. We assume

that the hash table of HT-OSTM has five buckets and each of the bucket (or list

in case of list-OSTM) can have a maximum size of 1000 keys. Each transaction, in

turn, executes 10 operations which include STM lookup(), STM delete(), and STM -

insert() operations. For accuracy, we take an average over 10 results for the final

result in which the first run is discarded and considered as a warm-up result for each

experiment.

3.7.1 Pseudocode of Counter Application

To analyze the absolute benefit of OSTM, we use a Counter Application which pro-

vides us the flexibility to create a high contention environment. In this subsection

we describe the high-level overview of Counter Application though pseudocode as

follows:

Algorithm 20 main(): The main function invoked by Counter Application.

353: procedure main()
354: /*Each thread thi log abort counts and average time taken by each transaction

to commit in abortCountthi and timeTakenthi respectively;*/
355: for all (numOfThreads) do /*Multiple threads call the helper function*/
356: helperFun();
357: end for
358: for all (numOfThreads) do
359: /*Join all the threads*/
360: end for
361: for all (numOfThreads) do
362: /*Calculate the Total Abort Count*/
363: totalAbortCount += abortCountthi ;
364: /*Calculate the Average Time Taken*/
365: AvgT imeTaken /= TimeTakenthi ;
366: end for
367: end procedure

2Proposed OSTM code is available here: https://github.com/PDCRL/HT-OSTM
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Algorithm 21 helperFun():Multiple threads invoke this function.

368: procedure helperFun()

369: Initialize the Transaction Count txCounti of Ti as 0;

370: /*Execute until number of transactions are non zero*/

371: while (numOfTransactions) do

372: startT imethi ← timeRequest(); /*get the start time of thread thi*/

373: /*Execute the transactions Ti by invoking testSTM functions;*/

374: abortCountthi ← testSTMi();

375: Increment the txCounti of Ti by one.

376: endT imethi ← timeRequest(); /*get the end time of thread thi*/

377: /*Calculate the Total Time Taken by each thread thi*/

378: timeTakenthi += (endT imethi - startT imethi);

379: Atomically, decrement the numOfTransactions ;

380: end while

381: /*Calculate the Average Time taken by each thread thi*/

382: TimeTakenthi /= txCounti;

383: end procedure

Algorithm 22 testSTMi(): Main function which executes the methods of the trans-
action Ti (or i) by thread thi.

384: procedure testSTMi()

385: while (true) do

386: STM begin(); /*Get the unique timestamp i of each transaction Ti*/

387: for all (numOfMethods) do

388: ki ← rand()%totalKeys;/*Select the key randomly*/

389: mi ← rand()%100;/*Select the method randomly*/

390: switch (mi) do

391: case (mi ≤ STM lookup()):

392: v← STM lookup(ki); /*Lookup key k from a shared memory*/

393: if (v == abort) then

394: txAbortCounti + +; /*Increment the transaction abort

count*/

395: goto Line 386;

396: end if

397: case (STM lookup() < mi ≤ STM insert()):

398: /*Insert key ki into Ti local memory with value v*/
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399: STM insert(ki, v);

400: case (STM insert() < mi ≤ STM delete()):

401: /*Actual deletion happens after successful STM tryC()*/

402: STM delete(ki);

403: case default:

404: /*Neither lookup nor insert/delete on shared memory*/

405: v ← STM tryC(); /*Validate all the methods of Ti in tryC*/

406: if (v == abort) then

407: txAbortCounti + +;

408: goto Line 386;

409: end if

410: end for

411: return 〈txAbortCounti〉;
412: end while

413: end procedure

3.7.2 Result Analysis
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Figure 3.19: Performance of HT-OSTM against State-of-the-art hash table based
STMs

Experimental analysis of HT-OSTM outperforms state-of-the-art hash table based

STMs (ESTM [7], RWSTM [3]) by a factor of 3.8, 2.2 for lookup intensive workload

and by a factor of 6.7, 5.3 for update intensive workload respectively as demonstrated

in Figure 3.19. ESTM and RWSTM work on lower level which has false conflicts as

explained in Figure 1.1 of Chapter 1 whereas HT-OSTM works on higher level which
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ignores the false conflicts and provides greater concurrency. Initially, the performance

of HT-OSTM and ESTM as same (upto 16 threads) but as the number of threads

increases, the performance HT-OSTM is far better than ESTM.
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Figure 3.20: Abort Count of HT-OSTM against State-of-the-art hash table based
STMs
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Figure 3.21: Performance of list-OSTM against State-of-the-art list based STMs

The number of aborts are directly proportional to the time taken by transactions

to commit. Figure 3.20 represents that HT-OSTM has lesser number of aborts by a

factor of 3, 2 for lookup intensive workload and by a factor of 7, 8 for update intensive

workload with state-of-the-art hash table based STMs (ESTM [7] and RWSTM [3])

respectively.

Experimental analysis of list-OSTM outperforms state-of-the-art list based STMs

(Trans-list [12], NOrec-list [6] and Boosting-list [13]) by a factor of 1.76, 1.89, 1.33

for lookup intensive workload and by a factor of 1.77, 1.77, 2.54 for update intensive
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workload respectively as demonstrated in Figure 3.21. NOrec-list works on lower

level which has some false conflicts whereas Trans-list, Boosting-list, and HT-OSTM

works on higher level which do not have false conflicts. Boosting-list is a pessimistic

approach which rollback the transaction on inconsistency whereas Trans-list is an op-

timistic approach in which rollbacks are not required. So, boosting-list is performing

better for high contention workloads.

The results demonstrate that list-OSTM reduce the number of aborts to minimal

as comparison to Trans-list [12], NOrec-list [6], and Boosting-list [13] shown in Fig-

ure 3.22. list-OSTM works on higher level with optimistic approach so, aborts are

nominal.
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Figure 3.22: Abort Count of list-OSTM against State-of-the-art list based STMs

3.8 Summary

In this chapter of the thesis, we build a model for building highly concurrent and com-

posable data structures with object level transactions called OSTMs. We showed that

higher concurrency can be obtained by considering OSTMs as compared to traditional

RWSTM by leveraging richer object-level semantics. We proposed a comprehensive

theoretical model based on legality semantics and conflict notions for hash table

based OSTMs, HT-OSTM . Using these notions we extend the definition of opacity

and co-opacity for HT-OSTM s in Section 3.2. Then, based on this model, we devel-

oped a practical implementation of HT-OSTM and list-OSTM (simple modification in

HT-OSTM while setting the bucket size as one) to verify the gains achieved as demon-

strated in Section 3.7. Further, we proved that proposed model is co-opaque [18] thus

composable.
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Chapter 4

Multi-Version Object-based STMs

4.1 Introduction

The rise of multi-core systems has necessitated the need for concurrent programming.

However, developing correct concurrent programs without compromising on efficiency

is a big challenge. Software Transactional Memory Systems (STMs) are a convenient

programming interface for a programmer to access shared memory without worrying

about concurrency issues. Another advantage of STMs is that they facilitate compo-

sitionality of concurrent programs with great ease. Different concurrent operations

that need to be composed to form a single atomic unit is achieved by encapsulating

them in a single transaction. Next, we discuss different types of STMs considered

in the literature and identify the need to develop Multi-Version Object-based STMs

proposed in this chapter of the thesis.

Read-Write STMs: Most of the STMs proposed in the literature (such as NOrec [6],

ESTM [7]) are based on read/write operations on transaction objects (t-objects) or

keys. We denote them as Read Write STMs or RWSTMs. These STMs typically

export following methods: (1) STM begin(): begins a transaction with unique id, (2)

STM read(k) (or r(k)): reads the value of key k from shared memory, (3) STM -

write(k, v) (or w(k, v)): writes the value of key k as v in its local log. This thesis

considers the optimistic execution of STMs in which transactions are writing into its

local log until the successful validation. (4) STM tryC () (or tryC()): validates and

tries to commit the transaction by writing values to the shared memory. If validation

is successful, then it returns commit. Otherwise, it returns abort.

Object-based STMs: Some STMs have been proposed that work on higher level

operations such as hash table. We call them Object-based STMs or OSTMs. OSTM

exports the following methods: (1) STM begin(): begins a transaction with unique id
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(same as in RWSTM ), (2) STM insert(k, v) (or ins(k, v)): inserts a value v for key k

in its local log, (3) STM delete(k) (or del(k)): deletes the value associated with the

key k, (4) STM lookup(k) (or lu(k)): looks up the value associated with the key k from

shared memory and, (5) STM tryC () (or tryC()): validates and tries to commit the

transaction by updating values to the shared memory. If validation is successful, then

it returns commit. Otherwise, it returns abort. The concept of Boosting by Herlihy et

al. [13], the optimistic variant by Hassan et al. [24] and HT-OSTM system by Peri et

al. [16] (proposed work shown in Chapter 3) are some examples that demonstrate the

performance benefits achieved by OSTM s. We have shown that HT-OSTM s provide

greater concurrency than RWSTM in Chapter 3.

Multi-Version Object-based STMs: It has been shown in the literature of databases

and STMs [14,15] that greater concurrency can be obtained by storing multiple ver-

sions for each t-object (or key). Having seen the advantage achieved by OSTM s in

Chapter 3, we combine multiple versions with object semantics idea for harnessing

greater concurrency in STMs. We proposed the new and efficient notion of Multi-

Version Object-based STMs or MVOSTMs.

Specifically, maintaining multiple versions can ensure that more read operations

succeed because the reading operation will have an appropriate version to read. Our

goal is to evaluate the benefit of MVOSTM s over both multi-version and single-version

RWSTM s as well as single-version OSTM s.

Potential benefit of MVOSTM s over OSTM s and multi-version RWSTM s

explained in SubSection 1.4.1 of Chapter 1.

Contributions of the Chapter is as follows:

• We proposed a new notion of Multi-Version Object-based STM system, MVOSTM .

Specifically developed it for two CDS, hash table and list objects as HT-MVOSTM

and list-MVOSTM respectively.

• We show HT-MVOSTM and list-MVOSTM satisfy opacity [10], a standard

correctness-criterion for STMs.

• For efficient space utilization in MVOSTM with unbounded versions we develop

Garbage Collection for MVOSTM (i.e. MVOSTM-GC ) and bounded version

MVOSTM (i.e. KOSTM ).

• Our experiments show that both hash table based KOSTM (HT-KOSTM ) and

list based KOSTM (list-KOSTM ) provides greater concurrency and reduces

the number of aborts as compared to single-version OSTM s, single and multi-

version RWSTM s. We achieve this by maintaining multiple versions correspond-
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ing to each key. To the best of our knowledge, this is the first work to explore

the idea of using multiple versions in OSTMs to achieve greater concurrency.

Roadmap. This chapter is organized as follows. Section 4.2 shows the Graph Char-

acterization of Opacity. Section 4.3 represents the MVOSTMs design and data struc-

ture. Section 4.4 shows the working of MVOSTMs and its algorithms. We formally

prove the correctness of MVOSTMs in Section 4.5. In Section 4.6 we show the ex-

perimental evaluation of MVOSTMs with state-of-art-STMs. Finally, we summaries

this chapter in Section 4.7.

4.2 Graph Characterization of Opacity

To prove that an STM system satisfies opacity, it is useful to consider graph char-

acterization of histories. In this section, we describe the graph characterization of

Guerraoui and Kapalka [27] modified for sequential histories.

T1

T2

T3

C1

T4

C3

C2

C4

T5

T6 C6

C5

ins1(kz,1, v12)

lu2(kx,0, null) ins2(ky,2, v21)

lu3(kz,0, null) ins3(ky,3, v31) ins3(kz,3, v32)

lu4(kx,1, v11) lu4(ky,2, v21) lu4(kz,1, v12)

lu5(kx,1, v11)

lu6(ky,2, v21)

ins1(kx,1, v11)lu1(kx,0, null) lu1(ky,0, null)

Figure 4.1: History H3 in time line view

Consider a history H which consists of multiple version for each t-object. The

graph characterization uses the notion of version order. Given H and a t-object k,

we define a version order for k as any (non-reflexive) total order on all the versions

of k ever created by committed transactions in H. It must be noted that the version

order may or may not be the same as the actual order in which the versions of k are

generated in H. A version order of H, denoted as �H is the union of the version

orders of all the t-objects in H.

Consider the history H3 as shown in Figure 4.1 : lu1(kx,0, null), lu2(kx,0, null), lu1

(ky,0, null), lu3(kz,0, null), ins1(kx,1, v11), ins3(ky,3, v31), ins2(ky,2, v21), ins1(kz,1, v12), c1,

c2, lu4(kx,1, v11), lu4(ky,2, v21), ins3(kz,3, v32), c3, lu4(kz,1, v12), lu5(kx,1, v11), lu6(ky,2, v21),
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c4, c5, c6. Using the notation that a committed transaction Ti writing to kx creates

a version kx,i, a possible version order for H3 �H3 is: 〈kx,0 � kx,1〉, 〈ky,0 � ky,2 �
ky,3〉, 〈kz,0 � kz,1 � kz,3〉.

We define the graph characterization based on a given version order. Consider a

history H and a version order�. We then define a graph (called opacity graph) on H

using �, denoted as OPG(H,�) = (V,E). The vertex set V consists of a vertex for

each transaction Ti in H. The edges of the graph are of three kinds and are defined

as follows:

1. rt(real-time) edges: If the commit of Ti happens before beginning of Tj in H,

then there exist a real-time edge from vi to vj. We denote set of such edges as

rt(H).

2. rvf (return value-from) edges: If Tj invokes rv method on key k1 from Ti which

has already been committed in H, then there exists a return value-from edge

from vi to vj. If Ti is having upd method as insert on the same key k1 then

insi(k1,i, vi1) <H ci <H rvmj(k1,i, vi1). If Ti is having upd method as delete on

the same key k1 then deli(k1,i, null) <H ci <H rvmj(k1,i, null). We denote set

of such edges as rvf(H).

3. mv(multi-version) edges: This is based on version order. Consider a triplet with

successful methods as updi(k1,i, u), rvmj(k1,i, u), updk(k1,k, v) , where u 6= v. As

we can observe it from rvmj(k1,i, u), ci <H rvmj(k1,i, u). if k1,i � k1,k then there

exist a multi-version edge from vj to vk. Otherwise (k1,k � k1,i), there exist a

multi-version edge from vk to vi. We denote set of such edges as mv(H,�).

We now show that if a version order � exists for a history H such that it is acyclic,

then H is opaque.

Using this construction, the OPG(H3,�H3) for history H3 and �H3 is given

above is shown in Figure 4.2. The edges are annotated. The only mv edge from T4

to T3 is because of t-objects ky, kz. T4 lookups value v12 for kz from T1 whereas T3

also inserts v32 to kz and commits before lu4(kz,1, v12).

Given a history H and a version order�, consider the graph OPG(H,�). While

considering the rt edges in this graph, we only consider the real-time relation of H

and not H. It can be seen that ≺RTH ⊆≺RTH but with this assumption, rt(H) = rt(H).

Hence, we get the following property,
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Figure 4.2: OPG(H3,�H3)

Property 44 The graphs OPG(H,�) and OPG(H,�) are the same for any history

H and �.

Definition 6 For a t-sequential history S, we define a version order �S as follows:

For two version kx,i, kx,j created by committed transactions Ti, Tj in S, 〈kx,i �S kx,j ⇔
Ti <S Tj〉.

Now we show the correctness of our graph characterization using the following lemmas

and theorem.

Lemma 45 Consider a legal t-sequential history S. Then the graph OPG(S,�S,) is

acyclic.

Proof: We numerically order all the transactions in S by their real-time order by

using a function ord. For two transactions Ti, Tj, we define ord(Ti) < ord(Tj) ⇔
Ti <S Tj. Let us analyze the edges of OPG(S,�S,) one by one:

• rt edges: It can be seen that all the rt edges go from a lower ord transaction to

a higher ord transaction.

• rvf edges: If Tj lookups kx from Ti in S then Ti is a committed transaction with

ord(Ti) < ord(Tj). Thus, all the rvf edges from a lower ord transaction to a

higher ord transaction.

• mv edges: Consider a successful rv method rvmj(kx, u) and a committed trans-

action Tk writing v to kx where u 6= v. Let ci be rvmj(kx, u)’s lastWrite. Thus,

updi(kx,i, u) ∈ evts(Ti). Thus, we have that ord(Ti) < ord(Tj). Now there are
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two cases w.r.t Ti: (1) Suppose ord(Tk) < ord(Ti). We now have that Tk � Ti.

In this case, the mv edge is from Tk to Ti. (2) Suppose ord(Ti) < ord(Tk) which

implies that Ti � Tk. Since S is legal, we get that ord(Tj) < ord(Tk). This

case also implies that there is an edge from ord(Tj) to ord(Tk). Hence, in this

case as well the mv edges go from a transaction with lower ord to a transaction

with higher ord.

Thus, in all the three cases the edges go from a lower ord transaction to higher

ord transaction. This implies that the graph is acyclic.

Lemma 46 Consider two histories H,H ′ that are equivalent to each other. Consider

a version order �H on the t-objects created by H. The mv edges mv(H,�H) induced

by �H are the same in H and H ′.

Proof: Since the histories are equivalent to each other, the version order �H is

applicable to both of them. It can be seen that the mv edges depend only on events

of the history and version order �. It does not depend on the ordering of the events

in H. Hence, the mv edges of H and H ′ are equivalent to each other.

Using these lemmas, we prove the following theorem.

Theorem 47 A valid history H is opaque iff there exists a version order �H such

that OPG(H,�H) is acyclic.

Proof: (if part): Here we have a version order �H such that GH = OPG(H,�) is

acyclic. Now we have to show that H is opaque. Since the GH is acyclic, a topological

sort can be obtained on all the vertices of GH . Using the topological sort, we can

generate a t-sequential history S. It can be seen that S is equivalent to H. Since S

is obtained by a topological sort on GH which maintains the real-time edges of H, it

can be seen that S respects the rt order of H, i.e ≺RTH ⊆≺RTS .

Similarly, since GH maintains return value-from (rvf) order of H, it can be seen

that if Tj lookups kx from Ti in H then Ti terminates before luj(kx) and Tj in S.

Thus, S is valid. Now it remains to be shown that S is legal. We prove this using

contradiction. Assume that S is not legal. Thus, there is a successful rv method

rvmj(kx, u) such that its lastWrite in S is ck and Tk updates value v( 6= u) to kx, i.e

updk(kx,k, v) ∈ evts(Tk). Further, we also have that there is a transaction Ti that

inserts u to kx, i.e updi(kx,i, u) ∈ evts(Ti). Since S is valid, as shown above, we have

that Ti ≺RTS Tk ≺RTS Tj.

Now in �H , if kx,k �H kx,i then there is an edge from Tk to Ti in GH . Otherwise

(kx,i �H kx,k), there is an edge from Tj to Tk. Thus, in either case, Tk can not be in

between Ti and Tj in S contradicting our assumption. This shows that S is legal.
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(Only if part): Here we are given that H is opaque and we have to show that

there exists a version order � such that GH = OPG(H,�)(= OPG(H,�), Prop-

erty 44) is acyclic. Since H is opaque there exists a legal t-sequential history S

equivalent to H such that it respects real-time order of H. Now, we define a version

order for S,�S as in Definition 6. Since the S is equivalent to H,�S is applicable to

H as well. From Lemma 45, we get that GS = OPG(S,�S) is acyclic. Now consider

GH = OPG(H,�S). The vertices of GH are the same as GS. Coming to the edges,

• rt edges: We have that S respects real-time order of H, i.e ≺RTH ⊆≺RTS . Hence,

all the rt edges of H are a subset of S.

• rvf edges: Since H and S are equivalent, the return value-from relation of H

and S are the same. Hence, the rvf edges are the same in GH and GS.

• mv edges: Since the version-order and the operations of the H and S are the

same, from Lemma 46 it can be seen that H and S have the same mv edges as

well.

Thus, the graph GH is a subgraph of GS. Since we already know that GS is acyclic

from Lemma 45, we get that GH is also acyclic.

4.3 MVOSTM Design and Data Structure

This section shows the design and data structure of proposed MVOSTM. HT-MVOSTM

is a hash table based MVOSTM that explores the idea of using multiple versions in

OSTM s for hash table object to achieve greater concurrency. The design of HT-

MVOSTM is similar to our proposed HT-OSTM [16] (explained in Section 3.3) con-

sisting of B buckets. If the bucket size B of hash table becomes one then hash table

based MVOSTMs boils down to the list based MVOSTMs (list-MVOSTM). All the

keys of the hash table in the range K are statically allocated to one of these buckets.

Each bucket consists of linked-list of nodes along with two sentinel nodes head and

tail with values -∞ and +∞ respectively. The structure of each node is as 〈key, lock,
marked, vl, nnext〉. The key is a unique value from the set of all keys K . All the

nodes are stored in increasing order in each bucket as shown in Figure 4.3 (a), similar

to any linked-list based concurrent set implementation [9,28]. In the rest of the doc-

ument, we use the terms key and node interchangeably. To perform any operation on

a key, the corresponding lock is acquired. marked is a boolean field which represents

whether the key is deleted or not. The deletion is performed in a lazy manner similar
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to the concurrent linked-lists structure [9]. If the marked field is true then key corre-

sponding to the node has been logically deleted; otherwise, it is present. The vl field

of the node points to the version list (shown in Figure 4.3 (b)) which stores multiple

versions corresponding to the key. The last field of the node is nnext which stores the

address of the next node. It can be seen that the list of keys in a bucket is as an exten-

sion of lazy-list [9]. Given a node n in the linked-list of bucket B, we denote its fields

as n.key(k.key), n.lock(k.lock), n.marked(k.marked), n.vl(k.vl), n.nnext(k.nnext).

1

2

3

(a) Underlying hash table

vl(version list)

(b) Data structure for maintaining versions

ts val rvl vnext

−∞ k5 k7 k8 +∞k1 k1 . . .

0 v0 v515

5 127 16 20 23

rvl(return value list)

. . .

ts

B

key lock marked vl nnext
T/F

Figure 4.3: HT-MVOSTM Design and Data Structure

The structure of each version in the vl of a key k is 〈ts, val, rvl, vnext〉 as shown

in Figure 4.3 (b). The field ts denotes the unique timestamp of the version. In our

algorithm, every transaction is assigned a unique timestamp when it begins which is

also its id. Thus ts of this version is the timestamp of the transaction that created it.

All the versions in the vl of k are sorted by ts. Since the timestamps are unique, we de-

note a version, ver of a node n with key k having ts j as n.vl[j].ver or k.vl[j].ver. The

corresponding fields in the version as k.vl[j].ts, k.vl[j].val, k.vl[j].rvl, k.vl[j].vnext.

The field val contains the value updated by an update transaction. If this version

is created by an insert method STM inserti(ht, k, v) by transaction Ti, then val will

be v. On the other hand, if the method is STM deletei(ht, k) with the return value v,

then val will be null. In this case, as per the algorithm, the node of key k will also be

marked. HT-MVOSTM algorithm does not immediately physically remove deleted

keys from the hash table. The need for this is explained below. Thus a rv method

(STM delete() or STM lookup()) on key k can return null when it does not find the

key or encounters a null value for k.

The rvl field stands for return value list which is a list of all the transactions that

executed rv method on this version, i.e., those transactions which returned val. The

field vnext points to the next available version of that key.

Number of versions in vl (the length of the list) as per HT-MVOSTM can be

bounded or unbounded. It can be bounded by having a limit on the number of
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versions such as K. Whenever a new version ver is created and is about to be

added to vl, the length of vl is checked. If the length becomes greater than K, the

version with lowest ts (i.e., the oldest) is replaced with the new version ver and thus

maintaining the length back to K. If the length is unbounded, then we need a garbage

collection scheme to delete unwanted versions for efficiency.

Marked Nodes: HT-MVOSTM stores keys even after they have been deleted (nodes

which have marked field as true). This is because some other concurrent transac-

tions could read from a different version of this key and not the null value inserted

by the deleting transaction. Consider for instance the transaction T1 performing

STM lookup(ht, k) as shown in Figure 1.4 (b) of SubSection 1.4.1. Due to the pres-

ence of previous version v0, HT-MVOSTM could return this earlier version v0 for

STM lookup(ht, k) method. Whereas, it is not possible for HT-OSTM to return the

version v0 because k has been removed from the system after the delete by T2. In

that case, T1 would have to be aborted. Thus as explained in Section 4.1, storing

multiple versions increases the concurrency.

To store deleted keys along with live keys (or unmarked node) in a lazy-list will

increase the traversal time to access unmarked nodes. Consider the Figure 4.4, in

which there are four keys 〈k5, k8, k9, k12〉 present in the list. Here 〈k5, k8, k9〉 are

marked (or deleted) nodes while k12 is unmarked. Now, consider an access the key

k12 as by HT-MVOSTM as a part of one of its methods. Then HT-MVOSTM would

have to unnecessarily traverse the marked nodes to reach key k12.

This motivated us to modify the lazy-list structure of nodes in each bucket to form

a skip list based on red and blue links. We denote it as lazy red-blue list or lazyrb-list.

This idea has been inherited from proposed HT-OSTM [16] described in Section 3.3.

lazyrb-list consists of nodes with two links, red link (or RL) and blue link (or BL).
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The node which are not marked (or not deleted) are accessible from the head via BL.

While all the nodes including the marked ones can be accessed from the head via

RL. With this modification, let us consider the above example of accessing unmarked

key k12. It can be seen that k12 can be accessed much more quickly through BL as

shown in Figure 4.5. Using the idea of lazyrb-list, we have modified the structure of

each node as 〈 key, lock, marked, vl, RL, BL〉. Further, for a bucket B, we denote its

linked-list as B.lazyrb-list.

4.4 The Working of MVOSTM

In this section, we show the working of each MVOSTM method along with their

pseudocode. As explained in Section 4.1, HT-MVOSTM also exports the same meth-

ods exported by proposed HT-OSTM as STM begin(), STM insert(), STM delete(),

STM lookup(), STM tryC () methods. STM delete(), STM lookup() are rv methods

while STM insert(), STM delete() are upd methods. We treat STM delete() as both

rv method as well as upd method. The rv methods return the current value of the

key. The upd methods, update to the keys are first noted down in local log, txLog.

Then in the STM tryC () method after validations of these updates are transferred

to the shared memory. In this section, we now explain the high-level idea of all the

methods as follows:

STM begin() : A thread invokes a new transaction Ti using this method. The trans-

action Ti local log txLogi is initialized at Line 3. This method returns a unique id to

the invoking thread by incrementing an atomic counter at Line 5. This unique id is

also the timestamp of the transaction Ti. For convenience, we use the notation that

i is the timestamp (or id) of the transaction Ti.

Algorithm 23 STM begin(): It provides the local log and unique id to each trans-
action.

1: procedure STM begin()
2: /*Initialize the local log of transaction*/
3: txLog ← new txLog().
4: /*Get the unique transaction id (t id) while incrementing the counter

atomically*/
5: t id ← get&inc(counter).
6: return 〈t id〉.
7: end procedure

rv methods - STM deletei(ht, k, v) and STM lookupi(ht, k, v) : Both these methods

return the current value of key k. Algorithm 24 gives the high-level overview of these
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methods. First, the algorithm checks to see if the given key is already in the local

log, txLog of Ti (Line 9). If the key is already there then the current rv method is

not the first method on k and is a subsequent method of Ti on k. So, we can return

the value of k from the txLogi.

If the key is not present in the txLogi, then HT-MVOSTM searches into shared

memory. Specifically, it searches the bucket to which k belongs to. Every key in the

range K is statically allocated to one of the B buckets. So the algorithms search

for k in the corresponding bucket, say Bk to identify the appropriate location, i.e.,

identify the correct predecessor or pred and current or curr keys in the lazyrb-list of

Bk without acquiring any locks similar to the search in lazy-list [9]. Since each key

has two links, RL and BL, the algorithm identifies four node references: two pred

and two curr according to red and blue links. They are stored in the form of an

array with preds[0] and currs[1] corresponding to blue links; preds[1] and currs[0]

corresponding to red links. If both preds[1] and currs[0] nodes are unmarked then the

pred, curr nodes of both red and blue links will be the same, i.e., preds[0] = preds[1]

and currs[0] = currs[1]. Thus depending on the marking of pred, curr nodes, a total

of two, three or four different nodes will be identified. Here, the search ensures that

preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤ currs[1].key.

Next, the re-entrant locks on all the pred, curr keys are acquired in increasing

order to avoid the deadlock. Then all the pred and curr keys are validated by rv -

Validation() in Line 14 as follows: (1) If pred and curr nodes of blue links are

not marked, i.e, (¬preds[0].marked) && (¬currs[1].marked). (2) If the next links

of both blue and red pred nodes point to the correct curr nodes: (preds[0].BL =

currs[1]) && (preds[1].RL = currs[0]).

If any of these checks fail, then the algorithm retries to find the correct pred and

curr keys. It can be seen that the validation check is similar to the validation in

concurrent lazy-list [9].

Next, we check if k is in Bk.lazyrb-list. If k is not in Bk, then we create a new

node for k as: 〈key = k, lock = false,marked = false, vl = v,RL = φ,BL = φ〉 and

insert it into Bk.lazyrb-list such that it is accessible only via RL since this node is

marked (Line 21). This node will have a single version v as: 〈ts = 0, val = null, rvl =

i, vnext = φ〉. Here invoking transaction Ti is creating a version with timestamp 0 to

ensure that rv methods of other transactions will never abort. As we have explained

in Figure 1.4 (b) of SubSection 1.4.1, even after T2 deletes k1, the previous value of

v0 is still retained. Thus, when T1 invokes lu on k1 after the delete on k1 by T2,

HT-MVOSTM will return v0 (as previous value). Hence, each rv methods will find

a version to read while maintaining the infinite version corresponding to each key
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k. In rvl, Ti adds the timestamp as i in it and vnext is initialized to empty value.

Since val is null and the n, this version and the node is not technically inserted into

Bk.lazyrb-list.

If k is in Bk.lazyrb-list then, k is the same as currs[0] or currs[1] or both. Let n

be the node of k in Bk.lazyrb-list. We then find the version of n, verj which has the

timestamp j such that j has the largest timestamp smaller than i (timestamp of Ti).

Add i to verj’s rvl (Line 29). Then release the locks, update the local log txLogi in

Line 31 and return the value stored in verj.val in Line 33.

Algorithm 24 rv method(ht, k, v): Could be either STM deletei(ht, k, v) or
STM lookupi(ht, k, v) on key k that maps to bucket Bk.

8: procedure rv methodi(ht, k, v)
9: if (k ∈ txLogi) then

10: Update the local log and return val.
11: else
12: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and

RL in bucket Bk.
13: Acquire the locks on preds[] and currs[] in increasing order.
14: if (! rv V alidation(preds[], currs[])) then
15: Release the locks and goto Line 12.
16: end if
17: if (k /∈ Bk.lazyrb-list) then
18: Create a new node n with key k as: 〈 key = k, lock = false, marked =

false, vl = v, RL = φ, BL = φ 〉.
19: /*The vl consists of a single element v with ts as 0*/
20: Create the version v as: 〈ts = 0, val = null, rvl = i, vnext = φ〉.
21: Insert n into Bk.lazyrb-list such that it is accessible only via RLs. /*n

is marked*/
22: Release the locks; update the txLogi with k.
23: return 〈null〉.
24: end if
25: Identify the version verj with ts = j such that j is the largest timestamp

smaller than i.
26: if (verj == null) then
27: goto Line 18.
28: end if
29: Add i into the rvl of verj.
30: retV al = verj.val.
31: Release the locks; update the txLogi with k and retV al.
32: end if
33: return 〈retV al〉.
34: end procedure
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STM insert(): The actual insertion will happen in the STM tryC() method. First,

it identifies the node corresponding to the key in local log at Line 37. If the node exists

then it updates the local log with useful information like value, operation name and

status for the node corresponding to the key at Line 40 for later use in STM tryC().

Otherwise, it will create a local log at Line 38 and update it at Line 40.

Algorithm 25 STM insert(): Actual insertion happens in the STM tryC().

35: procedure STM insert()
36: /*First identify the node corresponding to the key into local*/
37: if (k /∈ txLogi) then
38: Create local log and append it into increasing order of keys.
39: else
40: Update the local log with value, operation name and status.
41: end if
42: end procedure

upd methods - STM insert() and STM delete(): Both the methods create a version

corresponding to the key k. The actual effect of STM insert() and STM delete() in

shared memory will take place in STM tryC (). Algorithm 26 represents the high-level

overview of STM tryC ().

Initially, to avoid deadlocks, algorithm sorts all the keys in increasing order which

are present in the local log, txLogi. In STM tryC (), txLogi consists of upd methods

(STM insert() or STM delete()) only. For all the upd methods (opni) it searches

the key k in the shared memory corresponding to the bucket Bk. It identifies the

appropriate location (pred and curr) of key k using BL and RL (Line 48) in the

lazyrb-list of Bk without acquiring any locks similar to rv method explained above.

Next, it acquires the re-entrant locks on all the pred and curr keys in increasing

order. After that, all the pred and curr keys are validated by tryC Validation() in

Line 50 as follows: (1) It does the rv Validation() as explained above in the rv -

method. (2) If key k exists in the Bk.lazyrb-list and let n as a node of k. Then

algorithm identifies the version of n, verj which has the timestamp j such that j has

the largest timestamp smaller than i (timestamp of Ti). If any higher timestamp k of

Tk than timestamp i of Ti exist in verj.rvl then algorithm returns Abort in Line 51.

If all the above steps are true then each upd methods exist in txLogi will take the

effect in the shared memory after doing the intraTransValidation() in Line 56. If two

upd methods of the same transaction have at least one common shared node among its

recorded pred and curr keys, then the previous upd method effect may overwrite if the

current upd method of pred and curr keys are not updated according to the updates

done by the previous upd method. Thus to solve this we have intraTransValidation()
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that modifies the pred and curr keys of current operation based on the previous

operation in Line 56.

Next, we check if upd method is STM insert() and k is in Bk.lazyrb-list. If k

is not in Bk, then create a new node n for k as: 〈key = k, lock = false,marked =

false, vl = v,RL = φ,BL = φ〉. This node will have two versions ver as 〈ts =

0, val = null, rvl = φ,maxrvl = φ, vnext = i〉 for T0 and 〈ts = i, val = v, rvl =

φ,maxrvl = φ, vnext = φ〉 for Ti. Ti is creating a version with timestamp 0 to ensure

that rv methods of other transactions will never abort. For second version, i is the

timestamp of the transaction Ti invoking this method; marked field sets to false

because the node is inserted in the BL. rvl and vnext are initialized to empty values.

We set the val as v and insert n into Bk.lazyrb-list such that it is accessible via RL as

well as BL and set the lock field to be true (Line 60). If k is in Bk.lazyrb-list then, k

is the same as currs[0] or currs[1] or both. Let n be the node of k in Bk.lazyrb-list.

Then, we create the version v as: 〈ts = i, val = v, rvl = φ, vnext = φ〉 and insert the

version into Bk.lazyrb-list such that it is accessible via RL as well as BL (Line 62).

Subsequently, we check if upd method is STM delete() and k is in Bk.lazyrb-list.

Let n be the node of k in Bk.lazyrb-list. Then create the version v as: 〈ts = i, val =

null, rvl = φ, vnext = φ〉 and insert the version into Bk.lazyrb-list such that it is

accessible only via RL (Line 65).

Finally, at Line 67 it updates the pred and curr of opni in local log, txLogi. At

Line 69 releases the locks on all the pred and curr in increasing order of keys to avoid

deadlocks and return Commit.

We illustrate the helping methods of rv method and upd method as follows:

rv Validation(): It is called by both the rv method and upd method. It identifies

the conflicts among the concurrent methods of different transactions. Consider an

example shown in Figure 4.6, where two concurrent conflicting methods of different

transactions are working on the same key k3. Initially, at stage s1 in Figure 4.6

(c) both the conflicting method optimistically (without acquiring locks) identify the

same pred and curr keys for key k3 from Bk.lazyrb-list in Figure 4.6 (a). At stage

s2 in Figure 4.6 (c), method ins1(k3) of transaction T1 acquired the lock on pred and

curr keys and inserted the node into Bk.lazyrb-list as shown in Figure 4.6 (b). After

successful insertion by T1, pred and curr has been changed for lu2(k3) at stage s3

in Figure 4.6 (c). So, the above modified information is delivered by rv Validation()

method at Line 72 when (preds[0].BL 6= currs[1]) for lu2(k3). After that again it will

find the new pred and curr for lu2(k3) and eventually it will commit.
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Algorithm 26 STM tryC(Ti): Validate the upd methods of the transaction and then
commit.

43: procedure STM tryC(Ti)
44: /*Operation name (opn) could be either STM insert() or STM delete ()*/
45: /*Sort the keys of txLogi in increasing order.*/
46: for all (opni ∈ txLogi) do
47: if ((opni == STM insert()) || (opni == STM delete())) then
48: Search in lazyrb-list to identify the preds[] and currs[] for k of opni

using BL and RL in bucket Bk.
49: Acquire the locks on preds[] and currs[] in increasing order.
50: if (! tryC V alidation()) then
51: return 〈Abort〉.
52: end if
53: end if
54: end for
55: for all (opni ∈ txLogi) do
56: intraTransV alidation() modifies the preds[] and currs[] of current

operation which would have been updated by the previous operation of
the same transaction.

57: if ((opni == STM insert()) && (k /∈ Bk.lazyrb-list)) then
58: Create new node n with k as: 〈key = k, lock = false, marked = false,

vl = v, RL = φ, BL = φ〉.
59: Create two versions ver as: 〈ts=0, val=null, rvl=φ, maxrvl = φ,

vnext=i〉 for T0 and 〈ts=i, val=v, rvl=φ, maxrvl = φ, vnext=φ〉
for Ti.

60: Insert node n into Bk.lazyrb-list such that it is accessible via RL as
well as BL /*lock sets true*/.

61: else if (opni == STM insert()) then
62: Add the version v as: 〈ts = i, val = v, rvl = φ, vnext = φ〉 into

Bk.lazyrb-list such that it is accessible via RL as well as BL.
63: end if
64: if (opni == STM delete()) then
65: Add the version i as: 〈ts=i, val=null, rvl=φ, vnext=φ〉 into

Bk.lazyrb-list such that it is accessible only via RL.
66: end if
67: Update the preds[] and currs[] of opni in txLogi.
68: end for
69: Release the locks; return 〈Commit〉.
70: end procedure
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Algorithm 27 rv Validation(preds[], currs[]): Validate against the conflicting
method of different transactions.

71: procedure rv validation(preds[], currs[])
72: if ((preds[0].marked)||(currs[1].marked)||(preds[0].BL) 6=

currs[1]||(preds[1].RL) 6= currs[0]) then
73: return 〈false〉.
74: else
75: return 〈true〉.
76: end if
77: end procedure

−∞

C1

s2

s1

C2

s3

(c) Two concurrent conflicting methods

T1

T2k3

k1 +∞k5 k1 +∞k5−∞

(a) Underlying list at stage s1 (b) Successful insertion of k3 at stage s2

ins1(ht, k3, v3)

tryC
lu2(ht, k3, v3)

Figure 4.6: rv Validation

Algorithm 28 tryC Validation(): It maintains the order among the transactions.

78: procedure tryC validation()

79: if (! rv V alidation(preds[], currs[])) then

80: Release the locks and retry.

81: end if

82: if (k ∈ Bk.lazyrb-list) then

83: Identify the version verj with ts = j such that j is the largest timestamp

smaller than i.

84: for all Tk in verj.rvl do

85: if (TS((Tk) > TS(Ti))) then

86: return 〈false〉.
87: end if

88: end for

89: end if

90: return 〈true〉.
91: end procedure

tryC Validation(): It is called by upd method in STM tryC (). First it does the

rv Validation() in Line 79. If its successful and key k exists in the Bk.lazyrb-list

and let n as a node of k. Then algorithm identifies the version of n, verj which has

the timestamp j such that j has the largest timestamp smaller than i (timestamp of
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Ti). If any higher timestamp Tk than timestamp Ti exist in verj.rvl then algorithm

returns false (in Line 86) and eventually return Abort in Line 51. Consider an example

as shown in Figure 4.7 (a), where second method ins1(k3) of transaction T1 returns

Abort because higher timestamp of transaction T2 is already present in the rvl of

version T0 identified by T1 in Figure 4.7 (b).

0

2

lu1(ht, k2,0, null)

lu2(ht, k3,0, null)

T1

T2
C2

ins1(ht, k3, Abort) A1

k3
rvl T1

ins2(ht, k2,2, v)

(a) Opaque history: T1 Abort (b) Underlying Data structure(DS)

Figure 4.7: tryC Validation

Algorithm 29 intraTransValidation(): It helps the upcoming method of the same
transaction.

92: procedure intraTransValidation()

93: if ((preds[0].marked)||(preds[0].BL 6= currs[1])) then

94: if (opnk == Insert) then

95: /*Modify the pred of current transaction Ti with the help of previous

transaction Tk*/

96: /*Set the Ti preds[0] as Tk currs[1]*/

97: preds[0]i ← preds[0]k.BL.

98: else

99: /*Set the Ti preds[0] as Tk preds[0]*/

100: preds[0]i ← preds[0]k.

101: end if

102: end if

103: if (preds[1].RL6= currs[0]) then

104: /*Set the Ti preds[1] as Tk currs[0]*/

105: preds[1]i ← preds[1]k.RL.

106: end if

107: end procedure

intraTransValidation(): It is called by upd method in STM tryC (). If two upd -

methods of the same transaction have at least one common shared node among its

recorded pred and curr keys, then the previous upd method effect may overwrite if the

current upd method of pred and curr keys are not updated according to the updates
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done by the previous upd method. Thus to solve this we have intraTransValidation()

that modifies the pred and curr keys of current operation based on the previous

operation from Line 93 to Line 106. Consider an example as shown in Figure 4.8,

where two upd methods of transaction T1 are ins11(k3) and ins12(k5) in Figure 4.8

(c). At stage s1 in Figure 4.8 (c) both the upd methods identify the same pred

and curr from underlying data structure as Bk.lazyrb-list shown in Figure 4.8 (a).

After the successful insertion done by first upd method at stage s2 in Figure 4.8

(c), key k3 is part of Bk.lazyrb-list (Figure 4.8 (b)). At stage s3 in Figure 4.8 (c),

ins12(k5) identified (preds[0].BL 6= currs[1]) in intraTransValidation() at Line 93.

So, it updates the preds[0] in Line 97 for correct updation in Bk.lazyrb-list.

−∞

k3

(a) Underlying list at stage s1

k1 +∞k5 k1 +∞k5−∞ T1

C1

(c) Two update methods of T1(b) Successful insertion of k3 at stage s2

ins11(ht, k3, v3) ins12(ht, k5, v5)

s3s2s1

Figure 4.8: Intra transaction validation

4.5 Correctness of MVOSTM

In this section, we will prove that our implementation satisfies opacity. Consider

the history H generated by MVOSTM algorithm. Recall that only the STM begin(),

rv method, STM insert(), upd method (or STM tryC()) access shared memory.

Note that H is not necessarily sequential: the transactional methods can execute

in an overlapping manner. To reason about correctness, we have to prove H is

opaque. Since we defined opacity for histories which are sequential, we order all the

overlapping methods in H to get an equivalent sequential history. We then show that

this resulting sequential history satisfies opacity.

We order overlapping methods of H as follows: (1) two overlapping STM begin()

methods based on the order in which they obtain lock over the counter; (2) two rv -

methods accessing the same key k by their order of unlocking over 〈preds[0], preds[1],

currs[0], currs[1]〉 of k; (3) an rv method rvmi(k) and a STM insertj(), of a trans-

action Tj accessing the same key k, are ordered by their order of unlocking over

〈preds[0], preds[1], currs[0], currs[1]〉 of k; (4) an rv method rvmi(k) and a STM tryCj(),

of a transaction Tj which has written to k, are similarly ordered by their order of un-

locking over 〈preds[0], preds[1], currs[0], currs[1]〉 of k; (5) two STM insert() methods
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accessing the same key k by their order of unlocking over 〈preds[0], preds[1], currs[0],

currs[1]〉 of k; (6) a STM inserti() and a STM tryCj(), of a transaction Tj which has

written to k, are similarly ordered by their order of unlocking over 〈preds[0], preds[1],

currs[0], currs[1]〉 of k; (7) similarly, two STM tryC () methods based on the order in

which they unlock over 〈preds[0], preds[1], currs[0], currs[1]〉 of same key k.

Combining the real-time order of events with above-mentioned order, we obtain a

partial order which we denote as lockOrderH . (It is a partial order since it does not

order overlapping rv methods on different keys or an overlapping rv method and a

STM tryC which do not access any common key).

In order for H to be sequential, all its methods must be ordered. Let α be a total

order or linearization of methods of H such that when this order is applied to H, it is

sequential. We denote the resulting history as Hα = linearize(H,α). We now argue

about the validity of histories generated by the algorithm.

Lemma 48 Consider a history H generated by the MVOSTM algorithm. Let α be

a linearization of H which respects lockOrderH , i.e. lockOrderH ⊆ α. Then Hα =

linearize(H,α) is valid.

Proof: Consider a successful rv method rvmi(k) that returns value v. The rv -

method first obtains the lock on 〈preds[0], preds[1], currs[0], currs[1]〉 of key k. Thus

the value v returned by the rv method must have already been stored in k’s version

list by a transaction, say Tj when it successfully returned OK from its STM tryC

method. For this to have occurred, Tj must have successfully locked and released

〈preds[0], preds[1], currs[0], currs[1]〉 of k prior to Ti’s locking method. Thus from

the definition of lockOrderH , we get that STM tryCj(ok) occurs before rvmi(k, v)

which also holds in α.

It can be seen that for proving correctness, any linearization of a history H is

sufficient as long as the linearization respects lockOrderH . The following lemma

formalizes this intuition,

Lemma 49 Consider a history H. Let α and β be two linearizations of H such that

both of them respect lockOrderH , i.e. lockOrderH ⊆ α and lockOrderH ⊆ β. Then,

Hα = linearize(H,α) is opaque if Hβ = linearize(H, β) is opaque.

Proof: From Lemma 48, we get that both Hα and Hβ are valid histories. Now let

us consider each case

If: Assume that Hα is opaque. Then, we get that there exists a legal t-sequential

history S that is equivalent to Hα. From the definition of Hβ, we get that Hα

is equivalent to Hβ. Hence, S is equivalent to Hβ as well. We also have that,
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≺RTHα⊆≺RTS . From the definition of lockOrderH , we get that ≺RTHα=≺RTlockOrderH=≺RT
Hβ .

This automatically implies that ≺RT
Hβ⊆≺RTS . Thus Hβ is opaque as well.

Only if: This proof comes from symmetry since Hα and Hβ are not distinguishable.

This lemma shows that, given a history H, it is enough to consider one sequential

history Hα that respects lockOrderH for proving correctness. If this history is opaque,

then any other sequential history that respects lockOrderH is also opaque.

Consider a history H generated by MVOSTM algorithm. We then generate a

sequential history that respects lockOrderH . For simplicity, we denote the resulting

sequential history of MVOSTM as Hto. Let Ti be a committed transaction in Hto

that writes to k (i.e. it creates a new version of k).

To prove the correctness, we now introduce some more notations. We define

Hto.stl(Ti, k) as a committed transaction Tj such that Tj has the smallest timestamp

larger (or stl) than Ti in Hto that writes to k in Hto. Similarly, we define Hto.lts(Ti, k)

as a committed transaction Tk such that Tk has the largest timestamp smaller (or lts)

than Ti that writes to k in Hto. Using these notations, we describe the following

properties and lemmas on Hto,

Property 50 Every transaction Ti is assigned a unique numeric timestamp i.

Property 51 If a transaction Ti begins after another transaction Tj then j < i.

Lemma 52 If a transaction Tk looks up key kx from (a committed transaction) Tj

then Tj is a committed transaction updating to kx with j being the largest timestamp

smaller than k. Formally, Tj = Hto.lts(Tk, kx).

Proof: We prove it by contradiction. So, assume that transaction Tk looks up key kx

from Ti that has committed before Tj so, from Property 51, i < k and k < j i.e. i is

not largest timestamp smaller than k. But given statement in this lemma is i < j < k

which contradicts our assumption. Hence, Tk looks up key kx from Tj which is the

largest timestamp smaller than k.

Lemma 53 Suppose a transaction Tk looks up kx from (a committed transaction) Tj

in Hto, i.e. {updj(kx,j, v), rvmk(kx,i, v)} ∈ evts(Hto). Let Ti be a committed trans-

action that updates to kx, i.e. updi(kx,i, u) ∈ evts(Ti). Then, the timestamp of Ti is

either less than Tj’s timestamp or greater than Tk’s timestamp, i.e. i < j ⊕ k < i

(where ⊕ is XOR operator).
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Proof: We will prove this by contradiction. Assume that i < j ⊕ k < i is not true.

This implies that, j < i < k. But from the implementation of rv method and STM -

tryC methods, we get that either transaction Ti is aborted or Tk looks up k from Ti

in H. Since neither of them are true, we get that j < i < k is not possible. Hence,

i < j ⊕ k < i.

To show that Hto satisfies opacity, we use the graph characterization developed

above in Section 4.2. For the graph characterization, we use the version order defined

using timestamps. Consider two committed transactions Ti, Tj such that i < j.

Suppose both the transactions write to key k. Then the versions created are ordered

as ki � kj. We denote this version order on all the keys created as�to. Now consider

the opacity graph of Hto with version order as defined by�to, Gto = OPG(Hto,�to).

In the following lemmas, we will prove that Gto is acyclic.

Lemma 54 All the edges in Gto = OPG(Hto,�to) are in timestamp order, i.e. if

there is an edge from Tj to Ti then the j < i.

Proof: To prove this, let us analyze the edges one by one,

• rt edges: If there is an rt edge from Tj to Ti, then Tj terminated before Ti

started. Hence, from Property 51 we get that j < i.

• rvf edges: This follows directly from Lemma 52.

• mv edges: The mv edges relate a committed transaction Tk updates to a key

k, upk(k, v); a successful rv method rvmj(k, u) belonging to a transaction Tj

looks up k updated by a committed transaction Ti, upi(k, u). Transactions Ti, Tk

create new versions ki, kk respectively. According to�to, if kk �to ki, then there

is an edge from Tk to Ti. From the definition of �to this automatically implies

that k < i.

On the other hand, if ki �to kk then there is an edge from Tj to Tk. Thus, in

this case, we get that i < k. Combining this with Lemma 53, we get that j < k.

Thus in all the cases, we have shown that if there is an edge from Tj to Ti then the

j < i.

Theorem 55 Any history Hto generated by MVOSTM is opaque.

Proof: From the definition of Hto and Lemma 48, we get that Hto is valid. We show

that Gto = OPG(Hto,�to) is acyclic. We prove this by contradiction. Assume that

Gto contains a cycle of the form, Tc1 → Tc2 → ..Tcm → Tc1. From Lemma 54 we get
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that, c1 < c2 < ... < cm < c1 which implies that c1 < c1. Hence, a contradiction.

This implies that Gto is acyclic. Thus from Theorem 47, we get that Hto is opaque.

Now, it is left to show that our algorithm is live, i.e., under certain conditions,

every operation eventually completes. We have to show that the transactions do not

deadlock. This is because all the transactions lock all 〈preds[0], preds[1], currs[0],

currs[1]〉 of keys in a predefined order. As discussed earlier, the STM system orders

all 〈preds[0], preds[1], currs[0], currs[1]〉 of keys. We denote this order as accessOr-

derand denote it as ≺ao. Thus k1 ≺ao k2 ≺ao ... ≺ao kn.

From accessOrder, we get the following property

Property 56 Suppose transaction Ti accesses shared objects p and q in H. If p is

ordered before q in accessOrder, then lock(p) by transaction Ti occurs before lock(q).

Formally, (p ≺ao q)⇔ (lock(p) <H lock(q)).

Theorem 57 MVOSTM with unbounded versions ensures that rv methods do not

abort.

Proof: This is self-explanatory with the help of MVOSTM algorithm because each

key is maintaining multiple versions in the case of unbounded versions. So rv method

always finds a correct version to read it from. Thus, rv methods do not abort.

4.6 Experimental Evaluations

This section presents the experimental analysis of MVOSTM. We have two main

goals in this section: (1) evaluating the benefits of Multi-Version Object-based STMs

(MVSOTM) over the Single-Version Object-based STMs (OSTM), and (2) evaluating

the benefit of Multi-Version Object-based STMs over Single and Multi-Version Read-

Write STMs. We use the hash table based MVOSTM (HT-MVOSTM ) described in

Section 4.4 as well as the corresponding list based MVOSTM (list-MVOSTM ) which

implements the list object. We also consider extensions of these multi-version object-

based STMs to reduce the memory usage. Specifically, we consider a variant that

implements garbage collection with unbounded versions and another variant where

the number of versions never exceeds a given threshold K.

STM implementations: To show the performance of proposed MVOSTM against

state-of-the-art STMs, we have taken the implementation of NOrec-list [6], Boosting-

list [13], Trans-list [12], ESTM [7], and RWSTM [3] directly from the TLDS frame-

work1. Along with this, we have considered the implementation of OSTM proposed

1TLDS Framework: https://ucf-cs.github.io/tlds/
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by us in Section 3.7 and MVTO [15] defined in PDCRL library2. We implemented

our algorithms in C++. We use counter application (explained in SubSection 3.7.1)

where each STM algorithm first creates N-threads, each thread, in turn, spawns a

transaction. Each transaction exports the following methods as follows: STM be-

gin(), STM insert(), STM lookup(), STM delete() and STM tryC () as described in

Section 4.4.

Methodology:3 We have considered three types of workloads: (W1) Lookup Inten-

sive (90% lookup, 5% insert and 5% delete), (W2) Mid Intensive (50% lookup, 25%

insert and 25% delete), and (W3) Update Intensive (10% lookup, 45% insert and 45%

delete). The experiments are conducted by varying number of threads from 2 to 64 in

power of 2, with 1000 keys randomly chosen. We assume that the hash table of HT-

MVOSTM has five buckets and each of the bucket (or list in case of list-MVOSTM )

can have a maximum size of 1000 keys. Each transaction, in turn, executes 10 oper-

ations which include STM lookup(), STM delete() and STM insert() operations. For

accuracy, we take an average over 10 results for the final result in which the first run

is discarded and considered as a warm-up result for each experiment.

4.6.1 Result Analysis

For efficient memory utilization, we developed two variants of MVOSTM . The first,

MVOSTM-GC , uses unbounded versions but performs Garbage Collection. This is

achieved by deleting non-latest versions whose timestamp is less than the

timestamp of the least live transaction. For the sake of better understanding,

the detailed description of garbage collection method is explained below. MVOSTM-

GC gave a performance gain of 15% over MVOSTM without garbage collection in

the best case. The second, KOSTM , keeps at most K-versions by deleting the oldest

version when (K + 1)th version is created by a current transaction. As KOSTM

has limited number of versions while MVOSTM-GC can have infinite versions, the

memory consumed by KOSTM is 21% less than MVOSTM .

We have integrated these variants in both hash table based MVOSTM (i.e. HT-

MVOSTM-GC , HT-KOSTM ) and linked-list based MVOSTMs (i.e. list-MVOSTM-

GC , list-KOSTM ), we observed that these two variants increase the performance,

concurrency and reduces the number of aborts as compared to MVOSTM.

Experimental results show that KOSTM performs better than MVOSTM-GC and

MVOSTM . Here, MVOSTM and MVOSTM-GC maintain unbounded versions which

2PDCRL Library: https://github.com/PDCRL
3Proposed MVOSTM code is available here: https://github.com/PDCRL/MVOSTM
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increase the search time to find the correct version and GC behaves as an overhead

whereas KOSTM maintains only K versions corresponding to each key so, KOSTM

reduces the search time to find the correct version to return/replace, does not use

GC, and performs best. Proposed HT-KOSTM achieves a performance speedup of

1.22, 1.15 for workload W1, 1.1, 1.06 for workload W2, and 1.15, 1.08 for workload

W3 as compared to proposed HT-MVOSTM and HT-MVOSTM-GC respectively as

shown in Figure 4.9. Whereas, proposed list-KOSTM gives a speedup of 1.1, 1.07

for workload W1, 1.25, 1.20 for workload W2, and 1.25, 1.13 for workload W3 over

the proposed list-MVOSTM and list-MVOSTM-GC respectively as demonstrated in

Figure 4.10. HT-KOSTM and list-KOSTM have the least number of aborts than its

variants for all the type of workloads illustrated in Figure 4.11 and Figure 4.12.

Figure 4.13 demonstrates that HT-KOSTM outperforms state-of-the-art hash ta-

ble based STMs (HT-OSTM [16] proposed in Chapter 3, ESTM [7], RWSTM [3],

HT-MVTO [15], HT-KSTM [15]) by a factor of 3.5, 3.8, 3.1, 2.6, 1.8 for workload

W1, by a factor of 1.4, 3, 4.85, 10.1, 7.8 for workload W2, and by a factor of 2, 4.25,

19, 69, 59 for workload W3 respectively. Here, ESTM, RWSTM, and HT-MVTO

work on lower level. Among them ESTM and RWSTM maintain single-version cor-

responding to each key but HT-MVTO maintains multiple versions. Apart from

these, HT-OSTM and HT-KOSTM works on higher level and HT-OSTM maintains

single-version whereas HT-KOSTM maintains multiple versions. Hence, HT-KOSTM

performs best.

Similarly, list-KOSTM outperforms state-of-the-art list based STMs (list-OSTM

[16] proposed in Chapter 3, Trans-list [12], Boosting-list [13], NOrec-list [6], list-

MVTO [15], list-KSTM [15]) by a factor of 2.2, 20, 22, 24, 12, 6 for workload W1,

by a factor of 1.58, 20.9, 25.9, 29.4, 26.8, 19.68 for workload W2, and by a factor of

2, 35, 41, 47, 148, 112 for workload W3 respectively shown in Figure 4.14. Though,

list-OSTM, Trans-list, and boosting-list work on higher level but all of them maintain

single-version corresponding to each key whereas list-KOSTM work on higher level

and maintains multiple versions. So, list-KOSTM performs best.

list-KOSTM performs much better than list-OSTM for lookup intensive workload

because of maintaining multiple versions, most of the lookup found a correct version

to return. Whereas for update intensive workload, replacing the oldest version is

taking time. So, list-KOSTM performs slightly better than list-OSTM for update

intensive workload.

Due to minimum time taken by transactions to commit, HT-KOSTM and list-

KOSTM have the least number of aborts against state-of-the-art STMs for all the

type of workloads illustrated in Figure 4.15 and Figure 4.16.

118



2 4 8 1 6 3 2 6 4
0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 1 0

0 . 0 0 1 5

0 . 0 0 2 0

0 . 0 0 2 5

0 . 0 0 3 0

0 . 0 0 3 5

2 4 8 1 6 3 2 6 4
0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 1 0

0 . 0 0 1 5

0 . 0 0 2 0

0 . 0 0 2 5

0 . 0 0 3 0

2 4 8 1 6 3 2 6 4
0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 1 0

0 . 0 0 1 5

0 . 0 0 2 0

0 . 0 0 2 5

0 . 0 0 3 0

( a )  W 1 :  L o o k u p  I n t e n s i v e

Tim
e (

se
c.)

N u m b e r  o f  T h r e a d s

 H T - K O S T M   H T - M V O S T M - G C   H T - M V O S T M

( b )  W 2 :  M i d  I n t e n s i v e
N u m b e r  o f  T h r e a d s

( c )  W 3 :  U p d a t e  I n t e n s i v e
N u m b e r  o f  T h r e a d s
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Figure 4.13: Performance of HT-KOSTM against State-of-the-art hash table based
STMs
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Figure 4.14: Performance of list-KOSTM against State-of-the-art list based STMs
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Figure 4.15: Aborts Count of HT-KOSTM against State-of-the-art hash table based
STMs
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Figure 4.16: Aborts Count of list-KOSTM against State-of-the-art list based STMs
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Figure 4.18: Memory Consumption

Garbage Collection in MVOSTMs (MVOSTM-GC ): Providing multiple ver-

sions to increase the performance of OSTMs in MVOSTMs lead to more space require-

ments. As many unnecessary versions pertain in the memory a technique to remove

these versions or to collect these garbage versions is required. Hence, we came up

with the idea of garbage collection in MVOSTMs. We have implemented garbage

collection for MVOSTM for both hash table and linked-list based approaches. Each

transaction, in the beginning, logs its timestamp in a global list named as All Live

Transactions List (ALTL), which keeps track of all the live transactions in the sys-

tem. Under the optimistic approach of STM, each transaction performs its updates in

the shared memory in STM tryC(). Each transaction in STM tryC() performs some

validations and if all validations are completed successfully a version of that key is

created by that transaction. When a transaction goes to create a version of a key in

the shared memory, it checks for the least timestamp live transaction present in the

ALTL. If the current transaction is the one with least timestamp present in ALTL,

then this transaction deletes all the older versions of the current key and create a

version of its own.

If current transaction is not the least timestamp live transaction then it does not

do any garbage collection. In this way, we ensure each transaction performs garbage

collection on the keys it is going to create a version on. Once the transaction, changes

its state to commit, it removes its entry from the ALTL. Figure 4.9 and Figure 4.10

demonstrate that MVOSTM with garbage collection (HT-MVOSTM-GC and list-

MVOSTM-GC ) performs better than MVOSTM without garbage collection.

Finite K-versions MVOSTM (KOSTM ): Another technique to efficiently use

memory is to restrict the number of versions rather than using unbounded number

of versions, without compromising on the benefits of multi-version. KOSTM , keeps
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at most K-versions by deleting the oldest version when (K + 1)th version is created

by a current transaction. That means, once a key reaches its maximum number of

versions count K, no new version is created in a new memory location rather new

version overrides the version with the oldest timestamp. To find the ideal value of

K such that performance as compared to MVOSTM-GC does not degrade or can be

increased, we perform experiments on two settings one on High Contention Workload

(C1) and other on Low Contention Workload (C2).

Under high contention C1, each thread spawns over 100 different transactions and

each transaction performs 10% lookup, 45% insert, and 45% delete operations over 50

random keys. And under low contention C2, each thread spawns over one transaction

and each transaction performs 10% lookup, 45% insert, and 45% delete operations

over 1000 random keys. The best value of K is application dependent. Here, we used

counter application (explained in SubSection 3.7.1) and get the best value of K is 4

as illustrated in Figure 4.17 under both contention settings.

Memory Consumption by MVOSTM-GC and KOSTM : As depicted above

KOSTM performs better than MVOSTM-GC . Continuing the comparison between

the two variations of MVOSTM we chose another parameter as memory consumption.

Here, we test for the memory consumed by each variants of proposed algorithms in

creating a version of a key. We count the total versions created, where creating a

version increases the counter value by 1 and deleting a version decreases the counter

value by 1. Our experiments, as shown in Figure 4.18, under the same contentions

C1 and C2 show that KOSTM needs less memory space than MVOSTM-GC .

4.7 Summary

This chapter of the thesis presents the notion of Multi-Version Object-based STMs

and compares their effectiveness with Single-Version Object-based STMs and Multi-

Version Read-Write STMs. We find that multi-version object-based STM provides

a significant benefit over both of these for different types of workloads. Specifically,

we have evaluated the effectiveness of MVOSTM for two Concurrent Data Structures

CDS, hash table and list as HT-MVOSTM and list-MVOSTM but its generic to other

data structure as well. Initially, HT-MVOSTM and list-MVOSTM use unbounded

number of versions for each key. To limit the number of versions, we developed two

variants for both hash table and list data structures: (1) A Garbage Collection (GC)

method in MVOSTM to delete the unwanted versions of a key, denoted as MVOSTM-

GC . (2) Placing a limit of K on the number versions in MVOSTM , resulting in

KOSTM . Both these variants gave a performance gain of over 15% over MVOSTM .
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Experimental results of HT-KOSTM shows a significant performance gain of al-

most two to nineteen times better than existing state-of-the-art hash table based

STMs (HT-OSTM [16] proposed by us in Chapter 3, ESTM [7], RWSTM [3], HT-

MVTO [15], HT-KSTM [15]). Similarly, list-KOSTM provide almost two to twenty

fold speedup over existing state-of-the-art list based STMs (list-OSTM [16] proposed

by us in Chapter 3, Trans-list [12], Boosting-list [13], NOrec-list [6], list-MVTO [15],

list-KSTM [15]).
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Chapter 5

Optimized-Multi-Version OSTMs

5.1 Introduction

Nowadays, multi-core systems are in trend which necessitated the need for concur-

rent programming to exploit the cores appropriately. Howbeit, developing the correct

and efficient concurrent programs is difficult. Software Transactional Memory Sys-

tems (STMs) are a convenient programming interface which assist the programmer

to access the shared memory concurrently using multiple threads without worrying

about consistency issues such as deadlock, livelock, priority-inversion, etc. STMs

facilitate one more feature compositionality of concurrent programs with great ease

which makes it more approachable. Different concurrent operations that need to

be composed to form a single atomic unit is achieved by encapsulating them in a

transaction.

In this chapter, we performed a few more optimizations on MVOSTM (proposed

in Chapter 4) to further harness greater concurrency and propose the new notion

of Optimized Multi-Version OSTMs (or OPT-MVOSTMs). OPT-MVOSTM directly

inherits all the benefits of proposed MVOSTM explained in Chapter 4. Our goal is

to analyze the benefit of OPT-MVOSTMs over Single and Multi-Version OSTM s,

Single and Multi-Version RWSTM s in this thesis. We did the following optimization

on MVOSTM and propose OPT-MVOSTM:

• To reduce the traversal time, we have added maxrvl field corresponding to each

version which contains the maximum timestamp of the transaction that looked

up on this version explained in Section 5.2.

• To identify the early abort of the transaction, we are doing the validation in

STM insert() as well before STM tryC() which prevents the work done by a
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transactions that gone be abort in future. Hence, early validation in STM -

insert() saves time and computational power consumed by aborted transactions

as illustrated in Section 5.3.

• To make it search efficient, we applied the Garbage Collection on the red-link

(RL) which contains the deleted node information represented in Section 5.5.

OPT-MVOSTM is a generic concept which can be applied to any data structure. In

this chapter of the thesis, we have considered two Concurrent Data Structures (CDS),

hash table and list based OPT-MVOSTMs as OPT-HT-MVOSTM and OPT-list-

MVOSTM respectively. If the bucket size B of hash table becomes one then hash

table based OPT-MVOSTMs boils down to the list based OPT-MVOSTMs.

OPT-HT-MVOSTM and OPT-list-MVOSTM use an unbounded number of ver-

sions for each key. To address this issue, we developed two variants for both hash table

and list data structures: (1) A Garbage Collection (GC) method in OPT-MVOSTMs

to delete the unwanted versions of a key, denoted as OPT-MVOSTM-GC. Garbage

collection gave an average performance gain of 16% over OPT-MVOSTM without

garbage collection in the best case. Thus, the overhead of garbage collection scheme

is less than the performance improvement due to improved memory usage. (2) Placing

a limit of K on the number versions in OPT-MVOSTM, resulting in OPT-KOSTM.

This gave an average performance gain of 24% over OPT-MVOSTM without garbage

collection in the best case.

Contributions of this Chapter is as follows:

• We proposed a new notion of Optimized Multi-Version Object-based STM sys-

tem as OPT-MVOSTM in Section 5.2. In this chapter of the thesis, we devel-

oped it for two CDS, hash table and list objects as OPT-HT-MVOSTM and

OPT-list-MVOSTM respectively. OPT-MVOSTM is generic for other data

structures as well.

• Section 5.4 shows that OPT-HT-MVOSTM and OPT-list-MVOSTM satisfy

standard correctness-criterion of STMs, opacity [10].

• For efficient space utilization in OPT-MVOSTMs with unbounded versions, we

developed Garbage Collection for OPT-MVOSTM (i.e. OPT-MVOSTM-GC )

and bounded version OPT-MVOSTM (i.e. OPT-KOSTM ) for both the hash

table and list data structure.

• Experimental analysis of both hash table based OPT-KOSTM (OPT-HT-KOSTM)

and list based OPT-KOSTM (OPT-list-KOSTM) with state-of-the-art STMs
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are present in Section 5.5. Proposed OPT-HT-KOSTM and OPT-list-KOSTM

provide greater concurrency and reduces the number of aborts as compared

to single and multi-version OSTMs, single and multi-version RWSTM s while

maintaining multiple versions corresponding to each key.

Roadmap. This chapter is organized as follows. Section 5.2 represents the OPT-

MVOSTMs design and data structure. Section 5.3 shows the working of OPT-HT-

MVOSTMs and its algorithms. We formally prove the correctness of OPT-MVOSTMs

in Section 5.4. In Section 5.5 we show the experimental evaluation of OPT-MVOSTMs

with state-of-art-STMs. Finally, we summaries this chapter in Section 5.6.

5.2 OPT-MVOSTM Design and Data Structure

This section describes the design and data structure of optimized MVOSTMs (or

OPT-MVOSTMs). Here, we proposed hash table and list based OPT-MVOSTMs

as OPT-HT-MVOSTM and OPT-list-MVOSTM respectively. OPT-MVOSTMs are

generic for other data structure as well. OPT-HT-MVOSTM is a hash table based

OPT-MVOSTM that explores the idea of multiple versions in OSTM s for hash table

object to achieve greater concurrency. The design of OPT-HT-MVOSTM is extension

to our proposed HT-MVOSTM [17] explained in Section 4.3. OPT-HT-MVOSTM

comprises of hash table with B buckets. All the keys of the hash table in the range

K are statically allocated to one of these buckets.

Each bucket consists of linked-list of nodes along with two sentinel nodes head

and tail with values -∞ and +∞ respectively. The structure of each node is as

〈key, lock, marked, vl, RL, BL〉. The key is a unique value from the set of all keys

K . All the nodes are stored in increasing order in each bucket as shown in Figure 5.1

(a), similar to any linked-list based concurrent set implementation [9,28]. In the rest

of the document, we use the terms key and node interchangeably. To perform any

operation on a key, the corresponding lock is acquired. marked is a boolean field

which represents whether the key is deleted or not. The deletion is performed in a

lazy manner similar to the concurrent linked-lists structure [9]. If the marked field

is true then key corresponding to the node has been logically deleted; otherwise, it is

present. The vl field of the node points to the version list (shown in Figure 5.1 (b))

which stores multiple versions corresponding to the key. The last two fields of the

node is red link (or RL) and blue link (or BL) which stores the address of the next

node. The node which is not marked (or not deleted) are accessible from the head

via BL. While all the nodes including the marked ones can be accessed from the head

via RL. We denote it as lazy red-blue list or lazyrb-list. Further, for a bucket B, we
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Figure 5.1: Optimized HT-MVOSTM design

denote its linked-list as B.lazyrb-list. Given a node n in the linked-list of bucket B

with key k, we denote its fields as n.key (or k.key), n.lock (or k.lock), n.marked

(or k.marked), n.vl (or k.vl), n.RL (or k.RL), n.BL (or k.BL).

The structure of each version in the vl of a key k is 〈ts, val, rvl, maxrvl, vnext〉 as

shown in Figure 5.1 (b). The field ts denotes the unique timestamp of the version. In

our algorithm, every transaction is assigned a unique timestamp when it begins which

is also its id. Thus ts of this version is the timestamp of the transaction that created it.

All the versions in the vl of k are sorted by ts. Since the timestamps are unique, we de-

note a version, ver of a node n with key k having ts j as n.vl[j].ver or k.vl[j].ver. The

corresponding fields in the version as k.vl[j].ts, k.vl[j].val, k.vl[j].rvl, k.vl[j].maxrvl,

k.vl[j].vnext.

The field val contains the value updated by an update transaction. If this version

is created by an insert method STM inserti(ht, k, v) by transaction Ti, then val will

be v. On the other hand, if the method is STM deletei(ht, k, v) then val will be null.

In this case, as per the algorithm, the node of key k will also be marked. OPT-HT-

MVOSTM algorithm does not immediately physically remove deleted keys from the

hash table to ensures the correctness criteria as opacity explained in Section 4.3 of

Chapter 4. Thus an rv method (STM delete() or STM lookup()) on key k can return

null when it does not find the key or encounters a null value for k.

The rvl field stands for return value list which is a list of all the transactions that

executed rv method on this version, i.e., those transactions which returned val. The

first optimization in OPT-HT-MVOSTM to reduce the traversal time of

rvl, we have used maxrvl which contains the maximum ts of the transaction

that executed rv method on this version. This optimization makes OPT-HT-

MVOSTM to be search efficient as compared to proposed MVOSTM described in

Chapter 4. The field vnext points to the next available version of that key.

In order to increase the efficiency and utilize the memory properly, we proposed

two variants of OPT-HT-MVOSTM as follows: First, we apply Garbage Collection (or

GC) on the versions and proposed OPT-HT-MVOSTM-GC. It maintains unbounded

128



versions in vl (the length of the list) while deleting the unwanted versions using

garbage collection scheme. Second, we proposed OPT-HT-KOSTM which maintains

the bounded number of versions such as K and improves the efficiency further. When-

ever a new version ver is created and is about to be added to vl, the length of vl is

checked. If the length becomes greater than K, the version with lowest ts (i.e., the

oldest) is replaced with the new version ver and thus maintaining the length back to

K.

We proposed OPT-list-MVOSTMs while considering the bucket size as 1 in OPT-

HT-MVOSTM. Along with this, we proposed two variants of OPT-list-MVOSTM as

OPT-list-MVOSTM-GC and OPT-list-KOSTM which applies the garbage collection

scheme in unbounded versions and bounded K versions for list based object respec-

tively similar to OPT-HT-MVOSTM.

5.3 The Working of OPT-MVOSTM

OPT-HT-MVOSTM exports STM begin(), STM insert(), STM delete(), STM lookup(),

and STM tryC () methods same as our proposed MVOSTM explained in Section 4.1.

Among them STM delete(), STM lookup() are return-value methods (or rv methods)

while STM insert(), STM delete() are update methods (or upd methods). We treat

STM delete() as both rv method as well as upd method. The rv methods return the

current value of the key. The upd methods, update to the keys are first noted down

in the local log, txLog. Then in the STM tryC () method after successful validations

of these updates are transferred to the shared memory. Now, we explain the working

of each method as follows:

STM begin(): It is same as STM begin() of MVOSTM in Section 4.4 of Chapter 4.

rv methods: It can be either STM delete(ht, k, v) or STM lookup(ht, k, v). Both

these methods return the current value of key k. Algorithm 30 gives the high level

overview of these methods. First, the algorithm checks to see if the given key is

already in the local log, txLogi of Ti (Line 9). If the key is already there then the

current rv method is not the first method on k and is a subsequent method of Ti on

k. So, we can return the value of k from the txLogi.

If the key is not present in the txLogi, then OPT-HT-MVOSTM searches into

shared memory. Specifically, it searches the bucket to which k belongs to. Every key

in the range K is statically allocated to one of the B buckets. So the algorithms

search for k in the corresponding bucket, say Bk to identify the appropriate location,

i.e., identify the correct predecessor or pred and current or curr keys in the lazyrb-list

of Bk without acquiring any locks similar to the search in lazy-list [9]. Since each key
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has two links, RL and BL, the algorithm identifies four node references: two pred

and two curr according to red and blue links. They are stored in the form of an

array with preds[0] and currs[1] corresponding to blue links; preds[1] and currs[0]

corresponding to red links. If both preds[1] and currs[0] nodes are unmarked then the

pred, curr nodes of both red and blue links will be the same, i.e., preds[0] = preds[1]

and currs[0] = currs[1]. Thus depending on the marking of pred, curr nodes, a total

of two, three or four different nodes will be identified. Here, the search ensures that

preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤ currs[1].key.

Algorithm 30 rv method(ht, k, v): It can be either STM deletei(ht, k, v) or
STM lookupi(ht, k, v) on key k that maps to bucket Bk of hash table ht.

8: procedure rv methodi(ht, k, v)
9: if (k ∈ txLogi) then

10: Update the local log and return val.
11: else
12: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and

RL in bucket Bk.
13: Acquire the locks on preds[] and currs[] in increasing order.
14: if (! rv V alidation(preds[], currs[])) then
15: Release the locks and goto Line 12.
16: end if
17: if (k /∈ Bk.lazyrb-list) then
18: Create a new node n with key k as: 〈 key = k, lock = false, marked =

true, vl = ver, RL= φ, BL= φ 〉.
19: /*The vl consists of a single element ver with ts as 0*/
20: Create the version ver as: 〈ts = 0, val = null, rvl = i,maxrvl = i, vnext = φ〉.
21: Insert n into Bk.lazyrb-list such that it is accessible only via RLs. /*n

is marked*/
22: Release the locks; update the txLogi with k.
23: return 〈null〉.
24: end if
25: Identify the version verj with ts = j such that j is the largest timestamp

smaller than i.
26: Add i into the rvl of verj.
27: if (verj.maxrvl < i) then
28: Set verj.maxrvl to i.
29: end if
30: retV al = verj.val.
31: Release the locks; update the txLogi with k and retV al.
32: end if
33: return 〈retV al〉.
34: end procedure
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Next, the re-entrant locks on all the pred, curr keys are acquired in increasing

order to avoid the deadlock. Then all the pred and curr keys are validated by rv -

Validation() in Line 14 as follows: (1) If pred and curr nodes of blue links are

not marked, i.e, (¬preds[0].marked) && (¬currs[1].marked). (2) If the next links

of both blue and red pred nodes point to the correct curr nodes: (preds[0].BL =

currs[1]) && (preds[1].RL = currs[0]).

If any of these checks fail, then the algorithm retries to find the correct pred and

curr keys. It can be seen that the validation check is similar to the validation in

concurrent lazy-list [9].

Next, we check if k is in Bk.lazyrb-list. If k is not in Bk, then we create a new

node n for k as: 〈key = k, lock = false,marked = true, vl = ver,RL = φ,BL = φ〉
and insert it into Bk.lazyrb-list such that it is accessible only via RL. This node

will have a single version ver as 〈ts = 0, val = null, rvl = i,maxrvl = i, vnext = φ〉.
Here invoking transaction Ti is creating a version with timestamp 0 to ensure that rv -

methods of other transactions will never abort as explained in Section 4.3 of Chapter 4

for proposed MVOSTM. Such that, each rv method will find a version to read while

maintaining the infinite version corresponding to each key k. marked field sets to

true because it access by RL only. In rvl and maxrvl, Ti adds the timestamp as i in

it and vnext is initialized to empty value. Since val is null and the n, this version

and the node are not technically inserted into Bk.lazyrb-list.

If k is in Bk.lazyrb-list then, k is the same as currs[0] or currs[1] or both. Let

n be the node of k in Bk.lazyrb-list. We then find the version of n, verj which has

the timestamp j such that j has the largest timestamp smaller than i (timestamp of

Ti). Add i to verj’s rvl (Line 26). maxrvl maintains the maximum timestamp among

all rv methods read from this version at Line 28. Then release the locks, update the

local log txLogi in Line 31 and return the value stored in verj.val in Line 33.

STM insert(): This is another optimization done in OPT-HT-MVOSTMs to

identify the early abort of the transaction, we are doing the validation in STM -

insert() as well before STM tryC() which prevents the work done by a transactions

that gone be abort in future. Hence, early validation in STM insert() saves time and

computation power consumed by aborted transactions.

The actual effect of the STM insert() comes after the successful STM tryC()

method. First, STM insert() searches the key k in the local log, txLogi of Ti at

Line 36. If k does not exist in the txLogi then it identifies the appropriate location

(pred and curr) of key k using BL and RL (Line 37) in the lazyrb-list of Bk without

acquiring any locks similar to rv method explained above.

Next, it acquires the re-entrant locks on all the pred and curr keys in increasing
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Figure 5.2: Advantage of early validation in STM insert()

order. After that, all the pred and curr keys are validated by tryC Validation() in

Line 39 as follows: (1) It does the rv Validation() as explained above in the rv -

method. (2) If key k exists in the Bk.lazyrb-list and let n as a node of k. Then

algorithm identifies the version of n, verj which has the timestamp j such that j has

the largest timestamp smaller than i (timestamp of Ti) at Line 87. If maxrvl of verj

is greater than timestamp i at Line 88 then it returns Abort in Line 40.

tryC Validation() in STM insert() identifies the early abort of invalid transaction.

The advantage of doing the early validation to save the significant computation of long

running transaction which will abort in the future. Consider Figure 5.2 where two

transaction T1 and T2 working on key k5. In Figure 5.2 (a), T1 aborts in STM tryC()

(delayed validation) because higher timestamp T2 committed. But in Figure 5.2 (b),

T1 validates the STM insert() instantly by looking into the maxrvl of k5 as shown in

Figure 5.2 (c) and save its computation and returns abort.

Algorithm 31 STM insert(): Actual insertion happens in the STM tryC().

35: procedure STM insert()
36: if (k /∈ txLogi) then
37: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and

RL in bucket Bk.
38: Acquire the locks on preds[] and currs[] in increasing order.
39: if (! tryC V alidation()) then
40: return 〈Abort〉. /*Release the locks*/
41: end if
42: Release the locks.
43: else
44: Update the local log.
45: end if
46: end procedure

upd methods: It can be either STM insert(ht, k, v) or STM delete(ht, k, v). Both

the methods create a version corresponding to the key k. The actual effect of STM -

insert() and STM delete() in shared memory will take place in STM tryC (). Algo-

rithm 32 represents the high-level overview of STM tryC ().

Initially, to avoid deadlocks, the algorithm sorts all the keys in increasing order
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which are present in the local log, txLogi. In STM tryC (), txLogi consists of upd -

methods (STM insert() or STM delete()) only. For all the upd methods (opni) it

searches the key k in the shared memory corresponding to the bucket Bk. It identifies

the appropriate location (pred and curr) of key k using BL and RL (Line 52) in the

lazyrb-list of Bk without acquiring any locks similar to rv method explained above.

Next, it acquires the re-entrant locks on all the pred and curr keys in increasing

order. After that, all the pred and curr keys are validated by tryC Validation() in

Line 54 as explained in STM insert().

If tryC Validation() is successful then each upd methods exist in txLogi will take

the effect in the shared memory after doing the intraTransValidation() in Line 60.

If two upd methods of the same transaction have at least one common shared node

among its recorded pred and curr keys, then the previous upd method effect may

overwrite if the current upd method of pred and curr keys are not updated according

to the updates are done by the previous upd method. Thus to solve this we have

intraTransValidation() that modifies the pred and curr keys of current operation

based on the previous operation in Line 60.

Next, we check if upd method is STM insert() and k is in Bk.lazyrb-list. If k

is not in Bk, then create a new node n for k as 〈key = k, lock = false,marked =

false, vl = ver,RL = φ,BL = φ〉. This node will have two versions ver as 〈ts =

0, val = null, rvl = φ,maxrvl = φ, vnext = i〉 for T0 and 〈ts = i, val = v, rvl =

φ,maxrvl = φ, vnext = φ〉 for Ti. Ti is creating a version with timestamp 0 to

ensure that rv methods of other transactions will never abort. For second version,

i is the timestamp of the transaction Ti invoking this method; marked field sets to

false because the node is inserted in the BL. rvl, maxrvl, and vnext are initialized

to empty values. We set the val as v and insert n into Bk.lazyrb-list such that it is

accessible via RL as well as BL and set the lock field to be true (Line 64).

If k is in Bk.lazyrb-list then, k is the same as currs[0] or currs[1] or both. Let n

be the node of k in Bk.lazyrb-list. Then, we create the version ver as: 〈ts = i, val =

v, rvl = φ,maxrvl = φ, vnext = φ〉 and insert the version into Bk.lazyrb-list such

that it is accessible via RL as well as BL (Line 66).

Subsequently, we check if upd method is STM delete() and k is in Bk.lazyrb-list.

Let n be the node of k in Bk.lazyrb-list. Then create the version ver as 〈ts = i, val =

null, rvl = φ,maxrvl = φ, vnext = φ〉 and insert the version into Bk.lazyrb-list such

that it is accessible only via RL (Line 69).

Finally, at Line 71 it updates the pred and curr of opni in local log, txLogi. At

Line 73 releases the locks on all the pred and curr in increasing order of keys to avoid

deadlocks and return Commit.
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Algorithm 32 STM tryC(Ti): Validate the upd methods of the transaction and then
commit.

47: procedure STM tryC(Ti)
48: /*Operation name (opn) could be either STM insert() or STM delete()*/
49: /*Sort the keys of txLogi in increasing order.*/
50: for all (opni ∈ txLogi) do
51: if ((opni == STM insert()) || (opni == STM delete())) then
52: Search in lazyrb-list to identify the preds[] and currs[] for k using BL

and RL in bucket Bk.
53: Acquire the locks on preds[] and currs[] in increasing order.
54: if (! tryC V alidation()) then
55: return 〈Abort〉. /*Release the locks*/
56: end if
57: end if
58: end for
59: for all (opni ∈ txLogi) do
60: intraTransV alidation() modifies the preds[] and currs[] of current

operation which would have been updated by the previous operation of
the same transaction.

61: if ((opni == STM insert()) && (k /∈ Bk.lazyrb-list)) then
62: Create new node n with k as: 〈key = k, lock = false, marked = false,

vl = ver, RL= φ, BL= φ〉.
63: Create two versions ver as: 〈ts=0, val=null, rvl=φ, maxrvl = φ,

vnext=i〉 for T0 and 〈ts=i, val=v, rvl=φ, maxrvl = φ, vnext=φ〉
for Ti.

64: Insert node n into Bk.lazyrb-list such that it is accessible via RL as
well as BL /*lock sets true*/.

65: else if (opni == STM insert()) then
66: Add the version ver as: 〈ts=i, val=v, rvl=φ, maxrvl=φ, vnext=φ〉

into Bk.lazyrb-list such that it is accessible via RL as well as BL.
67: end if
68: if (opni == STM delete()) then
69: Add the version ver as: 〈ts=i, val=null, rvl=φ, maxrvl=φ, vnext=φ〉

into Bk.lazyrb-list such that it is accessible only via RL.
70: end if
71: Update the preds[] and currs[] of opni in txLogi.
72: end for
73: Release the locks; return 〈Commit〉.
74: end procedure
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We illustrate the helping methods of rv method, STM insert(), and upd method

in detail as follows:

rv Validation(): It is same as rv Validation() of MVOSTM in Section 4.4 of Chap-

ter 4.

2

20 null

T1

lu1(ht, k4, null)

lu2(ht, k5, null)

T1

T2
C2

ins1(ht, k5, Abort) A1

k5

ins2(ht, k4, v)

(a) Opaque history: T1 Abort

vnextval maxrvlts rvl

. . .

(b) Underlying Data structure(DS)

Figure 5.3: Illustration of tryC Validation()

tryC Validation(): It is called by STM insert(), and upd method in STM tryC ().

First, it does the rv Validation() in Line 83. If its successful and key k exists in the

Bk.lazyrb-list and let n as a node of k. Then algorithm identifies the version of n,

verj which has the timestamp j such that j has the largest timestamp smaller than

i (timestamp of Ti) at Line 87. If maxrvl of verj is greater than the timestamp of i

then the algorithm returns false (in Line 89) and eventually, returns Abort in Line 40

or Line 55. Consider an example as shown in Figure 5.3 (a), where second method

ins1(ht, k5) of transaction T1 returns Abort because higher timestamp of transaction

T2 is already present in the maxrvl of version T0 identified by T1 in Figure 5.3 (b).

Algorithm 33 tryC Validation(): It maintains the order among the transactions.

82: procedure tryC validation()

83: if (! rv V alidation(preds[], currs[])) then

84: Release the locks and retry.

85: end if

86: if (k ∈ Bk.lazyrb-list) then

87: Identify the version verj with ts = j such that j is the largest timestamp

smaller than i.

88: if (verj.maxrvl > i) then

89: return 〈false〉.
90: end if

91: end if

92: return 〈true〉.
93: end procedure
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intraTransValidation(): It is same as intraTransValidation() of MVOSTM in Sec-

tion 4.4 of Chapter 4.

5.4 Correctness of OPT-MVOSTM

This section describes about the correctness of OPT-MVOSTM . Since, OPT-MVOSTM

satisfies all the properties of proposed MVOSTM (explained in Section 4.2) along with

graph OPG(H,�) construction of history H for a given version order �. Even, the

vertices and the edges of graph OPG(H,�) generated by OPT-MVOSTM is same

as the vertices and the edges of graph defined for the MVOSTM . So, the correctness

of OPT-MVOSTM is same as the correctness of proposed MVOSTM explained in

Section 4.5. The main theorems for OPT-MVOSTM is as follows:

Theorem 58 Any history Hto generated by OPT-MVOSTM is opaque.

Proof: To prove this theorem, we need to show that the graph generated by OPT-

MVOSTM , Gto = OPG(Hto,�to) is acyclic. The proof of this statement is directly

implies from the Lemma 54 of Section 4.5. It ensures that all the edges of the graph

Gto is following the increasing order of their timestamp. So, if there is an edge from

Tj to Ti then the j < i. Hence, graph Gto is acyclic. Thus from Theorem 47, we get

that any history Hto generated by OPT-MVOSTM is opaque.

Theorem 59 OPT-MVOSTM with unbounded versions ensures that rv methods do

not abort.

Proof: This is self-explanatory with the help of OPT-MVOSTM algorithm because

each key is maintaining multiple versions in the case of unbounded versions. So

rv method always finds a correct version to read it from. Thus, rv methods of OPT-

MVOSTM with unbounded versions do not abort.

5.5 Experimental Evaluations

This section describes the experimental analysis of proposed OPT-MVOSTMs with

state-of-the-art STMs. We have three main goals in this section: (1) Analyze the

performance benefits of the Optimized Multi-Version Object-based STMs (or OPT-

MVOSTMs) over proposed Multi-Version Object-based STMs (or MVOSTMs) ex-

plained in Chapter 4. (2) Evaluate the benefits of OPT-MVOSTMs over the Single-

Version Object-based STMs (or OSTMs), and (3) Analyze the benefits of OPT-
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MVOSTMs over Single and Multi-Version Read-Write STMs. We implement hash ta-

ble object and list object as OPT-HT-MVOSTM and OPT-list-MVOSTM described

in Section 5.3.

We also consider the extension of this optimized multi-version object-based STMs

to reduce memory usage. Specifically, we consider a variant that implements garbage

collection with unbounded versions and another variant where the number of ver-

sions never exceeds a given threshold K for both OPT-HT-MVOSTMs and OPT-

list-MVOSTMs.

STM implementations: To show the performance of proposed OPT-MVOSTM

against state-of-the-art STMs, we have taken the implementation of NOrec-list [6],

Boosting-list [13], Trans-list [12], ESTM [7], and RWSTM directly from the TLDS

framework1. Along with this, we have considered the implementation of MVOSTM

[17], OSTM [16] proposed by us in Section 4.6 and Section 3.7 respectively and MVTO

[15] defined in PDCRL library2. We implemented our algorithms in C++. We used

counter application (defined in SubSection 3.7.1) where each STM algorithm first

creates N-threads, each thread, in turn, spawns a transaction. Each transaction

exports STM begin(), STM insert(), STM lookup(), STM delete() and STM tryC ()

methods as described in Section 5.3.

Methodology:3 We have considered three types of workloads: (W1) Lookup In-

tensive (90% lookup, 5% insert, and 5% delete), (W2) Mid Intensive (50% lookup,

25% insert, and 25% delete), and (W3) Update Intensive (10% lookup, 45% insert,

and 45% delete). The experiments are conducted by varying number of threads from

2 to 64 in power of 2, with 1000 keys randomly chosen. We assume that the hash

table of OPT-HT-MVOSTM has five buckets and each of the bucket (or list in case

of OPT-list-MVOSTM ) can have a maximum size of 1000 keys. Each transaction, in

turn, executes 10 operations which include STM lookup(), STM delete(), and STM -

insert() operations. For accuracy, we take an average over 10 results for the final

result in which the first run is discarded and considered as a warm-up result for each

experiment.

5.5.1 Result Analysis

Observations of OPT-KOSTM is same as observations of KOSTM defind in Sec-

tion 4.6 of Chapter 4. The performance benefit of proposed optimized hash table

1TLDS Framework: https://ucf-cs.github.io/tlds/
2PDCRL Library: https://github.com/PDCRL
3Proposed OPT-MVOSTM code is available here: https://github.com/PDCRL/MVOSTM/tree/

master/OPT-MVOSTM
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based MVOSTM (OPT-HT-MVOSTM) and its variants (OPT-HT-MVOSTM-GC,

OPT-HT-KOSTM) for hash table objects is demonstrated in Figure 5.4. It shows

OPT-HT-KOSTM performs best among all its variants (OPT-HT-MVOSTM-GC,

OPT-HT-MVOSTM) by a factor of 1.02, 1.11 for workload W1, by a factor of 1.06,

1.09 for workload W2, and by a factor of 1.01, 1.03 for workload W3 respectively.

Along with this, Figure 5.5 shows the abort count for respective algorithms on work-

load W1, W2, and W3. It represents the number of aborts are almost same for lesser

number of threads in all the algorithms. But while increasing the number of threads,

the number of aborts are least in OPT-HT-KOSTM as compare to its variants.

So, we compared the performance of OPT-HT-KOSTM with the state-of-the-art

hash table based STMs as shown in Figure 5.6. OPT-HT-KOSTM outperforms all

the state-of-the-art hash table based STMs (HT-KOSTM [17] proposed in Chapter 4,

HT-OSTM [16] proposed in Chapter 3, ESTM [7], RWSTM [3], HT-MVTO [15], HT-

KSTM [15]) by a factor of 1.05, 3.62, 3.95, 3.44, 2.75, 1.85 for workload W1, by a

factor of 1.07, 1.44, 3.36, 5.45, 10.84, 8.42 for workload W2, and by a factor of 1.07,

2.11, 5.1, 19.8, 70.3, 60.23 for workload W3 respectively. The corresponding number

of aborts are represented in Figure 5.7. Number of aborts are minimum for OPT-

HT-KOSTM as compare to other state-of-the-art STMs. Especially, the number

of aborts for OPT-HT-KOSTM is almost negligible as compared to HT-OSTM on

lookup-intensive workload (W1) because OPT-HT-KOSTM finds a correct version to

looks up and does not return abort as shown in Figure 5.7 (a).

The observation of optimized list based MVOSTM is similar as optimized hash

table based MVOSTM . Figure 5.8 represents the performance benefit of proposed

optimized list based MVOSTM (OPT-list-MVOSTM) with all its variants (OPT-

list-MVOSTM-GC, OPT-list-KOSTM) for list objects. It shows OPT-list-KOSTM

performs best among its variants (OPT-list-MVOSTM-GC, OPT-list-MVOSTM) by

a factor of 1.14, 1.24 for W1, by a factor of 1.06, 1.07 for W2, and by a factor of

1.09, 1.19 for W3 respectively. Along with this, Figure 5.9 shows the minimum abort

count by OPT-list-KOSTM as compare to its variants on workload W1, W2, and

W3. Hence, we choose the best-proposed algorithm OPT-list-KOSTM and compare

with the state-of-the-art list based STMs.
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Figure 5.10 represents OPT-list-KOSTM outperforms state-of-the-art list based

STMs (list-KOSTM [17] proposed in Chapter 4, list-OSTM [16] proposed in Chap-

ter 3, Trans-list [12], Boosting-list [13], NOrec-list [6], list-MVTO [15], list-KSTM

[15]) by a factor of 1.2, 2.56, 25.38, 23.57, 27.44, 13.1, 6.8 for W1, by a factor of

1.12, 2.11, 21.54, 26.27, 30.1, 27.89, 20.1 for W2, and by a factor of 1.11, 2.91, 36.1,

42.2, 48.89, 149.92, 114.89 for W3 respectively. Similarly, Figure 5.11 depicts that

OPT-list-KOSTM obtained the least number of aborts as compare to state-of-the-art

STMs for all the workloads.
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Figure 5.12: Memory consumption among variants of OPT-HT-KOSTMs and
HT-KOSTMs on hash table
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Figure 5.13: Memory consumption among variants of OPT-list-KOSTMs and
list-KOSTMs on list
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Garbage Collection in OPT-MVOSTM (OPT-MVOSTM-GC): As explained

in Section 5.3, for efficient memory utilization, we developed two variations of OPT-

MVOSTM . The first, OPT-MVOSTM-GC , uses unbounded versions but performs

garbage collection. This is achieved by deleting non-latest versions whose timestamp

is less than the timestamp of the least live transaction. OPT-MVOSTM-GC gave

a performance gain of 16% over OPT-MVOSTM without garbage collection in the

best case which is on workload W1 with 64 number of threads. We did one more

optimization in OPT-MVOSTM-GC on the marked node exist in the RL to make it

search efficiently. This is achieved by deleting a marked node from RL (i.e.

apply the garbage collection on RL) whose maxrvl of the last version is less

than the timestamp of the least live transaction.

The second, OPT-KOSTM , keeps at most K-versions by replacing the oldest

version when (K + 1)th version is created by a current transaction as explained in

Section 5.3. OPT-KOSTM shows a performance gain of 24% over OPT-MVOSTM

without garbage collection in the best case which is on workload W1 with 64 num-

ber of threads. As OPT-KOSTM has a limited number of versions while OPT-

MVOSTM-GC can have infinite versions, the memory consumed by OPT-KOSTM

is also less than OPT-MVOSTM-GC . We have integrated these variants in both

hash table based (OPT-HT-MVOSTM-GC , OPT-HT-KOSTM ) and linked-list based

MVOSTMs (OPT-list-MVOSTM-GC , OPT-list-KOSTM ), we observed that these

two variants increase the performance, concurrency and reduce the number of aborts

as compared to OPT-MVOSTM which does not perform garbage collection.

Memory Consumption by OPT-MVOSTM-GC and OPT-KOSTM: As de-

picted above OPT-KOSTM performs better than OPT-MVOSTM-GC . Continuing

the comparison between the two variants of OPT-MVOSTM we chose another pa-

rameter as memory consumption. Here, we test for the memory consumed by each

algorithm in creating a version of a key. We count the total versions created, where

creating a version increases the counter value by 1 and deleting a version decreases the

counter value by 1. Figure 5.12 depicts the comparison of memory consumption by

all the variants of proposed optimized MVOSTM with all the variants of MVOSTM

(proposed in Chapter 4) for hash table objects. OPT-HT-KOSTM consumes min-

imum memory among all the proposed algorithms (OPT-HT-MVOSTM-GC, OPT-

HT-MVOSTM, HT-KOSTM, HT-MVOSTM-GC, HT-MVOSTM) by a factor of 1.07,

1.16, 1.15, 1.15, 1.21 for W1, by a factor of 1.01, 1.08, 1.06, 1.07, 1.19 for W2, and

by a factor of 1.01, 1.03, 1.02, 1.03, 1.08 for W3 respectively.

Similarly, Figure 5.13 depicts the comparison of memory consumption by all the
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variants of proposed optimized MVOSTM with all the variants of MVOSTM (pro-

posed in Chapter 4) for list objects. OPT-list-KOSTM consumes minimum memory

among all the proposed algorithms (OPT-list-MVOSTM-GC, OPT-list-MVOSTM,

list-KOSTM, list-MVOSTM-GC, list-MVOSTM) by a factor of 1.01, 1.05, 1.05, 1.04,

1.11 for W1, by a factor of 1.02, 1.1, 1.1, 1.11 1.19 for W2, and by a factor of 1.01,

1.03, 1.05, 1.08, 1.13 for W3 respectively.

Finite K-versions OPT-MVOSTM (OPT-KOSTM ): To find the ideal value

of K such that performance as compared to OPT-MVOSTM-GC does not degrade or

can be increased, we perform experiments on all the workloads W1, W2, and W3 for

both OPT-HT-KOSTM and OPT-list-KOSTM . The best value of K is application

dependent. Here, we used counter application (explained in SubSection 3.7.1) and

get the best value of K is 5 for OPT-HT-KOSTM and OPT-list-KOSTM on all the

workloads for both hash table and list objects demonstrated in Figure 5.14 (a) and

(b).

5.6 Summary

This chapter of the thesis proposed the notion of the Optimized Multi-Version Object-

based STMs (OPT-MVOSTMs) and compares their effectiveness with single and

multi-version object-based STMs, single and multi-version read-write STMs. We

find that OPT-MVOSTM provides a significant benefit over above-mentioned state-

of-the-art STMs for different types of workloads. Specifically, we have evaluated the

effectiveness of OPT-MVOSTM for two Concurrent Data Structures (CDS), hash

table and list as OPT-HT-MVOSTM and OPT-list-MVOSTM respectively but its

generic to other data structures as well..

OPT-HT-MVOSTM and OPT-list-MVOSTM use the unbounded number of ver-

sions for each key. To utilize the memory efficiently, we limit the number of versions

and develop two variants for both hash table and list data structures: (1) A Garbage

Collection (GC) method in OPT-MVOSTM to delete the unwanted versions of a

key, denoted as OPT-MVOSTM-GC . (2) Placing a limit of K on the number of

versions in OPT-MVOSTM , resulting in OPT-KOSTM . Both these variants (OPT-

MVOSTM-GC and OPT-KOSTM ) gave a performance gain of over 16% and 24%

over OPT-MVOSTM in the best case. OPT-KOSTM consumes minimum memory

among all the variants of it. We represent OPT-MVOSTM-GC in hash table and list

as OPT-HT-MVOSTM-GC and OPT-list-MVOSTM-GC respectively. Similarly, We

represent OPT-KOSTM in hash table and list as OPT-HT-KOSTM and OPT-list-

KOSTM respectively.

144



Experimental analysis shows that OPT-HT-KOSTM performs best among its

variants (OPT-HT-MVOSTM and OPT-HT-MVOSTM-GC) and outperforms all the

state-of-the-art hash table based STMs (HT-KOSTM [17] proposed by us in Chap-

ter 4, HT-OSTM [16] proposed by us in Chapter 3, ESTM [7], RWSTM [3], HT-

MVTO [15], HT-KSTM [15]) by a factor of 1.05, 3.62, 3.95, 3.44, 2.75, 1.85 for

workload W1, by a factor of 1.07, 1.44, 3.36, 5.45, 10.84, 8.42 for workload W2, and

by a factor of 1.07, 2.11, 5.1, 19.8, 70.3, 60.23 for workload W3 respectively.

Similarly, OPT-list-KOSTM performs best among its variants (OPT-list-MVOSTM

and OPT-list-MVOSTM-GC) and outperforms state-of-the-art list based STMs (list-

KOSTM [17] proposed by us in Chapter 4, list-OSTM [16] proposed by us in Chap-

ter 3, Trans-list [12], Boosting-list [13], NOrec-list [6], list-MVTO [15], list-KSTM

[15]) by a factor of 1.2, 2.56, 25.38, 23.57, 27.44, 13.1, 6.8 for W1, by a factor of 1.12,

2.11, 21.54, 26.27, 30.1, 27.89, 20.1 for W2, and by a factor of 1.11, 2.91, 36.1, 42.2,

48.89, 149.92, 114.89 for W3 respectively.
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Chapter 6

Conclusion and Future Work

This chapter describes the contributions of the thesis followed by directions for fu-

ture research. Multi-core systems have become very common nowadays. Concurrent

programming using multiple threads has become necessary to utilize all the cores

present in the system effectively. But concurrent programming is usually challeng-

ing due to synchronization issues between the threads. To overcome these issues

with concurrent programming, researchers have developed the paradigm of Software

Transactional Memory systems (STMs) which helps programmers to develop the cor-

rect concurrent programs without compromising on the efficiency of the multi-core

systems.

In this thesis, we designed and implemented a novel and efficient Object-based Soft-

ware Transactional Memory systems (OSTMs) for multi-core systems. The proposed

OSTMs provide greater concurrency and performance over Read-Write STMs (RW-

STMs) while removing the synchronization burden from the developers. In this thesis,

we proposed three efficient variants of OSTMs: Single-Version OSTMs (SVOSTM or

OSTM), Multi-Version OSTMs (MVOSTMs), and OPT-MVOSTMs which are proved

to be correct.

SVOSTMs achieve greater concurrency over RWSTMs using object semantics

while maintaining single versions. MVOSTMs achieve the greater concurrency over

SVOSTMs by using multiple versions which is a novel idea and has not been explored

so far (even in databases). We further made a few optimizations to MVOSTMs, to

achieve OPT-MVOSTMs, which enabled us to obtain even greater concurrency. We

then discuss future research directions in Section 6.2.
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6.1 Conclusion of the Thesis

This section explains the main research contributions of the thesis. It mainly pro-

posed three Object-based STM systems (OSTMs, MVOSTMs, OPT-MVOSTMs) and

proved their correctness followed by the performance evaluation with state-of-the-art

STMs as follows:

• Object-based STMs (OSTMs)

• Multi-Version Object-based STMs (MVOSTMs)

• Optimized Multi-Version OSTMs (OPT-MVOSTMs)

The detailed description is as follows:

• Object-based STMs (OSTMs): In the past few years, several STMs have

been proposed which address the synchronization issues and provide greater con-

currency while ensuring the correctness. Another advantage of STMs is that

they facilitate the compositionality of concurrent programs with great ease. Dif-

ferent concurrent operations that need to be composed to form a single atomic

unit is achieved by encapsulating them in a single transaction.

In literature, most of the STMs are RWSTM s (such as NOrec [6], ESTM [7])

which export read and write operations. In this thesis, we build a model for

building highly concurrent and composable data structures with object-level

transactions called OSTMs. We showed that higher concurrency can be ob-

tained by considering OSTMs as compared to traditional RWSTM by lever-

aging richer object-level semantics. We proposed a comprehensive theoretical

model based on legality semantics and conflict notions for two Concurrent Data

Structures (CDS), hash table and list based OSTMs as HT-OSTM and list-

OSTM but it is generic for other data structures as well. Using these notions

we extended the definition of opacity [10] and co-opacity [18] for OSTM s. Then,

based on this model, we developed a practical implementation of HT-OSTM and

list-OSTM to verify the gains achieved. Further, we proved that the proposed

model is co-opaque thus composable.

• Multi-Version Object-based STMs (MVOSTMs): It has been shown in

the literature of databases and STMs [14, 15] that storing multiple versions

for each transactional object (or t-object) or key, greater concurrency can be

obtained. So, to improve the performance further we combine the multiple

version with OSTM and proposed a novel and efficient Multi-Version OSTMs
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(MVOSTMs). We find that multi-version object-based STM provides a signif-

icant benefit over single-version object-based STMs, single and multi-version

read-write STMs for different types of workloads. Specifically, we have evalu-

ated the effectiveness of MVOSTM for two CDS, hash table and list object as

HT-MVOSTM and list-MVOSTM but it is generic for other data structures as

well. Initially, HT-MVOSTM and list-MVOSTM use the unbounded number of

versions for each key. To limit the number of versions, we developed two vari-

ants for both hash table and list data structures: (1) A Garbage Collection (GC)

method in MVOSTM used to delete the unwanted versions of a key, denoted as

MVOSTM-GC. (2) Placing a limit of K on the number versions in MVOSTM,

resulting in KOSTM. The experimental analysis showed that KOSTM performs

best among its variants (MVOSTM, MVOSTM-GC) and state-of-the-art STMs.

We proved that MVOSTM s satisfy opacity [10] and ensure that the transaction

with lookup only methods does not abort if unbounded versions are used. To

the best of our knowledge, this is the first work to explore the idea of using

multiple versions in OSTMs to achieve greater concurrency.

• Optimized Multi-Version OSTMs (OPT-MVOSTMs): To harness the

greater concurrency further, we performed a few optimizations on the MVOSTM

and proposed a new notion of Optimized Multi-Version Object-based STM sys-

tem as OPT-MVOSTM. Here, we developed it for two CDS, hash table and

list objects as OPT-HT-MVOSTM and OPT-list-MVOSTM respectively. But

OPT-MVOSTM is generic for other data structures as well. Initially, OPT-HT-

MVOSTM and OPT-list-MVOSTM use an unbounded number of versions for

each key. To limit the number of versions, we developed two variants for both

hash table and list data structures: (1) A Garbage Collection (GC) method

in OPT-MVOSTM used to delete the unwanted versions of a key, denoted

as OPT-MVOSTM-GC. (2) Placing a limit of K on the number versions in

OPT-MVOSTM, resulting in OPT-KOSTM. The experimental analysis showed

that OPT-KOSTM performs best among its variants (OPT-MVOSTM, OPT-

MVOSTM-GC) and state-of-the-art STMs. We proved that OPT-KOSTM sat-

isfies standard correctness-criterion of STMs, opacity [10].

6.2 Directions for Future Research

This thesis opens several directions for future research as follows:

• Nesting for Object-based STM systems
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• Object-based STM systems as an Application to Blockchain

• Distributed Object-based STMs (DOSTMs)

The detailed description is as follows:

6.2.1 Nesting for Object-based STM systems

OSTMs facilitate one interesting property compositionality of concurrent programs

with great ease. Different concurrent operations that need to be composed to form a

single atomic unit is achieved by encapsulating them in a single transaction.

But, the composition of different simple transactions into a large single transaction

is a very useful property in modular programming or many real-time applications

[29–31]. Nesting [32–34] is one of the ways to achieve the compositionality of different

transactions in STMs. So, nesting of a transaction Ti implies that Ti invokes another

transaction Tj inside it. There are two types of nesting available: (1) Closed Nesting

[35]: any transaction Ti invokes another transaction Tj then Ti is called as parent

transaction whereas Tj is known as child transaction. So, in the closed nesting,

whenever any child transaction Tj commits, the updates made by Tj is gone be

visible to only its parent Ti and siblings but not to the other transactions available in

the system. (2) Open Nesting [36–38]: whenever any child transaction Tj commits,

the updates made by Tj is gone be visible immediately to all the transactions of the

system. Even, it is not waiting till commit of its parent Ti but if the parent transaction

Ti returns abort with some reason then the child transaction Tj also needs to return

abort which is a bit difficult because Tj has already been committed and showed its

effect to other transactions. A few researchers have explored nesting at read-write

level [32–34] in which a transaction with read-write operation invokes the another

transactions with read-write operations only. But, none of them explored nesting at

object-level.

Exploring nesting of transactions for OSTMs in which one object-based trans-

action invokes another transaction - either read/write or object-based is one of the

interesting direction of future research. Initially, closed nesting of the object-based

transaction can be explored to enhance the scalability of the application while en-

suring the correctness as closed nested opacity [32]. After designing an efficient and

correct closed nesting for objects, measuring the cost of their implementation will be

useful in which the algorithms developed will be implemented on various benchmarks

and the performance compared against the various state-of-the-art STMs. It can also

extend to the closed nesting of transaction in which one object-based transaction

invokes other object-based transaction.
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Having seen the benefits of multi-version OSTMs [17], closed nesting can be ex-

plored for MVOSTMs which will reduce the number of aborts and improves the

concurrency further.

6.2.2 Object-based STM systems as an Application to Blockchain

Several popular blockchains such as Ethereum [29] executes complex transactions in

blocks through user-defined scripts known as smart contracts [39]. Normally, a block

of the chain consists of multiple Smart Contract Transactions (SCTs) which are added

by a miner. To append a correct block into the blockchain, miner executes these SCTs

sequentially and store the final state in the block. The remaining peers on receiving

this block act as validators. The validators again sequentially re-execute the SCTs of

the block as a part of the consensus protocol. If the validators agree with the final

state of the block as recorded by the miner, then the block is said to be validated and

is added to the blockchain. In Ethereum and other blockchains such as Bitcoin [30],

EOS [31] that support cryptocurrencies, a miner gets an incentive every time such a

valid block is successfully added to the blockchain.

In the current era of multi-core processors, the miners and validators fail to harness

the power of multiple cores by serially executing the SCTs which can result in poor

throughput. By adding concurrency to the execution of SCTs, we can achieve better

efficiency and higher throughput.

However, there are challenges with concurrent execution. Figure 6.1 illustrates

the difficulty. Let us consider two accounts A,B having $10 as the Initial State (or

IS). Suppose there are two smart contract transactions, T1, T2 where T1 is transferring

$10 from account A to B while T2 is transferring $20 from B to A. Since both the

smart contract transactions are accessing common accounts (A and B) to transfer

the amount, the order of SCTs execution becomes important. Suppose the miner

executes them concurrently with the equivalent effect being T1 followed by T2 as

shown in Figure 6.1(b). In this case, the Final State (or FS) of A will have $20 while

B will have $0. On the other hand, suppose the validators execute in a different

concurrent order which is equivalent to T2 followed by T1 as shown in Figure 6.1(c).

T2 executes first; but due to insufficient balance in B’s account, a validator, say v

rejects this SCT. Then after executing T1, v transfers $10 from A to B. With this

execution, the final state of A will have $0 while B will have $20. Thus on receiving

such a block, a validator will see that the final state in the block given by the miner

is different from what it obtained and hence, falsely reject the block. We refer this

problem as False Block Rejection (or FBR) error. This can negate the benefits of

concurrent executions.

150



B

A

(b) Equivalent execution by miner(a) Concurrent transactions (c) Equivalent execution by validator

B

A

FS

10$

10$

Accounts IS

20$

0$

T2

T1

T2

C1

C2
C2

send(A,B, 10$)C1T1T1

T2

C1

A2
0$

FS

10$

10$

Accounts IS

20$

send(A,B, 10$)

send(B,A, 20$)

send(A,B, 10$)

send(B,A, 20$) send(B,A, fail)

Figure 6.1: Challenges in Concurrent execution of SCTs

Recently, researchers have used Read-Write Software Transactional Memory sys-

tems (RWSTMs) [6, 40–42] for the concurrent execution of SCTs. But Chapter 3

of this thesis showed that proposed Object-based STMs (OSTMs) achieves greater

concurrency, better throughput as compared to RWSTMs. Further, Chapter 4 of the

thesis observed that greater concurrency can be obtained using Multi-Version OSTMs

(MVOSTMs) by maintaining multiple versions for each shared data-item as opposed

to traditional OSTMs and RWSTMs. So, another interesting direction for future

research can be developing an efficient framework to execute the SCTs concurrently

based on object semantics by miner using proposed OSTMs and MVOSTMs.

6.2.3 Distributed Object-based STMs (DOSTMs)

All the OSTMs proposed in this thesis work on the shared memory. It allows multiple

threads to access the shared memory without worrying about concurrency issues such

as priority-inversion, deadlock, livelock, etc.

Nowadays, distributed systems are becoming very appealing to design a secure

network while removing the responsibilities from the central authority. Few re-

searchers have explored distributed STMs at read-write level [43, 44]. But, none

of them explored it at object-level. As we have seen the benefit of object-level over

the read-write level in Chapter 3, we can exploit the distributed systems by develop-

ing the distributed concurrent algorithms using object-based STM systems. Hence,

Distributed Object-based Software Transactional Memory systems (DOSTMs) will be

a useful research direction of this thesis which will help to improve the performance

of distributed networks such as blockchain.

6.3 Summary

This chapter described the contributions of this thesis followed by direction for future

research. We proposed mainly three Object-based STM systems (OSTMs, MVOSTMs,

OPT-MVOSTMs) and proved their correctness followed by the performance evalua-
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tion with state-of-the-art STMs. The direction for future research of this thesis can

be (1) Nesting for Object-based STM systems, (2) Object-based STM systems as an

Application to Blockchain, and (3) Distributed Object-based STMs (DOSTMs).
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