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Introduction

Ecological Systems

Ecological systems are open systems characterized by a

great number of interactions within and between levels of

organization and by complex exchanges with other neigh-

boring systems. Their inherent complexity makes their

study, prediction, and management very difficult.
The mathematical modeling and statistical tools

that have been traditionally used in ecological research

allowed significant advances in ecological knowledge, but

they were mainly aimed at a reductionistic approach,

which can only be successful in case very simple systems

are studied.
Real ecosystems, however, are always very complex

(and more complex than they appear) in their structure

and dynamics. The combination of many parallel and/or

sequential nonlinear interactions often induce unexpected

responses, which sometimes reveal chaotic dynamics, mak-

ing prediction of ecosystem behavior impossible.
Another aspect in ecology that we are dealing with is

nonequilibrium systems. Many models that have been

used are based on equilibrium, therefore making weak

assumptions about reality. Modeling is about simplifying

to get a tight description of a structure and its response

to a certain stimulus or its dynamics in space or time. It is

almost certain that we will never get a ‘perfect model’

unless we are able to reproduce the system itself. Any

simplification will stay short in the model representation

ability.
Another problem facing researchers is that our

knowledge in one ecological system is not completely

transferable to another ecosystem; it is not reducible as

classical physical systems are. This again is the burden

of all the above.
While our understanding of ecosystem functioning is

only partial, the amount of available ecological data

keeps growing, and it grows much faster than our abil-

ity to turn new data into new insights into ecological

processes.
Ecological Informatics

In this scenario, ‘ecological informatics’ can be regarded as
an extremely promising research field, which has the poten-
tial to help bridge the gap between data and knowledge. As
many emerging disciplines, ‘ecological informatics’ is still
ill-defined, and several different definitions can be found.
Most of them, however, agree regarding ‘ecological infor-
matics’ as a combination of several research fields. It can be
summarized as the application of the latest computationally
intensive tools to ecological research and the development
of novel computational methods inspired by biological and
ecological systems.

The purposes of ‘ecological informatics’ are multiple,
but in most cases they involve the development of model-
ing, data mining, data management, visualization, expert
systems, or similar applications in ecological research.
Computational techniques such as neural networks
(see Artificial Neural Networks), cellular automata (CAs)
(see Cellular Automata), or evolutionary algorithms (see
Evolutionary Algorithms) are the basis for many successful
‘ecological informatics’ applications, but any computation-
ally intensive method or information technology may play
a role in supporting new applications.

Artificial neural networks (ANNs) have been extensively
applied to ecological sciences through supervised and unsu-
pervised learning models, and the number of applications
has been growing exponentially during the last decade.
Multilayer perceptrons (MLPs) (see Multilayer
Perceptron) trained with the backpropagation (BP) algo-
rithm are the most popular neural networks in ecological
applications and they have been applied to a number of
empirical modeling problems. While MLPs are very effec-
tive as generalized regression tools, ‘self-organizing maps’
(SOMs) (see Animal Defense Strategies) may be successfully
applied to ordination and classification of ecological data
(e.g., in indirect gradient analysis).

Although very popular, neural networks are not the only
tools upon which ‘ecological informatics’ relies. For
instance, CAs, although among the earliest artificial life
models, are still applied in ecology, and they are certainly
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also part of ‘ecological informatics’. CA shows that complex
behavior and self-replicating patterns may be obtained from
simple rules, when they are applied iteratively. CAs have
been applied in many ecological studies, especially when
population dynamics or landscape ecology is involved.

Individual-based models (IBMs) are another typical
application that can be regarded as a member of the
‘ecological informatics’ family. They represent plants or
animals as individual entities that are programmed
to react to environmental stimuli, including interactions
with other individual entities. The discrete nature of
individual entities in IBMs leads to nonequilibrium sys-
tems, and their properties and behavior must be carefully
defined in order to obtain useful simulations.

Evolutionary algorithms are certainly the methods that
were more directly inspired to biological systems among
those in the ‘ecological informatics’ toolbox. In fact, ‘genetic
algorithms’ (GAs) (see Evolutionary Algorithms) exploit
the analogy with biological evolution to solve complex
optimization problems. However, the application of evolu-
tionary algorithms should not be regarded as a mere tool for
problem solving, because it also stimulated new insight into
ecological problems, especially in combination with IBMs.

The list of methods that can be applied in an ‘ecological
informatics’ framework is virtually endless, and it overlaps
with the ones of other disciplines, for instance, ‘ecological
modeling’ or ‘bioinformatics’. Therefore, a couple of exam-
ples are probably more useful than theoretical definitions or
comprehensive lists of methods in showing how ecological
value can be additionally obtained from the application
of appropriate ‘ecological informatics’ techniques (see
Ecological Informatics: Overview).
Examples

Example 1

A very straightforward example of an ‘ecological informatics’
application is the Fish-based Decision Support System
(FIDESS): a ‘decision support system’ (DSS) that has been
recently developed in Italy is based on artificial intelligence
and aims at assisting environmental management policies.

The need for such a DSS stemmed from the European
Water Framework Directive (WFD), which set a very
ambitious goal for all the member states, that is, improv-
ing the quality of all the superficial water bodies by 2015
up to a level that can be considered as ‘good’. Obviously,
in order to enforce the WFD policies accordingly, appro-
priate evaluation methods are required. The WFD clearly
states that the key criterion is the ‘ecological status’, that
is, an expression of the quality of the structure and func-
tioning of aquatic ecosystems associated with surface
waters, which is mainly based on biotic ‘quality elements’.
Fish fauna plays a major role among the latter, not only
because fish species are effective biological indicators of
environmental quality in aquatic ecosystems, but also

because of their iconic value.
The majority of the available assessment methods based

on fish have been developed during the last two decades,

and they are mostly inspired by the seminal work by

J. Karr, who developed a multimetric index (the ‘index of

biotic integrity’, IBI), which combines 12 attributes of the

fish assemblage that are supposed to respond to environ-

mental disturbance (i.e., metrics) into a single score. This

approach is inherently flexible, and therefore it has been

adapted to a number of countries and river basins, not only

in North America, but also in Europe and other continents.
Although multimetric biotic indices have become com-

monplace tools in environmental management, they are

not optimized from a computational point of view and

therefore even the most successful ones often fail, provid-

ing evaluations that are not consistent with other ecological

evidences. This limited capability is not surprising, as no

evaluation method can be simple, general, and accurate at

the same time. Multimetric indices are certainly simple, so

they have to give up generality in order to be accurate,

and in fact the most successful ones are usually aimed at

a single river basin or at a single, very homogeneous

ecoregion. Basically, multimetric biotic indices usually

rely upon a sound ecological rationale, but they exploit

the available information in a suboptimal way.
In order to be both general and accurate, methods for

evaluating the ecological status must be more complex

than multimetric indices in the way they process the

available information. ‘Ecological informatics’ is certainly

the appropriate conceptual and methodological frame-

work for developing such an optimized method.
Therefore, a DSS based on an ANN was trained to

associate fuzzy expert judgments to environmental and fish

assemblage data. This solution was based on the assumption

that complex biotic relationships that link fish assemblage

composition to environmental conditions can be embedded

into an ANN and that such an ANN can be trained to mimic

the way human experts issue their judgments.
In fact, expert judgment, although inherently subjec-

tive, is the key for any environmental assessment method,

from the selection of relevant metrics to the discretization

of the scoring scales of multimetric indices. The same

subjectivity affects the evaluation of the ecological status,

which cannot be univocally defined, and it is mostly based

on the personal interpretation of natural phenomenolo-

gies. In spite of the lack of objective criteria, ecologists

usually agree in ranking sites according to their ecological

status, because they share a common rationale.
FIDESS is still under development, as more information

(fish assemblage data, environmental data, and multiple

expert judgements) is needed to fully train the ANN with

respect to a full spectrum of ecoregional conditions, and at

present it is optimized for central Italy.
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In spite of theoretical problems related with the
so-called ‘curse of dimensionality’ and thanks to the strong
biotic relationships that implicitly constrained the learning
phase, a few hundreds records allowed to properly train a
very complex ANN. (The curse of dimensionality refers to
the exponential increase in volume caused by the addition
of new dimensions to an n-dimensional space. In machine
learning applications it usually hinders the solution of
problems involving a limited number of patterns in a
high-dimensional feature space.) This ANN is a 59-25-5
MLP, which has 27 abiotic and 32 biotic inputs. Among the
latter, several hydromorphological attributes as well as
some chemicophysical ones are considered, while pre-
sence/absence of 30 species, plus overall and juveniles-
only species richness were included as descriptors of the
fish assemblage. The ANN has five outputs, which corre-
spond to fuzzy membership estimates relative to each one
of the ecological status classes that are defined by the
European WFD (and that are considered in the human
expert judgments). The ANN outputs can be regarded as
memberships as they sum up to one thanks to a softmax
activation function in the output nodes.

The training of the ANN-based DSS is performed not
only using data directly obtained from sampling, but also
‘virtual’ records. Basically, during expert judgment elicita-
tion, human experts are also asked to point out which
changes in biotic and/or abiotic would affect their evalua-
tion, or to explain how their evaluation would change in
case different (but likely) environmental and faunistic
properties were observed. In this way alternate scenarios
can be easily simulated and new expert judgments can be
associated to each ‘virtual’ record, thus widening the
knowledge base upon which FIDESS is built.

Even though at its present development stage FIDESS
can be regarded as a very early alpha release of the final
tool, it has been tested using an independent data set
(n¼ 69). A confusion matrix, that is, a 5� 5 contingency
table, was obtained by cross-tabulating human expert judg-
ment against FIDESS classification, showing a very good
agreement: two out of three cases were correctly classified
after defuzzification, while the worst-case error was within
a single quality class. A typical measure for interobserver
agreement, the weighted Kappa statistics, confirmed that
the deviation of the FIDESS classification from a random
agreement with expert judgment was highly significant.

Although computationally intensive, an ANN-based
DSS cannot be regarded as a paradigm for ‘ecological
informatics’. An essential component in this light is the
‘Graphical User Interface’ (GUI) that was wrapped
around the ANN to provide a user-friendly and interac-
tive access to FIDESS (Figure 1). The GUI makes the
ANN – that is, the unnecessary complexity – absolutely
transparent to users who are free to interact with FIDESS.
As soon as they modify the input data, changes in classi-
fication in real time can be observed. Although it is trivial
if compared to the ecological and computational back-
ground of FIDESS, the GUI is not a secondary feature.
On the contrary, it plays a major role in the acceptance of
FIDESS. In fact, while most users are familiar with multi-
metric and other biotic indices, they do not feel
comfortable with an ANN, which is perceived as a rather
obscure ‘black box’. Interacting with FIDESS in real time,
thanks to a user-friendly GUI, for example, by moving
sliders, helps users to learn how FIDESS reacts to changes
in biotic and abiotic variables and to understand that
FIDESS just mimics their own way of reasoning. The
relationships between user’s input, ANN, and FIDESS
outputs are summarized in Figure 2.

In conclusion, this combination of a typical artificial
intelligence technique, a smart knowledge elicitation pro-
cedure, and a very user-friendly and interactive GUI can
be regarded as a good example of what ‘ecological infor-
matics’ is all about: combining available methods, data,
knowledge, and software into new, viable solutions for
ecological problems.
Example 2�

This example deals with a representation of animal
behavior and learning. The agent or artificial animal is
generated and attempts to cope with the features of the
world with its limited knowledge. The objective is to
adapt to the problem presented to it through learning,
gradually modifying its behavior related to movement in
the space (Figure 3).

The agent used in the example carries an ANN (three
layers: input layer where data enter the networks, hidden
layer where they are classified, and output layer where
decisions are made) that must learn by reinforcement
(punishment and reward) the best strategy to get as
much profit as possible from the world in terms of food.
In order to catch its food, it must be in the same pixel as its
prey (prey do not move). Unfortunately as all animals, it is
not perfect. It has limited knowledge and capacities. What
it can do is make a decision each unit of time upon three
possibilities: keep moving straight, turn slightly to the left,
or turn slightly to the right. These decisions are relative to
its current direction.

As input it has only memory consisting of knowledge
as well as knowledge of failure of the last three decisions.
It lacks any sensorial capacity or knowledge of its location
in the space.

The toroidal world is a square area on the top of the
screen (Figure 3); below it, a performance histogram will
appear (Figure 4), describing by time intervals the catch that
this predator has achieved through the actual animation run.
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Figure 1 The Fish-based Decision Support System (FIDESS). Quantitative data can be modified by moving the sliders, while the
classification results (shown in the lower-left part of dialog) change in real time. The very user-friendly GUI played a fundamental role in

the acceptance of the method among ecologists and fish biologists who were not familiar with the underlying computational methods

but are used to apply simpler biotic indices.
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Figure 2 The GUI of FIDESS makes the underlying ANN completely transparent to the user. Quantitative data are entered in input

fields, while binary data are entered by means of check boxes. Sliders are also available for quantitative variables, thus providing

immediate feedback to the user, who can easily compare FIDESS actual responses with its expected behavior. Both fuzzy and crisp
(i.e., defuzzified) classifications are provided in output.
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No matter which decision this agent takes, there is a
possibility of failure, and no matter how fitted it is, there is

a possibility of being in a deserted area. With its limited

information, it cannot avoid being starved at some
intervals, but as learning proceeds it changes its behavior,

starting from a random walk and finishing with sinusoidal

movement when it has encountered prey or with a more

straightforward movement when it has not. This improves
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Figure 3 Schematic representation of the toroidal world with

patches of food and an animal track.
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the chances of catching prey when it is close to a patch
(Figure 4). This type of strategy has been described in
predators when prey is found in clusters. A sinusoidal
movement in a situation close to a patch will increase
the probability of keeping close to the patch and a straight
movement in the opposite case will increase the prob-
ability of escaping from an empty area. This behavior has
been described from small predators like insects all the
way to humans (fishing vessels).

This example not only shows the main feature of an
ANN, its learning capability, but also a way of classifying
situations and relating them in this case to actions. This
artificial animal is forecasting and taking the best action
course that will lead it to its prey.

Ecological informatics methods have great potential
and are not limited to forecasting or classifying. In this
example not only was this achieved, but also a represen-
tation of learning or animal behavior, and an IBM was
developed at the same time.
Goals

Application

‘Ecological informatics’ can be successfully applied to any
complex ecological problem, but it may be really effective
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Figure 4 Prey catch by the artificial animal from starting time with a
in case data are more abundant or reliable than theoretical
knowledge.

In ecological modeling, for instance, methods which
stem from ‘ecological informatics’ should be applied (but
not exclusively) when many variables are involved in
the system being modeled, when some of those variables
are not precisely accounted for, when they are categorical
or nominal, or when nonlinear effects and/or interaction
between variables are suspected to occur.

In general, ‘ecological informatics’ can play a relevant
role when there is not enough theory to explain the
dynamics of a system or the relationships between its
components. This is the case, for instance, in most studies
based on a bottom-up approach.

Finally, ‘ecological informatics’ provides several meth-
ods that are particularly useful in empirical modeling
applications, that is, when one or more variables whose
measurements are expensive and time consuming, infor-
mation can be accurately estimated on the basis of other
variables, which are cheaper and easier to measure.
A typical application of this approach is in remote sensing
and in the calibration of instrumental measures.
The Future

‘Ecological informatics’ methods are not restricted or
limited to the main purpose they were developed for,
they can achieve more. It all depends on the imagination
of the researcher and possibilities increased by hybridiz-
ing related methods in ecological informatics/modeling.

Where will this bring us – how much closer to our
understanding of ecological systems? This is something
that will be answered probably by the next generation of
researchers, not by the ones who developed or first applied
them in ecology but by those born in the age of personal
computers, with higher interrelation to computers, who
will find new approaches with a new way of looking at
nature and machines.

‘Ecological informatics’ presents a new option or
approach on modeling ecological systems. This approach
has been growing in the last decade but much has yet to
be accomplished. It is not the purpose that ecoinformatics
methods displace traditional methods, but they present
 intervals
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another point of view in getting insight into future eco-

logical systems.
In this scenario, ‘ecological informatics’ has a potential

for growing as fast in ecological applications as bioinfor-

matics grew in studies at cell or individual scale. It is not

predictable, however, to what an extent and how ‘ecolo-

gical informatics’ will evolve during the next decades. It

will be certainly influenced by advances in computer

science, but only our ability to deal with increasingly

complex ecological problems will foster ‘ecological infor-

matics’ as an independent discipline.
In fact, when new technologies or new methods are

developed, their application to existing disciplines is

usually regarded as a spinoff that may define a subdisci-

pline, and this is the present state of ‘ecological

informatics’. However, when a subdiscipline gains enough

momentum as to become widely accepted by nonspecia-

lists, it eventually flows back into the mainstream

discipline, thus broadening its scope. We hope this will

be the destiny of ‘ecological informatics’.
See also: Abundance Biomass Comparison Method;

Adaptive Agents; Animal Defense Strategies; Artificial

Neural Networks; Cellular Automata; Ecological

Complexity; Ecological Informatics: Overview;

Ecosystem Health Indicators; Empirical Models;

Evolutionary Algorithms; Individual-Based Models;

Learning; Multilayer Perceptron; Orientation, Navigation,

and Searching; River Models.
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Applied Ecology

The science of ecology involves the study of interactions
between organisms and their environment, both biotic
and abiotic, with particular focus on those interactions
that determine their distribution and abundance. Applied
ecology is the science of the application of ecology to
contemporary problems in managing our biological
resources. It includes scientific study of the effects of
humans on the interactions between organisms and their
environment, but excludes human ecology.

Applied ecology has two broad themes. The utilitar-
ian theme concerns the interests of humans in their
food, shelter, welfare, and health, that is, the material
services the natural environment provides. Such ecosys-
tem services, once compromised, can be very expensive
to replace despite our technological advances. How do
we bring ecology to bear in maintaining and improving
these ecosystem services where they currently exist, in
restoring or replacing them if they have been lost, or in
mitigating the impact if those services are under threat?
A second theme concerns nonconsumptive values of
the biota, for recreation, tourism, psychological well-
being, or simply because humans have an ethical
responsibility as custodians of the natural environment
and the species it contains. How do we bring ecology to
bear in conserving these important nonconsumptive
values?

These two broad themes overlap, since the noncon-
sumptive values of the environment are connected
through biodiversity to the services healthy environments
deliver. Naturally biodiverse systems are typically more
resilient to human-induced perturbation than are systems
that are highly modified, structurally simplified or
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