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Abstract — In this article is presented a very simple and effective
analog spiking neural network simulator, realized with an
event-driven method, taking into account a basic biological
neuron parameter: the spike latency. Also, other fundamentals
biological parameters are considered, such as subthreshold
decay and refractory period. This model allows to synthesize
neural groups able to carry out some substantial functions.
The proposed simulator is applied to elementary structures,
in which some properties and interesting applications are
discussed, such as the realization of a Spiking Neural Network
Classifier.

Index Terms — Neuron, Spiking Neural Network (SNN),
Latency, Event-Driven, Plasticity, Threshold, Neuronal Group
Selection, SNN classifier.

I. INTRODUCTION

In Spiking Neural Networks (SNN), the neural activity
consists of spiking events generated by firing neurons [1],
[2], [3], [4]. A basic problem to realize realistic SNN concerns
the apparently random times of arrival of the synaptic signals
[5], [6], [7]. Many methods have been proposed in the
technical literature in order to properly desynchronizing the
spike sequences; some of these consider transit delay times
along axons or synapses [8], [9]. A different approach
introduces the spike latency as a neuron property depending
on the inner dynamics [10]. Thus, the firing effect is not
instantaneous, but it occurs after a proper delay time which
is different in various cases. This kind of neural networks
generates apparently random time spikes sequences, since
continuous delay times are introduced by a number of
desynchronizing effects in the spike generation. In this work,
we will suppose this kind of desynchronization as the most
effective for SNN simulation. Spike latency appears as
intrinsic continuous time delay. Therefore, very short
sampling times should be used to carry out accurate
simulations. However, as sampling times grow down,
simulation processes become more time consuming, and only
short spike sequences can be emulated. The use of the event-
driven approach can overcome this difficulty, since
continuous time delays can be used and the simulation can
easily proceed to large sequence of spikes [11], [12].

The class of dynamical neural networks represents an
innovative simulation paradigm, which is not a digital system,
since time is considered as a continuous variable. This
property presents a number of advantages. It is quite easy to

simulate very large networks, with simple and fast simulation
approach [13]. In the present work, exploiting the neural
properties mentioned above, are introduced very simple
logical elementary structures, which can represent useful
application examples of the proposed method. With the
purpose to show the structures capabilities as a processing
block, a SNN classifier is presented. In this way, is possible
to treat many problems, that involve the use of the classic
artificial neural networks, by means of spiking neural
networks.The paper is organized as follows: description of
some basic properties of the neuron, such as threshold and
latency; simulation of the simplified model and the network
structure on the basis of the previous analysis. Then, with
the aim to realize some simple applications, such as the SNN
classifier, some elementary structures are analyzed and
discussed.

II. ASYNCHRONOUS SPIKING NEURAL NETWORKS

Many properties of neural networks can be derived from
the classical Hodgkin-Huxley Model, which represents a quite
complete representation of the real case [14], [15]. In this
model, a neuron is characterized by proper differential
equations describing the behaviour of the membrane potential
Vm. Starting from the resting value Vrest, the membrane potential
can vary when external excitations are received. For a
significant accumulation of excitations, the neuron can cross
a threshold, called Firing Threshold (FT), so that an output
spike can be generated. However, the output spike is not
produced immediately, but after a proper delay time called
latency. Thus, the latency is the delay time between exceeding
the membrane potential FT and the actual spike
generation.This phenomenon is affected by the amplitude
and width of the input stimuli and thus rich dynamics of
latency can be observed, making it very interesting for the
global network evolution.

The latency concept depends on the definition of the
threshold level. The neuron behaviour is very sensitive with
respect to small variations of the excitation current [16].
Nevertheless, in the present work, an appreciable maximum
value of latency will be accepted. This value was determined
by simulation and applied to establish a reference threshold
point [13]. When the membrane potential becomes greater
than the threshold, the latency appears as a function of
Vm.The latency times make the network spikes
desynchronized, in function of the dynamics of the whole
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network. As shown in the technical literature, some other
solutions can be considered to accounting for
desynchronization effects, as, for instance, the finite time
spike transmission on the synapses [8], [9], [10].A simple
neural network model will be considered in this paper, in which
latency times represent the basic effect to characterize the
whole net dynamics.

To this purpose, significant latency properties have been
analysed using the NEURON Simulation Environment, a tool
for quick development of realistic models for single neurons,
on the basis of Hodgkin-Huxley equations [17]. Simulating a
set of examples, the latency can be determined as a function
of the pulse amplitude, or else of the membrane potential Vm.
The latency behaviour is shown in Fig. 1, in which it appears
decreasing, with an almost hyperbolic shape. These results
will be used to introduce the simplified model, in the next
section. Some other significant effects can easily be included
in the model, as the subthreshold decay and the refractory
period [10]. The consideration of these effects can be
significant in the evolution of the whole network.

III. SIMPLIFIED NEURON MODEL IN VIEW OF NEURAL NETWORK

SIMULATION

In order to introduce the network simulator in which the
latency effect is present, the neuron is modelled as a system
characterized by a real non-negative inner state S. The state
S is modified adding to it the input signals Pi (called burning
signals), coming from the synaptic inputs. They consist of
the product of the presynaptic weights (depending on the
preceding firing neurons) and the postsynaptic weights,
different for each burning neuron and for each input point
[13]. Defining the normalized threshold S0 ( > 1), two different
working modes are possible for each neuron (Fig. 2):
a) S < S0, for the neuron in the passive mode;
b) S > S0, for the neuron in the active mode.

In the passive mode, a neuron is a simple accumulator, as
in the Integrate and Fire approach. Further significant effects
can be considered in this case, as the subthreshold decay,
by which the state S is not constant with time, but goes to
zero in a linear way. To this purpose, the expression  S = Sa –
Δt ld can be used, in which Sa is the previous state, Δt is the
time interval and ld is the decay constant.

Fig. 1. Latency as a function of the membrane potential (or else of
the current amplitude Iext , equivalently).

Fig. 2. Passive and active working modes.

In the active mode, in order to introduce the latency effect,
a real positive quantity, called time-to-fire tf,  is considered. It
represents the time interval in which an active neuron still
remains active, before the firing event. After the time tf, the
firing event occurs (Fig. 3).

Fig. 3. Proposed model for the neuron

The firing event is considered instantaneous and consists in
the following steps:
a) Generation of the output signal Pr, called  presynaptic
weight, which is transmitted, through the output synapses,
to the receiving neurons, said the burning neurons;
b) Reset of the inner state S to 0, so that the neuron comes
back to its passive mode.

In addition, in active mode, a bijective correspondence
between the inner state S and tf is supposed, called the firing
equation. In the model, a simple choice of the normalized
firing equation is the following one:
      tf  =  1/(S - 1), for  S > S0

Time-to-fire tf is a measure of the latency, as it represents
the time interval in which the neuron remains in the active
state. If S0 = 1 + d (with d > 0), the maximum value of time-to-
fire is equal to 1 / d. The above equation is a simplified model
of the behaviour shown in Fig. 1. Indeed, as the latency is a
function of the membrane potential, time-to-fire depends from
the state S, with a similar shape, like a rectangular hyperbola.
The simulated and the firing equation behaviours are
compared in Fig. 4.
The following rules are then applied for the active neurons:
a) If appropriate inputs are applied, the neuron can enter in
its active mode, with a proper state  SA  and a corresponding
time-to-fire: tfA = 1/(SA - 1).
b) According to the bijective firing equation, as the time
increases of  tx ( < tfA), the time-to-fire decreases to the value
tfB = tfA – tx  and the corresponding inner state SA increases to
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the new value  SB = 1 + 1/ tfB.
c) If, after the time interval  tx, a new input is received, the new
inner state SB must be considered.
As a consequence, the effect of the new input pulse becomes
less relevant for greater values of tx. (namely for greater values
of  SB).

Fig. 4. Comparison between the latency behaviour and that of the
denormalized firing equation.The two behaviours are similar to

rectangular hyperbola.

The proposed model is similar to the original integrate-
and-fire model, except for the introduction of a modulated
delay for each firing event. This delay time strictly depends
from the inner dynamics of the neuron. Time-to-fire and fir-
ing equation are basic concepts to make asynchronous the
whole neural network. Indeed, if no firing equation is intro-
duced, time-to-fire is always equal to zero and any firing event
is produced exactly when the state S becomes greater than
S0. Thus, the network activity is not time modulated and the
firing events are produced at the same time. On the other
hand, if neuron activity is described on the basis of continu-
ous differential equations, the simulation will be very com-
plex and always based on discrete integration times.

The introduction of the continuous time-to-fire makes
the evolution asynchronous and dependent on the way by
which each neuron has reached its active mode.

In the classical neuromorphic models, neural networks
are composed by excitatory and inhibitory neurons. The con-
sideration of these two kinds of neurons is important since
all the quantities involved in the process are always positive,
in presence of only excitatory firing events. The inhibitory
firing neurons generate negative presynaptic weights Pr, and
the inner states S of the related burning neurons can become
lower. For any burning neuron in the active mode, since dif-
ferent values of the state S correspond to different tf, time-
to-fire will decrease for excitatory, and increase for inhibitory
events. In some particular case, it is also possible that some
neuron modifies its state from active to passive mode, with-
out any firing process, in the case of proper inner dynamics
and proper inhibitory burning event. In conclusion, in pres-
ence of both excitatory and inhibitory burning events, the
following rules must be considered.
a. Passive Burning. A passive neuron still remains passive
after the burning event, i.e. its inner state is always less than
the threshold.
b. Passive to Active Burning. A passive neuron becomes
active after the burning event, i.e. its inner state becomes
greater than the threshold, and the proper time-to-fire can be
evaluated. This is possible only in the case of excitatory
firing events.

c.Active Burning. An active neuron affected by the burning
event, still remains active, while the inner state can be
increased or decreased and the time-to-fire is properly
modified.
d. Active to Passive Burning.  An active neuron comes back
to the passive mode without firing. This is only possible in
the case of inhibitory firing neurons. The inner state
decreases and becomes less than the threshold. The related
time-to-fire is cancelled.

The simulation program for continuous-time spiking
neural networks is realized by the event driven method, in
which time is a continuous quantity computed in the process.
The program consists of the following steps:
1. Define the network topology, namely the burning neurons
connected to each firing neuron and the related values of the
postsynaptic weights.
2. Define the presynaptic weight for each excitatory and
inhibitory neuron.
3. Choose the initial values for the inner states of the neurons.
4. If all the states are less than the threshold S0 no active
neurons are present. Thus, the activity is not possible for all
the network.
5. If this is not the case, evaluate the time-to-fire for all the
active neurons. Apply the following cyclic simulation
procedure:

5a. Find the neuron N0 with the minimum time-to-fire tf0.
5b. Apply a time increasing equal to tf0. According to this

choice, update the inner states and the time-to-fire for all the
active neurons.

5c. Firing of the neuron N0. According to this event, make
N0  passive and update the states of all the directly connected
burning neurons, according to the previous burning rules.

5d. Update the set of active neurons. If no active neurons
are present the simulation is terminated. If this is not the
case, repeat the procedure from step 5a.

In order to accounting for the presence of external sources,
very simple modifications are applied to the above procedure.
In particular, input signals are considered similar to firing
spikes, though depending from external events. Input firing
sequences are connected to some specific burning neurons
through proper external synapses. Thus, the set of input
burning neurons is fixed, and the external firing sequences
are multiplied by proper postsynaptic weights. It is evident
that the parameters of the external sources are never affected
by the network evolution. Thus, in the previous procedure,
when the list of active neurons and the time-to-fire are
considered, this list is extended also to all the external sources.

In previous works [13], the above method was applied to
very large neural networks, with about 105 neurons. The set
of postsynaptic weights was continuously updated
according to classical Plasticity Rules and a number of
interesting global effects have been investigated, as the well
known Neuronal Group Selection, introduced by Edelman
[18], [19], [20], [21].In the present work, the model will be
applied to small neural structures in order to realize useful
logical behaviours. No plasticity rules are applied, thus the
scheme and the values of presynaptic and postsynaptic
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weights will be considered as constant data. Because of the
presence of the continuous time latency effect, the proposed
structures seem very suitable to generate or detect continuous
time spike sequences. The discussed neural structures are
very simple and can easily be connected to get to more
complex applications. All the proposed neural schemes have
been tested by a proper MATLAB simulator.

IV. SOME BASIC DEFINITIONS AND CONFIGURATIONS

In this section, the previous theory will be applied to
small group of neurons so that a number of SIMPLE
continuous-time applications will be introduced.  A very
simple logic activity consists of the recognition of proper
input spiking sequences by proper neural structures. The
input sequences can differ from their spike time arrival, and
the recognition consists on the firing of a proper output
element, called the Target Neuron TN.  A basic function called
the dynamic addition will be introduced, by which many
simple structures can be defined, in which the input spike
time of arrival can be used.

The basic function of a target neuron is to produce an
output spike when the correct burning spikes are received in
the proper time interval (Fig. 5). No output spike is generated
if some of the inputs are not received, or else, if their arrival
times are not properly correct. It is evident that the target
neuron will become active under the following two conditions:
1. the sum of the burning input amplitudes is greater than the
threshold.
2. the burning spikes are properly synchronized.

Fig. 5. Three input spikes are used to generate the output. The
subthreshold decay effect is considered. The times  τ1

 and  τ2 are the interspike intervals.

The subthreshold decay effect will be used as a design pa-
rameter. Because of this effect, it is evident that greater
input spike amplitudes are necessary, for less synchronized
times of arrival (Fig. 6). In this way, the firing threshold will be
reached.

Fig. 6. Comparison of different input amplitudes and arrival times,
with reference to Fig. 5.

a) The inputs are quite synchronized and the output is
generated.
b) The synchronization is not sufficient to output generation.
c) The insufficient synchronization is compensated by proper
amplitude increasing.
In order to produce the target neuron spike, the following
relation must be satisfied:
Pr (Pa + Pb + Pc) – ld (τ1 + τ2) > S0

in which Pr is the presynaptic weight, Pa, Pb, Pc are the
postsynaptic weights referred to the target neuron, ld is the
subthreshold decay, S0 is the normalized threshold and τ1, τ2
are the interspike intervals.

The input spike time tolerance is strictly related to the
subthreshold decay and to the presynaptic weight values,
considered as external control parameters. On the basis of
the proper choice of these parameters, a certain tolerance of
the input synchronism could be obtained. Different target
neuron tolerances could be achieved. Indeed, greater target
neuron tolerance is observed in correspondence to greater
presynaptic weights, as well as less ld values (Fig. 7). This
kind of behaviour should be quite useful to synthesize higher
complex structures and applications.

Fig. 7. Comparison of the target neuron behaviour as a function of
different choices of ld and Pr, for a subthreshold single input spike.

a) original reference case.
b) higher Pr value.
c) higher ld  value.

A new global useful parameter can be defined, namely
the working mode activity level (WMAL). With reference to
a target neuron, this parameter represents the number of equal
amplitude synchronized input spikes necessary to let the
target neuron over the threshold level (Fig. 8).In the previous
discussion, the only considered effect was the target neuron
threshold level overtaking. On the basis of the previous
discussion, the actual output spike generation will occur after
the proper time-to-fire, if of course other burnings will be not
present in the meantime.
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Fig. 8. Case of WMAL equal to 3. Three equal and synchronized
burning pulses are necessary. A less number of burning pulses as well

as proper desynchronization can make the output not present.

V. ELEMENTARY STRUCTURES

In this section, a number of elementary applications of
the simplified neuron model will be presented. The purpose
is to introduce some neural structures in order to generate or
detect particular spike sequences. Since the considered neural
networks can generate analog time sequences, time will be
considered as a continuous quantity in all the
applications.Thus, very few neurons will be used and the
properties of the simple networks will be very easy to describe.

A. Analog Time Spike Sequence Generator
In this section, a neural structure, called neural chain,

will be defined. It consists of m neurons, called N1, N2,… , Nm,
connected in sequence, so that the synapses from the neuron
Nk to the neuron Nk+1 is always present, with k = 1, 2, 3, … ,
m-1 (Fig. 9).

Fig. 9. Open neural chain.

In the figure, EI1 represents the external input, Nk the
neuron k, and P(Nk, Nk-1) the product of the presynaptic and
the postsynaptic weights, for the synapses from neurons Nk-

1 to neuron Nk.
If all the quantities P(Nk, Nk-1) are greater than the

threshold value S0 = 1 + d, any neuron will become active in
presence of a single input spike from the preceding neuron in
the chain. This kind of excitation mode will be called, level 1
working mode. It means that a single excitation spike is
sufficient to make active the receiving neuron. If all the
neurons 1, 2, .. m, are in the level 1 working mode, it is
evident that the firing sequence of the neural chain can
proceed from 1 to m if the external input  EI1 is firing at a
certain initial time. This of course is an open neural chain,
but, if a further synaptic connection from neuron Nm to neuron
is present, the firing sequence can repeat indefinitely and a
closed neural chain is realized (Fig. 10).

The basic quantity present in the structure is the
sequence of the spiking times generated in the chain. Indeed,
since all the positive quantities P(Nk, Nk-1) - S0   can be chosen
different with k, different latency times will be generated,

Fig. 10. Closed neural chain.

thus the spiking times can be modulated for each k with the
proper choice of P(Nk, Nk-1).

In this way, a desired sequence of spiking times can be
obtained. The sequence is limited for open neural chain,
periodic for closed neural chain.The above elementary neural
chain can be modified in many ways. A simple idea consists
of substituting a neuron Nk  in the chain with a proper set of
neurons  Nkh  with h = 1, 2, … mk, (mk > 1)  (Fig. 11).

Fig. 11. Extended neural chain element.

B. Spike Timing Sequence Detector
In this section, two elementary structures are discussed

to detect input spike timing sequences. The properties of the
structures depend on the proper choice of the values of
postsynaptic weights, together with the basic effect called
subthreshold decay. The idea is based on the network shown
in Fig. 12. It consists of two branches connecting the External
Inputs EI1 and EI2 to the output neuron TN10.

Fig. 12. Elementary Spike Timing Sequence Detector. The
detection is called positive when the firing of the target neuron

is obtained, otherwise negative.

In the figure, P(10,1) is the product of the presynaptic
and the postsynaptic weights for the synapses from EI1  to
TN10, while P(10,2)  refers to the synapses from  EI2  to  TN10.
If the values are properly chosen, the system can work at
level 2 working mode. This means that TN10 becomes active
in presence of the two spikes from EI1 and EI2. As and example,
if  P(10,1)  = P(10,2) = 0.6, and the spikes from EI1 and EI2 are
produced at the same time, TN10 becomes active with the
state S (TN10) = 1.2 ( > S0), so that an output spike is produced
after a proper latency time. In this case, the output spike
generated by TN10 stands for a positive detection. However,
if the spiking times t1 and t2 of EI1 and EI2 are different (for
instance t2 > t1), only the value of S (TN10) = 0.6 is present at
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 the time t1. Taking into account the linear subthreshold decay,
the state at the time t2 will grow down to S (TN10) = 0.6 - (t2  -
t1 ) ld. Thus, the new spike from EI2 could not be able to make
active the target neuron TN10; thus, the detection could be
negative. This is true if the values of P(10, 1) and P(10,2),
the time interval (t2 - t1) and the linear decay constant ld are
properly related. In any case, the detection is still positive if
the interval (t2 - t1) is properly limited. Indeed, for a fixed
value of t1, the detection is positive if t2 is in the interval A, as
shown in Fig. 13. Therefore, the proposed structure can be
used to detect if the time t2 belong to the interval A.

Fig. 13.Symmetric interval A. When t2 belongs to interval A,the
detection is positive.

The above elementary discussion can easily be extended. If
the structure is modified as in Fig. 14, in which a Delay Neuron
DN3 is added, the time interval A  can be chosen around a
time t1 + Dt, in which Dt is the delay time related to DN3

Fig. 14. Delayed Spike Timing sequence Detector.

The value of Dt can be obtained as the latency time of DN3,
from a proper value of P(3,1). Of course the neuron DN3 must
work at level 1 working mode.

C. Spike Timing Sequence Detector With Inhibitors
In this section a structure able to detect significant input

spike timing sequences will be introduced. The properties of
the proposed neuron structure strictly depend on the
presence of some inhibitors which make the network
properties very sensitive.The proposed structure will be

described by a proper example. The scheme is shown in Fig.
15.The network consists of three branches connected to a
Target Neuron. The structure can easily be extended to a
greater number of branches.  The neurons of Fig. 15 can be
classified as follows:

        TABLE I.        TABLE II.          TABLE III.         TABLE IV.

Fig. 15. Spike timing sequence detector using inhibitors: an
example. The detection is called positive when the firing of

the target neuron is obtained, otherwise negative

Table I. Firing Table For The Case A Simulation. The Detection
Is Positive.
Table II. Firing Table For The Case B Simulation. No Firing
For The Neuron Tn10. The Detection Is Negative.
Table III. Firing Table For The Case C Simulation. No Firing
For The Neuron Tn10. The Detection Is Negative.
Table IV. Firing Table For The Case D Simulation. The
Detection Is Positive.
External Inputs  : neurons 35, 36, 37;
Excitatory Neurons : neurons 1, 2, 3;
Inhibitory Neurons  : neurons 31, 32, 33;
Target Neuron         : neuron 10.

The network can work in different ways on the basis of
the values P(k, h) of the products of the presynaptic and the
postsynaptic weights.

Since the firing of the target neuron depends both on the
excitators and the inhibitors, the detection can become very
sensitive in function of the excitation times of the external
inputs, with proper choices of the quantities P(k, h). Indeed,
some target neuron excitations can make it active so that the
firing can be obtained after a proper latency interval. However,
if an inhibition spike is received in this interval, the target
neuron can come back to the passive mode, without any
output firing.

As an example, called Case A, the simulation program has
been used with the following normalized values:
P(1,35) = P(2,36) = P(3,37) = 1.1;
P(31,1) = P(32,2) = P(33,3) = 1.52;
P(10,1) = P(10,2) = P(10,3) = 0.5;
P(10,31) = P(10,32) = P(10,33) = - 4.

In this example, the three parallel branches of Fig. 15 are
exactly equal and the latency time for the target neuron firing
is such that the inhibition spikes are not able to stop it. In the
simulation, equal firing times for the external inputs are chosen
(equal to the arbitrary normalized value of 7.0000). The firing
times (t) for the neurons (n) are obtained by the simulation
program (Tab. I).It can be seen that the firing of  target neuron
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10 occurs at normalized time t = 19.9231, so that the detection
is positive.

This example is very sensitive, since very little changes
of the values can make the detection negative. In the new
Case B, the same values of the Case A are chosen, except the
firing time for the external input 36.  The new normalized
value is equal to  7.0100 and differs from that of the other
input times. The small time difference makes the detection
negative. The new values for the firing times are shown in
Tab. II.

In a further Case C, the firing times are chosen equal (as
in the Case A), but the actions of external inputs are different
so that different latency times are now present for the
excitatory neurons 1, 2, 3. In particular, starting from the values
of Tab. III, only the following data are modified:
P(1,35) = 1.5; P(2,36) = 1.1; P(3,37) = 1.7;
As in previous example, the detection is negative.

In the Case C, all External Inputs generate the spikes at
the time t = 7.0000. However, the different values of  P(1,35),
P(2,36) and P(3,37) make different the working times of the
three branches of Fig. 15. Indeed, the firing times of excitatory
neurons 1, 2 and 3 are the following ones:
t(1) = 9.0000,   t(2 ) = 17.000,   t(3) = 8.4286.

From these data, it can be seen that the branch of 2 is
delayed of (17.0000 – 9.0000) = 8.0000 with respect to that of
neuron 1, and of (17.0000 – 8.4286) = 8.5714 with respect to
that of  neuron 3. Thus, all the networks can be resynchronized,
if the External Inputs generate the spikes at different times,
namely  (7.0000+8.0000) = 15.0000 for neuron 35 and (7.0000 +
8.5714) = 15.5714 for neuron 37.

Using these data, we present the final Case D, in which
the detection is positive, since the differences present in the
Case C are now compensated.

The network of Fig. 15 can detect input spikes generated
at the times shown in the table. It can easily be seen that the
detection is still positive for equal time intervals among the
input spikes. However, different time intervals or different
input spike order makes the detection negative.The
synthesized structures can be easily interconnected each
other, in a higher level, to perform specific tasks. This will
allow us to realize useful applications.

VI. SIMPLE APPLICATIONS: SPIKE TIMING BASED CLASSIFIER

On the basis of the previous elementary structures, some
pattern recognition problems can be easily afforded. Each
object to be consider will be described in terms of its particular
features, neglecting any preprocessing problem. Each feature
will be represented in the reference domain. In this way,
different objects belonging to different classes will be mapped
in a specific n-dimensional space.Proper input pulses will be
defined as input to the network, and the information will be
coded as proper analog timings. The outputs will correspond
to the activation of the related target neurons.

A. Reference Classes As Spike Timing Representation
In a three dimensional space, a single object can be

represented as a set of three reference features. Each axis is

referred to a time interval (τ) that permits to quantify a reference
feature.To this purpose, each feature detection will be
afforded by a proper sequence recognizer. Thus, any
significant elementary structure will be synthesized in the
proper interval detection, so that any feature will correspond
to a specific action domain. Therefore, a proper set of
recognizer will be necessary in order to indentify a specific
class. The following examples will be considered.
Example 1. In this example, an object is described by a single
feature (Fig. 16). Thus, a single sequence recognizer is
necessary, to identify the class of the object. The time interval
is centered on the instant t1, with a proper tolerance.

Fig. 16. Case of a single class, described by a single feature

If objects belonging to more different classes are of
interest, a number of different sequence detectors will be
used, centered on proper intervals of the same axis (Fig. 17).
These sequence detectors can work in parallel, in order to
activate different target neurons according to the particular
class of the object.

Fig. 17. Case of M classes, described by a single feature

Example 2. In this example, an object is described by a set of
N features (Fig. 18). The number of  N = 3 will be used, for the
sake of convenience. A set of a N sequence detectors will be
necessary in this case, to identify any single class.In the

Figure 18. Case of three features, with three classes for everyone:
a) Class 1 recognizer set.
b) Class 2 recognizer set.
c) Class 3 recognizer set.

d) Single class domains, in the three dimensional feature space
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Fig. 19. The global architecture of the proposed SNN classifier.

A possible limitation of the previous procedure seems to
be the shape of the class domains, which is always right-
angled. In particular, a rectangle for a double feature, a paral-
lelepiped for three feature, a hyper-parallelepiped in the gen-
eral case. This limitation can easily be overcome using proper
subclass groups implemented by different neural recognizers,
linked to the same target. Structured Type RG could be ap-
plied in this cases.A case of interest in the classification prob-
lem is to grow up or down the action domains related to the
identified classes (Fig. 20).

Fig. 20. Increase/Decrease of an action domain volume

As shown before, two external parameters can be used,
in particular Pr and ld quantities. This possibility is very useful
when different object could lie in adjacent zones in the feature
space. In the case of multiple target activation, the proper
change of the external parameters could get to the single
target activation case. In similar way, if no target neurons are
activated in correspondence to an input pattern, the
corresponding class domain can be grow up, so that the
interest point is included.

C. An Example: the “Art Paintings Classifier”
On the basis of the described structures, it could be possible

employ proper sequence detector sets for information
recalling applications. The following example is an “art
painting classifier” implemented. After a proper training, this
“macro-structure” is able to  recognize the art paintings. The
training consists in the adjustment of the postsynaptic
weights, with the aim of tuning the structures to the feature
parameters; to do that statistical information are extracted
from a reduced art painting data set to do that. For this
purpose, the following five features  (N=5) are considered:
- Red Colour Dynamics
- Green Colour Dynamics
- Blue Colour Dynamics
- Edge Factor
- Size Factor

The feature selection is made so that the features were
robust to rotations and resizing of the image in exam. For the
feature extraction a MATLAB code is used.

Fig. 21. The detector group.

In Fig 21 the detector group relative to a single art painting
is represented, in which each extracted feature is recognized
by the related sequence detector. In this example, delayed
spike timing sequence detector structures are used (see Fig
14). In this example are used the delayed spike timing
sequence detectors. The detection of the features is possible
only and if only the sequence detectors are tuned to the
considered art painting. Then, an input features vector is
provided to the detector group; this features are extracted by
the test set. Moreover, is present an external target that fires
only if at least 3 features are detected, then the art painting is
correctly classified. Note that the external neuron is a simple
combiner with a threshold, but without subthreshold decay.

particular example shown , also the number of classes is 3.

B. Neural Architectures For Spike Timing Based Classifiers
The design of the called timing based classifier consists

of the following neural layers (Fig. 19).
An input neural layer able to receive the spike timing coded
information. The external input number EI is equal to N + 1, in
which N is the feature number related to each class.
A hidden neural layer able to carry out the actual recognition
of the interspike intervals. It consists of M  recognizer group,
where M is the class number.
An output neural layer consisting of the M target neurons.
Each of these neurons will become active in correspondence
to the related recognizer group (RG).

Fig. 22. The classifier.

The complete classifier structure (Fig. 22) consists of M-
detector groups, where M is the number of considered art
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painting (that corresponds to the classes that the classifier
have to recognize). The input features vector, of each
considered art painting, is provided to all groups. The
classification of a particular art painting occurs when the
external target of the related group fires. As discussed above,
the latter are sensitive to the specific art painting.

Below are shown the results obtained considering the
following three art painting (M=3): Leonardo da Vinci’s “The
Mona Lisa”, Edvard Munch’s “The Scream”, Vincent van
Gogh’s “The Starry Night”.
The data set is consisted of 20 images, for each art painting,
took from the internet. After the training, a test set, consisting
of 8 images, for each art painting, not presented in the training,
is presented to each tuned detector group. In the following
table are illustrated the results, in terms of accuracy and
precision of the classifier:

TABLE V. RESULTS OBTAINED FROM THE CLASSIFICATION

of sequence detectors could be used to solve complex
classification problems, as the above example  illustrated. In
addition, the structures could be used to realize more complex
systems to obtain analogic neural memories. In particular,
proper neural chains could be useful as information memories,
while proper sets of sequence detectors could be used for
the information recalling.
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