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Abstract—In this study we evaluated the effect of subject-

related variables, i.e. hand dominance, gender and experience in 
using, on the performances of an EMG-based system for virtual 
upper limb and prosthesis control. The proposed system consists 
in a low density EMG sensors arrangement, a purpose-built 
signal-conditioning electronic circuitry and a software able to 
classify the gestures and to replicate them via avatars. The 
classification algorithm was optimized in terms of feature 
extraction and dimensionality reduction. In its optimal 
configuration, the system allows to accurately discriminate five 
different hand gestures (accuracy = 88.85 ± 7.19%). Statistical 
analysis demonstrated no significant difference in classification 
accuracy related to hand-dominance (handedness) and to gender. 
In addition, maximum accuracy in dominant hand is achieved 
since first use of the system, whilst accuracy in classifying 
gestures of the non-dominant hand significantly increases with 
experience. These results indicate that this system can be 
potentially used by every trans-radial upper-limb amputee for 
virtual/real limb control. 

Keywords—EMG; hand dominance; subject’s experience; 
pattern recognition; amputees. 

I.  INTRODUCTION 
In the last decades, surface electromyographic (sEMG) 

signal acquired on human forearms has been used as input to 
control a real prosthesis [1] or a virtual device [2], either for 
interactive or clinical/rehabilitative [3] purposes. 

Transradial upper-limb amputees (amputation occurred 
below elbow) constitute a considerable portion of EMG-
controlled devices users, since the replacement of missing arm 
functionalities can extensively improve their quality of life. 
Also the visual-sensorial feedback, following the 
prosthetic/virtual hand movements, has been recently 
proposed as a promising methodology to alleviate the phantom 
limb pain [4-5], an invalidating condition which affects 
between 50% and 80% of amputees [6].  

Standard EMG-controlled devices have typically relied on 
the detection of weak/strong contractions of just two forearm 

muscles, to perform very simple movements (e.g. hand 
opening and closing) and this has restricted their usability by 
amputees [7]. To avoid these limitations, pattern recognition 
on multiple forearm muscle signals has been proposed to 
discriminate hand movements [8]. Extracted patterns of EMG 
activity, specific for each hand movement, allow to increase 
the amount of information and to realize a more natural, and 
hence satisfactory, reproduction of the gestures. 
Fundamentally, a pattern recognition-based system consists of 
three main steps: 1) EMG signal acquisition by means of an 
array of sensors; 2) feature extraction, consisting in the 
calculation of relevant characteristics from the signals, e.g. 
mean, energy, waveform length, etc. (see [9] for a review); 3) 
feature translation, or classification, to assign the extracted 
features to the class (gesture) they most probably belong to. 
Once the gesture attempted by the user of the system is 
recognized, it can be mapped towards the controlled device. 

In this study we propose a low density sEMG-based 
system for the recognition of hand gestures to be further 
replicated via a virtual limb in 3D computer graphics (avatar), 
useful in rehabilitation of amputees. It implements several 
different feature extraction modalities and dimensionality 
reduction techniques. The system was tested with 20 able-
bodied subjects, 10 males and 10 females. A comparison of 
classification accuracy obtained by feeding the classification 
algorithm with different feature vectors was performed.  

In order to improve the performances and the usability of 
the system, it was necessary to adapt it to the user’s 
peculiarities. For this reason, differences in classification 
accuracy while performing gestures with the dominant and the 
non-dominant hand were investigated, together with 
differences in female and male subjects’ performances. This 
allowed testing its suitability for upper-limb amputees, 
independently from the amputation site and muscles anatomy. 
Moreover, we investigated the effect of the experience in 
using the system, by analyzing separately “inexperienced” 
(first use) and “trained” (already experienced) subjects. 
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 By determining the influence of these three variables on 
classification accuracy, we inferred useful information on how 
the system could be an efficient solution for the 
implementation of EMG-piloted devices, either virtual or real, 
potentially for every upper-limb transradial amputee. 

II. MATERIALS AND METHODS 

A. Subjects 
Testers were twenty able-bodied subjects, ten males and 

ten females, free of known muscular and/or neurological 
diseases, 31.85 ± 10.6y aged. According to their familiarity 
with the interface, 11 subjects were considered as 
“inexperienced” and 9 as “trained”. Each subject gave 
informed consent before performing experiments. Also, to 
determine handedness, each subject was asked for his/her hand 
preference in most of the daily activities. Eighteen subjects 
resulted dominant in right hand, 2 in left hand. 

B. Setup 
Six commercial active sEMG sensors (Ottobock 

13E200=50, 27x18x9.5 mm) were placed on the subjects’ 
forearm using a silicone bracelet, as depicted in Fig.1 a-d: 
sensors were placed equally spaced in the bracelet (Fig. 1a), in 
such a way that the first sensor was placed on the flexor carpi-
radialis muscle (Fig. 1b) and the sixth sensor on the brachio-
radialis muscle (Fig. 1c). The bracelet was placed around the 
forearm, 5cm below the elbow (Fig. 1d). This configuration 
was chosen to simulate the positioning of the prosthesis 
sensors on amputees’ forearms. 

Sensors operated in 0÷5V range, bandwidth of 90-450Hz 
and Common-Mode Rejection Ratio (CMRR) >100dB. Data 
were collected using a purpose-built acquisition system (12 
bits A/D converter, 1 kHz sampling frequency).  

C. Experimental procedure 
The subjects were sitting in a comfortable chair in front of 

a PC monitor, where the following gestures to be performed 
were depicted (see Fig. 2): 

1) Rest: hand relaxed. 

2) Fist: hand with all fingers closed. 

3) Pinch: hand with thumb and finger touching as if picking a 
small object. 

4) Spread: hand open and stretched. 

5) Pointing: hand with all fingers closed with the index 
pointing. 

 Every gesture was randomly repeated 10 times and 
recorded for 2s. We empirically determined gestures duration 
by means of preliminary studies. As steady-state sEMG signal 
are more robust than transient signal for classification 
purposes [10-11], transitions between gestures were not 
recorded. 

 The whole recording procedure was performed twice, once 
with the dominant hand and once with the non-dominant hand. 
Half the subjects, randomly selected, started the recording 
session with the dominant hand and the other half with non-
dominant hand. 

D. Feature extraction 
After acquisition, raw EMG data were segmented using the 

overlapped windowing technique [11]: the windows length 
was fixed to 300ms, 75ms of delay between two successive 
(overlapped) windows. This timing was chosen in order to 
fulfill the requirements of real-time applications, such as the 
control of virtual hands or real prosthesis. For each sensor and 
each window, features were extracted; in particular, by 
indicating with ix  the ith time sample in a window and with N 
the total length of the window (in samples), the following 
time-domain features were used: 

• Mean (M): it is defined in Eq. 1 and represents the 
mean value of the EMG amplitude. 
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• Root Mean Square (RMS): it is defined in Eq. 2 and 
represents the mean power of the signal. 

Figure 2: The five hand gestures. 

 
Figure 1: Positioning of the EMG sensors and bracelet. a) the six 
sensors equally spaced in the bracelet; final bracelet dimensions are 
51.3xLx7 mm where L depends on subject’s forearm diameter b) 
sensor 1 positioning; c) sensor 6 positioning; d) bracelet positioning on 
the forearm. 
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• Willison Amplitude (WA): it is defined in Eq. 3 and 
represents the number of counts for each change in the 
EMG signal amplitude that exceeds a predefined 
threshold, set to avoid background noise-induced 
counts. It is related to the level of muscle contraction. 
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 The threshold value was set to 1.22mV, as in our 
preliminary studies with Ottobock 13E200=50 it was 
found as the most performing configuration for WA. 

• Slope Sign Change (SSC): it is defined in Eq. 4 and 
represents the number of times the slope of the EMG 
signal changes sign.  
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 The threshold leading to the highest performance was 
2.44mV. 

 Features were tested in single mode and in 
combination of two, three and four. A total of 15 different 
configurations were analyzed. After feature extraction, 
Principal Component Analysis (PCA) was applied to reduce 
dimensionality of the feature vector [12, 1]. PCA has been 
shown to be an effective technique to reduce the data 
dimensionality in EMG classification problems, obtaining 
better classification accuracies than algorithms which attempt 
to determine the best feature subset [13]. The first four 
principal components (PCs) were retained for the 
classification phase, as sufficient to achieve a cumulative 
variance greater than 95%. 

E. Classification and statistical analysis 
To compare classification performances achieved with 

different feature combinations, a 5 folds cross-validation 
approach was implemented on the entire dataset: the 10 
gesture repetitions were randomly divided into 5 subsets of 2 
repetitions; 4 subsets were used to calculate PCs and train the 
classifier and the last one was used to test the classifier. The 
procedure was repeated until each possible subset was used for 
testing the classifier. 

An Artificial Neural Network (ANN) with 10 neurons in 
the hidden layer and trained with scaled conjugate gradient 
back-propagation was implemented. The number of neurons 
of the hidden layer was empirically determined in previous 
tests.  During training, 15% of the training dataset was used as 
a validation dataset in order to improve generalization 
properties and validate network configuration [14]. The 

implementation of the whole proposed pattern recognition 
system is shown in Fig.3. 

Results obtained by the best feature vector were analyzed 
by means of paired t-test, in order to detect any statistically 
significant difference in the accuracies achieved with 
dominant and non-dominant hand. Then to investigate any 
statistical effect of the gender (male, female) and of the 
subjects’ experience with the system (inexperienced, trained) 
on classification accuracy, a two-way ANOVA test was 
performed on dominant and non-dominant datasets separately. 
A threshold of 5% was set for the accepted error.  

III. RESULTS 

A. Selection of the best feature vector 
Table 1 shows the accuracies, averaged over the 20 

subjects, and the standard deviation obtained for every 
different feature vector. Accuracy ranges from 82.93 ± 9.29% 
to 88.85 ± 7.19%. The highest accuracy was obtained by using 
a combination of M, RMS and WA as input features. From 
now on, all the presented results will refer to this optimal 
configuration. 

B. Statistical analysis: handedness, gender and experience 
effects 
The t-test applied to the accuracies achieved in the 

classification on the dominant vs. non-dominant hand gestures 
pointed out no statistically significant differences in their 
means (t= 2.25, p= 0.78). This indicates that the system was 
able to discriminate hand gestures with the same accuracy 
independently from handedness. 

Results of two-way ANOVAs, applied separately to 
dominant and non-dominant hand accuracy, are reported in 
Table 2. Test on dominant hand discloses no effect of the 

TABLE 1: CLASSIFICATION ACCURACY AND STANDARD DEVIATION FOR 
THE DIFFERENT IMPLEMENTED FEATURE VECTORS. 

Features Vector Accuracy [%] S.D. 
M 87.79 7.48 

RMS 87.65 7.8 
WA 83.96 9.54 
SSC 82.93 9.29 

M, RMS 87.75 7.67 
M, WA 88.69 6.95 
M, SSC 87.97 6.72 

RMS, WA 88.53 7.07 
RMS, SSC 87.71 6.83 
WA, SSC 84.39 9.2 

M, RMS, WA 88.85 7.19 
M, RMS, SSC 88.33 7.21 
M, WA, SSC 87.94 6.73 

RMS, WA, SSC 88.01 6.8 
M, RMS, WA, SSC 88.51 6.82 

Figure 3: Block diagram of pattern recognition-based system. 
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gender (F(1,19) = 1.01, p = 0.33) and the experience (F(1,19) 
= 0.87, p = 0.36). Also there is no interaction between the two 
variables (F(1,19) = 0.87, p = 0.36). Test on non-dominant 
hand, instead, shows a statistically significant effect (F(1,19)= 
7.17, p=0.02) of the experience on classification accuracy.  

In Figure 4 the mean and the S.D. relative to classification 
accuracy in inexperienced and trained subjects, in dominant 
hand (88.09 ± 5.48%, 89.69 ± 10.30%) and non-dominant 
hand (86.82 ± 5.38%, 92.19 ± 5.13%), are reported. Note that 
SD increased in dominant hand accuracy following 
experience; however no strong evidence (p>0.05) of a real 
increase could be found. Finally for non-dominant hand 
accuracy, the gender and the interaction between gender and 
experience are not statistically significant (respectively 
F(1,19) = 2.03, p = 0.17 and F(1,19) = 0.1, p = 0.76).  

IV. DISCUSSION AND CONCLUSIONS 
In this study we investigated the influence of subject-

related variables (hand dominance, gender and experience in 
using) on EMG-based hand gesture classification, particularly 
focusing on devices useful for upper-limb amputees, and we 
developed strategies for improving system performances. 

The proposed system, based on low density sEMG sensors, 
a combination of M-RMS-WA as feature vector, PCA for 
dimensionality reduction and classification with ANN, 
achieved an accuracy of 88.85 ± 7.19% in the discrimination 
of 5 different hand gestures (20 able-bodied subjects). 
Statistical analysis revealed that classification accuracy and, in 

consequence, prosthesis/virtual hand control do not depend on 
hand dominance (the ability with one hand rather than the 
other does not affect movements detection performances) nor 
on user’s gender (anatomical differences in musculature 
between male and female do not affect movement detection 
performances). This suggested that the proposed system could 
be potentially used by every amputee subject (female/male, 
dominant/non-dominant hand amputee) with similar results. In 
addition, the statistically significant effect of the experience, 
noticed only in non-dominant hand accuracies, highlighted 
that non-dominant hand could benefit from extended use of 
the system. Differently, maximum performance is reached 
from the very first use of the system with the dominant hand.  

Given the encouraging results obtained on able-bodied 
subjects (high accuracy, same performances both with non-
dominant hand and different gender), our system will be 
further tested on amputee subjects. Besides, this work will be 
extended by investigating the performances of new feature 
vectors, also in the frequency and time-frequency domains, 
and new dimensionality reduction algorithms (e.g. Common 
Spatial Patterns [15-16]), in order to further improve control 
and usability for amputee subjects. 
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