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Oblatum VII-1992 & 7-VI-1993

We introduce in this paper a noncommutative probability approach (in the sense
considered by D. Voiculescu in [28]) to the algebras that are associated to certain
amalgamated free products. In this way we find that the type I, factors associated
to the free, noncommutative groups Fy, N > 2 have a rich lattice of irreducible
subfactors of noninteger index. Our main result states that many index values for
irreducible subfactors of the hyperfinite I} factor are also index values for irreducible
subfactors of ¥ (Fiv). This answers a question raised by V.F.R. Jones in [13].

Theorem Let” =(A 2 B2 D;ADC D D)beacommuting square ({20]) of finite
dimensional algebras, which is irreducible (i.e. the centers of A, B and respectively
C, D have trivial intersection) and A\-Markov ([21],[31]), (i.e. there exists a \-Markov
trace, in the sense of Jones ([11]) for C C A, which restricts to a A-Markov trace for
D C B). Let N > 2 be any natural number.

Then there exists a subfactor . /. C % (Fn) of index \~" with relative commutant
BN C'. In addition

CO= (/’(F(N—l))\‘ul)g [%(FN)])\l/:-

We note that the same statement holds true if ¥ is one of the atomic infinite dimen-
sional commuting squares considered by U. Haagerup and J. Schou in [10], [26] (see
Remark 5.4).

Here /£ (Fy),N € I1,N > 2 is the type II, factor associated to a free group
Fy, i.e. the weak closure of the group algebra C(Fy) acting on the Hilbert space

* Research supported by a combined fellowship from University of California Los Angeles and Institut
des Hautes Etudes Scientifiques
** Miller Research Fellow
*** Present address: University of California at Berkeley, Department of Mathematics, Berkeley, CA
94720, USA



348 F. Ridulescu

12(Fy) by left translation. These factors were first considered by F.J. Muray and J.
von Neumann in [16]. They proved that they are not isomorphic to the hyperfinite
11, factor (since they do not have the property I'). Recently, it appeared ([28]) that
these factors are, in a certain sense, the natural algebra of observables, if one starts
with Wigner’s point of view ([32]) in which one models the observables by random
matrices of very large size.

If ¢ is any commuting square such that the iterated basic construction of 7
gives an irreducible subfactor of the hyperfinite 11, factor ([11],[12], [31],[17],
[201,[10],[26)), for instance if ¥ is one of the commuting squares that are associated
with the Jones’ subfactors Ry C R for A™! € {4cos? 7/n|n > 3}, one obtains:

Corollary  For any N € (1,00] and for any index value \=' of an irreducible

subfactor of the hyperfinite 11, factor that may be obtained by iteration of Jones’ basic

construction from a commuting square (for instance if \=' € {4cos’>n/njn > 3})

there exists an irreducible subfactor . ¢ C % (Fn) of index [%(F N) o é] =1L
Moreover . ¢ is isomorphic to £ (Fy_y-14) & [%(FN)]/\I/Z.

Recall that for a type I, factor. # with trace 7 one denotes by . ¢; the isomorphism
class of the algebra e. Ze (with unit e), where e is any projection in . £ of trace
T(e) =1t.

The higher relative commutant for the algebras in the Jones’ tower ([11]) of the
above inclusion . ¢ C ¥ (Fy) coincide with the ones for the inclusion of hyperfinite
type 11 factors Py, C Qo that is associated with the commuting square ¢ (we owe
this observation to S. Popa).

Due to our theorem, we are able to compute for ¥ (F..) one of the invariants that
was introduced by V. F. R. Jones in connection with his Galois type classification of
subfactors. Recall that for an arbitrary type II; factor M this invariant is 7 (M), the
set of all possible values of indices of subfactors of M. Our result gives that

Corollary  The set 7( % (Fx)) of all possible values of indices of subfactors of
Y (Fuo) is {4cos’(m/n)|n > 3} U 14, 00) (i.e the same set as for R, the hyperfinite
factor of type 11,).

Note that the only other type I factors M for which anything is known about
the invariant 7 (M) are the Connes’ property T factors, ([S], [1]) for which, by the
results of M.Pimsner and S.Popa [19], this set is countable.

The fact that the continuous line [4,00) is in Z( ¥ (F)) is due to the fact (23]
that .7 (% (F,)) = . /{0} (by Jones’ remark in [11]). Recall that the fundamental
group .7 (M) of a type II, factor M is the multiplicative subgroup of I, \ {0}
defined by

F(M)={t >O0[M, ¥ M}.

Note that by a well known theorem of A. Connes in [3], this group is again countable
for property 1" factors.

By a theorem in group theory ([15]), an index k subgroup G of Fv is isomorphic
to F{n_1)k+1. At the group algebra level this corresponds to the fact that there exists
a subfactor £ (Fn_k+1) T £(G) C £ (Fy) of index k (since by [11], the index
[% (Fn): Z(G)] is the group index [Fy : G]). Thus our main theorem extends in
a certain sense the preceding (group theoretic) result to the case of noninteger index.

To give a meaning for the isomorphism class of the subfactors that we find by
the construction in the first theorem we introduce a real continuation % (F), r > 1
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with type I, factors for the sequence of algebras  (Fy), N €11, N > 1, although
there is no meaning for F). as a group (at least for nonrational values of r).

Such a continuous series appears in a natural way if one tries to find the analogue
of Voiculescu’s formula

L(Fy) S Mp(2) @ L (Fy_1yp241)
or equivalently
0.1) LFN e E L(Fn_p2y) forall k€1 N €11, N > 2

for numbers other than 1/k.

A first sign that such a continuation may exist, is the fact ([24]) that for I/\/Z
instead of 1/k in (0.1) (in which case both terms in (0.1) still make sense as group
algebras) the isomorphism:

©.1y LEN), i E L Fn- ) forall k € 11N €11L.N > 2

is valid.

The series ¥ (F))rer,r>1 is thus uniquely defined as a real continuation of the
sequence of factors associated to free groups and it is subject to the following condi-
tions:

0.2) (L(EFN = L(Fp_yy—2q) forallt >0,r > 1,7t el
0.3) S(F)« L(F D)= SA(F,,,) forall r.r’ > 1.

A similar series with the properties (0.2), (0.3) was considered by K. Dykema in [8].

Formula (0.2) shows in particular (see [23], [28]) that the type II; factors
Y (Fn), N €11, N > 2 are stably isomorphic (by tensoring with B(H), the algebra
of all bounded linear operators on a separable infinite dimensional Hilbert space H).
Note that Voiculescu’s formula (0.1) implies in particular that / (F,) and ¥ (F5s) are
stably isomorphic but, it does not imply, for example, that  (F3) and % (F3) are
stably isomorphic (as formula (0.1)" shows).

Note that (by (0.2)) the algebras ¥ (Fly), N > 1 are also stably isomorphic in
the sense that

S (Foo) @ LA(FN) = L (Fo) @ L (Fap) for all Ny M > 1.

(we owe this observation to G. Skandalis). This is due to the (general) fact that for
all type 11, factors A, B, we have

At 6{) Bl/l E/AC";)B
and thus by formula (0.2) we get
Corollary  The isomorphism class of % (F,.) @ / (Fy) depends only on

(r—1)s—1)forall r,s € (1,00].

Moreover, a simple algebraic manipulation with both formulae (0.2), (0.3) will
show that the fundamental group of ¥ (F)) is either ., /{0} or {1}.
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In fact we will prove a more precise statement

Corollary One (and only one) of the following two statements holds true:

(i) For all finite v > 1 the type LI, factor % (F,) is isomorphic to ¥ (F).

(i) The type I, factors £ (F,) are mutually nonisomorphic for r € (1,00].

Note that (i) is equivalent to any of the following statements

(2) The isomorphism Y (F,) @ B(H) = £ (Foo)@B(H) holds true for some
(equivalently for all) finite v > 1.

(@) The fundamental group .7 (£ (F,)) is nontrivial for some (equivalently for
all) finite r > 1.

At this moment it is still unknown if the type I/, factors

LFN)Nenufso} N>2

may be isomorphic (this is an old question of R. V. Kadison in the early 50’s ([14}])),
but we hope that the results above could serve as evidence for a positive answer to
this question.

Amalgamated free products of operator algebras have been intensively studied
in [30], from the point of view of noncommutative probability theory. They were
introduced in the setting of type [[; factors in [22], where the basic results on the
existence of traces, factoriality and computation of relative commutants are obtained.

S. Popa realized that the problem of constructing irreducible subfactors of in-
dex > 4 in arbitrary factors naturally leads to the consideration of certain canonical
subfactors coming from amalgamated free products involving an “initial algebra”
Q@ and the Jones’ sequence of projections. He uses such subfactors to construct a
series of irreducible inclusions of non-I" factors N®(Q)) C M*(Q), of any index
s € {4cos’ m/n|n > 3} U4, 0).

Let Ry € R be the canonical Jones’ inclusion of hyperfinite /I, factors of index
A7' =5 € {4cos® m/n|n > 3} U[4,00). The factors N*(Q) C M*(Q) are subfactors
in (Q ® Rx) *r, R and they depend in a functorial way on the type II; factor Q.

In fact, when ¥ = 7 is a commuting square of relative commutants in the
tower of the Jones® basic construction for Ry C R, A™! = s € {4cos’7/n|n >
3} the inclusion described in the statement of our main theorem, coincides with a
term in Jones® basic construction of Popa’s inclusion N*(Q) C M?*(Q), for Q =
¥ (F) (although our approach will be more direct, by making use of the finite
depth properties of the inclusion Ry C R).

In its most general form our construction depends also on an initial algebra ()
and also depends (rather then on a scalar A~') on a nicely behaved finite dimensional
commuting square ¥ , called A-Markov (with Ind 7 = A~!). We prove:

Theorem Ler QQ be a type I1, factor and let
C =(A2BD2D;ADCD2D)

be a commuting square [20] of finite dimensional algebras which is irreducible (i.e
the centers of the algebras A, B (respectively C, D) have trivial intersection) and \-
Markov ( i.e. A is endowed with a A\-Markov trace for the inclusion C C A (in the
sense of Jones [11]), which restricts to a A\-Markov trace on D C B). Then

N @=Q&D)+p CCM (Q) =(Q®B)*p A
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is an inclusion of type I1, factors of index []V[ “(Q):N” (Q)] = A~! and relative
commutant BN C'.

In this paper (except when otherwise mentioned) by amalgamated free product of
finite von Neumann algebras, we will always understand the reduced, von Neumann
algebra, amalgamated free product that is obtained, via the G. N. S. construction,
from the trace on the algebraic amalgamated free product of the algebras (see [22]).

The higher relative commutants invariants of the series N 4 Q) C M7 (Q) may
be computed (by Theorem 1.3, in this paper, which is due to S. Popa) and they
coincide with the corresponding invariants of the inclusion of hyperfinite /1, factors
P, C Q that is canonically associated to the commuting square ¢ . This means
that the standard invariants ([21]), or the paragroups ([17])

GINT(@Q S M (@)
and ‘¢ (Py € Qo) coincide.

The main body of this paper is concerned with the case Q = Y (F). Let A D
B be an irreducible inclusion of finite dimensional algebras and fix a faithful trace 7 on
A. We prove first that there exists a trace preserving embedding of  (F)RB x5 A
into ¥ (Fy)*A. This will allow to find a random matrix model (in the sense of D.
Voiculescu) for the von Neumann algebra (£ (F)®B *53 A). The precise form of
this model is as follows:

Theorem Let | € B C A be finite dimensional algebras. Let T be a faithful,
normalized trace on A. Assume that B is abelian. Then there exist a (natural) trace
preserving embedding of (£ (Fyx) ® B) xp A into £ (Fyo) * A. This embedding is
realized explicitly as follows:

Let (Y °)scs be an infinite semicircular family, let (p, )L, be the minimal projections
in B and let . /3 be the von Neumann algebra free product

{(V)es} * A L(F) * A.

Define
X* = Zr(p,)fl/zp,Y“p, for all s € S.

1

Then (X*)ses is a free semicircular family (hence {(X")ses}’ = Y (Fx)) and
{(X*)ses U AY' is isomorphic to the algebra

{(X*)es)' @ B] +p A= (£ (Fx)® B)*p A.

Finally we will use the above statement to prove that even if I3 is not necessarily
abelian, a reduced algebra of (£ (F) @ B)*p3 A is isomorphic to ¥ (F.). Since by
[23] £ (Fy)= e £ (Fy)e for any idempotent ¢ in ¥ (F.,.), it follows that (£ (F.x)®
B) xy; A is isomorphic to £ (Fy.).

This gives the lines for the proof of the main theorem in the case of infinitely many
generators (which is done in the first three paragraphs). To prove the general case for
¥ (Fn) we follow the steps of the preceding proof and perform some supplementary
computations. By the definition of the series ¥ (F}.);cr.r>1, we only have to count
the elements in certain sets of generators (since we already proved the similar result
for the case of infinitely many generators). In this way we obtain:
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Theorem Let 14 € B C A be an irreducible inclusion of finite dimensional algebras.
Let T be a normalized faithful trace on A, let I' be the inclusion matrix of A O B and
let (si)kek be the vector of the values of the trace T on a set of representatives for
the minimal projections in A.

For any real N > 1 or for N = 0o, we have:

(%(FN)@) B) *B A= %(FI+N<(IﬂI"i)s,s>—<s,s>)'

Clearly, the above theorem and the theorem on subfactors in amalgamated free prod-
ucts will complete the proof of the main result.

Finally we point out that an intriguing question that remains open is to describe
the structure of the set of all possible values of irreducible subfactors of ¥ (Fi)
(this is an other invariant for type I, factors introduced by V.F.R. Jones in [11]).
On one side this set should coincide with the similar set for the hyperfinite /1, factor
R and on the other hand, the factors in Popa’s series N®* C M*® for s € [4, c0) are
irreducible, nonhyperfinite and have (by [2]) Haagerup’s approximation property (and
thus are close to /% (Fiy)).

Another related open question is if one can prove unicity, modulo conjugacy,
for the one parameter action of ' on ¥ (Fi) that was constructed in [25]. For the
hyperfinite /], factor such an action is unique, modulo conjugacy, by the work of
A. Connes ([4]) and U. Haagerup ([9]).

The paper is organized as follows: the next paragraph recalls the definitions we
use. Paragraph O contains an outline of the proof and the first paragraph contains the
proof of the facts concerning subfactors in (Q ® B) x5 A. In the second paragraph
we construct a random matrix model for a reduced algebra of (£ (F) ® B) x5 A.
We use this model in the third paragraph to give a direct proof of the main result in
the case of a free group with infinitely many generators.

The fourth paragraph contains the definition of the real continuation for the se-
quence of algebras associated to free groups (and the consequences of the existence
of such a continuation). In the last paragraph we use the results above to prove our
main result.

Acknowledgement. We would like to thank Georges Skandalis, Uffe Haagerup and Sorin Popa for useful
discussions. Also, we greatfully acknowledge the hospitality of 1. H. E. S. where the final version of this
paper was completed.

This paper has been circulated since the winter of 1991 as an I.LH.E.S. Preprint,
no. 89/ 1991. The results in this paper have been announced in a note in C. R. Acad.
Sci. Paris, t.315, p.57-62, 1992.

Definitions

Let H be a Hilbert space and let B(H) be the space of all bounded linear operators
acting on H. A weakly closed unital subalgebra M of B(H) is called a von Neumann
algebra. When no mention is made of the underlying Hilbert space on which M acts,
then Al is called a W* -algebra. In this case the weak topology on M comes from
its predual M, ([27]).
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An abelian von Neumann subalgebra of M is called diffuse if it does not contain
minimal projections. As usual if B is a W* -algebra and ) is a selfadjoint subset

of B, ZN will be the von Neumann subalgebra of B generated by _ and 1 € B. If
B C B(H), we denote by Z' the commutant of > in B(H). For a subset S in B
we denote by Sp(S) the linear span of the set S.

By /”(M) we denote the set of all projections p = p*> = p* in Al and by Z (M)
we denote the center of M. For a projection e in M we denote by eMe or A,
the reduced algebra which acts on eH. In fact M, is a von Neumann subalgebra of
B(eH). If M is a type I1, factor (i.e. L (M) = T and there exists a normal finite
faithful trace 7 on M with 7(1) = 1) then we denote by M, the isomorphism class of
eMe for any projection e in M of trace 7(e) t.

If ¢ > 1 then we consider an infinite dimensional separable Hilbert space H, and
endow B(H) with the usual faithful semifinite normal trace that takes value 1 when
evaluated on projections of dimension 1. Let 7/ be the corresponding tensor product
trace on M ® B(H) and let e be any projection in Al @ B(H) with 7/(e) = t. In this
case, M, is the isomorphism class of (M ® B(H)).. It is well known [6], [27] that
the isomorphism class of eMe does not depend on the choices made in the selection
of the projection e.

Recall some definitions and facts from [28],[29]. Let (A, ©) be a unital C*-algebra
endowed with a normalized trace ¢. A family of subalgebras 1 € A, C A (i € I) is
called a free family of subalgebras if p(aja;..a,) = 0 whenever a, € A”, pla,)=0
forall j=1,2...,nand i, #i, forall 1 <j<n-1.

A family (£2,),¢; of subsets of A is free if the family of the subalgebras generated
by the {2, and 1 is free. A family of elements (f,),c; C A is free if the family { f,},¢;
is free.

Moreover a free family (f,), is called semicircular if the elements f, are selfadjoint
and the distributions of f, with respect to ¢ are given by the semicircle law

1
o(ffy=2/n / th (1 —t»)Y2dt ke Tk > 0.
J—1

A family (f,),¢; is called circular if the family {z, },U{y, }, is semicircular, where
fy=xz,+ \/—_ly],j € I is the decomposition of f, into real and imaginary part. By
abuse of language, we will say that (f,),c; is semicircular even if the constant 2/,
in the formula above, is replaced by a strictly positive constant.

By Theorem 2.1 in [28] the von Neumann algebra generated by a free semicircular
family (Y °)se is isomorphic to the von Neumann algebra ¥ (F.,q4 s) associated to
a free group with the same number of generators as the cardinality of S.

We recall some facts from [22]. Let A, A, be two von Neumann algebras endowed
with normal, faithful traces 7.7 and let B be a common von Neumann subalgebra
containing the unit of A, for i = 1,2. Assume that 7| = 72| and let E,/;' be the
corresponding conditional expectation from A, onto B for ¢ = 1,2. Let 7 be the trace
initially defined on the algebraic amalgamated free product A; x5 A, by the condition

T(ayay...,a,)=0

if a, € A Epla) = 0.5 = 1,... k4 # Q... ik—1 # ix. The reduced, von
Neumann algebra, amalgamated free product A, * 3 A; is the weakly closed subalgebra
obtained via G.N.S. construction with respect to the trace 7. Moreover 7 extends to
a faithful normal trace on A; g A, (see [22], Lemma 4.1).
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We will review , for the convenience of the reader, Voiculescu’s random matrix
picture ([28], Theorem 2.2) for semicircular families. Let (X, v) be a probability space
and let ¢ be the expectation value on X, i.e.

“(f) = / f(@)dv(o) for all f € () LP(L,v).

p>1
Let S be a nonvoid set and for each s € S let
Y(s,n) = (a(i, j,n, 8)); =y, € 11
be a selfadjoint n x n matrix, whose entries
a(i, j.n,8),4,5=1,....n
are measurable functions with the property that the family
{Rea(i,j,n,9)|1 <i<j<n,seSU
{Ima(,j,n,8)[1 <i<j<m,se€S}
is an independent gaussian family, for each n € I and
#(a(i, j,n, ) =0,
& (laG, j,n,$)*) = 1/n.forall s € S,1 < i,j < n.
Let D(n), ey be a family of diagonal, n x n matrices. Assume that
sup || D(n)|| < oo

and that the family D(n), ¢y has a limit distribution with respect to the normalized
traces on n X n matrices, when n tends to infinity. The elements in the family D(n), ¢y
will be identified with constant functions on X' with values in AZ,(C).

Let 7« be the trace on ﬂp>1 LP(X)® M, (T) obtained as the composition of the
normalized trace on M,,(C) with ¢ . Let (X®)ses U {D} be undetermined variables
and let C [[(X*)ses, D]] be the noncommutative ring over  in the above variables.

Let ¢ be the linear functional on  [[(X*)scs. D]] defined by
GUXENHPHDY . (Xk)PR(D)'F) =

=lim 7o, (Y (51, )P (D))" ... (Y (85, m)P* (D(n))'F),

forall s, € S,i, €ll,p, ell,j=1,... k.

Under these assumptions Voiculescu’s theorem 2.2 in [29] asserts that the above
limit exists. Moreover, with respect to ¢, (X®)secs U{D} is a free family and the
distribution of each X*,s € S, is given by a semicircular law.

Following Voiculescu’s proof or using [7], one may drop the assumption that
the matrices in ((D(n))nen are diagonal. This means that we assume only that the
matrices in ((D(n)),ex have a limit distribution when n tends to infinity, D(n) are
constant matrix functions on X and the minimum of the dimensions of the minimal
projections in the algebras generated by D(n), tends to infinity with n. Under these
weaker assumptions Voiculescu’s theorem still holds true.
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The random matrix picture([29]) for semicircular free families was essential (in
[28]) in getting a new view of the free group factors. The main device in D.
Voiculescu’s approach to the structure of the von Neumann algebras of free groups was
a new representation for a free semicircular family (X,)scs by embedding (Xs)ses
into M,,(C) ® B, where B is a W*-algebra containing an infinite free family.

Explicitly, following [28], Proposition 2.6, let

wp = {9(%]7 S)“ S [7] S n,s e S}
be a free circular family in B, let
wr = {f(i,9)|1 <n,s €S}

be a free semicircular family in B, so that w; U w;, is free and let 1 € D C B be
a commutative subalgebra of B that is free with respect to wy Uw;. Let (e,));
be the canonical matrix unit in M, (), let D,, be the diagonal algebra generated by

{e11,...,enn} and let

Xo= ) @59 @e,+(gligs) @e,+ Y [s)@e,s€S.
1<1<y<n 1<i<n
Then
(Xs)ses C M, () B

is a free semicircular family that is also free with respect to the algebra D,, ® D.
Using this, D. Voiculescu proved that there exists an infinite free semicircular
family which generates the reduced algebra

@ e {(Xg)sest (1 @ epy).

This shows that
%(Fk')(]/N) 3 %(FA.NZ,NZH).

and hence that ) C.7 (% (Fx)) ([28], Theorem 3.2).

0. Outline of the proof

In the first paragraph we prove general results about type I/, factors
(Q ® B) x3 A and their subfactors. Let 7 be a normalized faithful trace on A and let
7 be an extremal commuting square

“ =(ADBD2D; ADBDD)

of finite dimensional algebras. Recall that ¥ is a commuting square ([20]) if the
square whose arrows are the conditional expectations (with respect to 7) between the
algebras A, B, C, D, is commutative.

The extremality condition [21] means that ¢ is non degenerate (ie. A =
Sp(BC) = Sp(CD)) and irreducible (i.e. the centers of A, B and respectively C, D
have trivial intersection). Let I" be the inclusion matrix for B C A and let A be
).
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By [21] there exists a projection f so that A C < A, f > (and f) is the Jones’ basic
construction for B C A. Here < A, f > is the (finite dimensional) algebra generated
by A and f. The fact that A C < A, f > is the Jones’ basic construction implies
(by [11]) that < A, f >= Sp(AfA) and that there exists a trace (also denoted by 7)
extending the trace on A and so that the conditional expectation E4 from < A, f >
on A (with respect to 7) has the properties E4(f) = Af and fof = Ea(x)f = fEA(z)
for all x €< A, f >. Note that in this case A = 7(f).

In addition, the extremality condition for ¥ implies that B C< B, f > is the
Jones’ basic construction for D C B (< B, f >= Bf B is a subalgebra of < A, f >).

Such commuting squares appear, for instance, as relative commutants in the iter-
ated basic construction associated to a finite depth inclusion of hyperfinite type 11,
factors.

For example if Ry C R is the Jones’ inclusion corresponding to

A1 e {4cos*(n/n)n > 31,

(er,ez,...,) are the corresponding Jones’ projections ([11]) and Ay, By, Cy, Dy are
defined by

- Al _ [, " A2 "

Ax=A4,,, = {(’17627-~'76n+|} s B —An+1 = {62,..‘,6,”1}
— Al — " A2 _ 7
C)\—An——{el,62,...,€n}, D,\—A”—{CQ,...,G,L}

then
x=(Ax 2C\ 2 Dy; (Ax 2 By 2 Dy)

is an extremal commuting square One may take here f = e,,4.
The main result of the first paragraph is that

N (@Q)=Q®D)xp CC M " (Q)=(Q®B)* A.

is an inclusion of type 1, factors of index
M7 @ N @] = A" = |rr

and relative commutant BN C’ (in this paper, except when otherwise mentioned, by
amalgamated free product for finite von Neumann algebras, we will always understand
the reduced, von Neumann algebra, amalgamated free product).

The idea to prove this is to show that

M@ =@Q®(B.f)*p.s (A f) and f

is the basic construction for N '”(Q) C M”(Q). To show the last equality we note
that A = Sp(BC) = Sp(CB), [B.Q] =0 and thus

M” (Q) = weak closure U Sp {AQA ... AQ A|n factors in Q}
= weak closure U Sp{CQC ... CQA|n factors inQ}.
A similar formula holds true for M ;‘ (@) and this in turn shows that
M7 (@Q=M"(@QfM" (@),
FME@Qf € M7@.
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Eyr N =A== 7(f).
By Lemma 1.5.2 in [22], these conditions are sufficient to show that the index of
M?(@Q)in M7 (Q)is A"

In the next two paragraphs we will prove that (£ (F.) ® B) xp A is isomorphic
to £ (Fy) if B C A is an irreducible inclusion of finite dimensional algebras. We
will do this in two steps. Clearly, since (by [23]) h L (Fx)h = ¥ (F,) for all
projections h in ¥ (F), it is sufficient to show that for a suitable projection g = fe
in (£ (Fs)® B) xp A we have that

(£ (Fs) ® B) 53 A]” ~ Y (Fao).
We choose a maximal system (f;);cr of nonequivalent minimal projections in B
and let f = X'f,. Since By is abelian and since

[(Q@B)*B A]f g(Q@B/)*Bf Af

it follows that we may assume (to establish the isomorphism) that B is abelian and
B={fi}".

We now use the techniques from the papers of D. Voiculescu. We construct a trace
preserving isomorphism from (¥ (F.,)® B)*p A onto a von Neumann subalgebra of
the reduced free product £ (F,) * A. This isomorphism will allow us to transfer the
random matrix representation ([28]) of  (F.) * A to the amalgamated free product.

The isomorphism is constructed as follows: Let (Y ¥).cs be a free semicircular
family that is free with respect to A. Clearly,

S(Fa) ¥ A= {(Y)ges. A}
Let (X®)scs be the family defined by:

X = "r(f) Yy forall s € S.
]

The (X*®)scs is a free semicircular family (that commutes with B) and the von
Neumann algebra generated by (X®)scs and A is isomorphic to (/£ (Fu) ® B) x5 A.
Thus (% (Fs) ® B) * A is identified with a subfactor of ¥/ (Fl,)*A.

Let (ex)rex be a maximal family of mutually orthogonal, nonequivalent, minimal
projections in A, that commute with (fi)er and let e = Y ¢,. We will show that
e [( Y (Fs) ® B) xp A] e is isomorphic to ¥ (F..). We outline here the proof of this
statement.

Let 7y, be the central support of e, in A, forall k € K and let {¢F, :)Z:, be a matrix
unit for Ary so that eﬁp commutes with (f);c; and e’,", =ey, forall p=1,...,myg,
k € K (my is the dimension of Ary). Let I = (a,;),ck,)e1 be the inclusion matrix
of A D B and let N be the reflexive, symmetric relation on K2 defined by

N={(k.m)e K x K| Za“a",,l. #0}
el

Since the centers of A and B have trivial intersection, N contains a single orbit.
With this notations, a system of generators for e [( Y (Foo) @ B) *p A] eis A,
and the set
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(0.1 2= | A YenrlseSp=1, . teg=1, . b}
(m,k)EN

The random matrix picture of Voiculescu allows us to permute the matrix blocks
in .4 (we act as if the elements in .#" were matrix blocks whose entries are in
an independent gaussian family on a probability space). Thus a more convenient
way to express the generators for the algebra [( Y (Fy)® B) *p A] . is given by the
following procedure:

We start with an infinite semicircular family (Z°)scg that is free with respect to
A, and a symmetric reflexive relation N on K which contains a single orbit (the
last condition is the factoriality condition for e(( ¥ (F) ® B) *p A)e). The algebra
e((£ (Fx) @ B) xp A)e is generated by (X®)scs and (ep)rek, where (X%)scs is
now defined by

X' = Z exZtem, t €.
(k,;m)eN

One could see, by the above picture and by the definition of “ (F,),r > 1, that
e((£ (Fx) ® B) ¥ A)e is isomorphic to ¥ (F.,). Instead of doing that, we will
present (to make the task easier for the reader) in the third paragraph a direct proof
of the fact that an algebra with such a system of generators is ¥ (Fix).

The proof will consist of considering a reduced algebra of

(£ (Fo) ® B) xp A)e

by a projection g. This time the system of generators for the reduced algebra are
obtained from an infinite free semicircular family by deleting blocks from “half”
of the elements in the family. The fact that the family is infinite ( by the ran-
dom matrix picture for semicircular families) makes it possible to fill the corre-
sponding holes by pieces from the other “half” of the elements. This shows that
there exists another infinite semicircular family which generates the reduced algebra
(£ (Fx) @ B)*p 4], .
In the fourth paragraph we define a real continuation for the sequence

Y (FN)n>2,nen Of the type 11, factors associated to free groups. Let (X*),cg be a
free semicircular family, let ey, f be projections in {X?}” which are either mutually
orthogonal or equal and let

r=1+ Z kst(e)T(fs),

where the above factor k; is 1 if e = fs and 2 elsewhere.
For real r > 1 we define ¥ (F}) to be the isomorphism class of

. é= {Xa»(esXsfs)ses/{a}}”a

if the above projections e, f, are chosen with the additional property that the finite
von Neumann algebra . ¢ is a factor.

The correctness of this definition and the fact that indeed, when r € I, we recover
in this way the factors associated to free groups relies on elementary properties of
free semicircular free families.

The properties (0.2), (0.3) are simple consequences of the definition. As an ap-
plication of our definition we will prove that either all ¥ (F,) are isomorphic for
r € (1,00] or that they are mutually nonisomorphic.
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To do that assume that for some s > 2 we have ¥ (F>) = ¥ (F,). An immediate
consequence would be (by Eq. (0.3)) that £ (F) = ¥ (F;) for any finite s > 2. Let
% (F») be represented as

{XUO’ (plXlez)y (p1X01p1)7i € N}H.

We use our assumption to replace for each i the generators

P X" p), (0, X' py)

by a semicircular family (Z°)ses, . If card S, = N, is big enough so that

Z T(p1)zN: =00

then we would get that /£ (F3) is isomorphic to ¥ (Fy).

In the last paragraph we analyse the isomorphism class of the algebra (£ (Fiy) ®
B)xp A. Here 1 4 € B C A is an irreducible inclusion of finite dimensional algebras
and we fix a normalized faithful trace 7 on A. Let I" = (a,,),ek,;cr be the inclusion
matrix of A O B and let (sx)recx be the vector of the values of the trace 7 over a
system of representatives for the minimal projections in A.

Clearly the definition of

( %(F1'))7'€R,7'>l
and the procedure that we used to show that

(L(F)@BYxp A= YL (Fy)

reduces the analysis of the isomorphism class of the algebra (£ (Fy) ® B) x5 A to
counting the elements corresponding to ¥ (Fy) in the set .4 defined by Eq. (0.1).
By this method we prove that (£ (Fy) ® B) 5 A is isomorphic to ¥ (Fy) if

M=1+N<IIs,s>—<s,8>.

Let © =(AD2C 2 D; AD B D D) be acommuting square as in the first
paragraph and let (sg)rerk, (t1)icr, be the vectors of the values of the trace 7 over
a system of representatives for the minimal projections in A and C respectively. By
the assumptions on ¢ (i.e. the extremality condition in Definition 1.1) it follows that
< 8,8 >= A < t,t >. Let I} be the inclusion matrix for D C C.

For each P > 1, by the above formula, we obtain that

(L(Fp)®@ B)xp A= £ (Fy)
if
N-1=P<(IT")s,s>—<s,5>.

The same argument as above shows that

= (L(Fp)@ D)xp C = YL (Fup),

M—1=P<(I\IHt,t > - <t,t>.

Since s, t are Perron -eigenvectors (i.e. (I"' )t = A~ ', (I I')s = A7 1s) it follows
that

(M = D/(N=1)=X""
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or, equivalently, that
M=(N-DXx'+1=WN =D|I0)+1.
Thus, by the first paragraph, % (Fy) has a subfactor ¥ (Fj,) of index A~!.

1. Subfactors in amalgamated free products over finite dimensional algebras

In this section we introduce a series of inclusions
N @ S M (@Q),
that are canonically associated to a type /I, factor () and a commuting square ([20])
¥ =(ADBD2D, ADC2D)

of finite dimensional algebras. The commuting square is assumed to have certain
supplementary properties, as for the commuting squares coming from finite depth
inclusions ([21], [17], [11]).

These series of inclusions may be viewed, by specialization to the case when 7
is the commuting square associated to a Jones’ pair Ry C R, for A™' = s in the
discrete series

{4cos’7/n | n >3},

as an extension of the series of inclusions N*(Q) C M*(Q) introduced by S. Popa
in {22].

In this case, the relation between the two series is that N” (Q) € M” (Q) may
be obtained from the inclusion N*(Q) C M*(Q) in [22] by iteration of the basic
construction.

The properties of the commuting squares ¥ that we are working with are sum-
marized in the next definition.

Definition 1.1 (/20],/21]) Let A2 B 2 D; A 2 C 2 D be a commuting square
of finite von Neumann algebras which are weakly separable. Let T be a normalized,
faithful, trace on A. The commuting square is extremal (for the value ') if the
following conditions hold:

(i) Markov trace. There exists a trace T on the basic construction

(A, f) = weak closure SpAfA

for the inclusion C C A, that extends the trace T on A and so that T(fa) = A\7(a) for
all a € A. Such a trace is called a \-Markov trace ([31],[11]) for C C A. Moreover

we assume that (f. B)” is the basic construction for D C B with respect to the trace
Fl<B.s>-
(ii) Nondegeneracy. We assume that
A = weak closure Sp(BC) = weak closure Sp(CB).

(iii) Irreducibility. We assume that the centers of the algebras A, B and C, D have
trivial intersection: L(A)N L(B)=Cl and Z(C)N (D) =Tl.

Some of the above conditions may be redundant. In particular if A is finite dimensional
then the second condition is equivalent to the first ([21], Theorem 1.4). In addition
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(A, f)2(B,f) 2B, (A,[) 2A2B)

is again an extremal commuting square.

Note that such commuting squares naturally appear in the context of finite depth
inclusion of hyperfinite 11, factors ([17], [12], [31]). In fact ([17],[20]) any inclusion
of finite depth of hyperfinite /1, factors may be obtained from an extremal commuting
square of finite dimensional algebras, by iteration of the Jones’ basic construction.

Starting with an extremal commuting square ¥ = (A2 B2 D; ADC 2 D)
and a type 11, factor () we introduce the following inclusion of type /I, factors:

N @ =(Q®D)xpC C(Q®B)xp A=M"(Q).

Note that the trace 7 on A induces a trace 7y on ) @ B by taking the tensor
product of 7|5 with the normalized trace on the type I, factor ). Using the natural
identification of 1¢ ® B with B, we clearly have that 7| = 7|3. Hence, by the
definition in [22], we may construct the von Neumann algebra, amalgamated free
product (QQ ® B) *p A. The same is true for the trace 7|~ and hence we may also
construct the von Neumann algebra, amalgamated free product (QQ ® D) *p C.

By the commuting square property, the trace on the algebraic amalgamated free
product

Q@ B)yxp A=M"(Q)

restricts to the trace on the algebraic free product
Qe D)yxpC=N"(@Q.

Hence (in the corresponding G.N.S. representation) we obtain indeed an inclusion of
type 11, factors.
Note that (Q ® B) *p A is a factor since (by lemma 1.4.1 in [22])

Qe B)yxp A N((Q @ B)xj3 A) =

Q'NUQ®B)*3 A)NA =
BNnA = Z(ANB=ZA)NIB)= 1.
With this definitions we have:

Theorem 1.2 Let Q be a weakly separable type 11, factor and let
C=(ADCDOD; ADBD2OD)

be an extremal commuting square (for the value \) of finite, countably generated, von
Neumann algebras. Let (A, f) be the basic construction for A 2 C (so that (B, f)
is the basic construction for B 2 D). Consider the following inclusion of type 11,
factors:
N@=@Q&D)yxpCC M (Q)=(Q& B)xj A
Then
M{ Q=@ (B.f) xw.p) (A.]) and f

is (he basic construction for the inclusion N7 Q) < M7 (Q). In particular N7 Q) C
M7 (Q) is an inclusion of type 11, factors of index
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(M7 @: N7 @] =A.
Moreover the relative commutant of N* (Q) in M” (Q) is BN C'.

Proof . We will verify this by checking the conditions in lemma 1.5.1 from [22]. We
have to prove that

MY (Q) = weak closure [Sp(M" Q) fM” (Q))] ,

FMZ@f CM”(@Qf,
EM'/(Q)(f) =A=7(f).

This conditions are sufficient to show that the index of M“ (Q) in M/ (Q) is A~
To prove that the inclusion M* (Q) € M/ (Q) (together with f) is the Jones® basic
construction for the inclusion N7 (Q) C M (Q) we will have to check that also

{fY " M”(@Q=N"(Q.

Since
A = weak closure [Sp(BC)] = weak closure [Sp(CB))

and since [B, Q] =0 it follows that
M? (Q) = weak closure U,, Sp {AQA ... AQA|n factors in Q}

= weak closure U,, Sp{CBQA... AQA|n factors in Q}
= weak closure U,, Sp{CQBA... AQA|n factors in Q}
= weak closure U,, Sp{CQA... AQA|n factors in Q}
= weak closure U,, Sp{CQCB... AQA|n factors in Q}
= weak closure U,, Sp{CQC ...CQA|n factors in Q}.
Thus

(1.1). A7 (Q) = weak closure U,, Sp{CQC ...CQA|n factors in Q}
Similarly one may prove that
M (Q) = weak closure U,, Sp{AQA...AQ < A, f > |n factors in Q}.
Since < A. f >=weak closure [Sp(AfA)] it follows that
M7 (Q) = weak closure U,, Sp {AQA ... AQASA|n factors in Q}

and henceforth M{"(Q) = weak closure [Sp(M” (Q)fM” (Q)].
Moreover by Eq. (1.1) and since f commutes with Q) and C, while fBf C Df
and A = weak closure [Sp(CB)] it follows that

FM7(@Q)f C weak closure U, Sp {f(CQC ...CQCB)f}|n factors in Q} =
= weak closure U, Sp{CQC ...CQC fBf}|n factors in Q} =
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= weak closure U,, Sp{CQC ...CQCD f}|n factors in Q} =
=lQ@&@D)y+p Clf=fQ®aDxpC)f.
Thus fM”(Q)f € N“(Q)f € M” (Q). Finally we have to show that
Enr(H) =X

This is equivalent to show that 7(f — A\)x) = 0 for any r € M* (Q). Using Eq. (1.1)
it is thus sufficient to prove that

T((f — Naiqy ... angnany) =0,for any a, € A,q, € Q.
Recall that the trace 7 on
(Q® < B, [ >)<p > <A f>
is defined by the requirement
(1.2) T(agqyaj . .. ghal,) =0
forall ) €< A, f >,q, € Q with E.p3 ;(a))=0,7(¢)) =0.

But 7(f — Nayqy ...angnany4 is a sum of elements as in Eq. (1.2) plus terms of
the form 7(f — A\)b. The later terms are vanishing also since Ep(f) = A (because
< f, B > is the basic construction for 3 O D).

Finally it remains to prove that

(1.3) (Y NnM (@ =N"(@
Since f commutes with @ and C' it is clear that
N (@ S {fY nM" @
The reverse inclusion is a consequence of the fact:
IMT@Qf SNT@QF =N (@),

that we already proved. Because of Eq. (1.3), and by using Lemma. 1.5.2 in [22], we
obtain that

N={fYnM" Q)
is a type 11 factor and that
FM7@f =Nif =[N
Thus N7 (Q)f = N, f and thus
N7 @ =N ={f}Y "M@

as f commutes with both N;. N” (Q).

To end the proof we also have to compute the relative commutant. We have (again
by lemma 1.4.1 in [22))

QReD)*p CINIQ® B)*x Al=Q'NC'NQ & B3 Al=BNC".

This completes the proof of the theorem.
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The following statement is due to S.Popa. It concerns the computation of the higher
relative commutants of the above irreducible inclusion.

Theorem 1.3 (S. Popa). The higher relative commutants of the inclusion N (Q)
C M”(Q) are isomorphic with the corresponding higher relative commutants of the
inclusion Qs C Poo, where Qo C Py is obtained from the extremal commuting
square ¢ by iterating the basic construction. Equivalently the paragroup ([17] )

CIN"(Q)C M"(Q))

coincides with the paragroup ‘% (P, C Qo).

Moreover, the canonical representation of B C A in N“(Q) € M” (Q) can be
extended to a representation of Qoc C Pa such that the higher relative commutants
of N (Q) C M” (Q) and Q. C Py coincide.

Proof . Let A,,, B,, be the iterated steps of the Jones’ basic construction for C' C A
and respectively D C B, and let f,, € B,,n € 11 be the corresponding projection (
with fi=f, Ay =< A, f >, By =< B, f >).

By Lemma 1.4.1 in [22], we have that

(Q® B)xp A) N((Q ® By) *p,, An) =
QI n ((Q ® By,) *B, An) NA = B, n A

Similarly
((Q X D) *pD C), N ((Q ® Bn) *B, An) = Bn n C’-

Note that by the preceding lemma the n—th step of th basic construction of
N7 (@Q S M7(Q) is
M7 (@ =(@Q& By) *p, An.

By [20], [21], [17], it follows that P, C () has the same higher relative commutants
as

N7(@Q)C M (@Q).

Indeed one may check this as follows : Let P,, respectively @, be the n—th
step of the Jones’ tower of the inclusion B C A and respectively D C C with the
convention that Py = B, Py = A and Qy = D, Q, = C. Clearly we have the inclusion

PnQi=RNQL CPenNQL,

as @, is obtained from @, by adding a projection that commutes with Q,,_2,
n>2.

Conversely, if 7 € Py, N Q' then z is close to 2’ € Q/, N P, and to =" €
Q' NPy, for some large n. But as n tends to infinity the angle between the finite
dimensional vector spaces Q}, NP, Q’,,, NP, becomes stationary. Since ||’ —.t"||,
is small it follows that there exists

.l‘”/ € (an—«-l N Pn+|) n (Q:L n Pn)

close to both r’,.r”, thus close to x. But Q,,,, N P, = Q| N Py, so that « is arbitrary
close to an element in Q@ N Py, i.e. Poc NQL, C Quc N B
The rest is trivial by our construction and [22]. This ends the proof.
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2. The random matrix model for amalgamated free products

In this paragraph we introduce a random matrix model for the amalgamated free
products (£ (Fs) ® B) xg A, where A O B are finite dimensional algebras. Let 7
be a faithful, normalized trace on A.

First, we describe this model for commutative B; the general case is then handled
by showing that a similar model is valid for a reduced algebra of (/£ (F,.)® B)*p A.

For abelian B we will construct an isomorphism from (  (F..)® B)*3 A onto a
von Neumann subalgebra of the reduced free product ¥ (F)* A. This isomorphism
will allow us to transfer the random matrix representation for ¥/ (Fio) * A ([28]) to
the amalgamated free product.

We prove the above statement by showing that for a suitable system of gener-
ators (Y*)ses for ¥ (F.) which is identified with a subalgebra in “(F,) * A,
the conditional expectations (X*)secs of (Y®)scs onto the relative commutant of
B in £ (Fy) * A, have the property that (X®)scs and A generate a copy of
(£ (F) @ Byxp Ain £ (Fy)* A.

Proposition 2.1 Let 1 € B C A be finite dimensional algebras. Let T be a faithful,
normalized trace on A. Assume that B is abelian. Then there exist a (natural) trace
preserving embedding of (£ (Fy) @ B) xp A into £ (Fy) x A. This embedding is
realized explicitly as follows:
Let (Y ®)ses be an infinite semicircular family, let .73 be the free product
{(V*)es} * A= L (Fuo)x A

and let (p,)!_, be the minimal projections in 3. Define

X®= zr(p,)"/zp,ysp, for all s € S.

d

Then (X*)ges is a free semicircular family (hence {(X").cs}’ = £ (Fx)) and
{(X%)ses U AY' C .2 is isomorphic to the algebra

{(X")ies} ' @ B] xp A= (L(Fy) ) B)xp A
Remark . Clearly the above statement is still valid under the weaker assumption that
A. B are finite type I von Neumann algebras with discrete centers. This may easily
be seen if one follows the lines of the proof of Proposition 2.1.
Proof (of Proposition 2.1). Recall that by theorem 2.3 in [28] we have that
{r(e) ™" OrY *pi)}ses

is a free semicircular family with respect to the induced trace 7, = T(px)~'7 on
- /3y, . for each k. In particular

T(p (X (X =

k k’n
T(P)Tp, ( (1)1Y“"1)7)T(7J-,)“"/2] - [(Y’IY””P,)T(P:)"/ o=
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2.1 T(PHTY M1 (Y 5m)kn).

Thus
TR (X)) = Y (XD (X

=D TEITY ORI = (TR,
In particular (X®),cg is free and semicircular and by Eq. (2.1) we get
TPAXEYF (X)) =
TEITY R (YY) = 7T (XM L (X)),

Thus 7(p,x) = T(p,)7(x) for all z € ({X®}se5)’,i=1,.., 1.
Using the definition of the trace on the amalgamated free products ([22]) it follows
that to complete the proof, we only have to check that

(2.2) T(frarfray ... fran) =0
for all f, € ({X*}ses)”, a, € A with 7(f,) = Eg(a,) =0 fori=1,2,... n.
We will also have to check the zero trace condition in Eq (2.2) for terms
flalf2a2 s fTLa’7l+l

with f; =1 or with f,4; = 1; but the computations are the same).
To prove Eq. (2.2) we may assume (since [f,,p,] =0 for all ¢, j) that there exist
T1y..., 1y € L, so that

Do, QP =, forall j=1,...,n—1

and so that
T(a;)=0forall j=1,...,n.

Note that the last condition is effective only when i, =7 ;.
As 7(f,) =0, since
fjp1] = pvj.fJ = szf]pz,

and since p, f,p, is a term of zero trace in {(Y*)ses,py, }' for each fixed j, it
follows that p, f,p, may be written as a sum of terms of the form

(Pl, - T(p:,))g{(p:, - T(p”))gé(p” - T(I)lj )) .. ~g'77n,(p:] - 7'(177)))

where each g/ is an element of {(Y*)ses}” of null trace. Moreover p, f,p, may
contain similar terms starting (or ending) directly with g{ (or respectively g{,,7 ). Since

TPy, = T NPy, = TP, =
(i, = TP, Nay) = 1@, — T(P,,) = T(a;) =0

it follows that we have proved that all the terms fia, f>a; ... fna, in Eq. (2.2) have
an expression as a sum of terms of the form

bogibr . .. gnbnsi
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where g, € {(Y®)ses}”’, b, € A, and 7(g,) = 7(b,) = O for all possible i with the
the exception that by, b, may be equal to the unit 1. Since ({Y*}")scs, A is a free
family of algebras it follows that (2.2) holds true. This ends the proof.

In general, if B is an arbitrary finite dimensional algebra, we choose a maximal
system (f;);c;, of mutually orthogonal, nonequivalent minimal projections in B and
let f=Xf.. Since By is abelian and since

(2.3) (Q®B)xp Al T (Q®By)*p, Af

it follows that we may use the random matrix picture from the preceding lemma to
describe the reduced algebra [(Q @ B) xp A]f. This will be sufficient for our aims

since we only want to prove that a reduced algebra of (/£ (F,,)®B)* g A is isomorphic
to ¥ (Fu). We first prove formula (2.3).

Lemma 2.2 Let B C A be finite dimensional algebra and let Q a type 11| factor.
Fix a normalized faithful trace T on A. Let { fx }rex be a maximal family of mutually
orthogonal, nonequivalent minimal projections in B. Let f = fi.

Then there exists a trace preserving isomorphism from (Q ® By) *p / Ay onto
(Q® B)*p A)y, where the later algebra is endowed with the normalized trace induced
from the trace on (Q ® B) xp A).

Proof . Let g,,7 = 1,...,m be a family of projections in B with 3~ ¢, =1 — f and
so that there exists partial isometries v, in B with

vo,=f<f v =g, fori=1...., m.

This is always possible because of the choice of f.
Any element in f((QQ ® B)x3 A )f is a sum of products of elements of the form

z= fo [(1 = Hn( = Hlaz [(1 = H(d = NI 10 = Ha (1= Hlana f,

where ¢, € Q, a, € A. Since | — f =3 g, and since [ql. g_,] =0 for all 7, j it follows
that . itself is a sum of terms of the form:

f(ll(.(ll, 0191002091, 929:5) - - - (9o, In e, Yans1 f =

P X F * ay ¥ * / * N *
fay (s, U Q1 Uy, )a2(v,, ”12‘12“12“11) e (U, V] G0, U Y f

Since v, commutes with ¢, (as v, € B, i € I and [Q, B] = 0) this last term is also
equal to

(fayvy o] v, g1 (V] 4200, 07,002 (07, 0300,) - qn (0], At ) =

(farv, gy, a0, @] azvy) - (0] any,)gn (V] ana f).

As z.V,*J av, ,, belongs to Ay (since v} = fvr, v, = v, f) it follows that any element
in f((Q ® B) xp A)f is indeed a sum of elements of the form

QA - .. Gpan.a, € Af.q € Q.
To conclude the proof of the lemma it remains to check that

T(apqiay ... quay) =0.for all a, € Ay, q, € Q
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with
7(q,) =0, EBf(az) =0foralli=0,...,n,
with the exception of ay, a,, which may be equal to 1.
As Ep, (a) = Ep(a) for all @ € Ay, the last condition follows from the similar
properties of the trace on (QQ ® B) xp A. This ends the proof.

We use the picture from Proposition 2.1 for the algebra [( ¥ (Fs) ® B) *p A] P

( %(Foo)®Bf)*Bf Ay, when B is no longer assumed to be abelian and f is as in the
statement of the preceding Proposition. Let e be the sum of a maximal system (ey) ke K
of mutually orthogonal, nonequivalent, minimal projections in Ay that commute with

(fieL-

We will construct a trace preserving isomorphism from [( Y (Fs) ® B) xp A] fe
onto a von Neumann subalgebra of % (Fw)* Ajp.. This will be essential in the next
paragraph, when we show that . ¢ = ¥/ (Fy).

Corollary 2.3 Let A D B be finite dimensional algebras, let T be a faithful normal-
ized trace on A, and let I' = (agi)ic L ke the inclusion matrix of A O B. Let (f)c.be
a maximal system of mutually orthogonal, nonequivalent, minimal projections in B and
let (ex)kek be a maximal system of mutually orthogonal, nonequivalent, minimal pro-
Jections in Ay that commute with (f)er. Denote by e, f the projections defined by
f=2Xfiand e = Xe.

Then there exists a (natural) trace preserving embedding

[(£(F)® B)xp Al C L (Foo) * (Age),

which is realized as follows: Let (Z')cr be an infinite free semicircular family that is
free with respect to the algebra Ay, let

N ={(k,m) € K x K| Zaklaml #0}
leL

and let
X'= > epZley forallteT.
(k,m)eN

Then {(X"er, Ase} is isomorphic to [(%(Foo)@)B) *p A] fe (and the isomor-

phism preserves the trace).

Proof . Since I is also the inclusion matrix for By C Ay and since
Q@ B)*p Al; = (Q ® By) x5, Af

for any type 11, factor (), we may assume that f = 1 and henceforth that B is abelian

and B={fi}jc, .
Let (Y*)4ecs be an infinite free semicircular that is free with A, let

A ={(Y)ses, A =F L (Fo) 5 A

and let
X+ =3 "r(f)7'2fY f, forall s € S.
€L
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By proposition 2.1, we conclude that:
( (Foo)®B) *BA,.V {(X )sEb-A}”

Let r;, be the central suppon of e in A, for k € K and let {e’;.q};’fq:, be a
matrix unit for A, so that cm, commutes with (f);e;, and so that 4’1 = ¢y, for all
p=1,....tg, k€ K (t is the dimension of A,,).

By Lemma 1 in [25] (see also Lemma 3.1 in [28]) a system of generators for &/,

U {(’,pl” eqils € Sip=1,... .t qg=1,...,t,n}
(m,k)EN

is

and A.. A system of generators for ./, is A, and

v= |J {ebYeilseSp=1.. tia=1,.. tn}
(m,k)e K XK

In order to compute traces of monomials with variables in the sets 4/ and A.
(and thus to be able to determine the isomorphism class of the algebra generated by
¢/ and A,) we will make use of the random matrix picture of D. Voiculescu for free
semicircular families (see also [7]).

Assume that (Y*),cg are represented as selfadjoint m x m matrices (I7"%)scs
with random entries. This means that

Mmes (M8
T . )I<1 ,1<m

where a, ]S are measurable functions on a probability space (X', v) so that, for fixed
m, the vanables in the family:

m,s . - . m,s . . v
{Rea "1 <i<j<m,s€StU{lma |l <i<j<m,seS}
are an independent gaussian family of functions on X with
¢ ERN. s.m -
“(a))")=0 # (la); | y=1/m.

Recall from the introductory paragraph that ¢ is the expectation value on X given
by

(= /fdl/. feL>Xv).

Moreover A, is represented (asymptotically) by constant matrix functions on X' (we
assume that the dimensions of the minimal projections in A, in the corresponding
(asymptotic) representation on m X m matrices, tend to infinity with m). Let also
T/ m ﬂp>, LP(X) @ M,,(C) — 1 be the composition of the normalized trace on
m x m matrix functions with the expectation value .

By (129], see also [7]) the trace of any monomial whose variables belong to
(Y®)es and A, is the limit (as the dimension m tends to infinity) of the value of
T/ . evaluated on the corresponding monomial with variables in (T7":*) and A..

This shows that in order to compute traces for monomials with variables in the
sets 4/ and A. we may act as if the elements ¢ le eyi (with left support ek, right
support c,) were matrix blocks of very large size and so that the collection of all the
entries in the matrix blocks is an independent gaussian family as above (for fixed m).
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Hence the elements in the set 4/ may be “glued” to another free semicircular
system (Z')er in ./ = € that is free with (ex)rex and so that

{exZ'em }ier = {e’prSe;’Hs €Sp=1,...,tk,qg=1,...,ty}

for all k,m € K (recall that S is infinite).

Clearly this shows that the elements in .~ (which are together with A, a system
of generators for the reduced algebra &/.) may be obtained from the elements Z*
by the procedure described in the statement (after another permutation of the matrix
blocks in (Z%)ses). This ends the proof of Corollary 2.2.

Remark 2.4 The statement of Corollary 2.3 still holds if one assumes the weaker
hypothesis that A, B are finite, type I, von Neumann algebras with discrete centers.

Proof . Indeed the only complication that occurs in the proof of Corollary 2.3 to this
more general statement is the fact that this time K may be infinite and therefore we
cannot make a simultaneous use of Voiculescu’s random matrix picture for all the
elements in the set 4/ that appeared in the proof of Corollary 2.3.

On the other hand the fact that the elements in the set 4/ may be “glued” in
a semicircular family is a fact that only concerns traces of monomials of elements
in the set ¢/ and A.. Thus to show that the elements in 4/ may be “glued” in
a semicircular family it is sufficient to show that the values of the traces of such
monomials are exactly those which should be obtained from the freeness relations in
the free semicircular family in which the elements will be “glued”. As any monomial
includes only a finite number of terms, we are clearly reduced to the case of finite K

In the proof of Corollary 2.3 we incidentally proved (and implicitly used) the following
statement which is a straightforward consequence of Voiculescu’s random matrix
picture for semicircular families :

Lemma 2.5 Let. ¢ be atype 11, factor and let {Y*, 1}, cU{f1,..., fu}" be a free
Sfamily of algebras in . ¢ so that (Y*)scs is an infinite semicircular family and so that
fis. .., fx are mutually orthogonal projections with Y f, = 1. Let {o(i, j, s)|s € S}

be permutations of S, 1 <1 < j <k. Then

7% = Z(fiYa(z,J,s)fJ + ija(1,1,s)fl) + Z flya(l,l,s)fl, ses

1< 1

is a free semicircular family and {Z°, 1} s U{f1,..., fi}" is again a free family of
algebras.

3. The isomorphism theorem

Let 1 € B C A be finite dimensional algebras whose centers have trivial intersection
(by [22], this is the factoriality condition for () ® B) *p A if Q) is a type I, factor).
Assume that A is endowed with a normalized faithful trace and let f and e be as
in Corollary 2.3. In this paragraph we use the description for the reduced algebra
[( Y (Fso) @ B) xg A] fe that we obtained in Corollary 2.3, to prove that this algebra

is isomorphic to ¥ (F)
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Our strategy is to show that a reduced algebra of [( S (Fo) ® B) *p A] fe is iso-

morphic to ¥ (F.,). By theorem 6 in [23] (which asserts that g ¥ (F)g is isomorphic
to 4 (F.) for any projection g in ¥ (F.,)) it will follow that

L(F) = [(L(Fo® B)xp A .

This will be proved by a similar technique to the one used by D. Voiculescu in [28]
(see also [25]) for the isomorphism % (Fuo)i/i = £ (Foo).

The first result implies in particular that ¥ (Fio)*A = £ (Fs) if A is a finite
dimensional algebra. This extends the fact ([28]) that £ (Foo)* £ (G) ¥ £ (Fu) if
G is a cyclic group.

Lemma 3.1 Let .73 be a type 11, factor, let ” = {fi,..., fr} be a partition of the
unity with projections in .23 and let (Y ®)scs be an infinite free semicircular family
that is also free with respect to the algebra generated by ./°.

Fix o in S and let D be the diffuse, abelian von Neumann algebra generated by
{fi, - futand {fYfli=1,... k}. Let (Y/“)Seg be any free semicircular family
that is obtained by " gluing” the remaining pieces of (Y ®)scg, i.e. such that

{szISfJ}SES = {szSfJ}SES for all 1 S 1< ] S k

and

{le sz}ses = {fvysﬁ}seb‘/{a}'
Then (Y/s)seg is also free with D and

{(Y )aes, DY = {(Y)scs. fro-.. fu} foralli=1,... k.

Proof . The last equality is simply a consequence of the fact that both size have the
same generators. The only thing to prove is the fact that {(Y'*),cg. D}" is free. Let
.72 be a larger type 11, factor that contains .#? and that also contains a semicircular

element Z € .77 so that ZU (Y ®)scsis a free semicircular family which is also free
with respect to {f\,..., fx}". Let

YO=N LY+ fZ)
2 1#)

Lemma 2.5, then shows that Y° U (Y/'“)Seg is also a free semicircular family, that is
also free with respect to {f,..., fi}"’. The associativity property for free family of
algebras ([28]) implies that {Y° U D}” is free with respect to (Y'%)ses. The result
now follows since {(f,Y? f,)%,, D}" is contained in {Y°, fi.,..., fx}".

The following theorem will be used, together with the results in the first paragraph to
prove our main result in the case of ¥ (Fy). In the proof we will use the description
of the reduced algebra (£ (Fso) ® B) 3 A] . that we obtained in Corollary 2.3.

Theorem 3.2 Let 1 € B C A be finite dimensional algebras whose centers have
trivial intersection. Then (% (Foo) ® B) *g A is isomorphic to /5 (Fy).

Proof . Let f = 5 fx be the sum over a maximal system of mutually orthogonal,
nonequivalent, minimal projections in B.
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By the preceding lemma and by Corollary 2.3 we may use the following descrip-
tion for a reduced algebra of (( % (Fx) ® B) *p A)s. Let f = fi be the sum over
a maximal system of mutually orthogonal, nonequivalent, minimal projections in B.

Let (€,).ek={1,...k} be a maximal system of mutually orthogonal, nonequivalent,
minimal projections in Ay, let e=3 e, and let N be the symmetric reflexive relation
on K as in the statement of Corollary 2.3. Let D, be the von Neumann algebra
generated by (e,).ek={1,..k}-

Let # a type Il factor which is generated by a free family of algebras
{Y*}!.s U D where D is a diffuse, abelian von Neumann algebra and (Y*)seg
is a free semicircular infinite family.

We choose (Y*)ses and D so that Dy = {e),...,ex}” is a subalgebra of D. Let

X = Z e, Y%, s €8,
(1,))eEN

then we have

cb={(X"esUDY' ¥ [(£(Fu)® B)+p 4], -

Since N contains a single orbit, as a consequence of the fact that the centers of
A,B have trivial intersection, we may assume that

(1,2),(2,3),...,(k—1,k) € N.

By choosing n big enough we may find a partition of the unity {gi,...,gn} in (D)
so that 7(g,) = 1/n,i=1,...,n and so that the following inequality holds true:

Z _‘h@g;é Z er @ es.

l—sl<t lr—s|<1
Fix o in S and let v, be the partial isometry from the polar decomposition v,b, of
G—1Y7g, =91 X, forall i =2,... n..
By Theorem 3.1 in [28] we have
VU =Gty VIV, =@y, by =gbyg, foralli=2,... n.
Let B, be a semicircular element in g, 7 g, with
{Bt}” = {b,}” Ca?g

fori=2,...,n, let a, be a semicircular generator of g;Dg, fori =1,... n and let
W, =V, V) - .. Up. It is Obvious that w,w} = g,—1, wiw, = gn, fori=2,... n.

By Theorem 3.2 in [28] and its proof (see also lemma 2 in [23]) the elements in
the following set are a free semicircular family generating 7, :

(a) wo = {wY*w,|i=2,...,n,s € S}U
®) {wia,yw, }it, U {an, }U

(© {Re (W) Y?w;), Imw;Y*w)|2<j<i<n,seS/{o}}U
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(d) {Re (WY w,), Im(w;Yw)2<j<i<n,j#i—1}U

(e) U{w; Bioiw, }i U {gnY "gn}ses-

We will describe the generators for the reduced algebra. ¢,, with a less confusing
notation. Let ./ be the type I, factor generated by wp. Then the elements on the
lines (a), (b), (e) are also elements of . £, , while for the elements on the lines (b), (c),
to get generators for. 4, , we have to delete certain blocks. Indeed, for i,5 =2,...n
we have:

’w:Xs’wj = w:(gz~leg]— 1 ’ll)] = w: Z (g,_le,w)YS(g]_les)w] =
(r,8)eN

Z (W (go—1 fr)w )WY *w) ) w) (g - 1es)w,).

(r,s)EN
By hypothesis

Z 9. ®9; < Z er ® ey

l—g]<1 r—s|<1

and henceforth g, f, # 0 for utmost two consecutive values of r (for fixed ). Thus
we proved that w} X*w, is obtained from w;Y *w, as a sum of blocks of the form
gw; X°wyh where g € {w}a,—yw,}"’, h € {wya,_jw,}".

The less confusing notation we promised above is now as follows: we assume that
wy is the union of the infinite free semicircular family (z4)ses With the infinite circular
family (ys)ser. We assume that S has the partition S = {0},...,0,} U Sy, where
%1, ...,z correspond to the elements on the line (b) while (ys)ser correspond
to the elements on lines (c), (d) and (x4)ses, correspond to the remaining elements.
Moreover we are given a finite family of projections {g,},c s, containing 0, 1 and so
that each g, belongs to {x"2}" for some o, € {oy,...,0,} forall j € J.

The generators w, for. ¢, are now obtained from wy by the following procedure:
for each s € T we are given iy, j, in J Consider the family

wi = (Ts)ses U{G1,¥s9y, }

We will prove that w; generates a factor which is isomorphic to ¥ (F,). To that end
we consider a partition with infinite sets

So = U(z,])EJZ S"w./
and show that for fixed (i, j) € J? the algebra generated by
("'I;S)SGSL] ) {xam ,Iapl } U {g1y‘;g]he = ia.js = .jv s € S}v

is isomorphic to ¥ (F.,). Moreover we may choose this isomorphism so as to act
identically on {z°Ps, 2% }"". Clearly this will complete the proof.

To prove the existence of such an isomorphism we may also assume that x”%s
x7:, Indeed, let w be any unitary in the type I1; factor {z°%,z°%: }" so that wg,
giw where

g, € 2z }").

To complete the proof it remains to show that the algebra generated by
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(xs)ses” ) {-I'ap] 7~Tap’} U {w91ysg]} =

(-TS)SES” u {l_ap] ) $dp’} U {g:wysg]}

is isomorphic to £ (F.,). As the family {wy®}scr is again circular and since now
gl g, € {z7P}" we are left to prove the following:

Lemma 3.3 Let{z;}scr,un, U {Zo} be a free family where {z}sct,ur, is a circular
family and x¢ is a semicircular element. Assume that Ty,T, are infinite sets. Let g, h
be projections in {xo}".

Then

"

¢ = {zo, Yo)iet,, (hy:9)ter, }
is isomorphic to ¥ (Fy.)

Proof . We simply use the random matrix picture from [29]. Consequently we may
represent (asymptotically) the elements in the set {Re y,, Im ys}seTluT2 by large ma-
trices, with random entries (of size tending to infinity) and that ¢ is (asymptotically)
represented by constant matrices. Clearly we may permute the blocks in the family
(y)te1 so as to fill the holes in y; for ¢ € T, without changing the isomorphism
class of the algebra.

As a consequence of Theorem 3.2 and of paragraph 1, we have now proved our main
result for £ (F,). We state it separately.

Theorem 34 Let” =(A D2 B 2D C;A D C D D) be a commuting square
([20]) of finite dimensional algebras. Assume that € is irreducible (i.e. the centers
of the algebras A, B and respectively C, D have trivial intersection) and that € is
A-Markov (i.e. there exists a A\-Markov trace ([11]) for C C A which restricts to a
A-Markov trace for D C B).

Then there exists an subfactor . ¢ C % (Fu.) of index \™' and the relative com-
mutant . 4' 0 % (Fy) is isomorphic to BN C'. In addition . 4 = % (F.).

In addition, if ¥ is any commuting square which (by iteration of the Jones’ basic
construction) yields a subfactor of the hyperfinite factor, then the higher relative
commutants of the inclusion. ¢ C ¥ (F,,) coincide with the ones for the inclusion
of type I, hyperfinite factors P,, C @ that is associated with the commuting
square ¢ (see Theorem 1.3).

4. A real continuation of the sequence (¥ (Fn))n>2,Nen

In this section we introduce a continuous series of type II; factors % (F.), r € I,
r > 1 which extends the sequence of the type II; factors (% (Fin))n>2,nen that are
associated to the noncommutative free groups Fly.

This series appears naturally in the analysis of the isomorphism class of the
algebras ¥ (Fv) ® M,(C). Indeed by Voiculescu’s formula (see Theorem 3.2 in
[28]) we have

4.1) (LENNp € L (Fy_pyp2e) forallp>1,pel

or equivalently
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L (Fy1pee) © My(C) = % (Fy).

Formula (4.1) suggests to define % (F|,_;y—2,,) as the isomorphism class of the
reduced algebra (% (Fy)), forallt >0, N e 11, N > 2.

The first indication that such a definition would be possible was the following
generalization of Eq. (4.1) ([25], Th. 6 ):

4.2) %(FN)l/fg (//(EN_I)k+1),]SGI},NET],sz
This isomorphism shows in particular that the von Neumann algebras

L(FNIN>2.Nen

are stably isomorphic (i.e. that the isomorphism class of ¥ (Fy) ® B(H) is inde-
pendent of N for all finite NV > 1). Note that formula (4.1) implies in particular that
¥ (F,) and ¥ (Fs) are stably isomorphic but does not imply that ¥ (F») and ¥ (F3)
are.
The construction used in [25], [28] suggest that a natural way to define

(L (F))rer,r>1 is to use infinite free semicircular families (X ®)s¢s. Let o be a fixed
element in S, let (e, fs)ses\ (o) be a family of projections in {X7}" which are either
mutually orthogonal or equal and let

r=1+ Z IﬁST(es)T(fs)

where ks =1 ifeg = fs and ks =2 if esfs =0.
Then ¥ (F,) is the isomorphism class of the algebra

l= {XUs (esXSfS)SGS\{(T}}Iv

if e,, fs are chosen so that the algebra. ¢ is a factor.
With this definition we prove that the following formulae hold true:

(4.3) L= L(Fy_ 2y, forallr>1,¢>0

(4.4) L(F)* S(FDYY L(Fppp), foral rr’ > 1.

A similar series was considered in [8], and the formulae (4.3), (4.4) were also proved
there.

The direct consequence of the two formulae (4.3), (4.4) is the fact that the funda-
mental group .7 (% (F,)) is either 1 or [, \ {0}, independently on r € (1, c0).

Thus the algebras (% (F)))rer > are either all isomorphic or they are mutually
nonisomorphic. In fact the first situation occurs if for some (equivalently for all
r> 1) L(F) ¥ £ (Fs) (using [23]). In this paragraph we will prove that the
above definition is independent on the choice of the projections es, f,. After proving
this result, the formulae (4.3),(4.4) will follow immediately.

Finally in the last part of the paragraph we will present a slight variation on the
definition of (% (F}))rer,r>1, Which will allow us to conclude that for all finite
dimensional algebras B C A, whose centers have trivial intersection, the algebras
(“(Fn)® B) *p A belong to the the series (% (F}.))rerr>1-

Our first result will be used to show that the isomorphism class of ¥ (F)) is
independent on the choice of the projections e, fs.
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Theorem 4.1 Let A, B, C be von Neumann subalgebras of a type 11, factor . /7 which

are free with respect to the trace T on . /3. Assume that A is a factor and that B is

generated by an infinite free semicircular family (Y *)scs. Let e, fs be projections in A

which are either mutually orthogonal or equal. Let ks =2 or ks =1 correspondingly.
Then the isomorphism class of

L b= {A7 (esXsfs)se.Sv C}”
depends only on'y_  ks(es)T(fs)

Proof . The proof is done into two steps. First step is to consider another family of
projections (€}, fl)scs (which are either mutually orthogonal or equal) with 7(e;) =
T(el), 7(fs) =T7(f]) and so that e, = f iff. e = f..

Step 1 The algebra
= {A (€ X fses, CY'

is isomorphic to . ¢.
Proof . Indeed by hypothesis, there exists unitaries (ws)ses in A with
elw, = wyes, fiws = wsfs, 8 € S.
Then the algebra. ¢ is generated by A,
wees X° fow? = el(w, X wk)fl, s €8,
and C. As (w, X*w})ses is again a free semicircular family and since
{4}, ({w.X"w}") o, {C}
is a free family of algebras, it follows that
L= {A e w X whf, CY
is isomorphic to . é;.

In the second step we prove that if we change the “shape” of the projection
>, es® fs (when e, ® f, are mutually orthogonal), without modifying the “surface”
> ksT(es)T(fs), then the isomorphism class of the algebra . ¢ remains unchanged.

The content of the second step is summarized as follows:

Step 2 Let S = U, e S™ be a partition of S with nonvoid sets and fix o,, in S,,. Let
S ={s € S"es = fs} and let S} = S™ \ S}'. Assume that the projections in the
family

{es® fo}sesp Ules ® fo, fs®es | s € S3'}

are mutually orthogonal.
Then . ¢ is isomorphic to the algebra

{4 euX*fo+ Y (X fo+ fuX e)nen, CY-

SGS:‘ sGS?
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Proof . 1t is clear that it is sufficient to prove this isomorphism under the additional
assumption that card I = 1. Moreover we may assume that card S,, is finite. The case
of finite .S,, is then simply a consequence of Lemma 2.5.

The reduction to the case of finite S, is a consequence of the so-convergence of
the sum considered above, which in turn is a consequence of the finiteness of

Do lles X filli+ D 2le X fllz=

SESI" sESE’

D redr(f)+2 ) Tle)r(f) < oo

g JT n
SES] s€S)

Clearly a (finite) repeated use of the steps 1 and 2 completes the proof of the
theorem.

We are now able to state (and prove in the same time the correctness) the definition
of L (Fy).

Definition 4.2 Let (X®)scs be an infinite free semicircular family. Fix a finite subset
of distinct indices {0y, 01,...0,} in S. For each s in Sy = S\ {0g,01,...,0,}, let

es, [s be projections in { X%}’ for some is € {1,2,...,n}, which are either mutually
orthogonal or equal. Let h be a fixed nonzero projection in {Y°'}". Let

y=n+27h)T(1 — h) + Z ksT(es)T(fs),

where kg =1if eg = fs and kg, =2 if eg fs = 0.
Then /£ (F.,) is the isomorphism class of the type 11, factor

(X7, X2, X hXP( — h),(esX° fs)ses,}-

Note that {X7', hX (1 — h)}" is a factor. By the preceding theorem (in fact by
the first step) we may assume in the above definition, without any restriction of
generality, that n = 1, Thus we may assume that all of the projections e, fs are in
{Y?1}". Hence an equivalent definition for ¥ (F,) is the following:

Definition 4.2 ' Let (X%),cs be an infinite free semicircular family, let oy, 0, be
two distinct elements in S and for each s € S\ {0,00}, let es, fs be projections in

{X 1}, which are either mutually orthogonal or equal. Let h be a nonzero projection
in {X71}". Let

y=l+2rr(l—hy+ Y kar(e)T(f),
s€S\{o1,00}

where ks =1 if es = fs and ks =2 if e fs = 0.
Then Y (F,) is the isomorphism class of the type 11, factor:

{Xa] ) hX(m(l — h), (esXsfs)seS\{ol,oO} }”~

One of the reasons for considering the more complicated Definition 4.2, (instead of
the Definition 4.2') is the fact that this definition makes trivial the proof of formula
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(4.4). We now complete the proof of the correctness of Definition 4.2. Theorem 4.1
proves that ¥ (F,) is well defined except for one point: to show that the relation

L(F,) ¥ {X7, hX7(1 — R)}"if v = 1+ 27(h)r(1 — h),

is consistent with the previous definition. This is done in the following lemma.

Lemma 4.3 Let (Y ?®)scsbe a free semicircular family, let o\, 0, be two distinct ele-
ments in S and let h, g be two nonzero projections in {Y°'}". For all s € S\ {o1,0,}
let e, fs, be projections in {Y 71} which are either mutually orthogonal or equal.

Assume that T(h)T(1 — h) = T(g9)T(1 — g) + >_, ks7(es)T(fs), with ks as above.
Then the type 11, factor {Y 7', hY %2(1 — h)}" is isomorphic to

{Yo1,gY2(1 — g),(esY* f)ses\{oy,00} )} -

Proof . Clearly it is sufficient to prove the statement for 7(g)7(1 — g) small enough.
Let hy, hy be nonzero projections in {Y?1}”, with h; < h,h, < 1 — h and so that
hi#hand hy #1—h.

It is also clear that {Y 7!, hY°2(1 — h) — hiY?2h,}" is a factor. Hence we may
use of Theorem 4.1, to show that an equivalent system of generators for

. L={Y" hY™(1 — h)}"

{Y?1 RY "2 (1 — h) — b)Y 2hy, gY 3 (1 — g)}.

Fix 03 € S\ {01,02} and let g be a nonzero projection in {Y?'}" with
T(@)7(1 = g) = 7(h)7(h2).

By Theorem 4.1 this ends the proof of Lemma 4.3 and this completes the proof of
the correctness of Definition 4.2.

The Definition 4.2 directly implies the following statement:

Proposition 4.4 For all r,7’ > 1 the von Neumann algebra, reduced free product
YL(FL) x L (FL) is isomorphic to S (Fy ).

Formula (4.3) is a little bit more difficult to prove than formula (4.4) but if we choose
the right generators for the algebra ¥ (F}.) then the computations for the isomorphism
class of ¥ (F,); are less involved.

Proposition 4.5 The type 11, factor % (F}), is isomorphic to %(F(,._l)t_z,,,), for all
t>0,r>1

Proof .Let (Y*®)ses be an infinite free semicircular family. Clearly it is sufficient to
prove the statement for ¢ sufficiently close to 1. Assume that ¥ (F).) is generated as
in Definition 4.2 by

{Y(r‘ ’ hY”Z(l - h)a (esysfs)sGS\{al ,02}}

where e, f, are projections in {Y 91 }"” which are either mutually orthogonal or equal
and h is a nonzero projection {Y?!}”. We may also assume (by Theorem 4.1) that
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7(h) =t > 1/2 and that e, f; < h. It will be sufficient to find the isomorphism class
of h% (F,)h.
Let f be any projection in {Y 71} with f < h, 7(f) = 7(1 — h). Let w be the
partial isometry from the polar decomposition
= hY f=wb.

Note that by Theorem 2.5 in [28] we have w = (1 — h)wf. Let B = fBf be a
semicircular element generating the same von Neumann algebra as {fbf}"and let
A= (1-h)A(1 — h) be a semicircular generator for {(1 — h)X' (1 — h)}".

Then h % (F,)h is generated by

{hRY?Th,B,(h — /)X 2w, w* Aw,e; X° fs}.
and let ks be as in Definition 4.2. By the Definition 4.2, the isomorphism class of the
algebra h 4 (F})h is thus % (Fjr) with
M =1+ (r(h) ™ 2(r(1 = b)Y +27(1 = ) [r(h) — (1 = 7(W)] + 7] =

1+t72Q20 =12 +2(1 — )2t — D +) = 1 +¢72QH(1 — t) +7).

On the other hand r = + 2t(1 — t) since t = 7(h).
To complete the proof it remains to check the conditions in the statement of
Definition 4.2. We have to show that there exists a semicircular family (Z!);cr with

Z'=hZ'h, teT,
containing (hX*®h)scs and so that there exist distinct elements
Z, 7", 7" € (Z')er \ (X h)ses
with
B=fZ"%f, (h— HX?w=(h— HHZ2f, wAw= fZ" f.

This is a direct consequence of Theorem 2.5 in [28] and of the proof of Theorem
3.2 in [28] once we observe that to prove the last statement, we may assume that
t =7(h) =1/n for some n € I. In this form, the last statement to prove is a general
fact that concerns only the semicircular family (Y ®)scg. This completes the proof.

The consequence of the two formulae (4.3), (4.4) is the fact that the isomor-
phism class of £ (F}) is either the same for all finite » > 1 or that the algebras
(% (F:))rer,r>1 are mutually nonisomorphic.

Corollary 4.6 The fundamental group of % (F,), for finite r > 1 is either .72, /{0}
or 1, independently of r.
Proof . Clearly, if x > y > r > 1, then L (F;) = % (Fy) is equivalent to the fact
that [(y — 1)/(z — 1]"/* is in .Z (£ (F,). Thus if .7 (£ (F,)) is non trivial then
Y (Fy) = % (F,) for some x > y and thus by Proposition 4.4

S (Fpaa) = (/J(Fym)»a >0.

It follows that .7 (% (F})) contains a line and hence .7 (¥ (F}.)) = IR, /{0} (since
F (£ (F,)) is a multiplicative group).
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The next corollary gives a more precise statement than the previous one.

Corollary 4.7 One (and only one) of the following two statements holds true:

(i) The type I factor £ (F}) is isomorphic to % (Fy) for all (equivalently for
one) finite 7 > 1.

(i) The type 11, factors £ (F,), r € (1,00] are mutually non-isomorphic.

Note that statement in (i) is equivalent to the following weaker statement:

(") £ (F,) @ B(H) ¥ % (Fso)QB(H) for some finite r > 1.

(i)' The fundamental group .7 (% (F)) is nontrivial for some (equivalently for
all) finite r > 1.

Recall that by Corollary 4.5, the algebras ¥ (F,.) ® B(H) are all isomorphic for
finite 7 > 1.

Proof . By the preceding corollary, we only have to prove that the hypothesis that
the type 11, factors % (F) are all isomorphic for finite s would imply that £ (F}.)
is isomorphic to ¥ (Fy,) for all .

Let (X *)scs be an infinite free semicircular family and fix a finite » > 2. Let

{0’0,0’1,.. } U{Vo,l/l,...}

be an infinite subset of distinct indices in S with infinite complement and let (p, )., 1,...
be projections in (X7°)" with

r=2+2ZT(pl)2_

1>1
By definition ¥ (F}.) is isomorphic to
C 4 ={X7, X" p,X%p, p,X"p,,i € N}”.

Let S = U,ey S, be a partition of S with infinite sets and let S, be finite subsets
of S/, of cardinality card S; = N, and so that o,,v, € S; for all 4. In this case our
assumption (that all ¥ (F,.) are isomorphic for finite 7 > 1) implies that there exists
a semicircular family (Z°)ses, € {2 X7'p,), (s X"1p,)}’, with Z° = p, Z°p,, s € S,
and such that

{(Zs)sesl }// = {(IHXU’Pz)a (Z%XV’I%)}//»

for all .
Since (Z%) et € {(p. X*pi)ses,}”, the random matrix picture of Voiculescu (see
1
the next lemma), shows that there exists a free semicircular family

(TS)SEU,,S" g (XS)SES

so that
Z°=pT°p, forall se€ S,,i e ¥

and
T°0 = X% T" = X",

Thus
YL(F)={X7 X" @X"p), @i X"p:),i € M} =

{XUO’XVO’(ZS)SEsz’Z' € N}” =
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{TUO ) TVOa (plTspl)SGS, ’ i € }{}”'
By the Definition 4.2 we obtain that ¥ (F.) is isomorphic to % (F,/) where

> Z N,7(p,)*.

By choosing N, big enough, for each i, we get 7’ = oo.

The procedure used in the construction of (1%)s¢cy,,s,, is explained in the following
lemma

Lemma 4.8 Let (x°)scs be an infinite free semicircular family. Fix a partition
S =5"US" with infinite S and fix three distinct indices oy, 0,v € S’ and a nonzero
projection p in {x}". Let (z')icr be a free semicircular family in {pz°p, pz*p}".

Then there exists a free semicircular family (a;)ier in {(x*)sesn\ (oo} }"' Which is
free with respect to {(x%)segr }'" U {x0}" and so that z* = pa'p for t € T.

Proof . It is clearly sufficient to prove the statement under the additional assumption
that S’ is infinite. Also we may assume that 7(p) = 1/n (eventually by considering a
semicircular family (Z*)scs and a projection p in {Z7°}" so that 2* = pz*p for all
s € S and by proving first the similar result for the later family).

Fix 6 in S'/{0¢,0,v} and let (e,)’, be a partition of the unity in {x0}"”, with
T(e,)=1/nfori=1,...n and e, =p.

As in the proof of Theorem 3.2 in [28], let w,, be the matrix unit w,, = w;w,,
where w, is the partial isometry from the polar decomposition of

e,x’e; =w,b,, 2<i<n

and let w, = e;.
Let B, be a semicircular element generating the same von Neumann algebra as
b, and let d, be a semicircular generator of e,{x7°}"e, for all i = 1,...,n. Denote

#p = {wra®w,2 <i <n}U{B|1 <i < nju
{w; (Re xo)w], w; (Im :t(’)1n]|l <i<j<n}
and
< =& U{w (Rex ) w,, w(Imz w,|l <i<j<n,seS/{f.0}}U
{w;z*w,|1 <i<n,s€S5/{0,00}}U
{w;d,w,|1 <i<n}.

Also denote by ¢ the set obtained by replacing S by S’, everywhere in the above
definition of the set ¢ . Let " =& \ £, ‘
By Theorem 2.6 in [28], ¢ is a free semicircular family and thus so is

“o = (2" u{z"ber) \ {pr”p, pr"p}.
Moreover ¢, U %" is a free semicircular family. To simplify the notation write
{c"|re R} =4\ [{wdw,|l <i<n}u{z'}erU?]

and fix an injective map x : T x {1,...,n}?> — R.
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We may now paste back the elements in ¢ in a new semicircular family:

a; = Z [wlcx(l,j,t)w; 1 /—lwch(“'t’w;‘]

1<e<y<n

+ 3 [chx(l,],t)w:_ /__—lecX(J""’w:‘]

1<i<y<n

+ Z w, Xy p2ip t € T.
2<1<n
The same argument as above (i.e. Theorem 2.6 in[28]) shows that (a;):er is free with
respect to (2°),egr U {270, 2%} (using also the fact that & is free with respect to
#'"). This ends the proof of the Lemma 4.8.
The construction of T in Proposition 4.7 runs as follows : By induction, assume
that we constructed up to a given n € I the family

(TS)SEUI;I S,

with the required properties, i.e. such that (T%),en /S, is semicircular and free with
=
respect to {x,z"}" and so that

pTp, =2°%s€S,,i=1,2,...,n.
We apply the above lemma with 270 = X0,

{I'S}Seslr = {XUO} U(TS)SEU;LSI U {XS|S (S Sll, i=n+27 .. '}7

(" eesr = (XTI ULX Y e
P = Pnst, €7 = X0 gt = XVl
and
(Ve = (Z%)ses,,, -

We take (T°)ses,,,, be the family (a')ter given by Lemma 4.8. This completes the
proof of Corollary 4.7.

Finally we state a slightly different form of the definition of ¥ (F.,), which will
occur in the analysis of the algebras (¥ (F) ® B) xp A, where B C A are finite
dimensional algebras with disjoint centers.

Lemma 4.9 . Let (X®)scs be an infinite free semicircular family, let Dy be a discrete
von Neumann abelian algebra with minimal projections (e,),c1 and let .72 be the von
Neumann algebra free product {(X*)scs}"’ * Do.

Fix an element o in S and let ps, hs be projections in the diffuse abelian von
Neumann algebra D = {Dy, (e,X e,),cx }’ which are either mutually orthogonal or
equal and let ky =1 if hy = ps and ks =2 if p;hs = 0.

Assume that N is a reflexive symmetric relation on K x K with a single orbit and

let
=14 kr(h)TR)+ Y TledTle) — Y (e

(i,9)EN
Then
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. //={DO7 Z elxae]v(stshs)sES}//
(v,))EN

is isomorphic to % (F).

Proof . Let k be the cardinality of K (k may be infinite). If £ = 1 the statement is
obvious. Thus we may assume that k > 2, K ={1,2...,k} and that

(1,2),(2,3),...,(k— 1,k) € N.

We use the same kind of arguments as in Proposition 4.3.
Replacing .72 with eventually a larger type I, factor, we may assume that there
exists semicircular elements X0, X7 X2 in./?, so that

(XS)SES ) {XUO, X ) on}

is a free semicircular family.

For all s € S let p,, hl, € {X}" be projections that are either mutually
orthogonal or equal and have the property that

T(pl) = 7(ps), T(h,) =T(hs) and p.h) =0 iff. p;h, =0 for all s € S.
We choose a partition of the unity (e]),c; in {X 70} with 7(e,) = 7(e}) and let g, g>

be two non zero projections in { X0} with g, <el, g, # ¢} fori =1,2.
By Lemma 3.1 the algebra

{X, Z ().'TX”'(Z;,,(p;X'“h;)Ses/{ﬂ}}"
[r=plZ1(r,pEN
is isomorphic to . ¢. Let ko be any projection in {X70}" with 27(ko)T(1 — ko) =

27(g1)7(g2).
Since

A={X, Z X7, — X7 gy — X" g1}
[r—p|>1,(r,p)EN

is a factor (due to the choice for g, g2), by Theorem 4.1, it follows that . £ is also
isomorphic to the algebra

{X0 el X7el, — 1 X7 g2 — 2 X7 g1, ko X721 = ko), 0, X *W)ses/iay}-
T#p

The Definition 4.2 shows that the isomorphism class of . ¢ is thus ¥ (F,.) with

r=1+ | rlen)rey) = 2r(gNT(g2) | +27(ko)r(1 — ko) + Y T(ho)T(y).

r#p

This completes the proof.
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5. Subfactors in ¥/ (Fy)

In this paragraph we prove our main result for ¥ (F), in the case of finite real
N > 1. In fact due to Theorem 1.2, we only have to check that any ¥ (Fy), for
finite N > 1, is isomorphic to the amalgamated free product (Q ® B) x5 A for some
Q = % (Fyy) depending on N. This is done in the first theorem.

The expression that we find for M (as a function of V) will be used in the proof
of our main result to determine the isomorphism class of the subfactors given by
Theorem 1.2.

Theorem 5.1 Let 14 € B C A be an inclusion of finite dimensional algebras and
assume that the centers of A and B have trivial intersection. Let T be a normalized
faithful trace on A, let I' be the inclusion matrix of A 2 B and let (sy)rck be the
vector of the values of the trace T on a set of representatives for the minimal projections
in A. Then

(L(FN)® B)sp AY % (Fyp),

and
M=1+N<{ITHs,s>—<s,5>.

Remark 5.2 Note that the above statement holds true under the weaker assumptions
that A, B are finite type / von Neumann algebras with discrete centers.

Proof of Theorem 5.1. Let { i}, be a maximal set of mutually orthogonal, min-
imal, nonequivalent projections in B and let {t;};c1, be the vector of the values of
the trace 7 on {fi}icr. Let f =3 f,. Clearly the inclusion matrix of By C Ay is
again I" and By is abelian.

By the proof of Lemma 2.2 we have that that

[(£(Fn)® B) *p A]Zn = (L(FN)® By) g, Ay

Let (ex)rer be a maximal set of mutually orthogonal, minimal, nonequivalent
projections in Ay, that commute with {f;};c;, and let e = ) e,. Note that the relative
traces (7'(e,)),e i Of the projections (e,),c k in the reduced algebra A .. are now given

by the formula
e =t Qs e =

.1 =Q 'O s sie K.

We use the procedure described in the Proposition 3.2 to find a convenient system
of generators for the von Neumann algebra

[(%(FN)® By) *p, Af]{’.

We will first prove the theorem under the additional assumption that N > 2 is an
integer.
Let (Y*)4=1 2.~ be a free semicircular family that is also free with Ay and let

2= T P RY frs= 1,20 N
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Recall the notations from Corollary 2.3: 7 is the central support of e; in A for
k € K and {ef,q};’flzl is a matrix unit for Ary with the property that e’;p commutes

with (f))icr, and ¥, = e; forall p=1,...,myg, k € K (my is the dimension of Ary).
Let Ny be the reflexive symmetric relation on K2 defined by

No={(k,m) € K x K| axiam #0}.
lel

Note that N, contains a single orbit, since the centers of A and B have trivial
intersection.

Recall from Proposition 2.1 that (Z°)s=
for (£ (Fn) @ By) *p; Ay. Let

,,,,,

~ and Ay is a system of generators

A= U {e'prse;'ils= 1,2,....N,p=1,.. ,te,q=1,.. ..ty }.
(m,k)e Ny

By Corollary 2.3 a system of generators for
(Q@® B)*p A)pe = (Q ® By) x5, Af)e

(with Q = L (Fn)) is .&" and Ay.. If we fix (k,m) € K? then there are exactly
Z Ami Akl
leL

nonzero blocks of the form e’pr"‘e:I'i in the set .#" for each fixed s = 1,2,...,N
(since Z° commutes with f;,[ € L).
By the Lemma 4.9 and Eq. (5.1), if we sum the “area” of these elements, we

obtain that (% (Fy) ® By) g, Ay). is isomorphic to ¥ (F,) where v is given by

the formula
v=1 +NZ Z ayayt(e)r (e;) — Z '(ex)
leL 1 3eK? keK
=1+N <(TTMs,s> Q2O s 2= <s,5>O_tn 2O s

By Proposition 4.5 in the preceding paragraph (the reduction formula) we deduce
that (¥ (Fy) ® By) B, Ay is isomorphic to ¥ (Fp) where P is determined by

%(FI))sﬁ.usk = %(E/)

Consequently
(P - 1)(2 se) 2=v—1
or
P=1+N[<(IThs.s>-<s.5>] Ot~

Hence
(Z(Fn)® B)*p A]z,, =

(L (Fn)® B)*xp Al = (L(FN)® By) *p, Ay ¥ L (Fp),
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with P as above. The Proposition 4.5 and Lemma 2.2 implies again that (¥ (Fy) ®
B) xp A is isomorphic to ¥ (Fr) where M is determined by the relation

(M-DQ t)?=P—1

whence the formula in the statement.

We now complete the proof of the theorem by dropping the assumption that NV
is natural. Clearly it is sufficient to prove that (£ (F,) ® B) xg A is isomorphic to
L (Fpry) with M(v) an affine function depending on v.

Let e, f be as above and let.#? be a type 11, factor that contains Ay and an infinite
free semicircular family (Y*),¢ g that is free with respect to Ay. Let (Sphier, {0 }ieL
be disjoint, nonvoid subsets of S and let g}, h! be projections (either mutually or-

8 "s

thogonal or equal) in {(f;Y°!f;}", s € S;,1 € L, so that

TP ==Y kr(gh)yr(h) forall l € L
SES|

and k, =2 if gthL =0 or k, = 1 if g, = hy. By Theorem 4.1, by Proposition 2.1 and
by Lemma 4.9, a possible system of generators for

. ¢=(L(F,)®By)*p,; As

Ap, (fiY? finer and (Y *hy)ses, -
Note that
{leglfly (giyshﬁ)sesl}”

is a copy of % (F),) for each [.

Foreach | € L fix a projection ey, € (ex)rek With eg, < fi. Since {Ay,, fiY 7 fi}"'
is a factor, by Theorem 4.1, we do not change the isomorphism class of . £ by re-
placing for s € Sy, the projections g%, h!, with projections g}, k) in {ex, Y “te, }"’ that
are either mutually orthogonal or equal with

7(gh) = 7(gs), T(hs) =T(h%), gihl, =0 iff.gshs=0forall s € S;,l € L
and
T w — )= Y ker(gl)r(h,) for all L € L.
S€ES)

This time the generators for the reduced algebra . 4. are: (ex)reck, the elements
{g.Y°hl|s € Si,le L}

and a fixed set of generators O C . -4, corresponding to f; X! f;, for all [ € L. Note
that by hypothesis O and (ex)rex are generating a factor.

For each k € K fix a nonzero element of the form e;X"'ke; and let D be the
diffuse abelian von Neumann algebra generated by(ey)rcx and e X 'ker, k € K.
We use again Theorem 4.1 and replace this time the projections g, h’, by similar
projections g/, hY € (D) with

7(gl) = 7(gl), T(h}) =(h),
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and
g;’h’s’ =0 iff. g;hs =0 forall s € S;,1 € L.

Thus . ¢, has the following system of generators : D, the set O’ (obtained from
O by deleting the elements used to construct D) and

{g!Y*n|s € Sl € L}.

As O' is independent on v and since

> kT

seS;,lel

is an affine function of v (recall that 7/ is the induced trace on . ), the definition
4.2 shows that the isomorphism class of . ¢, is ¥ (Fn(,) where N(v) is an affine
function of v. The reduction formula (4.4) shows that the same is true for . 4 and
thus for (£ (F,) ® B) xp A.

This completes the proof of our theorem. The proof of the Remark 5.2 now follows
from the Remark 2.4.

By the above results and by Theorem 1.2 we get:

Theorem 5.3 Ler 7 =(A D B D C; A D C 2 D) be a commuting square ({20]) of
finite dimensional algebras. Assume that € is irreducible (i.e. the centers of A, B and
respectively C, D have trivial intersection) and \-Markov (i.e. there exists a \-Markov
trace ([11]) for C C A which restricts to a \-Markov trace for D C B). Let N > 2
be any natural number (or more generally let N > 1 be any real number).

Then there exists a subfactor . ¢ C % (Fy) of index \™". In addition the relative
commutant . ¢' 0 S (Fy) is isomorphic to BN C' and

L= %(EN——])}\71+1)§ [%(FN)])\l/z-

Before proving the theorem we note the following remark which shows that one may
also construct subfactors for the von Neumann algebra of a free group starting from
the infinite dimensional commuting squares considered by U. Haagerup and J. Schou
([10], [26]). We state it separately to make the task easier for the reader. The proof
of this remark will be identical to the proof of Theorem 5.3, by making use of the
Remark 5.2.

Remark 5.4 The statement of Theorem 5.3 holds true for the infinite dimensional
commuting squares considered by U. Haagerup and C. Schou ([26],[10]).

The assumptions are now that A, B, C, D are finite type I von Neumann algebras
with discrete centers and that all the corresponding inclusion matrices have finite
norm.

Moreover one assumes that there exists a normalized faithful trace 7 on A which
is a A\-Markov trace for C C A and that 7 restricts to a \-Markov trace for the
inclusion D C B. In addition there exists v > 0 so that 7 is a v-Markov trace for the
other two inclusions.

Proof (of Theorem 5.3). Let (sp)rek, (t)ie L, be the vectors of the values of the trace
T over a system of representatives for the minimal projections in A and C respectively.
Let I" be the inclusion matrix of A O B and let N > 1 be any real number (possibly
infinite). By the assumptions on ¢ it follows that < s,s >= X\ < t,t >.
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Indeed if X is the inclusion matrix for C' C A then the A-Markov property of the
e implies ([12], [31]) that s is eigenvector with eigenvalue A~! for X*X . Hence

<tt>=< X5, Xs>=< X' Xs,s>= A" <5,5>.
By the preceding theorem, there exists a real P > 1 so that

(L (Fp)® B)xp A= L(Fy)

N=1+P<{ITYHs,s>—<s5,8>.

the other hand, if the inclusion matrix for C O D is I. then

- ¢=(L(Fp)®@ D)*xp C = L (Fy),
, by the same arguments as above, we have:
M=1+P<(\ITHt,t > — <t,t>.

By Proposition 1.4 in [21], s,t are Perron -eigenvectors for the same eigenvalue

€.

(Fll“f)t = V_lt,(FFt)s = 1/_13,

v='=||I'||? = ||1]|*. Hence it follows that

(M~-D/(N=-1)=x"

or equivalently

M=(N-Dx1+1.

This completes the proof.
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