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Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation.
How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of
excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of
Ube3Am�/p� mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5
receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling
pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/
mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the
increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in
hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphos-
phoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the
short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These
findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor
antagonists in AS.
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Introduction
Long-term depression (LTD) of excitatory synaptic transmission
mediated by type 5 metabotropic glutamate (mGlu5) receptors is
amplified in the hippocampus of Fmr1 knock-out mice modeling
fragile X syndrome (FXS; Huber et al., 2002; Bear et al., 2004), a
genetic disorder associated with autism in �30 –35% of affected
children (Kelleher and Bear, 2008). Pathological behavioral phe-
notypes of Fmr1 knock-out mice are corrected by germline ma-
nipulations that reduce the expression of mGlu5 receptors
(Dölen et al., 2007) or by treatments with negative allosteric

modulators (NAMs) of mGlu5 receptors (Bhakar et al., 2012;
Michalon et al., 2012), suggesting that exaggerated mGlu5 recep-
tor activity contributes to the pathophysiology of FXS. Moving
from these findings, clinical studies are underway to test the ef-
fectiveness of mGlu5 receptor NAMs in the treatment of FXS (for
review, see Krueger and Bear, 2011; Hagerman et al., 2012).

Aberrant protein synthesis lies at the core of synaptic modifi-
cations associated with FXS (Feng et al., 1995), and mGlu5
receptor-dependent LTD in the hippocampus relies on dendritic
protein synthesis (Huber et al., 2000; but see also Moult et al.,
2008; Waung and Huber, 2009). Because an aberrant protein
synthesis is a common motif of autism spectrum disorders
(Kelleher and Bear, 2008), there is increasing interest in examin-
ing mGlu5 receptor activity in other models of monogenic
autism. Auerbach et al. (2011) found that mice carrying heterozy-
gous loss-of-function mutations of the tuberous sclerosis
complex-2 (Tsc2) showed a reduced mGlu5 receptor-dependent
LTD in the hippocampus. Some of the phenotypes of Tsc2�/�

mice were corrected by cross-breeding with Fmr1 knock-out
mice or by treatment with a positive allosteric modulator of
mGlu5 receptors. Thus, deviations in either direction in mGlu5
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receptor-mediated protein synthesis and synaptic plasticity can
lead to shared pathological phenotypes (Auerbach et al., 2011).

Here, we examined mGlu5 receptor-dependent synaptic plastic-
ity in a mouse model of Angelman syndrome (AS), a disorder char-
acterized by developmental delay, epilepsy, hyperactivity, and
autistic features (Steffenburg et al., 1996; Williams, 2005). AS is

caused by mutations or deletions of the ma-
ternally inherited Ube3A gene, because the
paternal allele of Ube3A is epigenetically si-
lenced in neurons (Kishino et al., 1997). A
mouse model of AS has been generated by
knocking out 3 kb of the sequence ortholo-
gous to exon 2 of the human Ube3A gene
(Jiang et al., 1998). Ube3A is an E3 ubiquitin
ligase, which provides substrate specificity
to the ubiquitin proteasome system (UPS).
The UPS plays a critical role in the regula-
tion of synaptic plasticity (Ehlers, 2003;
Dong et al., 2008), and Ube3A knock-out
mice display impaired hippocampal long-
term potentiation (Jiang et al., 1998, Weeber
et al., 2003) and visual cortex plasticity
(Yashiro et al., 2009; Sato and Stryker,
2010). Here, we report that AS mice show a
selective amplification of mGlu5 receptor-
mediated LTD in the hippocampus and al-
terations in mGlu5 receptor coupling to
Homer proteins.

Materials and Methods
Drugs. (RS)-3,5-dihydroxyphenylglycine
(DHPG), 2-methyl-6-(phenylethynyl)-pyri-
dine (MPEP), ( E)-2-methyl-6-stryrylpyri-
dine(-)-2-oxa-4-aminocyclo[3.1.0]hexane-4,
6-dicarboxylic acid (LY367385), U0126,
D-2-amino-5-phosphonopentanoic acid (D-
AP5), UBE1-41, and anysomicin were ob-
tained from Tocris Cookson. Phenylarsine
oxide (PAO) and rapamycin were obtained
from Sigma-Aldrich.

Animals. Heterozygous Ube3A mice were
purchased from The Jackson Laboratory (Jack-
son code: 129-Ube3atm1Alb/J) and maintained
in a C57BL/6 background. The genotyping was
carried by PCR analysis using the following
primers: 5�-GCTCAAGGTTGTATGCCTTG-
GTGCT-3� (oIMR1965); 5�-AGTTCTCAA
GGTAAGCTGAGCTTGC-3� (oIMR1966);
and 5�-TGCATCGCATTGTCTGAGTAGGT-
GTC-3� (oIMR1967; The Jackson Laboratory).

Mice were kept under environmentally
controlled conditions (ambient temperature,
22°C; humidity, 40%) on a 12 h light/dark cycle
with food and water ad libitum. All experi-
ments were performed on mice of either sex.
Experiments were performed following the
Guidelines for Animal Care and Use of the Na-
tional Institutes of Health. All efforts were
made to minimize animal suffering and to re-
duce the number of animals used.

Electrophysiology. Hippocampal slices were
prepared from 4-week-old to 5-week-old
Ube3A maternal deficient mice (Ube3A m�/p�

“AS” mice) and their wild-type (Ube3A m�/p�)
littermates, as previously described (Nisticò et
al., 2013). Brains were rapidly dissected out
and parasagittal slices (400 �m) were prepared

and incubated in artificial CSF (ACSF) containing the following (in mM):
124 NaCl, 3.0 KCl, 1.0 MgCl2, 2.0 CaCl2, 1.25 NaH2PO4, 26 NaHCO3, 10
glucose, saturated with 95% O2, 5% CO2, pH 7.4. The CA3 region was
not removed from the slices. Slices were allowed to recover for 2– 4 h and
then placed on a nylon mesh, completely submerged in a small chamber
(0.8 ml), and superfused with oxygenated ACSF (30 –31°C) at a constant
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Figure 1. Enhanced mGlu5 receptor-dependent LTD in Ube3A m�/p� mice. A, Immunoblot analysis of Ube3A in hippocampal
slices from Ube3A m�/p� (wild-type) mice and Ube3A m�/p� mice. B, Input– output relation of fEPSPs as a function of presyn-
aptic fiber volley size at the Schaffer collateral/CA1 pyramidal cell synapses. Each plot represents 7– 8 separate recordings for each
strain. Superimposed representative fEPSPs evoked in response to increasing stimulus intensity are shown. C, LTD induced by
low-frequency stimulation (LFS; 1 Hz, 15 min) of Schaffer collaterals. The fEPSP slope (mean� SEM) is plotted as percentage of the
pre-LFS baseline. Insets show fEPSPs from a representative experiment during a baseline interval and 60 min after LTD. D, LTD
induced by bath application of DHPG (100 �M, 5 min). Values are means � SEM of data obtained from slices of 9 –12 mice for each
strain. *p � 0.05 (2-tailed unpaired Student’s t test) versus values obtained in slices from wild-type mice. E, Depression of fEPSP
induced by two consecutive applications of DHPG in slices from wild-type and Ube3A m�/p� mice. Values are means � SEM of
data obtained from eight mice for each strain. F, PPF induced by pairs of stimulation delivered at several interstimulus intervals (20,
50, 100, 200, 500 ms) at baseline and 60 min after DHPG application. Data (means � SEM) are expressed as the ratio between the
second and the first response. G, Synaptic depression induced by DHPG (100 �M, 5 min) in the presence of MPEP (10 �M) in slices
from wild-type and Ube3A mice. Values are means � SEM of data obtained from 7– 8 mice for each strain.
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flow rate of 2.5–3.0 ml/min. The slope of the field EPSPs (fEPSPs) was
recorded from the apical dendrite layer of the CA1 pyramidal cells by
means of saline-filled glass electrodes of �2– 4 M� resistance. Stimulat-
ing monopolar electrodes were placed in Schaffer collateral/commissural
afferents, and stimulation amplitude was adjusted so as to produce one-
half of the maximal response. Signals were filtered at 3 kHz and digitized
at 10 kHz. After the stabilization of the fEPSP, LTD was induced by
low-frequency stimulation (1 Hz for 15 min) or following DHPG appli-
cation (100 �M, 5 min). In some experiments DHPG was applied in the
presence of the NMDA receptor antagonist D-AP5 (50 �M), the protea-
some inhibitor UBE1-41 (50 �M), the protein tyrosine phosphatase in-
hibitor PAO (15 �M), the mammalian target of rapamycine (mTOR)
inhibitor rapamycin (20 �M), the extracellular regulated kinase1/2
(ERK1/2) kinase inhibitor UO126 (20 �M), or the protein synthesis in-
hibitor anisomycin (20 �M). D-AP5 was applied 20 min before DHPG
and maintained during the recording session; UBE1-41 (50 �M, from a
mother solution of 50 mM in dimethyl sulfoxide) was applied to the slices
during the recovery time for 60 min before placement in the recording
chamber (Citri et al., 2009). All the other drugs were applied as indicated
(see figures).

Immunoblotting. Slices prepared as described for electrophysiological
studies were allowed to recover for �3 h. Slices were then incubated with
DHPG (100 �M) for 5 min and then snap frozen in liquid nitrogen.
Samples were homogenized at 4°C in a lysis buffer composed of Tris-HCl
10 mM, pH 7.4; NaCl, 150 mM; EDTA, 5 mM; Igepal 1%; protease (Santa
Cruz Biotechnology) and phosphatase (Sigma-Aldrich) inhibitor mix-
ture. Five microliters of tissue extracts were used for protein determina-
tion. Proteins (30 �g) were resuspended in SDS-bromophenol blue
reducing buffer with 40 mM DTT and used for protein analysis. Immu-
noblotting was performed with the following primary antibodies: Ube3A
(Bethyl Laboratories), mGlu5 receptor (Millipore Biotechnology),
p-ERK1/2 (Thr202/Tyr204; Santa Cruz Biotechnology), ERK (Cell Sig-
naling Technology), p-Akt (Ser473; Cell Signaling Technology), Akt
(Cell Signaling Technology), and Arc (activity-regulated cytoskeleton-
associated protein; kindly provided by Prof. P. Worley, Department of
Neuroscience, Johns Hopkins University School of Medicine, Baltimore,
MD). After incubation in primary antibody overnight at 4°C, immuno-
blots were incubated with HRP-conjugated secondary antibodies (Cal-
biochem) and developed by ECL (Hybond ECL, GE Healthcare Europe).

Measurement of polyphosphoinositide hydrolysis in hippocampal slices.
Group I mGlu receptor-stimulated polyphosphoinositide (PI) hydroly-
sis was also measured in hippocampal slices obtained from postnatal day
(P) 21–P30 Ube3A m�/p� mice and their wild-type littermates as de-
scribed previously (Nicoletti et al., 1986). Briefly, hippocampi were sliced
(350 	 350 �m) using a McIlwain tissue chopper. Forty microliters of
gravity-packed slices were then incubated for 60 min in 250 �l of buffer
containing 1 �Ci of myo-[ 3H]inositol. Slices were incubated with LiCl
(10 mM for 10 min) followed by DHPG (100 �M). One hour later, the
incubation was stopped by the addition of 900 �l of methanol/chloro-
form (2:1). After further addition of 300 �l of chloroform and 600 �l of
water, samples were centrifuged at low speed to facilitate phase separation,
and the upper aqueous phase was loaded into Dowex 1-X-8 columns for the
separation and quantification of [3H]Inositolmonophosphate (InsP).

Gene expression analysis by real-time PCR. Total RNA was isolated
from hippocampi using TRIzol reagent (Invitrogen) according to the
manufacturer’s protocol and retrotranscribed into cDNA by using Su-
perScript III Reverse Transcriptase (Invitrogen). Real-time PCR was per-
formed on the StepOnePlus (Applied Biosystems). PCR was performed
by using Power SYBR Green PCR Master Mix Kit (Applied Biosystems)
according to the manufacturer’s instructions. Thermal cycler conditions
were as follows: 10 min at 95°C, 40 cycles of denaturation (45 s at 95°C),
and combined annealing/extension (1 min at 60°C). Sequences of
primers used were as follows: Homer 1a: forward 5�-TCTTCAGTC
TCCTTTGACACCA-3� and reverse 5�-CATGATTGCTGAATTGAAT-
GTG-3�; pan-Homer 1: forward 5�-TGGACTGGGATTCTCCTCTG-3�
and reverse 5�-TGTGTCACATCGGGTGTTCT-3�; mGlu5 receptor: for-
ward 5�-ACGAAGACCAACCGTATTGC-3� and reverse 5�-AGACTT
CTCGGATGCTTGGA-3�; cyclophilin A: forward 5�-TCCAAAGACA
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Figure 2. Pharmacological inhibition of proteasomal degradation did not affect synaptic
plasticity in AS mice. Slices were preincubated with proteasome inhibitor UBE1-41 for 60 min
before recording. A, Amplification of DHPG-induced LTD by UBE1-41 in hippocampal slices from
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GCAGAAAACTTTCG-3� and reverse 5�-TCTTCTTGCTGGTCTTGC
CATTCC-3�.

Concentrations of mRNA were calculated from serially diluted
standard curves simultaneously amplified with the samples and nor-
malized versus cyclophilin A mRNA levels.

Coimmunoprecipitation. Hippocampi were
homogenized at 4°C in a lysis buffer (as above)
and 1 mg of total proteins were resuspended in
a coimmunoprecipitation buffer (50 mM Tris,
pH 7.4, 120 mM NaCl, 0.5% Nonidet P-40, 1
mM EDTA, 1 mM EGTA). Proteins were tum-
bled overnight at 4°C with 5 �g of antibody
anti-Homer 1b/c or anti-pan-Homer (Santa
Cruz Biotechnology). Protein A agarose bead
slurry (GE Healthcare) was added for 2 h, and
the beads were then washed with coimmuno-
precipitation buffer. Western blotting was per-
formed with antibodies against Homer 1b/c,
pan-Homer, and mGlu5 receptor (Millipore
Biotechnology). Protein extracts from the cere-
bral cortex of normal and mGlu5 receptor
knock-out mice (stored in our laboratory)
were used as positive and negative controls,
respectively.

Statistical analysis. Electrophysiological data
were normalized to the averaged value of the ini-
tial slope of the fEPSP obtained during the 20 min
period before the application of the conditioning
stimulus or DHPG. Data are expressed as the
means � SEM. Significant differences between
groups were determined using two-tailed un-
paired Student’s t test performed on a 10 min
average taken 50 min after DHPG application.
Statistical significance was set at p � 0.05. All ex-
periments and the analysis of data were per-
formed in a blind manner. For all statistical
comparisons, the n used was the number of
animals rather than number of slices. For bio-
chemical experiments, statistical analysis was
performed using two-way ANOVA plus Fisher’s
PLSD test or the Student’s t test.

Results
Enhancement of mGlu5 receptor-
dependent LTD in the hippocampus of
AS mice
We measured basal synaptic transmission
and activity-dependent synaptic plasticity at
the Schaffer collateral–CA1 synapses in hip-
pocampal slices prepared from Ube3A ma-
ternal deficient mice (Ube3Am�/p� AS
mice) and wild-type (Ube3Am�/p�) litter-
mates. No Ube3A was detected in hip-
pocampal slices of AS mice, as expected (Fig.
1A). AS mice did not show alterations in
basal synaptic transmission (Fig. 1B; p 

0.05; Jiang et al., 1998), and in LTD induced
by low-frequency stimulation, which is
known to be dependent on NMDA receptor
activation (for review, see Manabe, 1997).
Stimulation at 1 Hz for 15 min induced a
similar depression of synaptic transmission
in slices from wild-type and AS mice (wild-
type: 85 � 9%, n � 7; AS: 82 � 11%, n � 8,
p 
 0.05; Fig. 1C). In contrast, LTD induced
by bath application of DHPG (100 �M, 5
min) was amplified in AS mice (wild-type:

81 � 8%, n � 9; AS: 61 � 6%, n � 12, p � 0.05; Fig. 1D). The
amplification was unaltered in the presence of the NMDA receptor
antagonist, D-AP5 (50 �M; 60 � 7%, n � 4), excluding any role for
endogenous NMDA receptor activation in the DHPG/LTD pheno-
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Figure 3. Examination of the intracellular signaling pathways mediating mGlu5 receptor-dependent LTD in hippocampal slices
from wild-type and Ube3A m�/p� mice. A–D, Depression of fEPSP induced by DHPG in the presence of anisomycin (A), UO126 (B),
rapamycin (C), and PAO (D) in slices from wild-type and Ube3A m�/p� mice. Values are means � SEM of data obtained from 4 –5
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type of AS mice. As expected (Huber et al.,
2001), two consecutive applications of
DHPG produced maximal depression of
fEPSPs in slices from wild-type mice. In
contrast, only one application of DHPG was
sufficient to achieve saturated levels of LTD
in slices from AS mice, such that maximal
depression did not differ between the two
genotypes (wild-type: 67 � 6%, n � 8; AS:
62 � 5%, n � 8, p 
 0.05; Fig. 1E). Paired-
pulse facilitation (PPF), a presynaptic form
of short-term synaptic plasticity (Zucker,
1989), did not differ between wild-type and
AS mice at multiple interpulse intervals (Fig.
1F; p 
 0.05). The increase in PPF induced
by DHPG was also similar between the two
genotypes, indicating no changes in the pre-
synaptic component of group I mGlu-receptor-dependent LTD in
AS mice (Fig. 1F; p 
 0.05).

We performed pharmacological studies to dissect the rela-
tive contribution of mGlu1 and mGlu5 receptors in DHPG-
induced LTD in the two genotypes. The mGlu5 receptor NAM
MPEP (10 �M) abolished DHPG-induced LTD in both geno-
types (wild-type: 98 � 3%, n � 7; AS: 98 � 4%, n � 8; Fig. 1G;
for data with MPEP in normal mice, see Faas et al., 2002; Hou
and Klann, 2004; Volk et al., 2006). In contrast, DHPG-
induced LTD was unaffected by the mGlu1 receptor antago-
nist LY367385 (3 �M) in both wild-type and AS mice (data not
shown). Thus, activation of mGlu5 receptors mediated
DHPG-induced LTD in both genotypes.

Knowing that both DHPG-induced and NMDA receptor-
dependent LTD are affected by ubiquitination inhibitors (Citri et
al., 2009), we induced LTD in slices preincubated for 1 h with the
proteasome inhibitor UBE1-41 (50 �M). DHPG-induced LTD
was amplified by UBE1-41 in slices from wild-type mice during
the first 40 min after DHPG (Fig. 2A). In contrast, UBE1-41 did
not affect DHPG-induced LTD in slices from AS mice (Fig. 2B),
indicating that the action of the proteasome inhibitor was oc-
cluded by the lack of Ube3A. We also examined NMDA receptor-
dependent LTD induced by low-frequency stimulation in AS
mice, finding no effect of UBE1-41 application (Fig. 2C).

Examination of the signaling pathways mediating the
enhanced mGlu5 receptor-dependent LTD in AS mice
We first examined whether DHPG-induced LTD in wild-type
and AS mice under our experimental conditions was sensitive
to the protein synthesis inhibitor anysomicin (20 �M). This
treatment abolished DHPG-induced LTD in both genotypes.
(Fig. 3A).

Multiple intracellular signaling pathways, including the mitogen-
activated protein kinase (MAPK) pathway, the phosphatidylinositol-
3-kinase (PI3K)/Akt/mTOR pathway, and tyrosine phosphatase
(PTP)-dependent pathways, are involved in mGlu5-receptor-
dependent LTD in the hippocampus (for review, see Gladding et
al., 2009; Collingridge et al., 2010; Lüscher and Huber, 2010). We
examined the involvement of these three pathways by inducing
mGlu5 receptor-dependent LTD in the presence of the PTP in-
hibitor PAO (15 �M), the ERK1/2 kinase inhibitor U0126 (20
�M), or the mTOR inhibitor rapamycin (20 nM). Treatment of
hippocampal slices with each of these inhibitors had no effect on
basal synaptic transmission but fully blocked DHPG-induced
LTD in both wild-type and AS mice (Fig. 3B–D; p 
 0.05). In
addition, all these treatments did not reverse changes in PPF

induced by DHPG (data not shown). These data suggest that
mGlu5 receptor-dependent LTD has the same molecular require-
ments in the two genotypes. In addition, DHPG-induced phos-
phorylation of ERK1/2 and Akt in hippocampal slices did not
differ significantly between wild-type and AS mice (Fig. 3E,F). It
was still possible that Ube3A-target proteins that are regulated by
the MAPK or PI3K/Akt/mTOR pathways in response to mGlu5
receptor activation could be altered in AS mice. We measured the
expression of Arc, the product of an early inducible gene that has
been implicated in mechanisms of mGlu5 receptor-dependent
LTD (Park et al., 2008; Waung et al., 2008). Basal Arc protein
levels did not change in hippocampal slices from AS mice (Fig. 4;
Greer et al., 2010). A 5 min exposure of hippocampal slices to
DHPG (100 �M) increased Arc protein levels to the same extent
in wild-type and AS mice (Fig. 4).

Enhanced coupling of mGlu5 receptors with the long
isoforms of Homer proteins in the hippocampus of AS mice
We next examined the possibility that the enhancement of
mGlu5 receptor-dependent LTD could rely on mechanisms that
lie upstream in the signal propagation. mGlu5 receptor mRNA
and protein levels were not altered in the hippocampus of AS
mice (Fig. 5A,B). We extended the analysis to agonist-stimulated
PI hydrolysis, which represents the canonical signal transduction
pathway activated by mGlu5 receptors (for review, see Nicoletti
et al., 2011). DHPG enhanced [ 3H]InsP formation to the same
extent in hippocampal slices prepared from wild-type and AS
mice (Fig. 5C). Interaction between mGlu5 receptors and Homer
proteins (Tu et al., 1998; Xiao et al., 1998) has been implicated in
LTD induction (Ronesi and Huber, 2008; Takayasu et al., 2010;
Ronesi et al., 2012). Interestingly, mRNA and protein levels of the
short, activity-induced Homer 1a isoform were reduced in the
hippocampus of AS mice, whereas levels of the long, constitutive
Homer 1b/c isoforms were unchanged (Fig. 5 D, E). We also
measured mGlu5 receptor protein levels in hippocampal pro-
tein immunoprecipitated with either pan-Homer or Homer
1b/c antibodies. mGlu5 receptor levels were significantly in-
creased in pan-Homer immunoprecipitates from AS mice,
compared with wild-type mice (Fig. 5F ). A significant increase
in mGlu5 receptor levels was also found in Homer 1b/c im-
munoprecipitates from AS mice (Fig. 5G).

Discussion
Drug treatment of AS remains an unmet clinical need, and
pharmacological options to control symptoms of the disease
have been only partially effective. Ube3A has been implicated
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in the regulation of activity-dependent
synaptic plasticity (Jiang et al., 1998;
Weeber et al., 2003), but its role in mGlu
receptor-dependent forms of synaptic
plasticity is unexplored. Here, we have
shown that mGlu5 receptor-dependent
LTD was enhanced in the hippocampus
of AS mice, and this was associated with
alterations in mGlu5 receptor coupling
with Homer proteins. mGlu5 receptor-
dependent LTD was also enhanced by the
proteasome inhibitor UBE1-41, as ex-
pected (Citri et al., 2009), and the action
of UBE1-41 was occluded in AS mice. Thus,
the enhancement of mGlu5 receptor-
dependent LTD in AS mice can be as-
cribed to the impairment of the ubiquitin/
proteasome system. Changes in mGlu
receptor-dependent LTD in the hip-
pocampus of AS mice were specific be-
cause LTD induced by low-frequency
stimulation (e.g., NMDA receptor-
dependent LTD) was unaltered. This con-
trasts with the finding of a reduced
NMDA receptor-dependent LTD in the
visual cortex of AS mice (Yashiro et al.,
2009). We highlight that DHPG-induced
LTD under our experimental conditions
was insensitive to NMDA receptor block-
ade, as expected.

LTD mediated by group I mGlu recep-
tors at the Schaffer collateral–CA1 syn-
apses requires dendritic protein synthesis
(Waung and Huber, 2009). In FXS mice,
LTD is enhanced and becomes indepen-
dent of new protein synthesis because of
the lack of FMRP, which normally re-
strains translation of LTD-related pro-
teins (Huber et al., 2002; Hou et al., 2006;
Nosyreva and Huber, 2006). In apparent
contrast with these findings, the mGlu5
receptor-dependent LTD in AS mice was
sensitive to the protein synthesis inhibitor
anisomycin to the same extent as in con-
trol mice. Thus, although the defect of
Ube3A is expected to prolong the half-life
of postsynaptic proteins, mGlu receptor-
dependent LTD in AS mice retains its sen-
sitivity to de novo protein synthesis.

Arc, which is the product of an imme-
diate early gene, has been directly related
to mechanisms of LTD mediated by group
I mGlu receptors. Rapid translation of Arc
mediates mGlu1/5 receptor-dependent
LTD in hippocampal neurons through a
persistent increase in the rate of AMPA
receptor endocytosis (Waung et al., 2008).
FXS mice show increased Arc levels in
dendrites, and lentiviral-mediated ex-
pression of FMRP in these mice normal-
izes both Arc levels and LTD in the
hippocampus (Niere et al., 2012). We ex-
pected to find changes in Arc levels in the
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hippocampus of AS mice because Arc is a substrate for Ube3A
(Greer et al., 2010). In contrast, Arc levels did not differ between
wild-type and AS hippocampal slices under the same conditions
used for the induction of LTD. However, we cannot exclude the
possibility that differences in Arc levels between wild-type and AS
mice are present, but anatomically restricted and too small to be
revealed by immunoblot analysis.

Recent data suggest that in addition to triggering protein deg-
radation, ubiquitination can modify protein–protein interac-
tions and protein localization and activity (Hicke, 2001;
DiAntonio and Hicke, 2004; Chen and Sun, 2009). We therefore
took steps to find at which level the lack of Ube3A could affect the
propagation of mGlu5 receptor signaling. Using specific pharma-
cological inhibitors, we showed that mGlu5 receptor-dependent
LTD in AS mice relied on the same signaling pathways that me-
diate LTD in wild-type mice, i.e., the PTP, MAPK, and PI3K/
mTOR pathways (Gladding et al., 2009; Collingridge et al., 2010;
Lüscher and Huber, 2010). Stimulation of at least the MAPK and
PI3K pathways by DHPG was unaltered in AS mice, suggesting
that changes in the activity of these pathways are not responsible
for the enhanced mGlu5 receptor-dependent LTD. mGlu5 recep-
tor expression and mGlu5 receptor-mediated PI hydrolysis were
also unaltered in AS mice.

AS mice differed from wild-type mice in the coupling mech-
anism of mGlu5 receptors to Homer proteins. Long, constitutive
isoforms of Homer proteins (Homer 1b, 1c, 2, and 3) multim-
erize through their C-terminal coiled-coil domains and target
mGlu1a and mGlu5 receptors to the postsynaptic density
through interactions with SHANK (SH3 and multiple ankyrin
repeat domains protein). In addition, long isoforms of Homer
link mGlu1a and mGlu5 receptors to signaling molecules, such as
PIKE (phosphoinositide-3 kinase enhancer), EF2K (the elonga-
tion factor 2 kinase), the inositol-1,4,5-trisphosphate receptors
TRPC1 and TRPC3, N-type calcium channels, and M-type po-
tassium channels (Brakeman et al., 1997; Tu et al., 1998, 1999;
Xiao et al., 1998; Kammermeier et al., 2000; Yuan et al., 2003; Kim
et al., 2006). In contrast, Homer 1a, a short and activity-inducible
form of Homer lacking the coiled-coil domain, acts as a domi-
nant negative isoform by uncoupling mGlu1a or mGlu5 recep-
tors from postsynaptic effectors (Kammermeier and Worley,
2007).

Recent evidence links Homer proteins to mGlu5 receptor-
mediated synaptic plasticity and autism. Disruption of mGlu5
interaction with Homer proteins blocks mGlu5 receptor-
dependent LTD and protein synthesis in normal mice (Ronesi et
al., 2012). In FXS mice, mGlu5 receptors are less associated with
the long Homer isoforms and more associated with Homer 1a
(Giuffrida et al., 2005; Ronesi et al., 2012). Genetic deletion of
Homer 1a corrects several phenotypes in FXS mice, but not the
enhancement of mGlu5 receptor-dependent LTD in the hip-
pocampus (Ronesi et al., 2012). The gene encoding for Homer 1
has been identified as a novel risk gene for nonsyndromic autism.
Rare Homer 1 gene variants that potentially affect protein func-
tion cosegregate closely with autism among children of affected
families (Kelleher et al., 2012).

In AS mice, changes in the coupling of mGlu5 receptors to
Homer proteins were opposite to those seen in FXS mice. AS
mice showed reduced Homer 1a mRNA and protein levels,
and increased association of mGlu5 receptors with Homer
proteins in immunoprecipitates. The reduction of Homer 1a
in AS mice was unexpected because Homer 1a is a substrate for
ubiquitination, and proteasome inhibitors are known to en-
hance Homer 1a levels (Ageta et al., 2001). Perhaps the lack of

Ube3A enhances the stability of a negative regulator of Homer
1a, which may function at transcriptional or translational lev-
els. Alternatively, in AS mice the Homer 1a phenotype may lay
upstream of the proteasome system, which may help to ex-
plain why Homer 1a levels are not enhanced despite the lack of
Ube3A. It will be interesting to examine whether an enhanced
coupling of mGlu5 receptors to long Homer isoforms has any
influence on the efficiency of the ubiquitine/proteasomal sys-
tem. Whatever the mechanism, the reduction of Homer 1a
suggests that mGlu5 receptors are more efficiently coupled to
postsynaptic effectors in AS mice. This fits nicely with the
enhanced mGlu5 receptor-dependent LTD found in AS mice,
although the precise mechanism that is ultimately responsible
for the amplification of LTD is unknown. It is intriguing that
in FXS and AS mice opposite changes in mGlu5/Homer cou-
pling are associated with an enhanced mGlu5 receptor-
dependent LTD. One should take into account the fact that a
reduced association of mGlu5 receptors to long Homer iso-
forms restrains receptor coupling to postsynaptic effectors on
one side (Kammermeier and Worley, 2007), but enhances the
agonist-independent “constitutive” activity of mGlu5 recep-
tors on the other side (Ango et al., 2001). Whether changes in
the constitutive activity of mGlu5 receptors have any role in
the pathological phenotype of AS mice is unknown.

In conclusion, we have described for the first time the associ-
ation of AS with abnormalities in the interaction between mGlu5
receptors and Homer proteins, and an enhancement of mGlu5
receptor-dependent LTD in the hippocampus. These findings lay
the groundwork for the use of mGlu5 receptor antagonists in
models of AS.
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