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Preface

These lecture notes are intended to introduce the reader to the basic notions of com-
putability theory, decidability, and complexity. More information on these subjects can
be found in classical books such as [6,8,15,16,33]. The results reported in these notes are
taken from those books and in various parts we closely follow their style of presentation.
The reader is encouraged to look at those books for improving his/her knowledge on
these topics. Some parts of the chapter on complexity are taken from the lecture notes
of a beautiful course given by Prof. Leslie Valiant at Edinburgh University, Scotland, in
1979. It was, indeed, a very stimulating and enjoyable course.

For the notions of Predicate Calculus we have used in this book the reader may refer
to [26].
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Chapter 1

Turing Machines

1 Basic Definitions

N =1{0,1,2,...} is the set of natural numbers. In what follows we will feel free to say
‘number’, instead of ‘natural number’.

Given a set A and a number k > 0, let A* denote the set of all k-tuples of elements of
A. Thus, by definition, we have that:

(i) AY is the singleton made out of the O-tuple () (also called empty tuple or empty string
or empty word and denoted by ¢), that is, A° = {()},

(ii) A' = {{(z) |z € A}, and

(iii) A% = {{x1,...,2) |21,..., 7% € A} for any k > 1.

We identify (z) with z for each x € A. Thus, A' = A. Sometimes a tuple (zy,..., ;) is
also denoted by xy ... xy.

Let A* denote the set of all finite k-tuples of elements of A, with & > 0, that is,

A =A"UA'UAU...UARU. ..

An element of A* is also called a string or a word. A* is also said to be the set of strings
or words over A. The length of an element w of A*, denoted |w|, is k iff w belongs to A,
for any k£ > 0.

A set A is said to be denumerable (or countable) iff A has the cardinality of N or there
exists a natural number n such that A has the same cardinality of n. The cardinality of
a set A will be denoted by |A|.

We have that A is denumerable iff A* is denumerable. The proof is based on the
dove-tailing technique [32, Chapter 1].

Definition 1. [Irreflexive Total Order| Given a set A we say that a binary rela-
tion < C A x A is an irreflexive total order (or a total order, for short) on A iff (i) < is
a transitive relation, and (ii) for any two elements a,b € A we have that exactly one of
these three cases occurs: either a <b, or a=0, or b<a.

Let us consider a denumerable set A of symbols with a total order < among its
elements. Then the canonical order, on the set of all words in A* is a binary relation, also
denoted <, which is the subset of A*xA* defined as follows. Given any two words w; and
wy in A*, we say that w; canonically precedes wo, and we write wy < wo, iff (i) either |w;|
is smaller than |ws|, (ii) or |wq| = |wsy| and wy = px ¢ and wy = py gy for some strings p,
¢1, and ¢ in A* and z,y € A such that x < y (according to the order < on A). We have
that the order < on A* is transitive.
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For instance, if A = {a, b} and a < b then the canonical order on A* is the one which
is denoted by the sequence: ¢ < a < b < aa < ab < ba < bb < aaa < aab < aba < ... <
bbb < ... < aaaa < ...

According to the above definition, any total order is an irreflexive order. In the litera-
ture (see, for instance, [32, Chapter 1]) there is also a different notion of total order which
is based on a partial order, and thus, it is a reflexive order. This second notion is defined
as follows.

Definition 2. [Reflexive Total Order| Given a set A we say that <C A x A is a
reflexive total order (or a total order, for short) on A iff (i) < is reflexive, antisymmetric,
and transitive (and thus, < is a partial order), and (ii) for any two elements a,b € A we
have that ¢ < bor b < a.

One can show that for any given total order < on a set A according to Definition 1, there
exists a total order < according to Definition 2, such that for any two elements a,b € A,
we have that a < biff a < bor a =0b.

2 Turing Machines

In 1936 the English mathematician Alan Turing introduced an abstract model for com-
putation called Turing Machine [39]. There are various variants of this model, which can
be proved to be equivalent in the sense that they are all capable to compute the same set
of functions from N to N.

Informally, a Turing Machine M consists of:
(i) a finite automaton FA, also called the control,
(ii) a one-way infinite tape (also called working tape or storage tape), which is an infinite
sequence {c¢;|i € N, i>0} of cells ¢;’s, and
(iii) a tape head which at any given time is on a single cell. When the tape head is on
the cell ¢; we will also say that the tape head scans the cell ¢;.

The cell which the tape head scans, is called the scanned cell and it can be read
and written by the tape head. Each cell contains exactly one of the symbols of the tape
alphabet I'. The states of the automaton FA are also called internal states, or simply
states, of the Turing Machine M.

We say that the Turing Machine M is in state g, or q is the current state of M, if the
automaton FA is in state ¢, or ¢ is the current state of FA, respectively.

We assume a left-to-right orientation of the tape by stipulating that for any + > 0, the
cell ¢;y1 is immediately to the right of the cell ¢;.

A Turing Machine M behaves as follows. It starts with a tape containing in its leftmost
n(>0) cells ¢; ¢y ...c, a sequence of n input symbols from the input alphabet X while
all other cells contain the symbol B, called blank, belonging to I'. We assume that: 3 C
I'—{B}. If n = 0 then, initially, the blank symbol B is in every cell of the tape. The Turing
Machine M starts with its tape head on the leftmost cell, that is, ¢;, and its control, that
is, the automaton FA in its initial state qq.

An instruction (or a quintuple) of the Turing Machine is a structure of the form:

qi, Xh — {5, Xka m
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where: (i) ¢; € Q is the current state of the automaton FA,

(ii) X}, € I is the scanned symbol, that is, the symbol of the scanned cell that is read by
the tape head,

(iii) ¢; € Q is the new state of the automaton FA,

(iv) Xy € I' is the printed symbol, that is, the non-blank symbol of I" which replaces X,
on the scanned cell when the instruction is executed, and

(v) m € {L, R} is a value which denotes that, after the execution of the instruction, the
tape head moves either one cell to the left, if m = L, or one cell to the right, if m = R.
Initially and when the tape head of a Turing Machine scans the leftmost cell ¢; of the
tape, m must be R. (Alternatively, as we will see below, we may assume that if m is L
then the new state g; of the automaton FA is not a final state and there are no quintuples
in which ¢; occurs in the first position.)

Given a Turing Machine M, if no two instructions of that machine have the same cur-
rent state ¢; and scanned symbol X}, we say that the Turing Machine M is deterministic.

Since it is assumed that the printed symbol X} is not the blank symbol B, we have
that if the tape head scans a cell with a blank symbol then: (i) every symbol to the left of
that cell is not a blank symbol, and (ii) every symbol to the right of that cell is a blank
symbol.

Now we give the formal definition of a Turing Machine.

Definition 3. [Turing Machine| A Turing Machine is a septuple of the form (Q, X, I,
qo, B, F, ), where:

- @ is the set of states,

- X is the input alphabet,

- I' is the tape alphabet,

- qo is the initial state,

- B is the blank symbol,

- F' is the set of the final states, and

- § is a partial function from Q x I' to @ x (I"'—{B}) x {L, R}, called the transition
function, which defines the set of instructions or quintuples of the Turing Machine.

We assume that @) and I are disjoint sets, X C I'—{B}, qo € @, B € I', and F C Q.

Let us consider a Turing Machine whose leftmost part of the tape consists of the cells:
C1Co...Ch—1Ch...CL

where ¢, with 1<k, is the rightmost cell with a non-blank symbol, and ¢, with 1 < h <
k+1, is the cell scanned by the tape head.

We may extend the definition of a Turing Machine by allowing the transition function
to be a partial function from the set Q x I" to the set of the subsets of @ x (I'<{B})x{L, R}
(not to the set @ x (I'—{B}) x {L, R}). In that case it is possible that two quintuples
of § have the same first two components and if this is the case, we say that the Turing
Machine is nondeterministic.

Unless otherwise specified, the Turing Machines we consider are assumed to be deter-
ministic.
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finite automaton FA in state ¢
states: () Y =A{a,b,c,d}

initial state: g I'={a,b,c,d, B}
final states: F Y

(the tape head moves
to the left and to the right)

blblalalb|d|B|B|B| -

a 6%)

Fig. 1. A Turing Machine in the configuration a; g e, that is, bba gabd. The state g € Q
is the current state of the Turing Machine. The head scans the cell ¢, and reads the
symbol a.

Definition 4. [Configuration of a Turing Machine| A configuration of a Turing Ma-
chine M whose tape head scans the cell ¢;, for some h > 1, such that the cells containing
a non-blank symbol in I" are ¢y ...c, for some £ > 0, with 1 < h < k+1, is the triple
Q1 q g, Where:

- o is the (possibly empty) word in (I"—{B})"~! written in the cells ¢;cy...c,_1, one
symbol per cell from left to right,

- q is the current state of the Turing Machine M, and

- if the scanned cell ¢, contains a non-blank symbol, that is, 1 <h <k, for some k> 1,
then s is the non-empty word of I'*~"*+! written in the cells ¢y, .. .c;, one symbol per
cell from left to right, else if the scanned cell contains the blank symbol B, then ay is the
sequence of one B only, that is, h = k+1, for some k>0 (see also Figure 1).

For each configuration v = ay q ap, we assume that: (i) the tape head scans the leftmost
symbol of ay, and (ii) we say that ¢ is the state in the configuration ~.

If the word w = aqas . ..a,, for n > 0, is initially written, one symbol per cell, on the n
leftmost cells of the tape of a Turing Machine M and all other cells contain B, then the
initial configuration of M is qow, that is, the configuration where: (i) a; is the empty
sequence ¢, (ii) the state of M is the initial state qo, and (iii) @ = w. The word w of the
initial configuration is said to be the input word for the Turing Machine M.

Definition 5. [Tape Configuration of a Turing Machine| Given a Turing Machine
whose configuration is aq q oo, we say that its tape configuration is the string ay ap in ™.

Sometimes, by abuse of language, instead of saying ‘tape configuration’, we will simply
say ‘configuration’. The context will tell the reader whether the intended meaning of the
word ‘configuration’ is that of Definition 4 or that of Definition 5.

Now we give the definition of a move of a Turing Machine. By this notion we character-
ize the execution of an instruction as a pair of configurations, that is, (i) the configuration
‘before the execution’ of the instruction, and (ii) the configuration ‘after the execution’
of the instruction.
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Definition 6. [Move (or Transition) of a Turing Machine| Given a Turing Machine
M, its move relation (or transition relation), denoted — )y, is a subset of Cy; x Cyr, where
Cy is the set of configurations of M, such that for any state p, ¢ € ), for any tape symbol
Xl, ce >Xi—2a X’i—lyXia Xi+1> e ,Xn, Y € F, either:

1.if 6(q, X;) = (p,Y,L) and X;...X; 2X; 1 #¢ then

X1 XioXi1q XX ... X, =y Xio o X op XY X X,
or
2.if §(¢, X;) = (p,Y, R) then

X1 XooXo 1 g XiXiir - X —ar Xoo XioXi 1Y p X .. X0,

In Case (1) of this definition we have added the condition X ... X; X, 1 # € because
the tape head has to move to the left, and thus, ‘before the move’, it should not scan the
leftmost cell of the tape.

When the transition function ¢ of a Turing Machine M is applied to the current state
and the scanned symbol, we have that the current configuration ~; is changed into a new
configuration 7s. In this case we say that M makes the move (or the computation step, or
the step) from 71 to v, and we write v, — s Yo.

As usual, the reflexive and transitive closure of the relation —, is denoted by —7,.

The following definition introduces various concepts about the halting behaviour of a
Turing Machine. They will be useful in the sequel.

Definition 7. |[Final States and Halting Behaviour of a Turing Machine| (i) We
say that a Turing Machine M enters a final state when making the move ~v; —j; o iff
the state in the configuration -, is a final state.

(ii) We say that a Turing Machine M stops (or halts) in a configuration oy qay iff no
quintuple of M is of the form: ¢, X +—— ¢;, X, m, where X is the leftmost symbol of a,
for some state ¢; € @, symbol X € I', and value m € {L, R}. Thus, in this case no
configuration v exists such that a; qas —,; 7.

(iii) We say that a Turing Machine M stops (or halts) in a state g iff no quintuple of M is
of the form: ¢, X, —— ¢;, X, m for some state ¢; € @), symbols X}, X, € I', and value
m € {L, R}.

(iv) We say that a Turing Machine M stops (or halts) on the input w iff for the initial
configuration gow there exists a configuration « such that: (i) gow —3; 7, and (ii) M
stops in the configuration ~.

(v) We say that a Turing Machine M stops (or halts) iff for every initial configuration
gow there exists a configuration ~ such that: (i) gw —73; v, and (ii) M stops in the
configuration ~.

In Case (v), instead of saying: ‘the Turing Machine M stops’ (or halts), we also say: ‘the
Turing Machine M always stops’ (or always halts, respectively). Indeed, we will do so
when we want to stress the fact that M stops for all initial configurations of the form gyw,
where ¢ is the initial state and w is an a input word.
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Definition 8. [Language Accepted by a Turing Machine. Equivalence Between
Turing Machines| Let us consider a Turing Machine M with initial state g, and an
input word w € X* for M.

(i) We say that M answers ‘yes’ for w (or M accepts w) iff (1.1) qow —7%; a1 qas for
some q € F, a1 € I'*, and ap € I'", and (1.2) M stops in the configuration oy q as.

(ii) We say that M answers ‘no’ for w (or M rejects w) iff (2.1) for all configurations -y
such that gow —%, 7, the state in v is not a final state, and (2.2) there exists a configu-
ration vy such that gow —73, v and M stops in 7.

(iii) The set {w|w € X* and gw —%, a1 qay for some ¢ € F, oy € I'*, and ap € I}
which is a subset of X* is said to be the language accepted by M and it denoted by L(M).
Every word in L(M) is said to be a word accepted by M. A language accepted by a Turing
Machine is said to be Turing computable.

(iv) Two Turing Machines M; and M, are said to be equivalent iff L(M;) and L(M,).

When the input word w is understood from the context, we will simply say: M answers
‘ves” (or ‘no’), instead of saying: M answers ‘yes’ (or ‘no’) for the word w.

Note that in other textbooks, when introducing the concepts of Definition 8 above, the
authors use the expressions ‘recognizes’, ‘recognized’, and ‘does not recognize’, instead of
‘accepts’, ‘accepted’, and ‘rejects’, respectively.

Remark 1. |Halting Hypothesis| Unless otherwise specified, we will assume the follow-
ing hypothesis, called the Halting Hypothesis:

for all Turing Machines M, for all initial configuration gyw, and for all configurations ~,
if gqow —7%,; 7 and the state in 7 is final then no configuration 7 exists such that v —; 7.

Thus, by assuming the Halting Hypothesis, we will consider only Turing Machines
which stop whenever they are in a final state. U

It is easy to see that this Halting Hypothesis can always be assumed without changing
the notions introduced in the above Definition 8.

This means, in particular, that for every language L, we have that L is accepted by
some Turing Machine M iff there exists a Turing Machine My such that for all words
w € L, (i) starting from the initial configuration gow, either the state qo is a final state,
or the state of the Turing Machine My will eventually be a final state, and (ii) whenever
My is in a final state then My stops in that state.

For words which are not in L, the Turing Machine My may either (i) halt without ever
being in a final state, or (ii) it may ‘run forever’, that is, may make an infinite number of
moves without ever being in a final state.

As in the case of finite automata, we say that the notion of acceptance of a word w
(or a language L) by a Turing Machine is by final state, because the word w (or every
word of the language L, respectively) is accepted if the Turing Machine is in a final state
or ever enters a final state.

The notion of acceptance of a word, or a language, by a nondeterministic Turing
Machine is identical to that of a deterministic Turing Machine. Thus, in particular, a
word w is accepted by a nondeterministic Turing Machine M with initial state g, iff
there exists a configuration v such that gow —7}, < and the state of v is a final state.
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Sometimes in the literature, one refers to this notion of acceptance by saying that every
nondeterministic Turing Machine has angelic nondeterminism. The qualification ‘angelic’
is due to the fact that a word w is accepted by a nondeterministic Turing Machine M if
there exists a sequence of moves (and not ‘for all sequences of moves’) such that M goes
from the initial configuration gy w to a configuration with a final state.

Analogously to what happens for finite automata, Turing Machines can be presented
by giving their transition functions. Indeed, from the transition function of a Turing
Machine M one can derive also its set of states, its input alphabet, and its tape alphabet.
Moreover, the transition function 6 of a Turing Machine can be represented as a graph,
by representing each quintuple of § of the form:

¢, Xp — qj, Xg, m

as an arc from node ¢; to a node g; labelled by ‘X, (X, m) as follows:

@Xh (Xg, m) =@

Remark 2. Without loss of generality, we may assume that the transition function ¢ of
any given Turing Machine is a total function by adding a sink state to the set () of states.
We stipulate that: (i) the sink state is not final, and (ii) for every tape symbol which is
in the scanned cell, the transition from the sink state takes the Turing Machine back to
the sink state. U

Remark 3. We could allow the possibility of printing the blank symbol B. This possibility
does not increase the power of a Turing Machine because the action of printing B, can
be simulated by printing, instead, an extra symbol, say A, and then dealing with A as a
given Turing Machine which can print B, deals with B. O

A Turing Machine M can be viewed as a device for computing a partial function from N*
to IV in the sense of the following definition.

Definition 9. |Partial Functions from N* to N Computed by Turing Machines|
We say that a Turing Machine M with ¥ = {0,1} computes a partial function f from
N¥ to N iff for every ny,...,n; € N we have that:

(i) 01™0...01™ 0 —%, a;q01/m) 0t for some ¢ € F, ay € I'*, t>1, and
(ii) starting from the initial configuration ¢o01™ 0...0 1™ 0, the Turing Machine M goes

through a sequence of configurations in which oy ¢ 0 1/(m%) 0 is the only configuration
which includes a final state.

In this case we say that: (i) from the input sequence 01" 0...01" 0 the Turing Ma-
chine M computes the output sequence 01/ (0 and (ii) the function f is Turing
computable.

Remark 4. In the above Definition 9 we may also stipulate that if the Turing Machine M
can print blanks, then ¢ should be 1. Obviously, this extra condition does not modify the
notion of a Turing computable function.
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FExample 1. The successor function An.n+1 is a Turing computable function. Indeed, the
Turing Machine with the following transition function ¢ from the input sequence 01™0
computes the output sequence 01"+10:

(90, 0) = (1,0, R);
6(q, 1) = (@1, 1, R);  0(q1,0) = (¢1, 1, R);  6(q1, B) = (g2,0, L);
0(q2:1) = (g2, 1, L);  6(g2,0) = (g3,0, R);
d(qs,1) = (g, 1, L)
where qp is the only final state. This transition function ¢ is depicted in Figure 2. O

Fig. 2. A Turing Machine for computing the function An.n+1.

A Turing Machine M can also be viewed as a device for computing a partial function on
strings in the sense indicated by the following definition.

Definition 10. [Partial Functions from Y} to X; Computed by Turing Ma-
chines| Given the two alphabets X, and Xy both subsets of I" — {B}, we say that a
Turing Machine M computes a partial function f from X7 to X3 iff for every w € X} we
have that:

(i) gow —3; a1qbs forsome g€ F,oq € I, b€ I'; and s in X5 with s = f(w), and
(ii) for all v if gow —3, v and v # «a; ¢bs, then the state in 7 is not final (that is, starting
from the initial configuration gyw, the Turing Machine M goes through a sequence of

configurations in which «; b s is the only configuration with a final state).
The function f is said to be Turing computable.

If in this definition we stipulate that gow —73, a1 ¢s, instead of ggw —73,; a1 ¢bs, we get
an equivalent definition. Definition 10 has the technical advantage of making some Turing
Machine constructions a bit simpler (see the following Example 2).

In what follows, we will feel free to adopt different conventions for the encoding of the
input and output strings.

We leave it to the reader to generalize Definition 10 so that a Turing Machine can
be viewed as a devise for computing partial functions from (X7)* to X3 for any k > 0.
In particular, the k£ input strings can be written on the tape by using a separating,
distinguished character not in X U Xj.

Ezxample 2. Let us consider the function f from {a}* to {0,1} such that f(w) = 0 if the
number of a’s in w is even (that is, 0 or 2 or 4 or ...) and f(w) = 1 if the number of
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a’s in w is odd (that is, 1 or 3 or ...). This function is Turing computable by a Turing
Machine M such that: ¥ = {a}, I' = {a,0,1, B}, and the transition function ¢ is given
by the graph of Figure 3.

Fig. 3. A Turing Machine M for checking the length [ of a string of a’s. If [ is even, M
will eventually write 0, move left, and stop. If [ is odd, M will eventually write 1, move
left, and stop.

Let us see how the Turing Machine M of Example 2 works if its input w is the empty
string €. Here is the corresponding sequence of tape configurations where A denotes the
position of the tape head:

1. |B|B|B|B|... 22|10 |B|B|Bj... 3: 1010 |B|B]...
A A A

In configuration 3 the 0 in the cell to the right of the scanned cell shows that the number
of a’s in w is even. Here is the sequence of tape configurations if the input w of the Turing
Machine M of Example 2 is aaa:

1: lala|la |B|B|... 2:lalal|la|B|B|... 3:|lalala|B|B]...
A A A
4: la la la |B|B|... 5 |alala|l1|B]|... 6:laflalal|l]ll
A A A

In configuration 6 the 1 in the cell to the right of the scanned cell shows that the number
of a’s in w is odd.

We leave it as an exercise to the reader to show that in the Turing Machine of Figure 3,
instead of ‘B (0, R)’, the label of the transition from state g to state geen, can be any
one of the form ‘B (x, R) for any z € I'. O

In what follows we will introduce the set of the partial recursive functions and in Section 17
we will state two theorems which identify the set of the partial recursive functions with
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the set of the Turing computable functions, both in the case of functions from N* to N
and in the case of functions from (X7)* to X3, for any k > 0.

Remark 5. We could have allowed three moves of the tape head: (i) L (left), (ii) R (right),
and (iii) S (stationary), instead of the moves L and R only. This does not determines an
increase of the power of the Turing Machine because the concatenation of some consecutive
stationary moves followed by a non-stationary move, is equivalent to a left or a right move.
Indeed, in a stationary move, after printing the new symbol on the tape, we know the
new state of the Turing Machine and the new symbol which is read (which is the one that
the Turing Machine has just printed) and, thus, we also know the configuration of the
Turing Machine after its next move. O

Remark 6. In the literature [8] there is also a formalization of the Turing Machine via 4-
tuples, instead of 5-tuples, in the sense that at each move of the Turing Machine: (i) either
it writes of a symbol, (ii) or it moves one square to the left, (iii) or it moves one square
to the right. In this formalization the Turing Machine can print the blank symbol. Any
4-tuple consists of: (i) the old state, (ii) the read symbol, (iii) the printed symbol or the
move (to the left or to the right), and (iv) the new state. O

3 Techniques for Constructing Turing Machines

In this section we will present some techniques for constructing Turing Machines. The
basic ideas will be presented through various examples.

3.1 Use of States to Store Information

The states of a Turing Machine can be used for storing information. We will illustrate
this technique by looking at the following example. Let us assume that we want to con-
struct a Turing Machine to check whether or not an input string belongs to the language
{01™|n > 0} U {10™ |n > 0}. If this is the case then the Turing Machine should enter a
final state and an 1 should be in the cell to the right of the scanned cell.

Initially, in the tape we have the given string in {0, 1}*, and the cells ¢ ¢y ... chuq
hold a string of length n+1 for some n > 0. If that string is of the form 01" or 10™ for
some n > 0 then and only then the check is positive.

Here are the sets defining the desired Turing Machine.

Q = {(po, a), (p1,0), {p1, 1), (p1, @)} € {po,p1} x {0,1,a},
X =40,1},
r={0,1, B},
qo = (po, a), and
F={({pa)}.
The transition function ¢ is defined as depicted in Figure 4. The second component of

the state is for storing the information about the first symbol of the input string which is
either 0 or 1.
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Fig.4. A Turing Machine for testing whether or not a given string is an element of
{01" | n >0} U{10™ | n > 0}.

3.2 Use of Multiple Tracks

If we have more than one track on the tape of a Turing Machine, it is sometimes easier to
construct a Turing Machine which solves a given problem. Thus, it is useful in practice to
consider Turing Machines with tapes which have multiple tracks. Note, however, that the
assumption that the tape has k tracks, for £ > 1, is equivalent to the assumption that we
have new symbols which are k-tuples of old symbols. The tape head looks at a k-tuple at
a time. The new blank symbol is the tuple of k£ old blank symbols.

To have multiple tracks is useful when one has to perform various destructive opera-
tions on the same input string as shown by the following example.

Let us assume that we want to construct a Turing Machine for testing whether or not
a given number is divisible by 3 and 5 (that is, by 15). We may consider three tracks, like,
for instance, the following ones:

track1: $10101110$BB...
track2: B10101011BBB...
track 3: BBBBBBB11BBB...

The given number is written in binary on the first track between $ symbols. The input

${0 1
symbols are: | B|,| B|, and | B| (in the three-track tape above, each symbol is represented
B||B B

in a vertical way by its three components).

The tape symbols are like the input symbols, but they may have either 0 or 1 or B in
the second and in the third track.

One can test the divisibility by 3 and 5 of the given number: (i) by writing 3 in
binary on the third track, (ii) by copying the input number on the second track, and
(iii) repeatedly subtract 3 from the second track until 0 is found. Then, one should repeat
this process by writing 5 in binary on the third track and copying the input number (which
is kept unchanged on the first track) on the second track, and repeatedly subtract 5 from
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the second track until 0 is found. In this case and only in this case, the given number is
divisible by 3 and 5.

For instance, copying the input on the second track is performed by quintuples of the
form:

1 1

4, |y| — ¢ [1|, R foranyy,ze{B,0,1}
z z
0 0

q, ly| — q, |0|, R foranyy,z¢€{B,0,1}
z z

We leave it to the reader as an exercise to complete the description of the desired Turing
Machine.

3.3 Test of String Equality

In this section we present an example where we construct a Turing Machine which com-
putes the function f from {0,1}* x {0,1}* to {0,1} such that
f(z,y) = if z=y then 1 else 0. (1)

This Turing Machine has a tape with two tracks and thus, we assume that the symbols of
the input alphabet and the tape alphabet are pairs. Here is the definition of the desired
Turing Machine M.

Q = {p1, P10, P11, P20, P21, D3> Pas D55 D6 }

_J|0 i
=={[3} sl [ 3]}

Y

1
"B

r— 0 0 1 1| |#]| |B

BV I||B|\V||B|"|B||’
the initial state is pq,
the blank symbol is g , and

F = {ps}.
The symbols 0 and 1 of the specification () are represented within the Turing Machine

1 . . . .

M by ' g ‘ and B ‘, respectively. As usual, the output symbol will be written to the right
of the cell scanned by the tape head when the final state is entered. The input strings
xr = T1%y...2, and Yy = Y1Ys . . .Y, are represented on the leftmost position of the tape

as follows:

track 1:  xy 2o ... 2, F#F 1 y2...yn BB ...
track 22 BB B BBBBB BBB...

and initially, the tape head looks at the leftmost cell where o ' is placed.

B
The transition function ¢ is defined as follows. First of all, the Turing Machine M
checks whether or not n=0. If n =0 then M checks that also m =0 and, if this is the
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case, it returns to the right of the cell scanned by the head when the final state is

1
b
entered (see quintuples 1 and 2 below).

If n>0 and 27 =0 (the case when x; =1 is analogous) then M checks it off by writing
#
B

moves to the right, passes

‘3), , and looks for the leftmost unchecked symbol of y
which should be 0. If M finds it, M checks it off by writing “9
#

B
Then the Turing Machine M starts the process again until the leftmost unchecked

#* 7t
B B

checked (that is, they have on the lower track v') and it terminates successfully (that

and moves to the left,

passing over and looks for the leftmost unchecked symbol of x.

symbol is ‘ At that point it makes sure that all symbols to the right of are

L . 1 .
is, it writes p |, moves to the left, and stops). In all other cases the termination of the

Turing Machine is unsuccessful (that is, it writes , moves to the left, and stop).

0
B
We have the following quintuples:

7
B

1

B L

1. P1, — Ds, >R 2. Ds, )

B
ﬁ B‘_)pfia

The following two quintuples look for g immediately to the right of the checked symbols:

0 0 1 1
v v v v
Note that in state ps if some symbols of y are not checked then z # y because, if this the
case, the strings x and y have different length.

The following quintuples are needed for checking off symbols on the strings x and y.
If the symbol of = to be checked is 0 we use the quintuples 0.1-0.5, if it is 1 we use the
quintuples 1.1-1.5.

3. Ds,

) R 4. Ds,

— Ds, - Ds, ) R

0.1 pq, g — P1o, 3 , R Checking off the leftmost unchecked symbol of x.
Let it be 0.

0.2  pio, ; — P10, ; , R Moving over to y. (2 quintuples: for s =0, 1)

0.3  pio, 75% — Do, g , R Passing # and going over to y.

0.4 po, j — Do, j , R Looking for the leftmost unchecked symbol of y.
(2 quintuples: for s = 0,1)

0.5 po, g — ps, 3 , L Now we go back to string x.
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1.1 py, é — P11, i , R Checking off the leftmost unchecked symbol of x.
Let it be 1.

1.2 piy, ; — P11, ; , R Moving over to y. (2 quintuples: for s =0, 1)

1.3 p11, 75% — Doy, 75% , R Passing # and going over to y.

1.4 po, j — Doy, j , R Looking for the leftmost unchecked symbol of y.
(2 quintuples: for s =0, 1)

1.5 po1, g — 3, } , L Now we go back to string z.

The following quintuples allow us to go back to the string z and to reach the leftmost
unchecked symbol of x, if any. Then we check off that symbol of x.

5. ps, j — 3, j , L Moving over to x. (2 quintuples: for s =0, 1)
6. ps, 75% — Py, ﬁ , L Passing # and going over to x.
7. Da, ; — Py, ; , L Looking for the leftmost unchecked symbol of x.

(2 quintuples: for s =0, 1)

8. Ppa, j — P, j , R Ready to check off one more symbol of z.
(2 quintuples: for s =0, 1)
All undefined transitions should be made to go to the final state pg and the symbol to the

right of the scanned cell should be denoting that x#y.

5
B Y
For instance, for x = y = 0010, we have the following sequence of tape configurations
with two tracks. The initial configuration is:
0010#0010BB...
BBBBBBBBBBB...

then we get:
0010#0010BB...
vBBBBBBBBBB...
After some moves to the right, having checked the equality of the first symbols of the two
sequences, we have:
0010#0010BB...
vBBBBY BBBBB...
and after some moves to the left, looking for the second symbols to check, we have:
0010#0010BB...
vv BBBY BBBBB...

and so on, until at the end, we have:
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0010#00101B...

VY VvV BYvvVvVBbB...
A

and the tape head is at the cell marked with A.

3.4 Shift of Strings

A Turing Machine may shift the content of its tape of k (>0) cells to the right (or to the
left, if there are cells available). Let us consider the case of a right shift of 1 cell. This shift
can be obtained by: (i) going to the leftmost cell ¢4, (ii) storing in a state of the control
the symbol in ¢y, (iii) printing in ¢; a symbol to denote that the cell is empty, and while
moving to the right, (iv) storing in a state of the control the symbol read in the scanned
cell, and (v) printing in the scanned cell the symbol which was to the left of it and was
stored in a state of the control during the previous move.

When a Turing Machine shifts the content of its tape, we say that it has applied the
shifting-over technique.

3.5 Use of Subroutines

We restrict our attention to subroutines without recursion and without parameters. Later
on in Section 8 we shall see how to overcome this limitation by explaining in an informal
way how a Turing Machine can simulate a Random Access Machine. If a Turing Machine,
say S, is a subroutine for another Turing Machine, say M, we first require that the set
of states of S is disjoint from the set of states of M. When a call to the subroutine S is
made, the initial state of S is entered and when the subroutine S has finished, M enters
one of its states and proceeds.

We present the idea of using Turing Machines as subroutines through the following
example. Let X be {0, 1}. Let us consider the Turing Machine Sum which takes the initial
tape configuration:

S n] #[m]$...
A

where [n] and [m] are strings of bits (each bit in a separate cell) denoting the two non-
negative numbers n and m written in binary (using enough bits to allow the process to
continue as specified below). The machine Sum derives the final tape configuration:

L SAAL L An+m] S ...
A

where A’s are printable blanks. We also assume that Sum never goes outside the tape
section between $’s. The Turing Machine Mult for multiplying two natural numbers can
be constructed by making use of the subroutine Sum as follows.

(1) Mult starts from the tape configuration:
[l # [mwfﬂﬂ #[018...

(2) Mult gives control to Sum and eventually we get:

] # [ SAALATSTS

where s is the sum of the numbers between $’s. Initially, we have that s is equal to 0.
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(3) Sum returns the control to Mult, and
if n=0 then Mult produces the result s
else begin Mult derives [n—1] from [n] and copies [m]
so that eventually we get the tape configuration:

o n=1] # [m}f[m} #[s]%...
and then Mult goes back to (2)
end

We leave it as an exercise to the reader to complete the details of the construction of the
Turing Machine Mult.

4 Extensions of Turing Machines Which Do Not Increase Their
Power

4.1 Two-way Infinite Tape

We may assume a different definition of Turing Machine where the tape is infinite in both
directions. We have that a Turing Machine M, whose tape is infinite in both directions,
can be simulated by a Turing Machine M; whose tape is one-way infinite as implicitly
specified by Definition 3 on page 11 and Definition 8 on page 14.

Let My = (Qo, X9, I, 09,2, B, F5) be the given Turing Machine with the two-way
infinite tape. The following Turing Machine M; = (@1, X1, [1, 61, q1, B, F1) with the one-
way infinite tape with two tracks simulates M, as we now indicate (see also Figure 5).

M2 . e a_3 | gl G| QGg| A1 | Az| as
Ml : )
$| aqlaslasg| ... D: down

Fig. 5. Simulating a two-way infinite tape with two tracks by a one-way infinite tape.

For the Turing Machine M; we stipulate that:
Q1 ={(a,U),{¢; D) q € @2} U {m},

21:{‘2‘ |CL€22},

FlZ{)Z‘ la,be I} U {)g‘ |a € I} where $ is not in I,

the initial state is ¢;, and

P ={{q,U), (g, D) | q € >}

U stands for ‘up’ and D for ‘down’, corresponding to the upper and lower track, respec-
tively.
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Now, we assume that if the input string of the machine M, is placed on the cells, say
0,1,...,n with symbols ag, ay, ..., a,, respectively (see Figure 5) and all remaining cells
have blanks, then in the machine My the input string is placed in leftmost cells with

content | 2|, | ‘ respectively. We also assume that the tape head of M, is at

G,
B ) B VAR B )
the cell 0 and that of M is at its leftmost cell, as usual. The moves of the machine M;
are defined in terms of the moves of M, according to the following rules.

1. Initial moves of Mj:
for each a € Xy U{B}, X € IL—{B}, q € Qo,

q. g — (q,U), ‘;f',R if in My we have: ¢o,a — ¢, X, R
a X o
a | 5| — {q, D), g , R if in M, we have: ¢3,a — ¢, X, L

M; prints $ on the leftmost cell of the lower track and continues working as M.

2.1 M, simulates the moves of M, on the upper track:

a
for each ‘

Y

ell withY #8%, bely—{B}, me{L R}, q,p€ Qo

— (p,U), ,m if in My we have: ¢,a — p,b,m

a b
<q7 U>7 ' Y Y
2.2 M, simulates the moves of M, on the lower track:

S Flu be F2_{B}7 q,p c Q27

for each ‘ Y
a

<q,D),'};‘ — (p, D), }; ,R if in My we have: g,a — p,b, L
Y Y e
<q,D),'a — (p, D), b , L if in M, we have: g,a — p,b, R

3. Possible change of track:
for each a,b € I —{B}, q,p € Qo,

(q,U), g — (p, D), g R ifin My we have: ¢,a — p,b, L
(from the upper track to the lower track)

(q,U), g — (p,U), g',R if in M, we have: ¢,a — p,b, R
(remaining in the upper track)

{(q, D), ; — <p,D),'g ,R if in My we have: ¢,a — p,b, L
(remaining in the lower track)

(q, D), g — <p,U),'g ,R if in My we have: ¢,a — p,b, R

(from the lower track to the upper track)

We leave it to the reader to convince himself that M; is equivalent to M, (see Definition 8
on page 14).
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4.2 Multitape Turing Machines

A multitape Turing Machine has k& tapes with & > 1, and each tape has its own head.
A move depends on the k-tuple of symbols read by the heads. In a single move k& new
symbols are printed (they may be all different), one on each tape, and the heads are
moved, left or right, independently. We assume that the input is written on a given tape,
say tape 1, and the tapes 2, 3, ..., and k are all filled with blanks.

Let us informally explain how a multitape Turing Machine can be simulated by a
single tape Turing Machine.

A k-tape Turing Machine M, is simulated by a 2k-track Turing Machine M, each tape
being represented by two tracks: on the upper track there is a copy of the corresponding
tape and on the lower track there is either a blank symbol or the ‘head marker’ A to denote
the position of the tape head (see Figure 6 where we did not show the blank symbols).
Initially the tape head of M is on the position corresponding to the leftmost marker A.
The internal states of M hold the information of both (i) the internal states of Mj and
(ii) the count of the head markers to the left of the head of M itself.

FA FA’
tape / \ track Y
| a1 |as | a3/| a4 |as ag| ... 11:| ar|az | as | as| as| as

/ I A

2| by | bo /] by | by | bs | bg 21:| by | by | b3 | by | b5 | bg

2221 | ] A
/ 3.1 Ci|C2 | C3 | C4| C5| Cs
3 C1 ] C2 C3 Cy Cs Co 32: 1Al T

Fig. 6. Simulating a 3-tape Turing Machine by a 6-track Turing Machine.

A move m of My, is simulated by the Turing Machine M as follows. M moves its head from
the leftmost to the rightmost head marker and then back to the leftmost head marker.
While the move to the right proceeds, M recalls in its internal states the number of head
markers passed, the symbols scanned by each head marker. When all head markers have
been passed, M has the necessary information for simulating the move m of M. Thus, M
changes its internal state according to the move m to be simulated, and makes a leftwards
movement until the leftmost head marker is reached. During that movement M updates
its tape configuration (that is, updating both the symbols scanned by the head markers
and the positions of the head markers) according to the move m. As done in the movement
to the right, in its movement to the left M counts in its internal states the number of the
head markers visited and then M will know when to stop its movement to the left. Having
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simulated the printing and the head movements, at the end M changes its internal state
to simulate the change of the internal state of M;.

It should be noticed that when moving back to the left, M may be forced to make
some one-cell movements to the right for simulating one-cell movements to the right of
some of the heads of M.

In the simulation we have described, M requires many moves for simulating a single
move of Mj. Indeed, in this simulation (unlike the simulation of the two-way infinite tape
Turing Machine by the one-way infinite tape Turing Machine) there is a slowdown, because
at each move which is simulated the distance of the leftmost head from the rightmost head
may increase by 2 cells. Thus, the head of the simulating machine M may have to travel
2r cells when simulating the r-th move of M.

The slowdown is quadratic because: (i) if we disregard the distance to travel, the
number of transitions to be made by M for simulating the moves of M, is constant, being
k fixed, and (ii) the sum of the distances after r moves, apart from some constants which
we do not take into consideration, is 2+4+6 +...+2r, that is, O(r?).

4.3 Multihead Turing Machines

Multihead Turing Machines have many heads which move independently of each other,
and the transition of the machine depends on the internal state and on the symbols which
are scanned. A quintuple of a Turing Machine with r heads looks as follows:

q,{(x1, ... xr) — p, (Y1, .. Yr), (M1, ... Mm;)
where for i = 1,...,7, x; and y; are tape symbols, and m; is an element of {L, R}.

The simulation of this kind of Turing Machines by a Turing Machine with one head
only is similar to the one of the multitape Turing Machine. The only difference is that
now the simulating one-head Turing Machine need k41 tracks, k tracks for the k£ heads
and one track for the tape.

4.4 Off-line and On-line Turing Machines

In this section we introduce two more kinds of Turing Machines which are considered in
the literature.

The first one, called the off-line Turing Machine, is considered when studying Com-
plexity Theory and, in particular, when analyzing the amount of space required by Turing
Machine computations.

An off-line Turing Machine is a two-tape Turing Machine with the limitation that one
of the two tapes, called the input tape, is a tape which contains the input word between
two special symbols, say ¢ and $. The input tape can be read, but not modified. Moreover,
it is not allowed to use the input tape outside the cells where the input is written (see
Figure 7). The other tape of an off-line Turing Machine will be referred to as the standard
tape (or the working tape).

An off-line Turing Machine is equivalent to a standard Turing Machine (that is, the
one of Definition 3) because: (i) an off-line Turing Machine is a special case of a two-tape
Turing Machine, which is equivalent to a standard Turing Machine, and (ii) for any given
Turing Machine M and input w there exists an off-line Turing Machine M,z with input
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Read-Only Input Tape: ¢ igial. . lin] $

(the head moves left or right) =-----eeeeefeeeeeiionaee -

Tape: |[ag| ai| axl as|aq| as|ag| ...

Fig. 7. An off-line Turing (the lower tape may equivalently be two-way infinite or one-way
infinite).

w which can simulate M on the input w. Indeed, Mg first copies its input which is on
its input tape, onto the other tape, and then M,g behaves as M does.

The second kind of Turing Machine we consider in this section is the on-line Turing
Machine. This kind of Turing Machine is used for studying the so called on-line algo-
rithms [14] and their complexity.

The on-line Turing Machine is like the off-line Turing Machine with the assumption
that the head on the input tape initially scans the symbol ¢ and then it can remain
stationary or move to the right. It cannot move to the left. When the head on the input
tape moves to the right and by that move it scans $, then the finite control of the Turing
Machine enters a state which is either a final state (and this is the case when the on-line
Turing Machine accepts its input) or a non-final state (and this is the case when the
on-line Turing Machine does not accept its input). Other equivalent conventions on the
final reading move are described in the literature.

4.5 Bidimensional and Multidimensional Turing Machines

In this section we look at a Turing Machine with a bidimensional tape. The cases with
multidimensional tapes are similar. The head of the machine may move left, right, up,
and down, and before moving it prints a symbol on the scanned cell. At each moment
there exists a rectangle outside which all cells are filled with blanks. (see Figure 8)

T+ |
3|2 |»
W W | W
Wi =W
suiiiovl iveRfiey

r
s
B
B

Wi

Fig. 8. The non-blank portion of the tape of a two-dimensional Turing Machine.

A bidimensional Turing Machine M, can be simulated by a standard Turing Machine M,
with two tapes as follows. The need for the second tape is simply for explanatory reasons,
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and it related to the fact that for the simulation we need to count the number of the
special symbols * and $ (see below). The basic idea is to simulate line-by-line, top-down a
bidimensional configuration by a linear configuration. For instance, a possible line-by-line,
top-down encoding of the tape configuration of Figure 8 is:

$BresBBBxdsauBkBxBBtnBBB+«BBBhBBBS

where the symbol * is a new symbol, not in the tape alphabet of M,. This line-by-line
representation is the usual one for television images. * denotes the end of a line. $ denotes,
so to speak, the upper left corner and the lower right corner of the rectangle. We may
assume that the input to the machine M, is given a sequence of symbols in one dimension
only, say the horizontal dimension. Horizontal moves of M, inside the current rectangle
are simulated in the obvious way by the Turing Machine M;. Vertical moves inside the
current rectangle can be simulated by counting the distance from the nearest left * so
that it is possible to place the head on the proper position in the upper or lower line.

If a move goes outside the current rectangle and it is vertical and upwards then M,
replaces $ to the left of the current configuration by $ B B ... B, where the number of
B’s are counted in the second tape by finding first the length of a line. This operation
corresponds to the insertion of a new line.

The case in which the move is downwards is similar, but the machine M; should
operate at the right end of the configuration.

If the move of M, which goes outside the rectangle is to the right then M; should first
add an extra blank at the end of each line (and this can be done by shifting) and then it
simulates the move of M,. Analogously for the case when the move is to the left.

This simulation of the bidimensional Turing Machine can be extended to the case
when there are many heads or many multidimensional tapes by combining together the
various techniques presented in the previous sections.

4.6 Nondeterministic versus Deterministic Turing Machines

Now we show that nondeterministic Turing Machines are equivalent to deterministic Tur-
ing Machines (that is, the ones of Definition 3).

A nondeterministic Turing Machine M is like a standard Turing Machine (that is the
one of Definition 3), but the condition that the transition function ¢ be a partial function
is released in the sense that there can be more that one quintuple with the same first two
components. Thus, — ), is a binary relation, not a function. The notion of the language
accepted by a nondeterministic Turing Machine M, denoted by L(M), is like the one for
a deterministic Turing Machine. Thus, we have:

L(M) ={w|w e X* and gow —?%; a3 qay for some g€ F, ay €I, and ap e 't}
Often one refers to the nondeterminism of a Turing Machine as being angelic, in the sense

that w € L(M) iff there exists a sequence of quintuples in the transition relation § such
that gow —%,; a1 qas for some ¢ € F, oy € I'*, and ap € I'".

The deterministic Turing Machine M which simulates a given nondeterministic Turing
Machine N, uses three tapes and it works as follows. (The inverse simulation is obvious
because the deterministic Turing Machine is a particular case of the nondeterministic
Turing Machine.)
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Let us assume that the transition relation of the nondeterministic Turing Machine N
has at most b (>2) quintuples with the same first two components. We also assume that
the quintuples of the transition relation of N are ordered, so that it makes sense to choose
the n-th quintuple, for n = 1,...,b, among all those with the same first two components.
If n is larger than the number of quintuples with the given first two components, then
we say that we made an improper choice of the quintuple. On the first tape M keeps
a copy of the input of N. On the second tape M generates in the canonical order (see
Section 1 on page 9) the strings in {1,...,b}*, where 1 < ... < b, that is, it generates
the strings ,1,...,b,11,...,1b,21,...,2b,...,01,...,bb,111,...,11D,..., one at a time
(¢ is the empty sequence). After every move only one string appears on the second tape.
It is clear that after a finite number of moves, any given string s of k numbers, each in
{1,...,b}, will appear on the second tape. It is also clear that M can compute any next
string of the canonical order from the previous one it finds written on the tape.

The Turing Machine M simulates the Turing Machine N by first copying on the third
tape the input (which is on its first tape) and then reading from-left-to-right the sequence
of numbers, each one in {1, ..., b}, written on the second tape as a sequence of instructions
for choosing the quintuple among those available at each move. The empty sequence means
that no move should be made. Suppose that the sequence is: 231 3 4. It means that on the
first move, for the given scanned symbol and the given state, M should choose the 2nd
quintuple among the quintuples which apply for the first move, then for the 2nd move M
should choose the 3rd quintuple among the quintuples which apply for the second move,
for the 3rd move M should choose the 1st quintuple among the quintuples which apply
for the third move, and so on.

If the sequence on the second tape forces an improper choice then M proceeds as
follows.

(1) M generates on the second tape the sequence which in the canonical order follows the
sequence which is currently written on the tape.

(2) Then M copies again the input from the first tape onto the third tape and makes its
moves as specified by the sequence, by reading the numbers of the sequence from-left-to-
right. If the sequence has been completely exhausted and M did not enter a final state
then M proceeds by first generating the next sequence on the second tape and proceeding
as indicated in this Point (2).

If after any move the machine M ever enters a final state then M stops and accepts
the input word.

Now, it is obvious that for any input word w, if M accepts w then there exists a
sequence of choices among the various alternative for the application of the transition
relation ¢ such that N accepts w. Since by the canonical generation, M generates in a
finite number of moves any given sequence of numbers, M accepts w iff N accepts w.

In order for M to simulate N (in the sense that L(N) = L(M)) it is not necessary
that M generates the sequences of numbers precisely in the canonical order. Other orders
are possible as we now indicate.

Let us first note that a set of strings which is closed under the prefix operation,
naturally defines a tree. Thus, the set of strings in {1,...,b}* which are closed under
the prefix operation, defines a tree. Let us call it 7. A finite sequence of numbers in
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{1,...,b}* can be identified with a node in T. For instance, in Figure 9, the sequence
22443 corresponds to the node n. Now, in order for M to simulate N it is enough that
M generates the various sequences of numbers, each sequence being in {1,...,b}*, so that

the generation of the corresponding nodes of the tree T satisfies the following property:

Property (A): for any already generated node r of the tree 7', we have that within a finite
number of moves after the generation of r, the Turing Machine M generates all nodes
which are the leaves of a finite subtree 7, of T" such that: (i) r is the root of 7T}, (ii) T,
includes other nodes besides r, and (iii) if a node ¢ in 7, is a son of a node p in 7, then
all sons of p belong to 7.

In order to start the process of node generation, we assume that the root node of the
tree T' (that is, the empty sequence ¢) has already been generated by M before it starts
its simulation of the nondeterministic Turing Machine N.

We leave it to the reader to prove that indeed M simulates N iff it generates the
sequence of numbers in any order whose corresponding node generation complies with
Property (A) above.

Fig. 9. The tree of choice-sequences. The node n corresponds to the sequence: 2 2 4 4 3.

Remark 7. The property that nondeterministic Turing Machines are equivalent to deter-
ministic Turing Machines should be compared with the analogous property holding for
Finite Automata. The expert reader may also recall that this is not the case for Pushdown
Automata, that is, nondeterministic Pushdown Automata [16] accept a class of languages
which is strictly larger than the class accepted by deterministic Pushdown Automata.
For Linear Bounded Automata [16] (which are nondeterministic automata) it is an open
problem whether or not they accept a class of languages which is strictly larger than the
class accepted by deterministic Linear Bounded Automata.

5 Restrictions to Turing Machines Which Do Not Diminish

Their Power

In this section we study some restrictions to the Turing Machines which do not diminish
their computational power. We study these restrictions because they will help us to relate
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the Turing computable functions and the functions which are computable according to
other models of computation, which we will introduce in Section 9.

5.1 One Tape = One Tape + Read-Only Input Tape = Two Stacks

Definition 11. |[Deterministic Two-Stack Machine| A deterministic two-stack ma-
chine (or two-stack machine, for short) is an off-line deterministic Turing Machine with
its read-only input tape and, instead of the working tape, it has two tapes which are used
with the following restrictions (which make the tapes to behave like stacks):

(i) they are one-way infinite to the right, and

(ii) when the head moves to the left a printable blank is printed.

A deterministic two-stack machine is depicted in Figure 10.

Read-Only Input Tape : ¢ || dal...| in| $
(the head moves left or right) .t g
FA
Stack 1 : |agl| a1| as| a3\ as| as| ag| . ..

Stack 2 : b(] bl b2 bg b4 b5 b6

Fig. 10. A deterministic two-stack machine.

Theorem 1. A deterministic Turing Machine can be simulated by a deterministic two-
stack machine.

Proof. Asindicated in Figure 11, the tape configuration of a deterministic Turing Machine
can be simulated by two stacks. In that figure the two stacks are a; and as. Their top
elements are a,, and a,.1, respectively. It is assumed that the scanned cell is the top of
the stack as.

A left move which reads a symbol z and writes a symbol y, is simulated by: (i) popping
the symbol x from the stack s, (ii) pushing the symbol y onto the stack s, (iii) popping
the top, say t, of oy, and finally, (iv) pushing ¢ onto asy. Analogously, a right move is
simulated by the same sequence of operations, except that at Step (iii) we pop from o
and at Step (iv) we push onto «;.

When the stack a; is empty the head is on the leftmost position. When the stack as
is empty the head is on the leftmost blank. The blank symbol never needs to be placed
on the stack. O

Theorem 2. A deterministic two-stack machine M2; with its read-only input tape can
be simulated by a deterministic two-stack machine M2 without a read-only input tape.
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Fig. 11. Two stacks a; and as which simulate a Turing Machine tape.

Proof. A two-stack deterministic machine M2; with a read-only input tape can be simu-
lated by an off-line Turing Machine M with a read-only input tape and one standard tape.
The machine M is equivalent to a Turing Machine M1 with one standard tape only, and
finally, by Theorem 1, M1 can be simulated by a deterministic two-stack machine M2.
An alternative proof is as follows. Consider, as above, the off-line Turing Machine M
with input tape I and standard tape 7', which is equivalent to M2;. Then the Turing
Machine M can be simulated by a Turing Machine M;, with two-track tape T}. Indeed,
My, simulates M by considering both:
(i) the input symbol read by M (marked by the head position X1) on the leftmost,
g g , and
(ii) the tape symbol read by M (marked by the head position X2) on the part of its tape

and

read-only part of its tape T}, between the cells '

T} to the right of the cell (see Figure 12). Finally, the Turing Machine M;, with tape

$
B
Ty, can be simulated by a two-stack machine. O

cells which simulate
the input tape

¢ iv |l |8 |ao | lan |ansa] ... | ar || B

B |\B |X1|B |B|B|B |B|X2|B|B|B

(o3} 2%

Fig. 12. Two stacks a; and as which simulate a tape and a read-only input tape. X1 and
X2 show the head position on the input tape and on the standard tape, respectively.

5.2 Two Stacks = Four Counters

Let us introduce the notion of a counter machine with n counters, which is depicted in
Figure 13.
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Read-Only Input Tape: |¢ | i1|d2|...|in| $

(the head moves left or right) ......_..T............... -

Counter 1: ZolAlAlAVA|B|BY---

Counter n: ZolAlAlAlAlA|B]---

Fig. 13. A Counter Machine with n counters. As usual, the finite automaton FA is de-
terministic. B is the blank symbol and A is a printable blank symbol. Counter 1 holds 2
and Counter n holds 4.

Definition 12. [Counter Machine| A counter machine with n counters, with n >0, is
a deterministic finite automaton with a read-only input tape and n stacks. Each stack
which is said to be a counter, has two symbols: Z; and A (printable blank) only. The
following conditions are satisfied: (i) Zp is initially written on the bottom of the stack,
(ii) on the bottom cell only Z, can be written, (iii) on the other cells of the stack only A
can be written, and (iv) one can test whether or not a head is reading Zj.

Thus, each counter of a counter machine is a device for storing an integer, say k, and the
available operations are: (i) addition of 1 (this operation can be performed by writing the
scanned symbol and moving to the right, then writing A and moving to the left, and,
finally, writing the scanned symbol and moving to the right), (ii) subtraction by 1 (this
operation can be performed by writing the scanned symbol and moving to the left), and
(iii) test for O (this operation can be performed by testing for Zp).

A counter stores the integer k if the scanned symbol is the k-th A symbol to the right
of Z().

Actually, stacks of the form described in the above Definition 12 are called iterated
counters (see, for instance, [14]), rather than simply counters. In [14]| the name ‘counter’
is reserved to stacks where one can perform: (i) addition of 1, and (ii) subtraction by 1
only.

Theorem 3. A Turing Machine M can be simulated by a counter machine with four
counters.

Proof. We first show how to simulate a stack using two counters. Suppose that the stack
has k—1 tape symbols. In this case each stack configuration can be encoded by a number
written in base k, as we indicate through the following example.

Let us assume that the tape symbols are a, b, and c¢. They can be encoded, using
the base 4, by the numbers 1, 2, and 3, respectively. Now, let us consider the stack
configuration a cc i , with top symbol b. (The symbol A indicates the position of the top
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of the stack.) That configuration can be depicted as follows (below each symbol we have

also written its encoding number): | a | ¢ | ¢ | b |, and can be encoded by the number

1 3 3 2

1332 (in base 4), that is, 1x4% + 3x4? + 3x 4’4+ 2x4°, which is 126 (in base 10).
A

Note that we should use the base k and avoid the use of the digit 0 because otherwise
we will identify two different stack configurations which differ by leading 0’s only. For
instance, if the symbols a, b, and ¢ are encoded by 0, 1, and 2, respectively, and we use
the base 3, then the tape configurations c¢b and acb are encoded by the same number 7
(in base 10). Indeed, ¢b is encoded by 2x 3" + 1x3% and acb by 0x3? +2x3' + 1x3°.

Thus, (i) the operation ‘push x’ on the stack is simulated by the multiplication by k
and the addition of H(z), where H(x) is the number encoding the tape symbol z, (ii) the
operation ‘pop’ is simulated by the integer division by k (discarding the remainder),
and (iii) the operation ‘top’ is simulated by copying the number encoding the current
configuration, say j, into the second tape while computing the top symbol as the value
of j modulo k.

The above operations can be performed as follows:

(i) addition of n on a counter can be performed by moving its head n cells to the right,
(i) multiplication by k of a number on the counter C'1 with the result on the counter C2,
can be performed by going left one cell on C'1 while going right (starting from the leftmost
cell) k cells on C2 until C'1 reaches the bottom cell,

(iii) in an analogous way, division by k£ can be done by moving left & cells on a counter
while the other goes right one cell (care should be taken, because if it is impossible to go
left by k cells, then the head of the other counter should not move to the right), and
(iv) while going left on one counter, say C'1, by 1 cell, we go right on the other counter C2
by 1 cell and at the same time in the states of the finite automaton we move by 1 state in a
circle of k states to recall j modulo k. At the end, when the copying operation is finished,
the state reached will tell us the value of 7 modulo k£ which can be stored in C1. O

5.3 Four Counters = Two Counters

Theorem 4. A Turing Machine M can be simulated by a counter machine with two
counters.

Proof. By Theorem 3 it is enough to show how four counters can be simulated by two
counters, call them D1 and D2. We encode the four values of the counters, say p, q, r,
s by the number 27 39 5" 7% to be placed on the counter D1. Obviously, two different
4-tuples are encoded by two different numbers. Any other choice of four prime numbers,
instead of 2, 3, 5, and 7, is valid.

We need to show: (a) how to increment a counter, (b) how to decrement a counter,
and (c) how to test whether or not a counter holds 0. Let C'(1) =2, C'(2) =3, C(3) = 5,
and C'(4) = 7. Let us assume that the given counter configuration p, ¢, r, s is encoded in
the counter D1.

Point (a). To increment the i-th counter by 1 we multiply the counter D1 by C(i). This is
done by going one cell to the left in D1 while going C'(i) cells to the right on D2, starting
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from the leftmost cell. The result will be on the counter D2, and if we want the result on
D1 we have then to copy D2 onto D1.

Point (b). To decrement the i-th counter by 1 we perform an integer-division of the
counter D1 by C(i). This is done analogously to what is done at Point (a).

Point (c). To determine whether or not p or ¢ or r or s is 0 we first compute 27 37 5" 7°
modulo 2, as specified in the proof of Theorem 3 (recall that by that operation the value
of 2P 37 5" 7% is not destroyed) and it is 0 iff p#0 (because 2P 37 5" 7% is even iff p#0). If
p=0 then the finite control enters a suitable state, say ay (see Figure 14 on page 36).

Sng pAOAq#OAT#0 pAONgAOATAON5#0

0
@ 71 ké? €

' \ @ (3) 5)

T O
@

p=0 /[ \p#0A

=0

Fig. 14. The simulation of four counters by two counters. (i) In ay: p = 0. (ii) In S;:
p#0. (ili) In Bo: p#O0Ag=0. (iv) In v: pA0Ag#0. (v) In y2: p£OANg#O0AT=0.
(Vi) In 61: p#O0Ag#OATr#0. (vil) In do: p#AO0A¢g#O0AT#0 A s=0. (viii) In e
p£OANGAOANTH#ON s#£0.

We may also compute 27 39 5" 7° modulo 3, modulo 5, and modulo 7 to check whether or
not ¢=0, or r=0, or s=0, respectively. Clearly this computation can be performed by
the finite control of a counter machine. If none of the numbers p, ¢, r, and s is 0 then the
finite control of the counter machine enters the state € (see Figure 14). In that figure the
states aq, (1, 71, 01, and the ‘small states’ with no label inside, are the states visited while
computing the value of 2P 39 5" 7* modulo 2, 3, 5, and 7. This computation can easily be
extended to the case when the test should return a different answer according to which
of the 16 combinations of the four values of p, ¢, r, and s (each of these values can be
either 0 or different from 0). In this case the finite control should enter one of 16 possible
‘answer states’. In Figure 14 we have depicted some of the states of the finite control for
testing the values of p, ¢, r, and s: they correspond to the tree of Figure 15 on page 37.
The 16 answer states would be the leaves of the tree of Figure 15 when the tree is completed
by constructing: (i) a subtree rooted in 2 analogous to the one rooted in ¢y, (ii) a subtree
rooted in f, analogous to the one rooted in 71, and (iii) a subtree rooted in ay analogous
to the one rooted in (3.
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Fig. 15. A decision tree for testing the values of the four counters.

The position of the reading head on the input tape of the two-counter machine is the
same as the position of the four-counter machine.

Finally, we have to show how the two-counter machine can choose the move corre-
sponding to the move of the four-counter machine. Any move of the four-counter machine
depends on: (i) its internal state, and (ii) the position of the heads of the four counters,
which can be one of the following sixteen configurations: (1) all four heads pointing to
Zy, (2-5) three heads pointing to Zy and one pointing to A, (6-11) two heads pointing
to Zy and two pointing to A, (12-15) one head pointing to Z; and three pointing to A,
(16) all four heads pointing to A.

The information about the internal state of the four-counter machine and the position
of the heads of the four counters (which can be determined as we have seen at Point (c)
above) can be stored in the internal states of the two-counter machine. In order to store
the above information, the internal states of the two-counter machine may be very large.
Indeed, in general, they should replicate the states of the four-counter machine for each
of the sixteen configurations of the positions of the heads of the four counters.

Then, the two-counter machine can make the move corresponding to the one of the
four-counter machine by suitably modifying the content of its two counters and changing
its internal state. O

5.4 Turing Machines with Three or Two States Only

We state without proof the following result [37].

Theorem 5. [Shannon 1956] Given an alphabet X and a language R C X* such that
R = L(M) for some Turing Machine M then there exists a Turing Machine M3 and a
tape alphabet X3 O X' such that R = L(M3) and M3 has three states.
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If one assumes that the acceptance of a word in X* is by halting (and not by entering a
final state, as we have stipulated above), then we can reduce the number of states from 3
to 2. (Actually, this is what Shannon originally proved.)

5.5 Turing Machines with Three or Two Tape Symbols Only

Theorem 6. Given a language R C {0, 1}* such that R = L(M) for some Turing Machine
M then there exists a Turing Machine M3 which uses the tape alphabet {0, 1, B}, such
that R = L(M3).

Proof. Every tape symbol for the machine M will be encoded by a sequence of 0’s and
1’s of length k, where k£ is known when M is given. Let us assume that M3 is reading
the leftmost cell of the k cells which encode the symbol read by M. M3 simulates the
move of M by first reading k symbols to the right. If M reads a blank symbol then M3
should first write the code for the blank symbol on its tape (using k& symbols to the right
of the current position). The machine M3 begins the simulation of the machine M by first
computing the encoding en(w) of the word w which is the input of M. That encoding is
computed starting from the leftmost symbol of w. During that computation the symbols
of w to the right of the symbol, say s, which will be encoded, are shifted to the right by
k—1 cells to create k free cells for the code of the symbol s itself.

In contrast to what is done for the input the encoding of the blank symbols is not done
initially, because there are infinite blanks. The encoding of one blank symbol is done on
demand, one blank at a time when it is required. O

Corollary 1. Given a language R C X* for any finite input alphabet X, if R = L(M)
for some Turing Machine M then there exists an off-line Turing Machine M3 with the
input tape and a standard tape whose alphabet is {0, 1, B} such that R = L(M3).

Turing Machines whose input alphabet is {0, 1} and tape alphabet is {0, 1, B}, are also
called binary Turing Machines.

Theorem 7. [Wang 1957| Given a language R C X* for any finite input alphabet X, if
R = L(M) for some Turing Machine M then there exists an off-line Turing Machine M2
with: (i) an read-only input tape whose alphabet is Y| and (ii) a standard tape whose
alphabet is {0, 1}, where 0 plays the role of blank (thus, the blank symbol B does not
exist in the tape alphabet), such that R = L(M2) and M2 cannot write a 0 over a 1 (that
is, M2 cannot erase symbols: M2 has a non-printable blank symbol 0).

Proof. The simulation of M by M2 proceeds by rewriting along the tape the configurations
of M. We need special symbols (written as strings of 0’s and 1’s) to encode the beginning
and the end of each configuration, the position of the head, and some suitable markers to
guide the process of copying, with the necessary changes, the old configuration into the
new one. ]

6 Turing Machines as Language Generators

Let us consider a fixed alphabet X. A Turing Machine can be viewed as a mechanism for
generating languages that are subsets of 2* as follows. We consider a two-tape Turing
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Machine M. The first tape is one-way infinite and it is used by the Turing Machine M
as usual. The second tape is an output tape, that is, it is a write-only tape whose head
moves to the right only. On this second tape the machine M prints, one after the other,
separated by a special symbol, say #, not in X', the words of the language it generates.

The language L C X* generated by a Turing Machine M will be denoted by G(M).
If G(M) C X* is infinite then M does not halt.

Note that we do not require that on the output tape the words of G(M) are generated
either (i) only once, or (ii) in any fixed order. In particular, for any given word w € G(M) of
length |w| (>0) and of the form: z,x5 ... 2}y, there exists an index i € N, with >0, such
that the output tape cells ¢;, ciq1, ..., €1, €| contain the symbols 1, 2o, ..., T, #,
respectively.

Theorem 8. For any given Turing Machine M and language R, R = G(M) iff there
exists a Turing Machine M1 such that R = L(M1), that is, a language is generated by a
Turing Machine M iff there exists a Turing Machine M1 which accepts it (for the notion
of the language accepted by a Turing Machine see Definition 8 on page 14).

Proof. (only-if part) Let us assume that R is generated by the machine M. The machine
M1 which accepts R can be constructed as follows. Given an input word w € X*, M1
works as M and when M writes a word w;# on the output tape, M1 compares w; with w.
If w; = w then M1 accepts w, otherwise M1 continues the simulation of M. Obviously,
M1 accepts w iff w is generated by M.

(if part) Given a Turing Machine M1 we have to construct a Turing Machine M which
generates exactly the same language accepted by M1. Before showing this construction
we need to define the notion of the i-th word in X*, for any given finite alphabet .
(Actually this notion can be extended to the case where X' is denumerable.) We can use
the canonical order of the strings in X*. In particular, if ' = {0,1} and we assume that
0 < 1, then the i-th word of X* is the ¢-th word occurring in the listing of the canonical
order of the words of X*, that is: £,0,1,00,01, 10,11,000, 001,010, 011,111, .... Thus,
the i-th word of X* is the i-th word in the listing X°, X', X2 ..., having listed the
elements within each set X% (for ¢ > 0) in the usual alphabetic order from left to right.
Obviously, one can devise a Turing Machine for computing the i-th word for any given
¢ > 0. The machine M has three tapes plus an output tape. On the first tape it generates
all natural numbers in increasing order starting from 0. For each such number, say n, M
produces on the second tape a pair of numbers, say (i, j), using a dove-tailing bijection
from N x N to N. Then given ¢, the Turing Machine M computes on the third tape
the i-th word, say w;, of X*. At the end of this computation the third tape contains the
word w;. Then M behaves on its third tape as M1 does on its own tape but only for j
steps (that is, j applications of the transition function), and if M1 accepts w; using no
more than j steps then M writes on its output tape w;. O

Theorem 9. A language R is generated by a Turing Machine M, that is, R = G(M),
and each word in R is generated once only, iff R is accepted by some Turing Machine M1,
that is, R = L(M1). The language R is recursive enumerable (see Definition 1 on page 87
and also Section 15 on page 79).
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Proof. The proof is like the one of Theorem 8, where, instead of ‘no more than j’, we
say ‘exactly 77, because if a language is accepted by a Turing Machine there exists a
deterministic Turing Machine which accepts it, and if a deterministic Turing Machine
M1 accepts a word, say w, then M1 accepts w in exactly one way, that is, after a number
of steps which depends on w only. O

Theorem 10. A language R is generated by a Turing Machine M, that is, R = G(M),
and it is generated in the canonical order iff there exists a Turing Machine M1 which
accepts R, that is, R = L(M1), such that for all w € X* M1 stops after a finite number
of moves (possibly depending on w). The language R is recursive (see Definition 2 on
page 87).

Proof. (only-if part) The machine M1 to be constructed, simulates M until: either (i) M
halts without generating w, in which case M1 rejects w, or (ii) w is generated by M, in
which case M1 accepts w, or else (iii) a word longer than w is generated by M (and this
means that w will not be generated in the future by M, being the generation done by M
in canonical order), in which case M1 rejects w.

(if part) Given the language R accepted by the machine M1, that is, R = L(M1),
we construct the machine M which generates R in the canonical order, as follows. If R is
finite M looks at the elements of R and rearrange them in the canonical order and output
them. If R is infinite, the language itself is given via the Turing Machine M1, and the
machine M to be constructed, works as follows. M computes each word w in X* in the
canonical order and for each of them, M (i) simulates M1 and (ii) generates the word w
of R iff M1 accepts w. Since for every input word w in X*, M1 accepts or rejects w after
a finite number of moves, we have that for any given word w in R, M generates w after a
finite number of moves. It is immediate to see that the machine M indeed generates the
language R in the canonical order. O

7 Turing Computable Functions and Type 0 Languages

In this section we state and prove the equivalence between Turing Machines and type 0
languages.

Theorem 11. [Equivalence Between Type 0 Grammars and Turing Machines.
Part 1] For any language R C X* if R is generated by the type 0 grammar G =
(X Vi, P, S), where X' is the set of terminal symbols, Vy is the set of nonterminal sym-
bols, P is the finite set of productions, and S is the axiom, then there exists a Turing

Machine M such that L(M) = R.

Proof. Given the grammar G which generates the language R, we construct a nondeter-
ministic Turing Machine M with two tapes as follows. Initially, on the first tape there
is the word w to be accepted iff w € R, and on the second tape there is the sentential
form consisting of the axiom S only. Then M simulates a derivation step of w from S by
performing the following Steps (1), (2), and (3). Step (1): M chooses in a nondeterministic
way a production of the grammar G, say a« — 3, and an occurrence of o on the second
tape. Step (2): M rewrites that occurrence of a by 3, thereby changing the string on the
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second tape. In order to perform this rewriting, M may apply the shifting-over technique
for Turing Machines [16] by either shifting to the right if |a| <|3], or shifting to the left
if |a| > |B]. Step (3): M checks whether or not the string produced on the second tape
is equal to the word w which is kept unchanged on the first tape. If this is the case, M
accepts w and stops. If this is not the case, M simulates one more derivation step of w
from S by performing again Steps (1), (2), and (3) above.

We have that w € R iff w € L(M). O

Theorem 12. |[Equivalence Between Type 0 Grammars and Turing Machines.
Part 2| For any language R C X* such that there exists a Turing Machine M such that
L(M) = R then there exists a type 0 grammar G = (X, Viy, P, A;), where X is the set of
terminal symbols, Vi is the set of nonterminal symbols, P is the finite set of productions,
and A; is the axiom, such that R is the language generated by G.

Proof. Given the Turing Machine M and a word w € 2™, we construct a type 0 grammar
GG which first makes two copies of w and then simulates the behaviour of M on one copy.
If M accepts w then w € L(G), and if M does not accept w then w ¢ L(G). The detailed
construction of G is as follows.

Let M = (Q, X, I qo, B, F,d). The productions of G are the following ones, where the

pairs of the form [—, —] are elements of the set Vy of the nonterminal symbols:
1. Ay —qo A

The following productions nondeterministically generate two copies of w:

2. Ay — [a,a] A for each a € X

The following productions generate all tape cells necessary for simulating the computation
of the Turing Machine M:
3.1 Ay — [e,B] Ay
3.2 Ay — [e, B]
The following productions simulate the moves to the right:
4. qla,X] = [a,Y]p
for each a € X U {e},
for each p,q € Q,
for each X € I Y € I' — { B} such that d(q¢, X) = (p,Y, R)
The following productions simulate the moves to the left:
5. [b,Z]qla,X] — p[b, Z][a,Y]

for each a,b € X U {e},
for each p,q € Q,
foreach X, Z € I'' Y € I' — { B} such that §(¢, X) = (p, Y, L)

When a final state ¢ is reached, the following productions propagate the state ¢ to the left
and to the right, and generate the word w, making ¢ to disappear when all the terminal
symbols of w have been generated:

6.1[a,X]q— qagq
6.2¢q[a,X] — qaq
6.3q — ¢
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foreachae YU{e}, X eI, qeF

We will not formally prove that all the above productions simulate the behaviour of M,
that is, for any w € X*, w € L(G) iff w € L(M).
The following observations should be sufficient:

(i) the first components of the nonterminal symbols [—, —] are never touched by the
productions so that the given word w is kept unchanged,
(ii) never a nonterminal symbol [—, —| is made to be a terminal symbol if a final state ¢

is not encountered first,

(iii) if the acceptance of a word w requires at most k (> 0) tape cells, we have that the
initial configuration of the Turing Machine M for the word w = a;j as...a,, with n >0,
on the leftmost cells of the tape, is simulated by the derivation:

Ay =" qolar, a1] [ag, as) ... [an,a,] e, Bl e, B]...[e, B]

where there are £ (>n) nonterminal symbols to the right of g. O

8 Multitape Turing Machines and Random Access Memory
Machines

A RAM (Random Access Machine) is an abstract model of computation which consists of
an infinite number of memory cells (which are indexed by the numbers 0,1, ...), each of
which can hold an integer, and a finite number of arithmetic registers, capable of storing
and manipulating integers according to some given set of elementary instructions such
as: STORE, LOAD, ADD, SUB (that is, subtract), MULTIPLY, DIV (that is, divide), JUMP,
CONDITIONAL-JUMP (that is, jump if the content of some given register is 0), and STOP.

Definition 13. [Computable Function From N To N| A function f from N to N is
said to be RAM computable iff starting from n in memory cell 0 we get the value of f(n)
in memory cell 0 when executing the instruction STOP.

As usual, integers may encode instructions. The instructions, once interpreted, modify
the content of the memory cells and/or the registers.

It is not difficult to convince ourselves that a RAM can simulate any given Turing
Machine or digital computer.

Now we show that, provided that the elementary instructions can be simulated by
a Turing Machine (and this is left to the reader as an exercise, by using the techniques
for the construction of Turing Machines that we have presented in previous sections), a
RAM R can be simulated by a Turing Machine M. (In what follows, for simplicity, we will
not distinguish between numbers and their encoding representations on the four tapes in
use.) We assume that R has k registers.

Let us consider the following Turing Machine M with four tapes:

memory tape (n cells): HO*xvoHl s #H... #Fixv#...#nxv, #BB...
register tape (k registers): #0 x vo# 1 x i # ... #kx vy # BB ...

program counter: #i#BDB... (iisamemory address)

memory address register: #j# BB... (jis a memory address)
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If the program counter holds the value ¢ then M looks for the i-th memory cell in the
memory tape. If M does not find the string # i * v; # (because in the scan from the left
of the memory tape it finds a B before #¢ x v; # ), then M stops.

Otherwise, M having found the string # ¢ * v; #, takes v; and interprets it as the code
of an instruction, say ‘ADD 7, 2’ (that is, add to the register 2 the value in the memory cell
whose address is 7). Then M increases by 1 the program counter, looks on the memory
tape for the cell whose address is j, and looks on the register tape for the register 2.

If M finds the memory cell with address j then it performs the elementary instruction
of adding the number v; to the register 2. If M does not find the memory cell with
address 7 we may assume that the j-th cell contains 0, thus nothing should be done to the
register 2. (In this case we could also assume that an error occurs and both M and R stop.)
After simulating the instruction ‘ADD j, 2’, the machine M continues the simulation by

performing the next instruction because the program counter has been already increased
by 1.

As a consequence of the fact that Turing Machines can simulate RAM’s and vice versa
we have that the set of Turing computable functions is the same as the set of RAM
computable functions.

9 Other Models of Computation

In this section we consider various other models of computation. They are all equivalent
to Turing Machines as we will indicate below.
9.1 Post Machines

A Post Machine over the alphabet X = {a,b} with the auxiliary symbol #, can be
viewed as a flowchart whose statements operate on a queue. That queue is represented as

a list x = [xy,...,2,] with the operations head, tail, cons, and append (denoted by the
infix operator @) which are defined as usual. The empty list is denoted by nil (see also
Figure 16).

In the flowchart of a Post Machine P we have the following statements:
(i) one start statement (with indegree 0 and outdegree 1),
(i) 0 or more accept or reject statements (with indegree 1 and outdegree 0),

(iii) some enqueue statements (called assignment statements in [25, page 24]) (with in-
degree 1 and outdegree 1) of the form enqueue(x,e), for e € {a,b,#} , which given
the queue represented by the list =, produces the queue represented by the list 2@[e],
and

(iv) some dequeue statements (called test statements in |25, page 24|) (with indegree 1 and
outdegree 4) is of the form dequeue(z)[n, a, 3, x| which given the queue represented
by the list x, behaves as follows:

if © = nil then goton else begin h = head(x); © = tail(x);
if h =a then goto a else
if h="5b then goto 3 else
if h =# then goto x
end
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where 7, «, 3, and y are labels associated with some (not necessarily distinct) state-
ments of the flowchart of the Post Machine P (see Figure 16). Every goto statement
is an arc of the flowchart. Every dequeue statement includes a test on the value of
head(x), if the list x is not nil, that is, if the queue is not empty.

dequeve(x)[n,a,B.x] <— | 1 | ... | zn |xhia|. . .| 2o |<— enqueue(z,e)

Fig. 16. The enqueue(x,e) and dequeue(z)[n,q,5,x] statements on a queue represented by
the list x = [x1, ..., z,. We have that: head(x) =2 and tail(x)=[za, ..., x,].

The language L C X* accepted (or rejected) by a Post Machine P is the set of words w
such that if the queue x is equal to w before the execution of the flowchart of P, then
eventually the Post Machine P executes an accept statement (or a reject statement,
respectively).

For some initial value of x, a Post Machine may run forever, without executing any
accept or reject statement.

There is no loss of generality if we assume that the Post Machine has the symbols a, b,
and # only. Indeed, if there are extra symbols, besides a, b, and #, we may encode them
by sequences of a’s and b’s. For instance, if a Post Machine P’ has the extra symbol A,
then we may encode the symbol a by the string a a and, similarly, b by a b, # by ba, and
A by bb. Obviously, a Post Machine that uses that encoding, has to execute two dequeue
statements (or two enqueue statements) for simulating a single dequeue statement (or a
single enqueue statement, respectively) of the Post Machine P’.

Now we will prove the equivalence between Turing Machines and Post Machines, that
is, we will prove that: (1) for any Turing Machine there exists a Post Machine which
accepts the same language, and (2) vice versa.

Without loss of generality, we will assume that:

(i) the tape alphabet of the Turing Machine is I = {a, b, B}, where B is the blank symbol
which is not printable,

(i) the Turing Machine cannot make a left move when its tape head scans the leftmost
cell (recall that the position of the tape head can be tested by simulating a tape with
two tracks), and

(iii) the Post Machine has symbols a,b, and # only.

Proof of Point (1). Let us consider a tape configuration of the Turing Machine of the form:

(tape of : """ C C= - .
the Turing Machine) L h—lAh i1l -l | B | B

where the rightmost cell with a non-blank symbol is ¢; and the scanned cell (marked by A)
is ¢, with 1 <h <k. That tape configuration is represented by the following queue ¢ of
the Post Machine:
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< ~--------

(queue ¢ of
the Post Machine) < | % [n+1] ---| % # | al. || — (1)

Thus, (i) the tape head of the Turing Machine scans the leftmost cell of the tape iff #
is the rightmost element of the queue of the Post Machine (that is, the cells ¢i, ..., 51
are absent), and (ii) the tape head of the Turing Machine scans the leftmost blank sym-
bol B iff # is the leftmost element of the queue of the Post Machine (that is, the cells

Chy Cht1, - - -, C are absent). In Case (ii) if the tape of the Turing Machine has the non-
blank symbols in its leftmost cells ¢y, ..., c,_1, then the queue of the Post Machine is of
the form:

-~ # Ct |...|[Ch—1|] -—

(Here we slightly depart from the representation of the tape of the Turing Machine used
in [25], but no problem arises because we assumed that when the tape head of the Turing
Machine scans the leftmost cell, it cannot make a left move.) In particular, if the tape of
the Turing Machine has blank symbols only and the tape head scans the leftmost blank
symbol B, then the queue of the Post Machine is of the form:

-4—#-4—

Recall that, since the blank symbol B is not printable, the tape head of the Turing Machine
scans the leftmost cell with the blank symbol B, only when the tape has blank symbols
only.

We have that, before and after the simulation of a move of the Turing Machine, the
queue g of the Post Machine is not empty and it has at least the element #.

Starting from the above queue ¢ (see queue (f) on page 44), the move of the Turing
Machine that writes ¢, in the place of ¢, (here and in what follows, when no confusion
arises, we identify a cell with the symbol written in that cell) and goes to the right,
transforms ¢ into the following queue:

(after a right move
from queue ¢ (1))

~— |Cpyq| - - | Ck # C1 .- |Ch—1| Cy | +—

Analogously, the move of the Turing Machine which writes ¢ in the place of ¢;, and goes
to the left, transforms the above queue ¢ (see queue () on page 44) into the following
queue:

(after a left move
from queue q (1))

~— |Chq|cp |Chga| -l | # | |- [Cho2| —

Now we show how the Post Machine may simulate via fragments of flowcharts both the
right move and the left move of the Turing Machine. Thus, by suitably composing those
fragments, according to the definition of the transition function of the Turing Machine,
we get the simulation of the Turing Machine by a Post Machine.

In Figure 17 on page 46 we show some left and right moves of the Turing Machine and
the corresponding queue configurations of the Post Machine that simulates the Turing
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Turing BBB... (T1) abBB... (T2) abcdeB..
Machine 4 / y
achine © ,
g,ll r / X / \
¥
cBB... abcB. .. abcB. .. abcdeB .abcdeB
A A A

Post <—% (P1) <—<— (P2) %<— (P3)

Machine /
T\ / \ ( r
y

—|#clk— |—lbcH#Hal— «—|H#Habcl—|«—|bcde#al— —|deH#abcl—

Fig. 17. Simulation of the Turing Machine by the Post Machine. Arcs with labels ¢ and r
denote the moves to the left and to the right, respectively. The A symbol shows the
scanned cell. The symbol ¢ is written in the scanned cell before moving to the left or to
the right. The dashed arcs are not followed. The moves of the Turing Machine from the
configurations (7%)’s (for i=1,2, 3) are simulated by the moves of the Post Machine from
the corresponding configurations (Pi)’s.

Machine. This figure will help the reader to understand the statements of the simulating
Post Machine. Here is the simulation of the right move and the left move.

SIMULATION OF THE RIGHT MOVE. The right move of the Turing Machine that writes ¢
before moving, is simulated by the Post Machine by performing the following operations:

(i) dequeue;
(ii) if the dequeued element is # then insert the element # into the queue from its left

end (this insertion is performed when the queue, which may or may not be empty,
has no element #);

(iii) enqueue of ¢.
Thus, formally, we have that the right move is simulated by:

dequeue(q)[n, o, a, x];

X: enqueue(q, #); enqueuve(q, #);

w: dequeue(q)[m, a1, B, af; aq: enqueue(q,a); goto w; [i: enqueue(q,b); goto w;
a: enqueue(q, ¢);

Note that there is no need for the statements with label 7 or 1; because the control never
goes to those statements.

SIMULATION OF THE LEFT MOVE. The left move of the Turing Machine that writes ¢
before moving, is simulated by the Post Machine by performing the following operations
(we used curly brackets for grouping operations):
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(i) dequeue;

(ii) f the dequeued element is # then insert the element # into the queue from its left
end;

(iii) l-enqueue the element ¢; r-dequeue one element, call it e; ¢-enqueue the element e (ft)

where (-enqueue(q, e) denotes the insertion of the element e to the left of the queue ¢, and
r-dequeue(q)[n, o, B, x| denotes the extraction of the rightmost element from the queue q.
The labels 7, , 3, and x are the labels of the statements which are performed next if the
queue ¢ is empty, or the extracted element from the right is a, or b, or #, respectively.
We will define the /-enqueue and the r-dequeue operations below.

The operations of the else branch (see (ff) above) are performed when in the queue
there is the element # and the element e is either a or b. Note that e cannot be # because
the left move is not allowed when the tape head of the Turing Machine scans the leftmost
cell and only in that case the rightmost element of the queue is #.

Thus, formally, we have that the left move is simulated by:

dequeue(q)[n, o, o, XJ;
X: enqueue(q, #); enqueue(q, #);
w: dequeue(q)[m, a1, B, af; aq: enqueue(q,a); goto w; [i: enqueue(q,b); goto w;
a: l-enqueue(q, c);
r-dequeue(q)[m, o, B, X1);
aq: l-enqueue(q, a); goto p;
B1: L-enqueue(q,b); goto p;
where the next statement to be executed has label ¢. Note that there is no need for the
statements with label n or n; or x;.

Here is the definition of the (-enqueue(q,e) operation. We assume that in the queue
there is the element # and the element e is either a or b. We realize the (-enqueue(q,e)
operation as follows: we insert a second element # in the queue, then we insert the
element e, and finally, we make a complete rotation of the elements of the queue, but we
do not reinsert to the right the second element #. Thus, we have that:

(-enqueue(q, e) =

A enqueue(q, #); enqueue(q,e);

w: dequeue(q)[n, a, B, x];  «: enqueue(q,a); gotow;  [B: enqueue(q, b); goto w;

X: enqueue(q, #);

wi: dequeue(q)[ni, a1, B, x1]; a1 enqueue(q,a); goto wy;  Pi: enqueue(q, b); goto wy;
where y; is the label of the statement to be executed next. Note that there is no need for
the statements with label n or n;. Note also that at label x; the second element # that
was inserted in the queue ¢ by the statement at label A, is deleted, and the element e
occurs as the first (leftmost) element of the queue ¢, as desired.

Here is the definition of the r-dequeue(q)[n, a, 3, x] operation. We assume that in the
queue there is the element # which is not in the rightmost position (recall that the left
move cannot take place when the tape head scans the leftmost cell), and the dequeued
element is a or b. We realize the r-dequeue(q)[n, a, 3, x| operation as follows. We insert a
second element # in the queue and then we make a complete rotation of the elements of
the queue, reinserting to the right neither the second element # nor the element which was
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in the queue to the left of that second element #. This requires a delay of the reinsertion
for checking whether or not the second element # follows the present element. Thus, we
have that (see also Figure 18):

r-dequeue(q)[n, o, B, x] =
A enqueue(q, #);
Wo: dequeue(Q) [7707 Q, /607 XO]
ag: enqueue(q,a); gotowy;  Po: enqueue(q,b); gotowoy;  Xo: enqueue(q, #);
dequeue(q) [7717 ai, 617 ]7
ay: dequeue(q)[o,, o, o, A
ay: enqueue(q,a); goto ay; oy enqueue(q,a); goto [
/81: dequeue(q [ﬁna/@awgbaﬁL
Ba: enqueue(q,b); goto ay; [y enqueue(q,b); goto P

Note that there is no need for statements with label 1 or 1y or 7, or a;, or 3, or x (recall
that: (i) we have assumed that the given queue ¢ is not empty, (ii) at label A we have
inserted in the queue ¢ a second element #, and (iii) the first element # is not in the
rightmost position).

Now let us introduce the following definition.

We say that a function f from N to N is computable by a Post Machine P iff starting
with the string a” ba/™ in the queue, P eventually performs an accept statement.

Thus, as a consequence of the equivalence between Turing Machines and Post Machines
which preserves the accepted language, we have that a function f from N to N is Turing
computable iff f is computable by a Post Machine.

9.2 Post Systems

Given a set V of symbols, Post considered rewriting rules of the following kind to generate
new strings of V* from old strings of V*:

9051915292...Smgm—>honlhlszhg...Sj hn ('l')

where:

- 90,915 - - - s Gms o, P1, - . ., hy, are (possibly empty) strings of V* (they are called the fized
strings),

- 51,9, ..., 5, are distinct symbols not in V', called variables, ranging over strings in V™,
- each variable in the list (S},,S;,,...,95;,) is taken from the set {S1,S5,,...,5,} and
need not be distinct from the other variables of the list (S},,S;,,...,95;.)

A rule of the form (f) can be used for defining a binary relation — in V* x V* as
follows.

Given a string s in V* we match the entire s with the whole left hand side of (f) and
we get a substitution 9 of the variables Si,.5,,...,959,, each S;, with 1 < ¢ < m, being
mapped into a string of V*. We then derive the rewriting:

S — (ho Sj1 hl sz hg e S]nhn)’ﬁ

For instance, given V' = {r, s} and the rule: Sy sSy — Sor Syr, we get the following
rewritings of strings in V*:
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r-dequeue(q)[n, a, B, x] = Q‘: enqueue(q, #D

@o‘ dequeue(q)[no, ao, Bo, XOD

Fig. 18. Diagram that illustrates the statements for the r-dequeue(q)[n, o, 3, x] operation.

We have written ﬂ’ 3, and ﬁ, instead of enqueue(q, a), enqueue(q,b), and enqueue(q, #),
respectively. The dashed arcs (those with label empty?) are not followed because the
queue ¢ is never empty. There is no need for statements with label 1 or 7y or 7, or oy,

or (3, or x.

rsSr — rrrr where ¥ = {5 /e, Sa/r},

rsrs — rr where ¥ = {S1/sr, Sa/e},
rsrs — rsrrsr where d = {S;/e, So/rs}, and

s sr cannot be rewritten because it does not match r S; s .55.

We may also define, as usual, the reflexive and transitive closure of —, denoted by —*.
Now we give the formal definition of a Post System. A Post System G consists of:

a finite alphabet X

a finite set T' of auxiliary symbols,

a finite subset A of X*, called the set of azioms, and

a finite set of productions of the form (), where the fixed strings are from the set V*,
where V =X UT.

The splitting of the alphabet V' used for the fixed strings, into the sets X and T, will
be clarified in an example below. Indeed, we will see that the auxiliary symbols in T" may
be used as separators between substrings of 3*. They play the role of separators between
the adjacent cells of a Turing Machine tape, while the symbols in 3 are used for the
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contents of the cells. We say that a word w in X* is generated by the Post System G
iff there exists an axiom a; in the set A of axioms in G such that a; —* w, using the
productions of G.

A Post System for producing the strings in X* with X' = {a, b}, which are palindromes,
is as follows. T" = (). The axioms are: ¢,a,b. The productions are: S; — aS;a, and
Sp — bS5y 0.

A Post System for producing the valid addition equalities, that is, strings of the form:
1™ 4 1" = 1% is as follows.

Y ={l,+,=}. T =0. The axiom is 1 + 1 = 11. The productions are:

S1+Sg == Sg — 151-'-52 = 153

S1+Sg == Sg — Sl—|—152 = 153
For instance, we get: 1+1 =11 — 114+1=111 — 11411 =1111.

A Post System for producing binary representations of positive natural numbers, given
in unary notation, is as follows.

Y ={1,0,=}.T ={¢,$,#}. The axioms are the unary representations of the positive
natural numbers, that is, A is {1,11,111,...}. The productions are as follows.

The following production P1 is for making two copies of the input number 5;.

P1. Sl — Sl¢$51#

The following production P2 is for dividing by 2 the number between $ and #, and
placing the result between ¢ and $.
P2. 51¢Sg$1154#52 — Sl¢531$54#52

The following productions P3 and P4 are for placing 0 or 1 in the desired binary
representation, depending on the fact that the given number is even (that is, no 1 is left
between $ and #) or odd (that is, one 1 is left between $ and #). The substring between $
and # is then initialized using the quotient S5 of the previous division, for performing a
subsequent division by 2.

P3. S1¢S38# S5y — S1¢$55#05,
P4, S1¢S381#S8y — S1¢$S53#15,

The following production P5 is for writing the result of the computation as desired.
P5. S1¢$#Sy — 51 =5;.

For 1nstance we have:

111111 — (by P1) 111111¢$111111# — (by P2) 111111¢1$1111#
— (by P2) 111111¢11$11#  — (by P2) 111111¢111$#
— (by P3) 111111¢$111#0  — (by P2) 111111¢1$140
— (by P4) 111111¢$1#10  — (by P4) 111111¢$#110

— (by P5) 111111 = 110.

From the above sequence of rewritings, we see that the auxiliary symbols ¢, $, and # of
our Post System are used as delimiters of four substrings: (i) the substring to the left of
¢, (ii) the substring to the right of ¢ and to the left of $, (iii) the substring to the right of
$ and to the left of #, and (iv) the substring to the right of #.
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We may encode the input n and the output f(n) of a Turing computable function f
from N to N, as the two sequences: 1™ and 17" separated by the symbol &. Using this
encoding, we may say that the function f from N to N is Post computable iff there exists
a Post System with alphabet X' = {1, &} such that from the axiom & we can derive the
string: 1"&17™ for any n € N. We have that every Turing computable function from N
to N is Post computable.

Vice versa, by encoding sequences of symbols of a given finite alphabet X' into natural
numbers, we have that every Post computable function is a Turing computable function.

Theorem 13. [Post Normal Form Theorem| There is not loss of computational power
if one restricts the productions of a Post System to be of the form:

gS — Sh
where the fixed strings g and h are in (X' UT)*. Thus, one variable symbol S is sufficient.

Post Systems whose productions are of the form:
51952 — SthQ (TT)

provide an alternative presentation of Chomsky’s formal grammars. Indeed, the set of
terminal and nonterminal symbols of a given grammar is the set X' of the correspond-
ing Post System, and a given grammar production: g — h is simulated by the Post
production (}7).

9.3 Unlimited Register Machines

An Unlimited Register Machine, URM for short, can be viewed as a collection of an infinite
number of registers, say Ri,...,R,,..., each holding a natural number. The content of
the register R;, for ¢ > 1, will be denoted by r;. A URM is associated with a finite sequence
of instructions P = (Iy,...,I,), with p > 1, each of which is of the form:

(i) Z(n), which makes r, to be 0, or

(ii) S(n), which increases r, by 1, or

(iii) Assign(m,n), which makes r,, to become equal to r, (that is, r,, :=r,), or

(iv) Jump(m,n,j), which does not change the content of any register, and if r,, = r,
then the next instruction to be executed is [;, with 1 < j < p, otherwise, the next

instruction to be executed is the one which follows the instruction Jump(m,n,j) in the
given sequence P.

The finite sequence of instructions is also called a program. A URM works by executing
instructions, as usual, according to the given program P. The first instruction to be
executed is I.

It is possible to define, in the usual way, the computation of a URM for a given program
and an initial content of the registers. The computation of a URM stops iff there is no
next instruction to be executed.

An URM M computes the function f from N* to N which is defined as follows:
f(ay,...,a;) = b iff starting from the values ay, ..., a; in the registers Ry, ..., Ry, respec-
tively, and the value 0 in all other registers, the computation of M eventually stops and
we get b as the content of the register R;.
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One can show that the set of functions computed by URM’s does not change if we do
not allow Assign instructions.

An important result about URM’s is that the set of functions from from N* to N
computed by URM’s, is the set of the Turing computable functions from N* to N.

9.4 Markov Systems

A Markov System can be viewed as a particular kind of type 0 grammar. The idea of
a Markov System is to make deterministic the nondeterministic process of replacing a
substring by another substring when constructing a word generated by a type 0 grammar,
starting from the axiom of the grammar.

A Markov System is a quintuple (X, Vi, R, Ry, Ry), where Y is the set of terminal
symbols, and Vyy is the set of nonterminal symbols. Let V' be the set VyUX'. R is the finite
sequence 11, . .., 1, of rules, each of which is a pairs of words in V* x V*. The sequence R
is assumed to be the concatenation of the two disjoint subsequences R; and R.

We define a rewriting relation — on V* x V* as follows: u — v iff we get the string v
from the string u by rewriting (as usually done with grammar productions) a substring
of u according to the following two constraints:

(1) we have to use the leftmost rule in R (that is, the rule with smallest subscript) among
those which can be applied, and

(ii) we have to apply that rule at the leftmost occurrence (if it can be applied in more
than one substring of u).

We also define a restricted transitive closure of —, denoted by —[* as the usual
transitive closure with the condition that the last rewriting step, and that step only, is
performed by using a rule in Rs.

A Markov System computes the function f from X* to X* which is defined as follows:

flu) = v iff u —Fl o,
One can show that the set of functions from X* to X* computed by the Markov Systems
is the set of the Turing computable functions from X* to X*.

10 Church Thesis

In Sections 7 and 8 we have shown that there exists a bijection: (i) between Turing
Machines and Type 0 grammars and (ii) between Turing Machines and Random Access
Machines, which preserves the computed functions. Actually, as we already mentioned,
there exists a bijection also between Turing Machines and each of the models of computa-
tion we have introduced in the previous section, that is: (i) Post Machines [25], (ii) Post
Systems |6, page 61], (iii) Unlimited Register Machines, (iv) Markov Systems (see [6, page
65] and [24, page 263]), so that the set of computable functions from N to IV is preserved.

Also Partial Recursive Functions which we will introduce in the following chapter,
and other models of computations such as: (i) Lambda Calculus [5] and (ii) Combinatory
Logic [5], define the same set of computable functions from N to N.

The fact that all these models of computations which have been introduced in the
literature for capturing the informal notion of ‘effective computability’, rely on quite
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different intuitive ideas, and yet there exists a bijection between any two of them, and
that bijection preserves the computed functions, is a strong evidence of the validity of the
following statement, called Church Thesis or Turing Thesis:

Church Thesis. Every function which, in intuitive terms, is ‘effectively computable’ is
also Turing computable.

Note that it is not possible to formally prove the Church thesis (and this is why it is called
a thesis, rather than a theorem) because the notion of being ‘effectively computable’ is
not given in a formal way.






Chapter 2

Partial Recursive Functions

11 Preliminary Definitions

Let D be a (not necessarily proper) subset of N* for some k > 0.

A partial function f of arity k (that is, of k arguments) from N* to N is a subset of
D x N, with D C N*, such that for all  in D there exists a unique m in N such that
(x,m) € f. For every x € D we say that f is convergent in x, or f is defined in x, or f(x)
is convergent, or f(x) is defined.

The domain of a partial function f which is a subset of D x N, such that for all
in D there exists a unique m in N such that (z,m) € f,is D. We also say that D is the
subset of N* where f is defined.

We say that a partial function f is divergent in x, or f is undefined in z, or f(x) is
divergent, or f(x) is undefined, or f(x) = undefined, iff  does not belong to the domain
of f.

A partial function of arity & is said to be total iff its domain is N*.

The codomain of a partial function from N* to N is N. The range of a partial function f
from N* to N is the set {m|(z,m) € f}. The element m of the range of f such that
(x,m) € f,is also called the value of fin x. Instead of (z,m) € f, we also write m = f(z).

Each partial function of arity 0, which is total, is identified with an element of N. In
formal terms, for each m € N, we identify the function {((), m)} with m. The domain of
each partial function f of arity 0 from N° to N which is a total function, is N°, that is,
the singleton {()}.

There exists a unique partial function of arity 0 from N° to N which is not total. It is
the function which is undefined in the argument (). Unless otherwise specified, when we
will say ‘function” we will mean ‘partial function’.

We write the application of the function f of arity & to the argument z as f(z) or fz.
If z is the k-tuple (xq, ..., x;) we also write f(x) as f(xy,...,xx) or foy...xp or f(2, k),
where z is the (k—1)-tuple (xy,...,T5_1).

We sometimes use extra parentheses, and we write an expression e as (e).

Below we will define the set PRF, of the so called partial recursive functions of arity k,
for any k£ > 0. It is a subset of the set of all partial functions of arity k.
The set PRF of all partial recursive functions is:

UkZO PRF;

95
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By a total partial recursive function we mean a function in PRF which is total. Often in
the literature a total partial recursive function is also called a total recursive function, or
simply, a recursive function.

There exists a bijection, call it 7, between N* and N (see below). Thus, there is a
bijection between the set PRF of all partial recursive functions of zero or more arguments
and the set PRF; of all partial recursive functions of one argument (that is, from N to N).

We will see below that: (i) this bijection 7 and its inverse 77! are total partial recursive
functions (actually, they are primitive recursive functions (see Definition 1 on page 57)),
and (ii) the class of the partial recursive functions is closed under composition.

In what follows we will consider also a class C' of properties of partial recursive func-
tions. In order to study such class C' of properties, without loss of generality, we will
restrict ourselves to partial recursive functions of arity 1, because for that class C' we have
that every partial recursive function g(n) from N to N has a property P in C' iff the
partial recursive function, say g(z) = g(7(z)) from N* to N, with k > 0 and 7(z) = n,
has property P.

For denoting functions we will often use the so called lambda notation. This means that
a function which given the argument n, returns the value of the expression e, is written
as the lambda term An.e. In order to make it explicit that the argument n may occur in
the expression e, we will also write An.e[n], instead of An.e. We will allow ourselves to say
the function e, instead of the function An.e, when the argument n is understood from the
context.

Let us now introduce some elementary notions concerning the lambda notation which
will be useful below.

Given a set K of constants with arity, with k£ ranging over K, and a set V of variables,
with v ranging over V, a lambda term e is either

a constant k or

a variable v or

an abstraction \v.e or

an application (ejez), also denoted e;(ez) or simply e;es.

For every lambda terms p and e, we define the notion of ‘p occurs in €’ (or ‘p is a subterm
of €’ or ‘e contains p’) as follows:

(i) p occurs in p, (ii) if p occurs in e; or ey then p occurs in (ejes), and (iii) if p occurs in
e or p is the variable v then p occurs in Av.e.

An occurrence of a variable v in a term e is said to be bound iff it occurs in a subterm
of e of the form Av.e;. An occurrence of a variable v in a term e is said to be free iff it
is not bound. For instance, the leftmost occurrence of v in v (Av.(vz)) is free, while the
other two occurrences are bound.

Given a lambda term e the set of its free variables, denoted F'V (e), can be inductively
defined as follows:

(constant) FV(k

(variable) FV(

(abstraction) — FV/(

(application)  FV(ejes) = FV(e1) U FV(ey).
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The result of the application of the function An.e[n] to the argument m is e[m/n], where by
e[m/n] we mean the expression e where all free occurrences of n in e have been replaced
by m. Thus, for instance, (i) (An.n+1)5 = 5+1, and (ii) (An.(n+ ((An.n+1)3)))5 =
(5+((An.n+1)3)) =5+(3+1) =9.

Note that the name of a bound variable is insignificant, that is, A\z.e is the same as
Ay.ely/x]. Thus, for instance, (An.(n+((An.n+1)3))) = (An.(n+((Az.z+1)3))).

Functions of zero arguments returning the value of the expression e are written as
A().e or simply e. For r > 2 we will write Az ...xz..e or Azy,...,x,.e as an abbreviation
for the lambda term Azy.(...(Az,.e)...).

12 Primitive Recursive Functions

Definition 1. [Primitive Recursive Function| The set of the primitive recursive func-
tions is the smallest set, call it PR, of functions, which includes:

(i) the zero functions z of k arguments, that is, Ax; ... x;.0, for all k > 0,
(ii) the successor function s of one argument, that is, Az.z + 1, and

(iii) the i-th projection functions my; of k arguments, that is, Az ...x.x;, for all k£ > 1
and all 7 such that 1 <14 < k, and it is closed under composition and primitive recursion,
that is,

(iv) (composition) if the function h of k > 1 arguments is in PR and the & functions
g1, - - -, gk, each of them being of m (> 0) arguments, are in PR, then also the following
function f of m arguments

flzr, .o xm) = h(gi(z, o xm), o ge(T1, -y )
is in PR, and
(v) (primitive recursion) if a function h of k+1 arguments and a function g of k—1
arguments are in PR for some k>1, then also the function f of k& arguments such that:

fO, 2o, ... xx) = g(xa, ..., xx)
f($1+1>$27"'axk) :h(zlaan"'7zk>f(xlax27"'>$k))

is in PR.

Obviously, we have that each function in PR is a function from N* to N for some k>0.
The identity function Ax.x from N to N is primitive recursive, because it is the projection
function ;.

Lemma 1. All partial functions of arity k, for k& > 0, which are constant functions, are
primitive recursive, that is, for all n > 0 and k > 0, Axy ...xg.n is primitive recursive.

Proof. By induction on the number £ of arguments.

(Basis) For k = 0 we have that: (i) A().0 is primitive recursive by Definition 1 (i), and (ii)
for all n >0, (A().n 4+ 1)() = s((A().n)()), where for any 0-ary function f we denote by
f() the application of f to the empty tuple of arguments. Thus, by Definition 1 (iv) we
have that for all n > 0 if the function A().n is primitive recursive then also the function
A().n + 1 is primitive recursive.
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(Step) Let us consider the constant function f,, = Az ...x,.n. Then the function f,, 11 =
AZy .. TyTmyr1.n is defined as follows:

Jrn1(0, 22, ., Zg1) = fr(T2s 0 Ting)

Jmrr(@r + 1,22, 0 1) = Tgome2(T1, T2, - g1, frr 1 (T, Ty 0 Tg)). 0

Lemma 2. Primitive recursive functions are closed under: (i) addition of dummy argu-
ments, (i) substitution of constants for variables, (iii) identification of arguments, and
(iv) permutation of arguments.

Proof. The reader may convince himself that the statements of this lemma hold by looking
at the following examples.

(i) Addition of dummy arguments. For instance, Azy.f(x,y) is obtained from Az.g(x)
where for all z and y, f(x,y) = g(x), by composing primitive functions because f(x,y) =
g(ma(z, y)).

(ii) Substitution of constants for variables. For instance, Az.g(z) is obtained from
Azy.f(x,y) where for all z, g(x) = f(x,3), by composing primitive functions because
9(x) = f(mu(z), (Az.3)(x)).

(iii) Identification of arguments. For instance, Az.g(z) is obtained from Azy.f(z,y)
where for all z, g(x) = f(x,z), by composing primitive functions because g(x) =
fru(z), T ().

(iv) Permutation of arguments. For instance, A\zry.g(z,y) is obtained from Azy.f(z,y)
where for all z and y, g(z,y) = f(y, z), by composing primitive functions because g(x,y) =

f(maa(2,y), 71 (2, y)). O

When showing that a function is primitive recursive we will allow ourselves to make use
of Lemma 2 and to adopt abbreviated notations as we now indicate.

For instance, we will show that the addition function is primitive recursive by writing
the following equations:

sum(0,y) =y

sum(z+1,y) = sum(z,y) + 1 (by primitive recursion)
instead of

sum(0,y) = m2(0,y)

sum(z + 1,y) = sp(zx,y, sum(x,y)) (by primitive recursion)

where: (1) \y.m2(0, y) is primitive recursive because it is obtained from o9 (x, y) by replac-
ing the variable = by the constant 0 (see Lemma 2 above), and (ii) sp(x,y, z) is primitive
recursive because

sp(x,y, z) = (Az.x+1)(ms3(z, y, 2)) (by composition)
If we apply Lemma 2 the Composition Schema (Definition 1.iv) may be generalized by
allowing some of the g;’s to be functions of some, but not all the variables z, ..., x,.
Analogously, the Primitive Recursion Schema (Definition 1.v) may be generalized by al-
lowing the function A to have as arguments only some of the k+1 arguments x1, xo, . . ., 2%,
f(LL’l,LL’Q, cey S(Zk)

The functions defined by equations like the ones of Case (v) of Definition 1, which are
called recursive equations, are assumed to be evaluated in the call-by-value mode, also
called inside-out and left-to-right mode. For more details the reader may look at [33].



12. PRIMITIVE RECURSIVE FUNCTIONS 59

This means that the evaluation of an expression proceeds by:

(i) considering the leftmost subexpression, say u, among all innermost subexpressions
which match a left-hand-side of a recursive equation, and

(ii) replacing u by (R), if u is equal to (L) for some recursive equation L = R and
substitution 1.

Actually, since all primitive recursive functions are total, the mode of evaluation of
the recursive equations does not matter. However, it does matter in the case of the partial
recursive functions (see Section 13) because of the presence of the minimalization operator
which may lead to non-terminating computations.

It can be shown that: (i) the functions defined by composition and primitive recursion
are uniquely determined by their recursive equations (this result is stated in the so called
Recursion Theorem which can be found, for instance, in [9]), and (ii) for all x in the
domain of f we can compute by using the call-by-value mode of evaluation the unique
element m of N such that f(x) =m.

It follows from Definition 1 that the set of primitive recursive functions is denumerable.
Indeed, for the set PR we have the following domain equation [32, Chapter 4|:

PR = N + {1} + NxN + PRxPR* + PRxPR

The five summands of the right hand side of this equation correspond to the cases (i)—(v),
respectively, of Definition 1 on page 57. It can be shown by induction that every primitive
recursive function is total.

Almost all ‘algorithmic functions’ of ordinary mathematics are primitive recursive.
Here is the proof for some of them. The proof is given by exhibiting the recursive equa-
tions of those functions. We leave it to the reader to fill in the details and to show how
these recursive equations can be replaced by suitable applications of the composition
and primitive recursion schemata as indicated above for the function sum. We have the
following equations.

1. (addition)

sum(0,y) =y sum(z+1,y) = sum(z,y) + 1 (by primitive recursion)
We will also write sum(z,y) as x+y. Note that we have overloaded the symbol +, because
z+1 also denotes the unary successor function Az.s(z).
2. (predecessor: x—1 = if x =0 then 0 else z—1)

0-1=0 (z4+1)-1==x (by primitive recursion)
It is a primitive recursive function because:

0-1=(A().0)() and (x+1) =1 = may (x, z1).
3. (proper subtraction: -y = if y > x then 0 else x—y)

r-0==x r=(y+1) = (x—-y)-1 (by primitive recursion)

As often done in the literature we have overloaded the symbol = because we have used it
for proper subtraction and predecessor. If © > y we will feel free to write x — y, instead
of x—y. Indeed, if x > y then z—y = x — y, where — is the usual subtraction operation
between natural numbers we learnt at school.
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4. (multiplication)
Oxy=0 (x4+1)xy=(xxy)+y (by primitive recursion)
We will also write xxy as zy.

5. (exponentiation)

=1 ¥t = avr (by primitive recursion)
6. (factorial)

0l=1 (x4+1)! = (z+1) x (x!) (by primitive recursion)
7. (sign: sg(x) = if x =0 then 0 else 1)

5g(0) =0 sg(x+1) =1 (by primitive recursion)
8. (negated sign: nsg(z) = if © =0 then 1 else 0)

nsg(0) =1 nsg(z+1) =0 (by primitive recursion)
9. (minimum between two natural numbers: min) (by composition)

min(z, y) = x=(zy)

10. (maximum between two natural numbers: max) (by composition)
maz(z,y) =z + (y—x)

11. (absolute difference: |x — y| = maz(z,y) ~min(x,y)) (by composition)
[z —y| = (z-y) + (y—)

We have that: |z —y| = |y — z|.

The following properties relate the functions sg, nsg, and the if-then-else construct. For
any a,b € N, we have that:

if =0 then a else b = a nsg(x)+b sg(x)
if =y then a else b = a nsg(|x —y|)+b sg(jx — y|)

In particular, for any a € N,
if x=y then 0 else a = if x#y then a else 0 = a sg(|z —y|)
if x=y then a else 0 = if x#y then 0 else a = a nsg(|x — y|)

12. (rem(x,y) = integer remainder when z is divided by y)

We assume that for any x € N, rem(x,0) = x. Thus, rem is a total function from N?
to N. We have that: for any y € N,

rem(0,y) =0

rem(x + 1,y) = if (rem(z,y)+1) #y then rem(z,y)+1 else 0
Thus,

rem(0,y) =0

rem(z + 1,y) = (rem(x,y)+1) sg(|(rem(x, y)+1) — yl)
This last equation can be rewritten as follows:

rem(z+1,y) = g(rem(x,y),y) where
9y, 2) = (y+1) sg(|(y+1) — 2[)
and the function ¢ is primitive recursive because it can be obtained by composition.
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Note that rem(z,y) <y iff y > 0. In particular, rem(x,y) <y does not hold if y = 0.
Indeed, for any x € N, we have that rem(x,0)=x and x £0.

13. (quot(z,y) = integer quotient when z is divided by y)

We assume that for any z € N, quot(z,0) = z. Thus, quot is a total function from N?
to N. We have that:
quot(0,y) =0
quot(x + 1,y) = if (rem(z,y)+1# y) then quot(x,y) else quot(x,y)+1
= quot(z,y) + (if (rem(x,yH) # y) then 0 else 1)
Note that, analogously to what happens in standard arithmetics, for all x,y € N, we have
that:

r =y x quot(z,y) + rem(x,y).
14. (divisibility: div(z,y) = if = is divided by y then 1 else 0)
We assume that = is divided by 0 iff =0, that is, div(x,0)=1 iff z=0. Thus, div is a
total function from N? to N. We have that:
div(z,y) = nsg(rem(z,y))
Here are some examples of applications of the functions rem, quot, and div.
(i) For the division 0/4 we have: rem(0,4) = 0 and quot(0,4) = 0.
(ii) For the division 4/0 we have: rem(4,0) = 4 and quot(4,0) = 0.
(iii) div(0,2) = nsg(rem(0,z))=1 for any = > 0.
(iv) div(z,0) = nsg(rem(x,0)) = 0 for x # 0.

Definition 2. [Predicate and Characteristic Function| A predicate P on N* for
k >0, is a subset of N*. If z € P we also write P(z) and we say that P(z) holds or P(x)
is true. Given a predicate P on N¥, its characteristic function, denoted fp, is a function
of arity k from N* to N, defined as follows:

fe(z) = if x € P then 1 else 0, for any x € N*.

Definition 3. [Primitive Recursive Predicate| A predicate on N* for k > 0, is said
to be primitive recursive iff its characteristic function is primitive recursive.

For instance, the predicates =<y, eq(z,y) (also written as x=vy), and x>y, for z,y € N
are primitive recursive. Indeed, fo<, = s9(y—x), feqay) = nsg(Jz—yl), and fo~y = sg(z—y).

Lemma 2 can easily be extended to primitive recursive predicates. We leave that
extension to the reader.

Lemma 3. The set of the primitive recursive predicates is closed under negation, (finite)
disjunction, and (finite) conjunction.

Proof. (1) fnot p(x) = 1=fp(x), (ii) frorq(z) = sg(fr(x) + fo(x)), and

(iil) franaq(z) = fr(z) X fo(z). O
We have that the predicate x < y is primitive recursive, because = < y iff (x <y or
eq(z,y)).

Let us introduce the following definition. In this definition and in what follows, for
any pair a and b of natural numbers, with a <b, [a, b] denotes the subset {a,a+1,...,b}

of N.
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Definition 4. [Bounded Existential and Universal Quantification| Given a pred-
icate P on N**! for k > 0, the bounded existential quantification of P is the predicate Q
on N*1 such that Q(z,n) iff 3i € [0,n] P(z,1).

Analogously, for the bounded universal quantification by replacing 3 by V.

Lemma 4. Primitive recursive predicates are closed under bounded existential quantifi-
cation and bounded universal quantification.

Proof. If fp(x,n) is the characteristic function of the predicate P(z,n) then the char-
acteristic function fg(x,n) of the predicate Q(x,n) = i € [0,n] P(x,i) is defined by
primitive recursion as follows:

fo(z,0) = fp(z,0) folx,n+1) = fo(x,n) + fp(x,n+1).
For the bounded universal quantification, it is enough to recall that Lemma 3 and the
fact that Vi € [0,n] P(x,1) is the same as not(3i € [0,n] not(P(x,1))). O

Lemma 5. |[Definition by cases| Let us consider the set {(g;(x), P;(z))|1 <7 <r and
1 < 7}, where for 1 < i < 7, g;(z) is a primitive recursive function from N* to N and
P;(x) is a primitive recursive predicate denoting a subset of N*. Let us assume that for
each x in N* one and only one of the predicates P;(x), for 1 < i < 7, holds. Then the
function f which satisfies the following equations:

flx)=agi(x) if Pi(x)
=go(z) if Ps(x)

—g.(z) if Px)

is primitive recursive.

Proof. The case where r = 1 is obvious, because the definition of f(x) corresponds to the
equation f(x) = gi(x) if true, that is, f(z) = g1(z). For r > 1 we have the following. Let
¢i(x) be the characteristic function of P;(z) for 1 <4 < r. Then

f(@) = (. Aq(@)er(@) + go() (@) + o+ gr(@)en (). 0

Note that the case where r = 2 corresponds to the equation:
F(z) = if P(x) then gi(x) else gs(x)

which we also write as:

f(@) =gi(x) if P(x)

= go(x)  otherwise.

Remark 1. In a definition by cases of a primitive recursive function, the evaluation of the
predicates P;(z), Py(x), ..., and P.(z) is done sequentially from left to right. Since the
corresponding characteristic functions are total, the order of evaluation of these predicates
is not important. However, if we allow predicates with characteristic functions which are
partial functions, as we will do in the sequel, this order of evaluation is important, because
otherwise, the definition by cases may fail to specify a partial function. O

Now we define a new operator, called the bounded minimalization operator.
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Definition 5. [Bounded Minimalization| Given a predicate (), subset of N**1 the
bounded minimalization operator, denoted min, allows us to define a function f of arity
k+1, with & > 0, such that: for any z € N* and n € N,
f(z,n) = the minimum y € [0, n| such that Q(z,y) holds
if there exists y € [0,n] such that Q(x,y) holds
=0 otherwise

The function f(x,n) is denoted by min y € [0,n] Q(z,y).

In the otherwise clause we could have chosen for f(x,n) a value different from 0 without
modifying the theory of the partial recursive functions. The choice of 0 is convenient when
formulating Lemma 9 and, in particular, when establishing Lemma 9 Point (iv).

Lemma 6. If the predicate Q(z,y) subset of N*¥1 for k > 0, is primitive recursive then
the function f(z,n) = min y € [0,n] Q(x,y) is primitive recursive.

Proof. Let us consider the function
g(z,n,m)=m if 3i € [0,n] Q(z,1)
=n+1 ifnot(Fi € [0,n] Q(z,7)) and Q(xz,n+1)
=0 if not(3i € [0,n+1] Q(z,1))
The function g is primitive recursive because it is defined by cases starting from primitive
recursive functions and primitive recursive predicates. We will show that f(x,n) is primi-
tive recursive by showing that it is equal to the following function A defined by primitive
recursion, as follows:
h(z,0) =0
h(z,n+1) = g(z,n, h(z,n))
(Recall that ¢ is primitive recursive). By unfolding the definition of g, we have that the
function A is also defined by the equations:
h(z,0) =0
h(x,n+1) = h(z,n) if Fi € [0,n] Q(z,1)
=n+1 if not(3i € [0,n] Q(x,i)) and Q(x,n+1)
=0 if not(Ji € [0,n+1] Q(x,17))
Now, recalling the definition of the bounded minimalization operator min, we also have
that:
f(z,0) =miny €[0,0]Q(x,y) = if Q(x,0) then 0 else 0
flz,n+1) = if Fi € [0,n] Q(x,i) then f(z,n) else
if Q(x,n+1) then n+1 else 0

Thus, we conclude that h(z,n) = f(z,n) for all z € N*, and n € N, because they are
defined by the same recursion equations. O

By using Lemma 6 we can show that many other mathematical functions are primitive re-

cursive. For instance, we have that the integersquareroot(x), defined as the largest number

whose square does not exceed z, is a primitive recursive function. Indeed,
integersquareroot(z) = min y € [0,z] (y*> < z) and ((y+1)? > z).
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Lemma 7. Let h(n) be a primitive recursive function from N to N and f(z,m) a prim-
itive recursive function from N**1 to N of the form: min y € [0, m] Q(z,y), where z is a
k-tuple of numbers and m is a number. Then the function

g(x,n) = min y € [0, h(n)] Q(z,y)
is primitive recursive.

Proof. The function g(x,n) is defined by composition as follows:
g(fﬁ, n) = f(xv h’(n)) = f(ﬂ-k—l-ll(xvn)v ) 7Tk+1k(x7n>7 h(ﬁk+1k+1($, n))) u

Definition 6. [Bounded Sum and Bounded Product| Let f be a primitive recursive
function from N**! to N. Let z denote a k-tuple of numbers, and n and r denote two
numbers. The bounded sum of the function f(x,n) below r, denoted 3, f(x, n), is defined
as follows:

Ynorf(xyn) = if r=0 then 0 else f(z,0)+ f(z, 1)+ ...+ f(z,r—1)).

The bounded product of the function f(x,n) below r, denoted I, f(x,n), is defined as
follows:

e f(z,n) = if r=0 then 1 else f(z,0) x f(z,1) x ... x f(z,r—1)).

Often the qualification ‘below r’ is dropped and we will simply say ‘the bounded sum of
f(z,n) or ‘the bounded product of f(x,n).

Lemma 8. Given a primitive recursive function f from N**! to N and a number 7, the
bounded sum ¥, .. f(z,n) and the bounded product I, ., f(z,n) are primitive recursive
functions. The same holds if in the summations and in the products we replace < by <.

Proof. We have the following primitive recursive equations:
Yneof(z,n) =0 Bpcpp)f(z,n) =X, f(x,n) + f(z,7), and
hcof(x,n) =1 Ilhcpir)f(z,n) = o f(z,n) X f(z,7).
For instance, if we write ¥, f(x,n) as S(x,r), we have that:
S(z,0) =0
S(z,r+1) = S(z,r) + f(x,r).
S(z,r) is a primitive recursive function, because S(z,7) + f(x,r) = suml(x,r,S(z, 7))
and suml1(z,r,m) is a primitive recursive function. Indeed, we have that:
suml(x,r,m) = sum(ms3(x,r,m), f(ms1(z, r,m), w3a(z, 7, Mm))).
When replacing < by < we have:
Y f(,n) = Bpcriy f(z,n), and 1L <, f(x,n) = I c(r1) f (2, 0).
Thus, we have that for all » > 0, the functions Az.3, <, f(z,n) and Az.Il,<,f(x,n) are
primitive recursive by Lemma 7. O

Lemma 9. The following functions are primitive recursive:

(i) D(n) = the number of divisors of n, according to the following definition of divisor:
y is a divisor of z iff div(x,y) =1 and y < z.
Thus, we have: D(0) =1, D(1) = 1, D(2) =2, D(3) =2, D(4) =3, D(5) = 2, ...

(ii) Pr(n) = if (n>2 and n is prime) then 1 else 0

(iii) p(n) (also written as p,) = the n-th prime number, with n>0, defined as follows:
Po=0,p1=2,p2=3,p3=5,ps=7,p5=11,...
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(iv) e(z,n) = if n=0 or x=0 then 0 else the exponent of p, in the prime factorization
of z.

Thus, for instance, e(x, 1), e(x, 2), and e(z, 3) are the exponents of 2, 3, and 5, respectively,
in the prime factorization of z.

(v) The inverse functions of the so called pair function C(x,y) = 2*(2y + 1) = 1. Note
that C(z,y) is a bijection from N? to N.

Proof. (i) D(z) = D1(z,x) where the function D1 is defined as follows:
D1(z,0) = div(z,0) and DI1(x,n+1)= D1(z,n)+ div(x,n+1).
(ii) Pr(z) = if D(z) =2 then 1 else 0.
D(x)=2 means that 2>1 and the only divisors of x are 1 and x. Thus,
Pr(z) = nsg(|D(z)—2]).
(ili) po = 0 and p,41 = minz € [0,p,! + 1] (2 > p, and Pr(z)).
This is a definition by primitive recursion, because: (a) (z > p, and Pr(z)) is a primitive
recursive predicate, (b) we may apply Lemma 7 for h(n) = p,!+1, and (c) the remainders
of the n divisions of p,! + 1 by pg,p1, ..., and p,, respectively, are all different from 0,
and thus, in the interval [p,+1, p,!41] there is at least one prime.
(iv) e(z,n) = min z € [0, z] (div(z,pzt) = 0).
(v) Let n be C(x,y). Thus, n+1 is 2%(2y+1). We have that: x = e(n+1, 1), because 2y+1

is odd, and y = quot(quot(n+1,2%)=1,2). O
An element (21, s,...,2;) of N¥ for k > 0, can be encoded by the following element
of N:

Bxy,x9,...,21) = if k=0 then 1 else (p{*™ x pP2™ x ... Xpi”l).
From the value of f(xy, za,...,z1), call it B, we can get the values of k£ and those of the
x;’sfori=1,...,k, as follows:

k= if B=1 then 0 else min z € [0, B] (e(B,z+1) = 0), and
fori=1,...,k, z; = e(B,1)-1.
The encoding ( from N* to N is not a bijection. Indeed, for instance, no element z exists

in N* such that §(x) = 3. The same holds for 5(z) = 0.

Lemma 10. Given an element (x,, s, ..., ;) of N¥, for any k > 0, let 7 be the following
function with arity &:
T(x1, %9, ..., x) = if k=0 then 0 else
271 2:c1+x2+1 + 2x1+x2+x3+2 + .+ 2x1+x2+...+x;¢+kﬁ1_

The function 7 is a bijection from N* to N and realizes an encoding of k-tuples of natural
numbers into natural numbers. The function 7 and its inverse 7~! are primitive recursive
functions.

Proof. If k = 0 then 7(z1, 29, ...,2) = 7(()) = 0. If £ > 0 then 7(xy,zo,...,x,) > 0. It
immediate to see that 7 is primitive recursive.
Given the value of 7(xy, s, ..., ), we can compute 7!, that is, we can derive the
values of x1, s, ..., and x, by using primitive recursive functions only as we now indicate.
We have that 77(0) = ().
Given any = > 0, we have that x has a unique expression of the form:

r=0a(0,z)2+... +a(i,r)2" + ...
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where, for any ¢ > 0, a(i,z) € {0,1}. Thus, for i >0, the values of «(i,z) give us the
binary expansion of the number z. In particular, for all j > i such that x < 2¢, we have
that a(j,xz) = 0.
Given any x>0, it has a unique expression of the form:

r=202) 4 2022) 4 9bM(z)e)
with 0 < b(1,2) < b(2,2) <... < b(M(x),z) and 1 < M(x), where M (x) is the number
of the powers of 2 occurring in the binary expansion of . The number z has also a unique
expression of the form:

r = 2a(1,x) + 92 a(l,z) +a(2,2) +1 + 2a(1,x)+a(2,m)+a(3,m)+2 4.

+2 a(lz)+a2z)+...+a(M(z)z)+ k-1

where 1 <M(x) and for j =1,..., M(x), we have that a(j,z) > 0.
For example, if x = 2° 4 28 + 215 (= 33056) we have that:
b(l,z)=5, b(2,2)=8, b(3,x)=15,

M(z)=3,
a(l,x)=5, a(2,z)=2, a(3,x)=6,
k=3, and

1 (z)=(5,2,6).
It is easy to check that 7(77!(z)) = z. Indeed, 7({5,2,6)) = 25 4 28 4 215
Now we show that the functions b(z, x), M (x), and a(j, x) are primitive recursive and this
will imply that the function 77! is primitive recursive.
(i) a(0,z) = rem(x,2) a(i+1,z) = a(i, quot(x,2)) for i >0
(ii) Let us denote b(M(x),z) by E(z). We have that, for x > 0, E(z) is the highest
exponent of 2 occurring in the binary expansion of x. We have:
E(x) = if x=0 then 0 else min z € [0, 2] (2°7! > x).
(iii) M(z) = if =0 then 0 else K(E(x),x)
where K(0,2) = «(0,2) and K(j+1,2) = K(j,2) + a(j+1,z) for any 7 > 0.
For >0, K(E(z), ) is the number of the powers of 2 occurring in the binary expansion
of z. We also have that:

M(z) =X, o), z).
(Recall that since for any = > 0, x < 2% we have that: for any i > z, a(i,z)=0).
(iv) b(i,x) = if =0 or i=0 or i>M(x) then 0 else
if i=1 then r else b(i—1,x—2")
where r = minz € [0,z] (a(z,2) > 0). Thus, r is the exponent of the smallest power

of 2 occurring in the binary expansion of x. Note that if the condition ‘x=0 or i=0 or
i> M (z) is false then ¢ is in the interval [1, M(z)]. For ¢ in [1, M(x)], we also have:

b(i,z) = minz € [0,z] (Zp<. a(k,x)) =1).
(v) The function a(j, x) can be expressed as follows:
a(j,z) = if x=0 or j=0 or j>M(z) then 0 else
if 7=1 then b(1,z) else ((b(j,z)=b(j—1,2))—1). O
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FExample 1. In order to better understand some of the expressions we have defined in the
proof of the above Lemma 10 on page 65, let us consider the number 13. We have that:

13 =20+ 22 423
13 = 2b(1,13) + 2b(2,13) + 2b(3,13)
We also have that:

b(1,13) =0 b(2,13) =2 b(3,13) = 3 (see below)

a(0,13) =1 a(1,13) =0 a(2,13) =1 a(3,13) =1

for z = 0: for z = 1: for z = 2: for z = 3:
S8 =1 Yia3)=1  Yioa(13)=2  i,a(i,13)=3
E(13) =3

M(13) =3

Here is the computation of the value of b(3, 13).

First, we take the binary expansion of 13, which is 1011 (the most significant bit is to
the right). The leftmost bit 1 is in position 0. We have: 2° = 1 and 13—1 = 12. We get:
b(3,13) = b(2,12).

Then, in order to compute b(2,12), we take the binary expansion of 12 which is 0011.
The leftmost bit 1 is in position 2. We have: 22 = 4 and 12 — 4 = 8. We get: b(2,12) =
b(1,8).

In order to compute b(1,8), we take the binary expansion of 8 which is 0001. The
leftmost bit 1 is in position 3. We have: 23 = 8 and 8—8 = 0. We get: b(1,8) = 3.

Therefore, b(3,13) = b(2,12) = b(1,8) = 3. O

FEzercise 1. (i) Show that primitive recursive functions are closed under mutual recursive
definitions. Without loss of generality, let us consider the following functions g and h with
one argument only:

9(0)  =a
g(n+1) =r(n, g(n), h(n))
h(0) =b

h(n+1) = s(n, g(n), h(n))
where the functions r and s are primitive recursive.
We have that the function f(n) = 290 3"(") is primitive recursive, because:
F(0) =203
f(n+ 1) — 2g(n+1)3h(n+1) —
— 9r(n,g(n),h(n))3s(n,g(n),h(n)) —
= 2r(nuv)3s(nuw) where (u,v) = (e(f(n), 1), e(f(n),2))
where the definition of the function Az, n.e(x,n) is given in Lemma 9 Point (iv). Thus,
g(n) =e(f(n),1) (because g(n) is the exponent of 2 in the prime factorization of f(n)) and
h(n) =e(f(n),2) (because h(n) is the exponent of 3 in the prime factorization of f(n)). O

Ezxercise 2. Show that the Fibonacci function is primitive recursive. We have that:
fib(0) =0
fib(1) =1
fib(n+2) = fib(n+1) + fib(n)
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We have that the function f(n) = 2%+ 3fb() g primitive recursive, because:
f(0)  =213°
f(n41) = 2fbn+2)3fib(nt1) —
= 2utv3% where (u,v) = (fib(n+1), fib(n))
= 2"Tv3% where (u,v) = (e(f(n), 1), e(f(n),2))
where the definition of the function Az, n.e(x,n) is given in Lemma 9 Point (iv).

Thus, fib(n) =e(f(n),2). O

Remark 2. The course-of-value recursion can be reduced to primitive recursion (see the
result by R. Péter presented in [22, page 273]), in the sense that we get an equivalent
definition of the set of the primitive recursive functions if in Definition 1 we replace the
second equation of (v) by the following one:
f(xl—i‘l,ilfg, ces ,S(Zk) =
h(zy, 29, ..k, f(T1, @0,y xg), fler—1, 29, ..o xk), .o, f(O, 22, .., Tk))- O

13 Partial Recursive Functions

Let us begin by introducing the minimalization operator p with respect to a class C' of
functions.

Definition 7. [Minimalization y| Given a function ¢ from N*! to N for some k > 0, in
the class C' of functions, the minimalization operator p allows us to define a new function
f from N* to N, denoted Ax.(uy.[t(x,y) = 0]), such that for any = € N*,

f(x) = the minimum y such that ¢(z,y)=0 if there exists y € N such that t(z,y)=0
= undefined otherwise

In the literature there exists a different minimalization operator with respect to a class C
of functions. It is called p*.

Definition 8. [Minimalization p*| Given a function ¢ from N**1 to N for some k > 0,
in the class C' of functions, the minimalization operator p* allows us to define a new
function f* from N* to N, denoted \x.(u*y.[t(z,y) = 0]), such that for any x € N*,
f*(z) = the minimum y such that (i) for all d<y,t(x,d) is defined and (ii) ¢(z,y)=0,
if there exists y € NV such that
(ii.1) for all d <y, t(x,d) is defined and
(ii.2) t(z,y) =0
= undefined otherwise

Remark 3. When applying the operators p and p* we need to know the class C of functions
to which the function t belongs. O

Remark 4. When introducing the minimalization operators, one could consider, instead
of the predicate Az, y.[t(x,y) = 0], the predicate Az, y.[t(x,y) = r], for some fixed number
r € N. Any choice of a natural number r, different from 0, does not modify the theory of
the partial recursive functions. O
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Now we define the set PRF of the partial recursive functions and, for any k > 0, the sets
PRF}. of the partial recursive functions of arity k.

Definition 9. [Partial Recursive Function. Version 1| The set PRF of all partial
recursive functions (p.r.f.’s, for short) is the smallest set of partial functions, subset of
Uiso(N* — N), which includes: (i.1) the zero functions, (i.2) the successor function, and
(i.3) the projection functions (as defined in Definition 1) and (ii) it is closed with respect
to the following operations: (ii.1) composition, (ii.2) primitive recursion, and (ii.3) mini-
malization p with respect to the subset of the partial recursive functions themselves which
are total functions.

The set PRF of the partial recursive functions of arity k, for any k£ > 0, is the subset
of PRF which includes all partial recursive functions of arity &, that is, from N* to N. O

It follows from the above Definition 9 that the set of the partial recursive functions
is denumerable. Indeed, for the set PRF we have the following domain equation [32,
Chapter 4]:

PRF = N + {1} + N*xN + PRFxPRF* + PRFxPRF + TPRF

where TPRF is the subset of PRF which includes all partial recursive functions which are
total. Obviously, the cardinality of TPRF is not smaller than that of N (because for all
n € N, the constant function A\z.n is in TPRF) and it is not larger than that of PRF.

One can show that the set PRF) of partial recursive functions is not closed under p
operations with respect to the class PRFy; of functions. (Note that PRFy.; includes
also partial functions.) In particular, for k=1 there exists a partial recursive function f in
PRF, such that Ai.(uy.[f(i,y) = 0]) is not a partial recursive function. One such p.r.f. f
is defined as follows:

XNidy.if y=1V (y=0 A g;(¢) is defined) then 0 else undefined (1)
where g; is the i-th partial recursive function [33, page 42|.

Remark 5. We can speak of the i-th p.r.f. g;, for any ¢ > 0, because the set of the p.r.f.’s is
recursively enumerable (see Definition 1 on page 87), that is, there is Turing Machine M
such for all natural number n, M returns a p.r.f., and for every p.r.f. g there exists a
natural number n such that M returns g. (Note that M may return the same g for two
or more different input values of n.)

The fact that the set of the p.r.f.’s is recursively enumerable is a consequence of the
following two points: (Point 1) each of the five cases considered in the definition of the
primitive recursive functions (see Definition 1 on page 57), refers to either a particular
function (case (ii)) or a denumerable number of functions (cases (i), (iii), (iv), and (v)),
and (Point 2) the minimalization operator depends on a total p.r.f. and the set of the
total p.r.f.’s is denumerable.

In the above expression (T) the word ‘undefined’ stands for ‘uy.[1(y) = 0]’, where Ay.1
is the total function of one argument returning the value 1, for any y € N. Moreover,
as we will see in the proof of Theorem 3 on page 71, by using (a variant of) the Kleene
T-predicate (see page 70) and the minimalization operator p, we can replace ‘g;(i) is
defined’ by a predicate whose characteristic function is a p.r.f. Thus, we have a syntactic
way of establishing that the expression (}) actually defines a p.r.f.
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An alternative way of establishing that the expression (1) defines a p.r.f. is by applying
the bijection between the set of the p.r.f.’s and the set of the Turing Machines (see
Section 17 on page 80). That bijection tells us that there exists an algorithm (that is, a
Turing Machine) that computes the natural number m, if any, such that m = g;(i) and
that algorithm terminates iff m exists.

The following equivalent definition of the set PRF of the partial recursive functions is
equivalent to Definition 9.

Definition 10. [Partial Recursive Function. Version 2| The set PRF of the partial
recursive functions is the smallest set of partial functions, subset of (J,-,(N* — N),
which: (i) includes all primitive recursive functions, and (ii) it is closed with respect to:
(ii.1) composition, (ii.2) primitive recursion, and (ii.3) minimalization p* with respect to
the set PRF itself of the partial recursive functions. O

In the above Definition 10, instead of saying ‘includes all primitive recursive functions’,
we could have said, as in Definition 9, ‘includes the zero functions, the successor function,
and the projection functions’.

Theorem 1. Each partial recursive function f of one argument can be expressed as:

An.p(py.-[t(n, y) = 0])
for some primitive recursive functions p and t (possibly depending on f).

As a consequence of Theorem 1, we have an alternative proof that the set of p.r.f.’s is
denumerable. Indeed, the partial recursive functions are as many as the pairs of primitive
recursive functions, that is, [N x N| (which is equal to |N|).

Remark 6. A statement similar to the one of Theorem 1 where the function p is omitted,
does not hold. In particular, there exists a p.r.f. f such that no total p.r.f. ¢ exists such
that f is An.(uy.[g(n,y) = 0]) [33, page 37]. O

Remark 7. Given a partial recursive function f, Theorem 1 tells us how to compute the
value of f(n) for any n € N. Indeed, let f be equal to An.p(uy.[t(n,y) = 0]). Then, in

order to compute f(n) we compute the sequence of values: t(n,0),t(n, 1), ..., until we find
the smallest y, call it 7, such that ¢(n,7) = 0. Then f(n) = p(7). Obviously, if such a
value of y does not exist, then f(n) is undefined. O

Theorem 2. [Kleene Normal Form Theorem]| The set PRF; of the p.r.f.’s of arity 1
can be obtained by choosing two fixed primitive recursive functions P (of arity 1) and T
(of arity 3). We have that PRF, = {An.P(uy.[T(i,n,y) =0])|i > 0}. O

The function 7' of Theorem 2 is (a variant of) the so called Kleene T-predicate. T is a
total function satisfying the following property: T'(i,n,y) = 0 iff 7 is the encoding of a
Turing Machine M such that there exists m € N which is computed by M with input n
in fewer than ¢(y) computation steps, where A\y.q(y) is fixed primitive recursive function,
independent of i, n, and y [33, page 30]. In a sense the function T incorporates in its
definition also the definition of the function ¢. (Note also that Turing Machines can be
encoded by natural numbers.) Since the function 7' is primitive recursive, Theorem 2
holds also for p*, instead of .
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For all i > 0 the expression An.P(uy.[T(i,n,y) = 0]) defines the i-th partial recursive
function of arity 1. Every partial recursive function of arity 1 has infinitely many indices,
that is, for every p.r.f. f from N to N there exists an infinite subset I of N such that for
all i € I we have that f = M.P(uy.[T(i,n,y) = 0]).

Some partial recursive functions are total. Indeed, this is the case when, with reference
to Definition 7 on page 68 and Definition 9 on page 69, for all x € N* there exists a
minimum value of y such that ¢(z,y)=0.

A total p.r.f. is also called a recursive function. In the literature, unfortunately, partial
recursive functions sometimes are called recursive functions tout court. The reader should
be aware of this ambiguous terminology.

The set of the total partial recursive functions can be defined as in Definition 9 with
the extra condition that the total partial recursive function ¢ which is used in the mini-
malization operator u, satisfies the following property:

Ve € N.dy € N.t(z,y) =0.

Definition 11. |[Recursive Predicate| A predicate, subset of N*, is said to be recursive
iff its characteristic function from N¥ to N is a recursive function.

There are p.r.f.’s which are always undefined, that is, p.r.f.’s whose domain is empty. One
such function is, for instance, An.(uy.[t(n,y) = 0]) where t = An,y.1 (that is, ¢ is the
constant function of two arguments which returns 1).

There exists a total p.r.f. which is not a primitive recursive function. A p.r.f. which
is total and is not primitive recursive is the Ackermann function ack from N x N to N
defined as follows:

for any m,n € N,
ack(0,n) =n+1
ack(m+1,0) = ack(m,1)
ack(m+1,n+1) = ack(m, ack(m+1,n))

We omit the proof that the Ackermann function is a p.r.f. which is not a primitive recursive

function. The proof that the Ackermann function is not primitive recursive is based on

the fact that it grows faster than any primitive recursive function (see also [6, page 194]),

that is, for all primitive recursive function p there exists n such that ack(n,n) > p(n).
The total p.r.f.’s are as many as |N|.

Theorem 3. There exists a p.r.f. f from N to N which cannot be extended to a total
p.r.f., call it g, from N to N, in the sense that for all n € N if f(n) is convergent then

f(n) = g(n).

Proof. Assume that for each p.r.f. f; there exists a total p.r.f.; call it f;«, which extends f;.
Let us consider the function A such that for all ¢ > 0,

h(i) =gef if fi(i) is defined then f;(i)+1 else undefined
where f; is the i-th p.r.f. from N to N. Thus, we have that:

h(i) =aef if py.[T(i,4,y) = 0] > 0 then fi(i)+1 else py.[1(y) = 0]
where Ay.1 is the constant function of one argument which returns 1. From this expression
and recalling that the Kleene T-predicate is total p.r.f., we have that the function h is
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a p.r.f. Let us assume that the function h is the p.r.f. of index r, that is, h = f,. By
assumption, we have that there exists the p.r.f. f.. which is total. Since (a) if f;(i) is
defined then h is defined and (b) f,« extends h, we have that for all i > 0,

if fi(i) is defined then (f,«(i) is defined and f,«(i) = fi(i)+1).
If we consider ¢ = r* we get that:

if fre(r*) is defined then (f,«(r*) is defined and f.(r*) = f«(r*)+1),
which is a contradiction because f, is a total p.r.f. and, thus, f.(r*) is defined. a

From Definition 9 it follows that given a partial recursive function g of k41 arguments
which is total, then the function \xy, . .., zx.(uy.[g(z1, . . ., 2k, y) = 0]) is a partial recursive
function which is not necessarily total because it may be the case that for all zq, ..., xg,
no y exists such that g(xq,...,zg,y) = 0.

14 Partial Recursive Functions and Recursively Enumerable
Sets

Definition 12. |[Recursively Enumerable Sets| A set A is recursively enumerable,
r.e. for short, iff either A = () or there exists a total p.r.f. f from N to N such that A =

range(f). O

This definition motivates the name ‘recursively enumerable’ given to the set A. Indeed,
assuming that A is not empty, we have that the elements of the recursively enumerable
set A are ‘enumerated, possibly with repetitions,” by a total p.r.f. f in the sense that
A ={f(i)|i € N}. The meaning of ‘possibly with repetitions’ is that in the sequence:
f(0), £(1), f(2),..., we may have identical elements of the set A.

Let us now introduce the notion of dove-tailing evaluation of a partial recursive func-
tion.

For this purpose we first need to consider a suitable model of computation and a notion
of computation step relative to that model. (Actually, the basic results we will present do
not depend on the particular model we choose, because they depend only on function
convergence.) We assume that the notion of computation step is a primitive notion and,
thus, we need not to specify it. With reference to Definition 9, we will only say that a
computation step can be understood as:

- in cases (i.1)—(i.3) the evaluation of a zero function, or the successor function, or a
projection function, or

- in cases (ii.1) and (ii.2) the replacement of a left-hand-side by the corresponding right-
hand-side, or else

- in case (ii.3) the computation step of the function t relative to the minimalization
operator L.

Given a partial recursive function f from N to N, we say that the bounded evaluation
of f(i) for j computation steps is:

- f(4) if performing at most j computation steps the evaluation of f(i) gives us a number
in NV,
- the distinguished value # (not in N), otherwise.
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An alternative definition of a computation step of a partial recursive function is as
follows. A computation step of a p.r.f. f is a move of the Turing Machine (see page 13)
that, as we will see below, is associated with the p.r.f. f.

Given a partial recursive function f from N to N, its dove-tailing evaluation is the
construction of a two-dimensional matrix where at row i (> 0) and column j (> 0) we
place the bounded evaluation of f(i) for j computation steps (see also Figure 19 on
page 73). This matrix is constructed element by element, in the increasing order of the
entries which we denote by (0), (1), (2),. .., called position numbers. For any i,7 € N, at
row i and column j we have the unique position number D(i, j) = ((i + j)* + 3i + j)/2.

There are two functions r and ¢ from N to N such that for any position number d (> 0)
we have that d occurs in the dove-tailing matrix at row r(d) and column ¢(d). The two
functions r and ¢ are primitive recursive, because as the reader may verify, r(d) =d — S
and ¢(d) = s — r(d), where:

S = quot((s*+s),2) and

s = quot(integersquareroot(8d+1)+1, 2) — 1
and integersquareroot(z) is the natural number n such that n? <z < (n+1)>2.

computation step j: | 0 1 2 3

==}
— — — —

argument ¢: 0

N N N N

1
2
3

Fig. 19. The matrix of the position numbers for the dove-tailing evaluation of a p.r.f.
from N to N.

Now we state an important result about the dove-tailing evaluation of any p.r.f.: there
exists a partial recursive function, call it I, from PRE XN x N to NU{#} which given any
partial recursive function f and the numbers ¢ and j, computes the value of the bounded
evaluation of f(i) for j computation steps. The function I is a total function as we will
see below.

The proof of the existence of the function I (given in [6, Chapter 5| and [34]) relies
on the existence of the Universal Turing Machine and on the fact (not proved here) that
there exists a bijection between the set PRF of the partial recursive functions and the
set of the sequences of instructions for Turing Machines, that is, the set of the Turing
Machines themselves (recall also that an instruction for a Turing Machine can be encoded
by a quintuple of numbers). This bijection exists because of: (i) the injection from the
set PRF to the set of the Turing Machines, (ii) the injection from the set of the Turing
Machines to the set PRF, and (iii) the Bernstein Theorem [32, Chapter 1.

Note that the two injections from the set PRF to the set of the Turing Machines and
vice versa, are Turing computable functions, while we do not require the bijection between
from the set PRF to the set of the Turing Machines is a Turing computable function.
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Since there exists a Turing computable injection from the set PRF to the set of the
Turing Machines, we can associate with every p.r.f. f a unique, deterministic Turing
Machine, (that is, a sequence of instructions or quintuples), which computes f (see also
Section 17 on page 80).

Since a sequence of instructions can be encoded by a sequence of numbers (because an
instruction is, in general, a sequence of characters and a character can be encoded by a
number), and a sequence of numbers can be encoded by a single number (see the encoding
function 7 in Section 12 on page 65), we have that any partial recursive function, say f,
can be encoded by a number, say 7*(f), which is called the number encoding of f.

Thus, when we say that [ takes as input a p.r.f. f we actually mean that it takes as
input the number 7*(f). The function I is a total function from PREXN x N to N U{#}.
It can also be considered as a function from N to N because of the bijection between
PRF and N, the bijection between N3 and N, and the bijection between N U{#} and N.

The function I extracts from the value of 7*(f) the sequence of instructions of the
Turing Machine which computes f, and then it behaves as an interpreter (and this is
the reason why we gave the name [ to it) which uses that sequence as a program for
evaluating f(i) for j computation steps.

Now we give an informal proof of the existence of the function /. This proof will be
based on the fact that for each partial recursive function f there exists a set of recursive
equations which can be used for evaluating f (see Section 12 starting on page 57 and
Remark 7 on page 70).

An informal proof of the existence of the function I. Given a p.r.f. f, it can be viewed as a
set, call it Fqy, of recursive equations constructed from the zero, successor, and projection
functions, by using composition, primitive recursion, and minimalization. In particular, a
function Az.g(x) defined by the minimalization operation of the form py.[t(x,y) = 0] is
equivalent to the following two equations:

9(x) =auz(z,0)

auz(x,y) = if t(x,y) =0 then y else auz(x,y+1)
Then the set Eq, of recursive equations can be viewed as a program for the function f. We
can encode that program by a number which we also denote, by abuse of language, 7*(f).

Let us consider the computational model related to the leftmost-innermost rewriting
of subexpressions and let us consider a computation step to be a rewriting step. The
initial expression eg (that is, the expression at computation step 0) is the number which
encodes f(i), for any given p.r.f. f and input number i. Then, given the number which
encodes the expression e at the generic computation step k (> 0), the function I produces
the number which encodes the expression e;,; at the next computation step £+ 1 as
follows. The function [ finds in the program a recursive equation, say L = R, such that
the leftmost-innermost subexpression u of e is equal to (L)) for some substitution ¥,
and it replaces the subexpression u in e by (R9).

We hope that the reader may convince himself that the operations of: (i) finding the
leftmost-innermost subexpression, (ii) finding the recursive equation to be applied, and
(iii) rewriting that subexpression, are all operations which can be performed starting
from the number 7%(f) and the number which encodes the expression e at hand, by the
application of a suitable total partial recursive function which operates on numbers. O
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Theorem 4. A set A isr.e. iff A is the domain of a p.r.f.

Proof. (only-if part) Let us call p the p.r.f. to be found, whose domain is A. If A = ()
the function p from N to N is the everywhere undefined partial recursive function. This
function can be denoted by the lambda term An.(uy.[1(n,y) = 0]), where for all n and y,
the function An,y. 1(n,y) returns 1. (Obviously, infinite many other lambda terms denote
the everywhere undefined partial recursive function.)

If A # () then, by definition, A is the range of a total p.r.f., say f. A is the domain of the
partial recursive function p which is Az.uy.[f(y) — x = 0]. Indeed, z € A iff Jy.f(y) = =
iff p is defined in x.

(if part) We have that A is the domain of a p.r.f., call it g. By definition, for all x € A,
g(x) is defined, i.e., g(x) € N. We have to show that A is r.e.

If A = () then there is nothing to prove because A is r.e. by definition.

If A # () then we show that A is r.e. by constructing a total p.r.f., call it h, such that
A is the range of h.

Let us first consider a list of pairs of numbers, call it GG, which is constructed as follows.
The initial value of G is the empty list. Then the value of G is updated by inserting in it
new pairs of numbers, as we now indicate.

We first perform the dove-tailing evaluation of the function g. We will see below
that we can perform the dove-tailing evaluation of the function ¢ in an incremental way,
while computing the (possibly infinite) set of pairs that constitutes the function h. Let
us assume that by dove-tailing evaluation of g, we get a table whose initial, left-upper
portion is depicted in Figure 20.

computation step 5: | 0 1 2 3 4 5
argument i: 0 | # H# H#H H# F#H H# ..
LI # # # # #
x # Yo,

Fig. 20. Dove-tailing evaluation of the function g.

When a value of g(x), say m, different from #, is obtained in row = and column y, we insert
at the right end of the list G the pair (z, D(x,y)) (here we assume that the list G grows
to the right). (Recall that: D(z,y) = ((z 4+ y)? + 3z +y)/2.) By definition of dove-tailing,
if (x, D(z,y)) is in G then in G there are infinitely many pairs whose first component is
x (because there are infinitely many m’s in row x in Figure 20). In particular, if m € N
is in row x and column y then for each column k >y, m is in row x and column k.

Since A is the domain of g, g(x) is convergent for each x € A, and therefore for every
x € A there exists y € N (actually, there exist infinitely many y’s) such that the pair
(x, D(z,y)) is inserted into G.

Since A is not empty, the list G has at least one pair. Let us consider the pair of G
with the smallest second component, that is, the pair which is first inserted into G during
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the dove-tailing evaluation of g. Let that pair be (zg, dy). (Recall that, by definition of the
function r which computes the row of any given position number, we have that o = r(dp).)
Thus, the list G is of the form:

G = [(ZL’Q, d0>, <l’1, d1>, ey <£L’n, dn>, .. ]
where (dy, dy, . ..,d,,...) is an infinite sequence of increasing numbers, that is, dy < d; <
Lo<dy, <L

Note that the list G is infinite even if A is a finite set (by hypothesis; A is non-empty).
We also have that for all € A and for all d > 0 there exists d; > d such that if (z,d) is
in G then (x,d;) is also in G.

Let us define the function A from N to N, as follows:

(1) h(0) = o

(2) h(n+1) =if (x,n+1) is in G then x else x,

Thus, for every n € N, we have that h(n) = r(n) if the bounded evaluation of g(r(n))
returns a number within ¢(n) computation steps, otherwise h(n) = xy. As a consequence,
since A # () and the pair (zg,dg) occurs in G, we have that for every n € N, in order
to compute h(n), we only need to compute a finite portion of the dove-tailing of the
function g.

We have the following three facts.

(i) The function A is p.r.f. because the function I which for any z > 0 and any n > 0,
performs the bounded evaluation of g(z) for ¢(n) computation steps, is a total partial
recursive function from N3 to N U {#}, and so is the function which for i=0,..., n+1,
performs the bounded evaluations of g(r()) for ¢(i) computation steps. Thus, the predi-
cate ‘(x,n+1) is in G’ is recursive.

(ii) By definition of h, we have that h is a total p.r.f.

(iii) Moreover, the range of h is A. Indeed, let us consider any = € A. Since A is the
domain of the partial recursive function g, for that x there exists a position number d
such that: (iii.1) = r(d), and (iii.2) the bounded evaluation of g(z) returns an element
of N (that is, it does not return #) within ¢(d) computation steps. By (iii.2) we have that
(x,d) is in G and, as a consequence, h(d) = z (see Equation (2) above). O

In order to understand the (<) part of the proof of Theorem 4 and to clarify the definition
of the function A, let us now consider the following example.

Example 2. Let us assume that the dove-tailing evaluation of the function g, depicted in
Figure 21 below, produces the following list:

G =[(2,8), (1,11), (2,12), (1,16), (2,17), (4,19),.. ]
(2,8) means that at position number 8, that is, at row 7(8) =2 and column ¢(8) =1, we
have computed the value of g(2), which is mg, with at most 1 computation step,
(1,11) means that at position number 11, that is, at row 7(11)=1 and column ¢(11)=3,
we have computed the value of g(1), which is my;, with at most 3 computation steps,
(2,12) means that at position number 12, that is, at row r(12) =2 and column ¢(12) =2, we
have computed (again) the value of g(2), which is mio =msg, with at most 2 computation
steps,
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(4,19) means that at position number 19, that is, at row 7(19)=4 and column ¢(19)=1,
we have computed the value of g(4), which is mjg, with at most 1 computation step,

computation step j: 0 1 2 3 4 )
argument i: 0| (0) (1) (3) (6) (10) (15) ...
12 @ (7 mn me
2| () mg  Miz My
31 (9 (13) (18)
4 (14) Mig

Fig. 21. Dove-tailing evaluation of the function g. The r.e. set A which is the domain of g
is {2,1,4,...}. It is also the range of the function A defined by the Equations (1) and (2).

In the matrix of Figure 21 we have written, instead of the #'s, the corresponding
position numbers between parentheses. The entries of that matrix different from #, which
are in the same row, are all equal. Indeed, they are the value of the function g for the
same input. In particular, in our matrix of Figure 21:

(i) for row 1, we have: g(1) =my =me = ...,
(ii) for row 2, we have: g(2) = mg = mis = myr = ...,
(iii) for row 4, we have: g(4) = mig = .. ., etc.

Since during the dove-tailing evaluation the first computed value of the function g is

g(2) = mg, we have that in the definition of the function h, the value of xj is 2. Thus,

n:‘O‘1‘2‘...‘8‘9‘10‘11‘12‘...‘15‘16‘17‘18‘19‘...

v [2l2 2l 22l 2 [zl ]2z 4]

To sum up, in order to compute h(n) we first perform the dove-tailing evaluation of the
function g until the following two conditions are satisfied:

(i) the position at row r(n) and column ¢(n) has been filled with the value of the bounded
evaluation of g(r(n)) with at most ¢(n) computation steps (it may be either a number
or #), and

(ii) the value of g has been computed for at least one element in A, call it zq, (recall
that A is not empty, by hypothesis) with xy different from #. O

Theorem 5. A set A is r.e. iff A is the range of a p.r.f.

Proof. (only-if part) Let us call p the p.r.f. to be found whose range is A. If A = () the
function p is the everywhere undefined partial recursive function. This function can be
denoted by the lambda term An.(py.[1 = 0]).

If A # () the p.r.f which has A as range, is the total p.r.f. which exists because A is,
by definition, the range of a total p.r.f.
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(if part) We have that A is the range of a p.r.f., call it g.

If A= then A is r.e. by definition.

If A # () then we show that A is r.e. by constructing a total p.r.f., call it h, such that A
is the range of h.

The proof of this part of the theorem is like part (<) of the proof of Theorem 4, with
the exception that:

(i) during the construction of the list G, when the value of g(z), say m, different
from #, is obtained in row x and column y, we insert at the right end of the list G the
pair (m, D(z,y)), instead of the pair (z, D(z,y)), and

(ii) the function h is defined as follows:

(1) h(0) = min,
(2") h(n+1)=1if (m,n+1)isin G then m else my,

where m;, is the first component of the pair which is first inserted into G. Note that, since
A # 0, G must have at least one pair.

By definition, the function h is total.

We also have that A is the range of h. Indeed, for every x € A, x is by hypothesis in
the range of g, and thus, there exists k such that the bounded evaluation of g(r(k)) gives
us the number x within ¢(k) computation steps. As a consequence, for every x € A there
exists k € N such that since (z, k) is in G and thus, by definition of A (see Equation 2
above), we have that for all x € A there exists k € N such that h(k) = x. This shows
that A is the range of h. O

In order to understand the (<) part of the proof of Theorem 5, let us now consider the
following example.

FExample 3. Let us assume that the dove-tailing evaluation of the function g, depicted in
Figure 21 above, produces the following list:
G = [(mg, 8), <m11, 11>, (mg, 12>, <m11, 16), <m8, 17), <m19, 19>, .. ]
This value of G means that during the dove-tailing evaluation
- at position 8 (and 12,17,...) we have computed ¢g(2) = mg = mis = my; = .. .,
- at position 11 (and 16,...) we have computed g(1) = my; = mye = .. .,
- at position 19 we have computed g(4) = mg = ..., etc.
In our case we have that m;, = mg and h(0) = mg. Thus, the values of the function h
are as follows:

n:‘0‘1‘2‘...‘8‘9‘10‘11‘12...‘15‘16‘17‘18‘19‘...

h(n):‘mg‘mg‘ mg“ mg‘mg‘mg‘mll‘mg “ mg‘mll‘mg‘mg‘mlg‘...
O

Definition 13. |[Recursive Set| A set A C N is recursive iff there exists a total p.r.f.,
say fa, such that Vo € N. if x € A then fa(x) =1 and if v & A then fa(x)=0.

It follows from the definition that for any given recursive set A the corresponding function
fa (which is a total p.r.f.) can be used for deciding whether or not a number is an element
of A, that is, for deciding the membership problem relative to the set A.
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By definition, recursive sets are the largest collection of sets for which it is possible to
decide the membership problem via a total p.r.f.

Related to Definition 13 we also have the following theorem.

Theorem 6. A set A isr.e. iff there exists a partial recursive function, say f4, such that:
Ve € N. if x € A then fa(z) =1 else undefined. (1)

Proof. Let us consider the partial recursive function p which we have constructed in the
proof of the only-if part of Theorem 4. We have that A is the domain of p(x). Thus,
p(z) € Niff z € A, and if x ¢ A then p(z) is undefined. Let us also consider the following
function fy:
fa(x) =nsg(0-p(z)).

Now we have that: (i) fa(x) is a p.r.f. because p(z) is a p.r.f. and the class of the partial
recursive functions is closed with respect to composition, and (ii) fa(z) satisfies (f) be-
cause by the properties of the function p(x) we have that f4(z)=1iff x € A, andif z ¢ A
then f4 is undefined. (Recall that expressions are evaluated in the call-by-value mode.) O

There are sets which are r.e. and are not recursive. One such set can be constructed as
follows.

Let us consider the following injective encoding, say 7*, from the set of Pascal pro-
grams into the set N of natural numbers. Since every Pascal program is a finite sequence
of characters, for each program there exists a unique corresponding finite sequence of
numbers, and that sequence can be encoded by a single number (via, for instance, the
above mentioned 7 function).

Let us consider the set

D = {7*(p) | p is a Pascal program and p halts when given the input 7*(p)}.

Thus, a number n is in D iff n is the encoding of a Pascal program which halts when its
input is n. One can show that D is a r.e. subset of N, but it is not a recursive subset.

Obviously, instead of Pascal programs, we may equivalently consider C++ or Java
programs. Indeed, the choice of the programming language does not matter as long as we
can write in it a program for any partial recursive function.

15 Recursive Enumerable Sets and Turing Computable
Functions

An alternative definition of recursively enumerable sets can be given in terms of Turing
Machines, instead of p.r.f.’s. Indeed, as we will indicate in Section 17, it can be shown
that a function is a p.r.f. from N to N iff it can be computed by a Turing Machine, having
chosen a suitable encoding of numbers by strings of tape symbols.

One can show that r.e. sets are exactly those subsets of N which can be enumerated
by Turing Machines in the following sense: for any r.e. set A C N there exists a Turing
Machine T4 such that if A is the empty subset of N then for any input n € N, Ty does
not halt, and if A is not empty then

(i) for any n € N, when given n as input, the Turing Machine T4 halts and gives us
back an element of A, and
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(ii) for any a if @ € A there exists n € N such that when given n as input, the Turing
Machine T4 halts and gives us back the element a.

Note that if a set A is r.e. there exists an infinite number of Turing Machines which
enumerate A, and in particular, there exists an infinite number of Turing Machines which
do not halt for all input n € N.

16 Partial Recursive Functions on Strings

Instead of considering p.r.f.’s from N to N we may consider p.r.f.’s from a generic domain
M1 to a generic domain M2. In particular, we may choose M1 = M2 = the integers, or
M1 = M2 = X* = {a,b}*. In the latter case the set of p.r.f.’s from [ J,, (X*)* to X* can
be defined as the smallest set of functions such that it includes: -

(i.1) the functions of k arguments As; ... sy. e, where ¢ is the empty string, for all k£ > 0,
(i.2) the two unary successor functions As. sa and As. sb, and

(i.3) the projection functions Asj . ..sg.s; for all k > 1 and for all i =1,... k,

and it is closed under

(ii.1) composition, defined as in Definition 1 (iv),

(ii.2) primitive recursion defined as follows:

if the functions h, and hy, of k+1 arguments and a function g of k—1 arguments are p.r.f.’s
for some k> 1, then also the function f of k arguments such that:

fle,so,. ., 86) =g(sa,..., k)

f(sla, S9,..., Sk) = ha(sl, S2,...,8k, f(Sl, S92, ..., Sk))

f(s1b, soy. .., 8K) = hp(s1,S2, -, Sk, f(S1,82,...,5k))
is a p.r.f., and

(ii.3) minimalization in the sense that given any total function p.r.f. Azs.t(x,s) from
(X*)* x X* to X*, then the p.r.f. of arity k of the form

Az (ps.t(x,s) =¢])
where z € (X*)F and s € X%, belongs to the set of p.r.f.’s from (2*)* to X*. In order to
apply the minimalization operator u we need an ordering among the strings in 2™ and

we choose the canonical one, that is, e < a < b < aa < ab < ba < bb < aaa < ..., which
corresponds to the assumption that a < b.

It is not difficult to show that under suitable encodings of strings into numbers, the
theory of the p.r.f.’s where each function is from (X*)* to X*, for some k > 0, is isomorphic
to the theory of the p.r.f.’s where each function is from N to N.

17 Partial Recursive Functions and Turing Computable
Functions

We have the following theorem which identifies the set of partial recursive functions and
the set of Turing computable functions, when we represent the input/output numbers and
the input/output strings as indicated in Definitions 9 and 10 of Section 2. In particular, any
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natural number n is represented by 0170 and for any k>0, any k-tuple (ny,...,n;) € N*
is represented by 01™0...01"+0.

Theorem 7. (i) For any k(> 0), any Turing Machine M whose initial configuration is
01™ 0...01™ 0, computes a partial recursive function from N* to N, and any partial
recursive function from N* to N can be computed by a Turing Machine whose initial
configuration is ¢p0 1™ 0...0 1™ 0.

(ii) For any k(> 0) any Turing Machine M whose initial configuration is gyw with
w € (X7)*, computes a partial recursive function f from (X7)* to X3, and any partial
recursive function from (X7)* to X5 can be computed by a Turing Machine whose initial
configuration is gow.

We do not give the proof of this theorem here. Theorem 7 tells us that there exists a
bijection between partial recursive functions and Turing Machines.

Theorem 7 also holds if instead of Turing Machines and partial recursive functions,
we consider, respectively: (i) Turing Machines which always halt with a configuration
which represents an output value according to our conventions, and (ii) partial recursive
functions which are total. Thus, the notion of a total partial recursive function is equivalent
to the notion of an ‘always terminating’” Turing Machine.

As we will see later, a consequence of this fact is that the undecidability of the Halt-
ing Problem implies that there is no partial recursive function which given any partial
recursive function f, tells us whether or not f is total.

18 Subrecursive Classes of Partial Recursive Functions

In this section we introduce some classes of partial recursive functions which define three
hierarchies within the class PR of the primitive recursive functions (see Section 12 on
page 57).

We will first introduce: (i) the Grzegorczyk hierarchy [12], (ii) the loop hierarchy [28],
and finally, (iii) the Axt hierarchy [4]. At the end of the section we will relate these three
hierarchies.

Let us begin by introducing the Grzegorczyk hierarchy [12|. We first need the following
two definitions.

Definition 14. [Spine Function| For any n >0, the n-th spine function f,: NxN — N
is defined as follows:

fo(z,y) =2 +1 (successor)

hzy)=z+y

folz,y) =2 xy  (multiplication)

folz,y) =ify =0 then 1 else f,_1(x, fu(x,y—1)) for any n > 2.
We have that:

fa(z,y) =a¥ (exponentiation)

filz,y) = if y = 0 then 1 else z/+@y=1)

sum)
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Thus, for y > 1, fi(z,y) = z , Where x occurs y times on the right hand side, that is,
falz,y) =27 (x7...(xTz)...), where the symbol T denotes exponentiation and x occurs
y times on the right hand side.

Proposition 1. For all n > 0, for all x > 2, and for all y > 2, f,(z,y) < foei(z,y).

Definition 15. |[Limited Primitive Recursion| We say that a function f : N¥ — N,

for £ > 1, is defined by limited primitive recursion iff: (i) f is defined by primitive

recursion (given two other primitive recursive functions, say g and h), and (ii) there exists

a primitive recursive function hy : N¥ — N such that for all 24, ..., z; € N we have that:
f(l’l, e ,S(Zk) S hg(l’l, e ,S(Zk).

Definition 16. |[Base Function| The set of the base functions is the smallest class of

functions which includes:

(i) the zero functions zj of k arguments, that is, Ax;...zx.0, for all £ > 0,

(ii) the successor function s of one argument, that is, Az.z + 1, and

(iii) the i-th projection functions my; of k arguments, that is, Az ...x.x;, for all k£ > 1
and all ¢z such that 1 <7 < k.

Now we will define the n-th Grzegorczyk class of functions, for any n > 0.

Definition 17. [Grzegorczyk Class| For any n > 0, the n-th Grzegorczyk class of
functions, denoted E,, is the smallest class of functions which includes:

(i) the base functions,

(ii) the n-th spine function f,, and it is closed under

(iii) composition and

(iv) limited primitive recursion using functions in E,, that is, the functions g, h, and hy,
used in Definition 15, belong to F,,.

We have that Az.x =1 (i.e., the predecessor function) and Az, y.z =y (i.e., the proper sub-
traction function) belong to Ey (see Section 12 on page 59). We also have that the functions
Az, y.quot(x,y) (i.e., the integer quotient when z is divided by y) and Az, y.rem(x,y) (i.e.,
the integer remainder when z is divided by y) belong to Ey.

We have the following theorem which states that the Grzegorczyk classes of functions
form a hierarchy which covers the class PR of the primitive recursive functions.

Theorem 8. [Grzegorczyk (1953)] (i) For all n > 0, E,, C Epnyq, and (i) U5, En = PR.

One can say that the Grzegorczyk hierarchy stratifies the class PR of the primitive recur-
sive functions by growth complexity because the spine functions denote different degrees
of growth as stated by Proposition 1.

In connection with the results of Proposition 1 and Theorem 8 the reader may also
take into consideration Theorem 21 of Section 29.4 which tells us that by using a number
of moves which is a primitive recursive function of the size of the input, a Turing Machine
can compute only a primitive recursive function of the input.

Let us now introduce a different stratification of the class PR of the primitive recursive
functions. It is based on the so called loop complezity |28]. We need the following definition.
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Definition 18. [Loop Program| Let us consider a denumerable set V' of variables
ranged over by x,y,... A loop program pq of level 0 is defined as follows:

po n= x:=0|x:=x+1|2:=y]|Dpo; o
where ‘;” denotes the usual concatenation of programs.
For any n > 0, a loop program p,, of level n is defined as follows:

pn = x:=0|z:=x4+1|2:=y|py;p. | whilez >0do p,_1;z:=2—1 od
where on the right hand side: (i) p,_1 is a loop program of level n—1, and (ii) in the

program p,,_; the variable x cannot occur on the left hand side of any assignment. The
class of loop programs of level n, for any n > 0, is denoted by L,.

The semantics of the loop programs, which we will not formally define, is the familiar
Pascal-like semantics. Note that the value which the variable x has when the execution
of a while x > 0 do p; z := x — 1 od construct begins, tells us how many times the
loop program p will be executed. By using new variable names, we can always write a
loop program so that a distinct variable controls the execution of the body of each of its
while-do constructs.

With every loop program p we can associate a function from N* to N for some k > 0,
by assuming as inputs the initial values of k£ distinct variables of p, and as output, the
final value of a variable of p.

By abuse of notation, for any n > 0, we will denote by L, also the class of functions,
called loop functions, computed by the loop programs in L,.

We have the following theorem which states that the loop functions form a hierarchy
which covers the class PR of the primitive recursive functions.

Theorem 9. (i) For all n > 0, L,, C L,.1, that is, the class of functions computed the
loop programs in L,, is properly contained in the class of functions computed by the loop
programs in L, 1, (ii) UnZO L, = PR, and (iii) for all n > 2, L,, = E, 1.

We have the following decidability and undecidability results.

The equivalence of loop programs within the class L; is decidable (that is, given two
loop programs in L, it is decidable whether or not they compute the same function), while
for any n > 2, the equivalence of loop programs is undecidable.

Let us now introduce one more stratification of the class PR of the primitive recursive
functions. It is based on the so called structural complezity [4]. We need the following
definition.

Definition 19. [Axt Class| The Axt class Ky of functions is the smallest class of func-
tions which includes:

(i) the base functions, and it is closed under

(ii) composition.

For any n > 0, the Axt class K, .1 of functions is the smallest class of functions which:
(i) includes the class K,

(ii) is closed by composition, and

(iii) is closed by primitive recursion using functions in K, that is, the two functions which
are required for defining a new function by primitive recursion should be in K,,.
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We have the following theorem which states that the Axt classes form a hierarchy which
covers the class PR of the primitive recursive functions.

Theorem 10. (i) For all n > 0, K,, C K41, (ii) U,»o K» = PR, and (iii) for all n > 2,
K, = n+1- -

Let us introduce the following class of functions.

Definition 20. [Kalmar Elementary Function| The class F of the Kalmdr elementary
functions is the smallest class of functions which includes:

(i) the base functions,

(ii) the sum function A\z,y.x + y, and it is closed under

(iii) composition,

(iv) bounded sum and bounded product (see Definition 6 on page 64).

The usual functions of sum, subtraction, product, division, exponential, and logarithm,
whose definitions are suitably modified for ensuring that they are defined in N x N (or N)
and return a value in N (see Section 12 on page 59), belong to the class E of the Kalmar
elementary functions. We have the following result.

Theorem 11. The class F of the Kalmar elementary functions coincides with the Grze-
gorczyk class Fjs.

Thus, by Theorems 9 and 10, we also have that: E is equal to: (i) the functions computed
by the class Lo of loop programs, and (ii) the Axt class Ky (because E3 = Ly = K3).

The relationships among the Grzegorczyk classes, the functions computed by the
classes of loop programs, and the Axt classes are depicted in Figure 22. We have that:

(1) Ky= Ly C Ey,
(ii) K1 C Ly C Eq, and as already stated,
(iii) for any n > 2, L, = K,, = E, 1.

r ™
- ~ Ly
Ly
S
K
Eqo
KO - L(]
—
N\ J
\ J

Fig. 22. A pictorial view of the relationships among various classes of functions: (i) the
Grzegorcezyk classes Ey and Ejy, (ii) the functions computed by the classes Lo and L; of
loop programs, and (iii) the Axt classes Ky and Kj.
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Before ending this section let us introduce in the following Definition 21 a new, very
powerful technique of defining total partial recursive functions, starting from some other
given total partial recursive functions. This technique is parameterized by a natural num-
ber n which is assumed to be greater than or equal to 1. In case n = 1 this technique
coincides with the primitive recursion schema we have introduced in Definition 1 of Sec-
tion 12.

For reasons of simplicity, in the following definition we have written the single variable
y, instead of a tuple of ¢ (> 0) variables yy, ..., ;.

Definition 21. [Primitive Recursion of Order n| [31, page 119] A function f of
n + 1 arguments from N"™! to N is said to be defined by primitive recursion of or-
der n (> 1) starting from the functions g : N — N, h : N***1 — N and the functions

911y - - -5 9101, 9215 - - -5 9202, - - s 9n21,9n22, n-11, all from Nn+2 to N, lff

flz,. . xn,y) =gly)  if 11=0o0r ... or x,=0
fler+1,. .,z + L y) = h(zq, ..., 20y, F1, ., FY)

where, for j =1,...,n,
F; stands for f(xq +1,... 2520+ 1, 25,y, Hj1, ..., Hjpj)
where, forp=1,...,n—7,

Hj, stands for g;p(x1,..., 20y, f(x1 +1,.. ., 200 + 1, 2,,y)).

Primitive recursion of order n is called n-fold nested recursion in 31]. For instance, the
following function f is defined by primitive recursion of order 1 from the functions g and
h (the variable x stands for the variable x; of Definition 21):

f(0,y) = g(y)

fla+1ly) = hz,y, f(z,y)).
This confirms that for n =1 primitive recursion of order 1 coincides with the primitive
recursion schema we have introduced in Definition 1 of Section 12.

The following function f is defined by primitive recursion of order 2 from the functions

g, h, and k (the variables x,y, and z stand, respectively, for the variables z1, x5, and y of
Definition 21):

f(z,y,2) = g(z) if =0 or y=0

flx+1,y+1,2) = h(z,y, 2, F1, F3),
where F is f(z, z, k(x,y, 2z, f(z+1,y,2))) and Fy is f(z+1,y, 2).

Note that for any n (> 1) the schema of primitive recursion of order m, for any
m=1,...,n—1, is a particular case of the schema of primitive recursion of order n.

Definition 22. |[Primitive Recursive Function of Order n| Let the class R,,, with
n > 1, of functions be the smallest class of functions which includes:

(i) the base functions, and it is closed under

(ii) composition, and

(iii) primitive recursion of order n.

In Section 13 we have seen that the Ackermann function is not primitive recursive. We
leave it to the reader to check that it is in Ry [31, page 119].
We have the following result.
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Theorem 12. (i) The class R, is the class PR of the primitive recursive functions, (ii) for
alln >0, R, C Rpy, and (iii) U, B is properly contained in the set of all total PRE’s,
that is, the set of all partial recursive functions which are total functions.

Point (i) follows from the fact that primitive recursion is equal to primitive recursion of
order 1. Point (iii) of the above theorem is a consequence of the fact the set of all total
PRF’s is not recursive enumerable. Indeed, if | J,., R, were equal to the set of all total
PRF’s we would have a way of enumerating all total PRF’s (one total p.r.f. for each way
of applying the rules of constructing a new total p.r.f. from old p.r.f.’s).



Chapter 3

Decidability

19 Universal Turing Machines and Undecidability of the Halting
Problem

In this chapter we need some basic notions about Turing Machines which we have in-
troduced in Section 2. In particular, we need the notions of a Turing Machine which:
(i) answers ‘yes’ (or accepts) a given word w, or (ii) answers ‘no’ (or rejects) a given
word w (see Definition 8 on page 14).

Now let us introduce the following definitions.

Definition 1. [Recursively Enumerable Language| Given an alphabet X', we say
that a language L C X* is recursively enumerable, or r.e., or L is a recursive enumerable
subset of X*  iff there exists a Turing Machine M such that for all words w € X* M
accepts the word w iff w € L.

If a language L C X* is r.e. and M is a Turing Machine that accepts L, we have that
for all words w € X*, if w ¢ L then either (i) M rejects w or (ii) M ‘runs forever’ without
accepting w, that is, for all configurations ~ such that gow —3}, v, where gow is the initial
configuration of M, there exists a configuration ' such that: (ii.1) v —,; 7" and (ii.2) the
states in v and ~' are not final.

Recall that the language accepted by a Turing Machine M is denoted by L(M).

Given any recursively enumerable language L, there are | N| Turing Machines each of
which accepts (or recognizes) L. (As usual, by |N| we have denoted the cardinality of the
set N of the natural numbers.)

Given the alphabet Y, we denote by R.E. the class of the recursive enumerable lan-
guages subsets of 2*.

Definition 2. [Recursive Language| We say that a language L C X* is recursive, or
L is a recursive subset of X*  iff there exists a Turing Machine M such that: (i) for all
words w € X*, M accepts the word w iff w € L, and (ii) M rejects the word w iff w & L.

Given the alphabet X', we denote by REC the class of the recursive languages subsets of
2*. One can show that the class of recursive languages is properly contained in the class
of the r.e. languages. Thus, if a language L is not r.e. then L is not recursive.

In the sequel when we say that a language L is r.e., either (i) we mean that L is
r.e. and it is not recursive, or (ii) we mean that L is r.e. and we say nothing about L

87
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being recursive or not. The reader should be careful in distinguishing between these two
meanings.

Now we introduce the notion of a decidable problem. Together with that notion we also
introduce the related notions of a semidecidable problem and an undecidable problem.
We first introduce the following three notions.

Definition 3. [Problem, Instance of a Problem, Solution of a Problem]| Given
an alphabet X, (i) a problem is a language L C X*, (ii) an instance of a problem L C X*
is a word w € X*, and (iii) a solution of a problem L C X* is an algorithm, that is, a
Turing Machine, which accepts the language L (see Definition 8 on page 14).

Given a problem L, we will is also say that L is the language associated with that problem.

As we will see below (see Definitions 4 and 5), a problem L is said to be decidable or
semidecidable depending on the properties of the Turing Machine, if any, which provides
a solution of L.

Note that an instance w € X* of a problem L C }* can be viewed as a membership
question of the form: «Does the word w belong to the language L?». For this reason
in some textbooks a problem, as we have defined it in Definition 3 above, is said to be
a yes-no problem, and the language L associated with a yes-no problem is also called
the yes-language of the problem. Indeed, given a problem L, its yes-language which is L
itself, consists of all words w such that the answer to the question: «Does w belong to
L?» is ‘yes’. The words of the yes-language L are called yes-instances of the problem.

We introduce the following definitions.

Definition 4. [Decidable and Undecidable Problem]| Given an alphabet X', a prob-
lem L C X* is said to be decidable (or solvable) iff L is recursive. A problem is said to be
undecidable (or unsolvable) iff it is not decidable.

As a consequence of this definition, every problem L such that the language L is finite,
(that is, every problem which has a finite number of instances) is decidable.

Definition 5. [Semidecidable Problem| A problem L is said to be semidecidable (or
semisolvable) iff L is recursive enumerable.

We have that the class of decidable problems is properly contained in the class of the
semidecidable problems, because for any fixed alphabet X' the recursive subsets of X*,
are a proper subset of the recursively enumerable subsets of X*.

Now, in order to fix the reader’s ideas, we present two problems: (i) the Primality
Problem, and (ii) the Parsing Problem.

Ezample 1. [Primality Problem| The Primality Problem is the subset of {1}* defined
as follows:

Prime = {1™ | n is a prime number}.

An instance of the Primality Problem is a word of the form 1", for some n>0. A Turing
Machine M is a solution of the Primality Problem iff for all words of the form 1™ with
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n > 1, we have that M accepts w iff 1" € Prime. Obviously, the yes-language of the
Primality Problem is Prime. We have that the Primality Problem is decidable.

Note that we may choose other ways of encoding the prime numbers, thereby getting
other equivalent ways of presenting the Primality Problem. O

Ezample 2. |Parsing Problem| The Parsing Problem is the subset Parse of {0,1}* de-
fined as follows:

Parse = {[G]000[w] | w € L(G)}

where [G] is the encoding of a grammar G as a string in {0, 1}* and [w] is the encoding
of a word w as a string in {0, 1}*, as we now specify.

Let us consider a grammar G = (Vp, Vy, P, S). Let us encode every symbol of the
set Vr U Vy U {—} as a string of the form 01" for some value of n, with n > 1, so that
two distinct symbols have two different values of n. Thus, a production of the form:
X1 Ty — Y1...Yn, for some m > 1 and n > 0, with the x;’s and the y;’s in Vp U Vi,
will be encoded by a string of the form: 01%101%2 ... 01%0, where ki, ko, . . ., k, are positive
integers and p = m+n+1. The set of productions of the grammar G can be encoded by
a string of the form: 0o ... 0,0, where each o; is the encoding of a production of G. Two
consecutive 0’s denotes the beginning and the end of the encoding of a production. Then
[G] can be taken to be the string 01%2007 ... 0,0, where 01* encodes the axiom of G. We
also stipulate that a string in {0, 1}* which does not comply with the above encoding
rules is the encoding of a grammar which generates the empty language.

The encoding [w] of a word w € Vj: as a string in {0,1}* is 01%101%2...01%0, where
ki, ko, ..., kg are positive integers.

An instance of the Parsing Problem is a word of the form [G] 000 [w], where: (i) [G] is
the encoding of a grammar G, and (ii) [w] is the encoding of a word w € V.

A Turing Machine M is a solution of the Parsing Problem if given a word of the form
[G] 000 [w] for some grammar G and word w, we have that M accepts w iff w € L(G),
that is, M accepts w iff [G] 000 [w] € Parse.

Obviously, the yes-language of the Parsing Problem is Parse.

We have the following decidability results if we restrict the class of the grammars we
consider in the Parsing Problem. In particular,
(i) if the grammars of the Parsing Problem are type 1 grammars then the Parsing Problem
is decidable, and
(ii) if the grammars which are considered in the Parsing Problem are type 0 grammars
then the Parsing Problem is semidecidable and it is undecidable. U

Care should be taken when considering the encoding of the instances of a yes-no
problem. We will not discuss in detail this issue here. We only want to remark that the
encoding has to be constructive (i.e., computable by a Turing Machine which always
halts), and it should not modify the solution of the problem itself (and this could happen
when the problem is of syntactic nature as, for instance, when it depends on the way in
which a problem is formalized in a particular language).

Definition 6. [Property Associated with a Problem| With every problem L C X*
for some alphabet X', we associate a property Pp such that Pp(x) holds iff x € L.
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For instance, in the case of the Parsing Problem, Ppy,.;, (%) holds iff z is a word in {0, 1}"
of the form [G]000[w], for some grammar G and some word w such that w € L(G).

Instead of saying that a problem L is decidable (or undecidable, or semidecidable,
respectively), we will also say that the associated property P, is decidable (or undecidable,
or semidecidable, respectively).

Remark 1. [Specifications of a Problem| As it is often done in the literature, we will
also specify a problem {x | Pr(x)} by using the sentence:

«Given z, determine whether or not P (z) holds»
or by asking the question:
«Pr(z) ?»

Thus, for instance, (i) instead of saying ‘the problem {z| P.(z)}’, we will also say ‘the
problem of determining, given x, whether or not Pp(z) holds’, and (ii) instead of saying
‘the problem of determining, given a grammar G, whether or not L(G) = X* holds’, we
will also ask the question ‘L(G) = X* 7 (see the entries of Figure 25 on page 105 and
Figure 28 on page 112). O

In what follows we need the following facts and theorem.

(i) The complement X*—L of a recursive set L is recursive.

In order to show this, it is enough to use the Turing Machine M for recognizing L. Given
any w € X* if M halts and answers ‘yes’ (or ‘no’) for w then the Turing Machine M1
which recognizes X*— L, halts and answers ‘no’ (or ‘yes’, respectively) for w.

(ii) The union of two recursive languages is recursive. The union of two r.e. languages is
r.e. (We leave it to the reader to construct the Turing Machines which justify these facts.)

Theorem 1. [Post Theorem)| If a language L and its complement X* — L are r.e. lan-
guages, then L is recursive.

Proof. 1t is enough to have the Turing Machine, say M1, for recognizing L, and the one,
say M2, for recognizing 3*—L, running in parallel so that they perform their computations
in an interleaved way. This means that, given an input word w € X*, initially M1 makes
one computation step, then M2 makes one computation step, then M1 makes one more
computation step, and so on, in an alternate way. One of the two machines will eventually
halt (because given a word w € X* either w € L or w ¢ L), and it will give us the required
answer. For instance, if it is M1 (or M2) which halts first and answers ‘yes’ for w, then
the answer is ‘yes’ (or ‘no’; respectively) for w. O

Thus, given any set L C X* there are four mutually exclusive possibilities only (see also
the following Figure 23):

(i) L is recursive and X*—L is recursive
(ii) L is not r.e. and X*—L is not r.e.
(iii.1) L is r.e. and not recursive and X*—L is not r.e.
)

(iii.2) L is not r.e. and X*—L is r.e. and not recursive
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Fig. 23. Post Theorem: view of the set of subsets of L. e denotes a language L subset of
X*, and o denotes the complement language L=,4.; X*—L. (i) L and L are both recursive.
(ii) L and L are both not r.e. (iii.1) L is r.e. and L is not r.e. (iii.2) L is not r.e. and
Lisre.

As a consequence, in order to show that a problem is unsolvable and its associated language
L is not recursive, it is enough to show that 2*—L is not r.e.

Another technique for showing that a language is not recursive (and, thus, the associ-
ated problem is undecidable) is the reduction technique.

We say that a problem A whose associated yes-language is L4, subset of X*, is reduced
to a problem B whose associated yes-language is Lp, also subset of X*, iff there exists a
total function, say r, from L4 to Lp such that for every word w in X*, w is in L4 iff r(w)
isin Lg. (Note that r need not be a surjection.) Thus, if the problem B is decidable then
the problem A is decidable, and if the problem A is undecidable then the problem B is
undecidable.

Let us now consider a yes-no problem, called the Halting Problem. This problem is
formulated as follows. Given a Turing Machine M and a word w, it should be determined
whether or not M halts on the input w. The various instances of this problem are given
by the instances of the machine M and the word w.

We recall that given a language R C {0, 1}* recognized by some Turing Machine M,
there exists a Turing Machine M1 with tape alphabet {0, 1, B} such that R is recognized
by M1.

Thus, if we prove that the Halting Problem is undecidable for Turing Machines with
tape alphabet {0, 1, B} and words in {0, 1}*, then the Halting Problem is undecidable for
any class of Turing Machines and words which includes this one.

Definition 7. [Binary Turing Machines| A Turing Machine is said to be binary iff its
tape alphabet is {0, 1, B} and its input words belong to {0, 1}*.

We will show that the Halting Problem for binary Turing Machines with one tape is
undecidable. In order to do so, we first show that a Turing Machine M with tape alphabet
{0, 1, B} can be encoded by a word in {0, 1}*. Without loss of generality, we may assume
that M is deterministic.
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Let us assume that:
- the set of states of M is {¢; |1 < i < n}, for some value of n > 2,
- the tape symbols 0, 1, and B are denoted by X, X5, and X3, respectively, and
- L (that is, the move to the left) and R (that is, the move to the right) are denoted by
1 and 2, respectively.

The initial and final states are assumed to be ¢; and ¢y, respectively. Without loss of
generality, we may also assume that there exists one final state only.

Then, each quintuple ‘¢;, X}, — ¢;, Xi, m’ of M corresponds to a string of five positive
numbers (i, h, j, k,m). It should be the case that 1 < i,j < n, 1 < hk < 3, and
1 < m < 2. Thus, the quintuple ‘g;, X, — ¢;, X, m’ can be encoded by the sequence:
1'01m01701%01™.

The various quintuples can be listed one after the other, in any order, so to get a
sequence of the form:

000 code of the first quintuple 00 code of the second quintuple 00 ... 000. (1)

Every sequence of the form () encodes one Turing Machine only, while a Turing Machine
can be encoded by several sequences (recall that, for instance, when describing a Turing
Machine the order of the quintuples is not significant).

We assume that the sequences of 0’s and 1’s which are not of the form (}) are encodings
of a Turing Machine which recognizes the empty language, that is, a Turing Machine which
does not accept any word in {0, 1}*.

Let us now consider the following language subset of {0, 1}*:

Ly = {[M]w | the Turing Machine M accepts the word w}
where [M] is the encoding of M as a word in {0,1}*, w is a word in {0,1}*, and [M]w
is the concatenation of [M] and w. (The subscript U in Ly stands for ‘universal’.) The
leftmost symbol of the word w is immediately to the right of the three 0’s in the rightmost
position of [M].

Theorem 2. |[Turing Theorem. Part 1| Ly is recursive enumerable.

Proof. We show that Ly is recursively enumerable by showing that there exists a binary
Turing Machine M which recognizes Ly .

Indeed, we show the existence of a Turing Machine, say T', with three tapes, called
Tapel, Tape2, and Tape3, respectively, which recognizes L;. Then from 7" we construct
the equivalent binary Turing Machine My, called Universal Turing Machine, having one
one-way infinite tape and 0, 1, and B as tape symbols.

The machine T" works as follows.

Initially 7" has in Tapel a sequence s in {0,1}*. Then T checks whether or not s is
equal to s;sy for some s; of the form ().

If this is not the case, then T halts without entering a final state, and this indicates
that M does not accept w (recall that we have assumed that a sequence not of the form (¥)
encodes a Turing Machine which recognizes the empty language).

Otherwise, if the sequence s can be viewed as the concatenation of a sequence of the
form () which encodes a Turing Machine, say M, followed by a word w in {0, 1}*, then T’
writes w in its Tape2 and ‘1’ in its Tape3 (this ‘1’ denotes that M starts its computation
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in its initial state ¢;). The machine T' continues working by simulating the behaviour of
the machine M whose quintuples are on Tapel, on the input word w which is on Tape2,
storing the information about the states of M on Tape3. In order to recall which symbol
of the word w is currently scanned by M, the machine 7" uses a second track of Tape2.
The only final state of M is q9, which is encoded by 11.

() Knowing the current state ¢; and the scanned symbol X}, the machine T' checks
whether or not 11 (denoting the accepting state ¢2) is on the Tape3. If this is the case,
then T" stops and accepts the word w. If this is not the case, then T" looks for a quintuple
on the first tape of the form: 001°01"01701¥01™00, and

(1) if there is one quintuple of that form then 7" makes the corresponding move by:
(i) placing 17 on Tape3, (ii) writing 0 or 1 on the scanned cell of Tape2, if the value of k
is 1 or 2, respectively, and (iii) changing the head marker on the second track of Tape2 to
the left or to the right of the current one, if the value of m is 1 or 2, respectively. Then,
T continues working as specified at Point («) looking at the current state on Tape3.

(a2) If it does not exist a quintuple of the form 001?°01"01701*01™00 then T stops and
it does not accept the input word because 11 is not on Tape3.

It should be clear from the above construction that the machine 7T simulates the
machine M on the input w in the sense that: (i) 7" halts and accepts [M]w iff M halts
and accepts w, (i) 7" halts and does not accept [M]w iff M halts and does not accept w,
and (iii) 7" does not halt iff M does not halt. O

Remark 2. Universal Turing Machines are not very complex machines. We know that
there is universal Turing Machines with 1 tape, 5 states, and 7 tape symbols [16, page 173|.

Theorem 3. |Turing Theorem. Part 2| Ly is not recursive.

Proof. We show that Ly is not recursive by showing first that the language Lp, we will
define below, is not recursive. (The subscript D in Lp stands for ‘diagonal’.) We will show
that Lp is not recursive by showing that 3*— Lp is not r.e. using a diagonal argument.

Then, by reducing Lp to Ly we will derive that Ly is not recursive.

The language Lp is constructed as follows. Let us consider a matrix W whose rows and
columns are labeled by the words of {0, 1}* in the canonical order, i.e., ¢, 0, 1, 00, 01, 10,
11, 000, ... (in this order we have assumed that 0 < 1). In row ¢ and column j we write
‘1’ if the Turing Machine whose code is the i-th word in the canonical order, accepts the
j-th word in the canonical order. (Recall that we have assumed that a sequence not of
the form (T) encodes a Turing Machine which recognizes the empty language.) Otherwise
we write ‘0.

Let Lp be {w|w is i-th word of the canonical order and Wi, i] = 1} C {0,1}*. That
is, w belongs to Lp iff the Turing Machine with code w accepts the word w.

We now show that X*—Lp is not r.e. Indeed, we have that:

(i) w belongs to X*— Lp iff the Turing Machine with code w, does not accept w, and
(ii) if X*—Lp is r.e. then there exists a Turing Machine, say M, with code [M], such that
M recognizes X*—Lp.

Let us now ask ourselves whether or not the Turing Machine with code [M], accepts
the word [M]. We have that the Turing Machine with code [M], accepts the word [M] iff
(by definition of X*—Lp) the Turing Machine whose code is [M] does not accept [M].
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This contradiction shows that X*— Lp is not r.e. Thus, Lp is not recursive.

Now, in order to get the thesis it is enough to reduce Lp to Ly. We do this as follows.
Given a word w in X* we compute the word ww (the first w plays the role of the code
of a Turing Machine, and the second w is the word to be given as input to that Turing
Machine). By construction we have that w € Lp iff ww € Ly.

Since Lp is not recursive, we get that Ly is not recursive. O

We have that the problem corresponding to the language L, called the Halting Problem,
is not decidable, because Ly is not recursive.

Thus, to say that the Halting Problem is undecidable means that it does not exists
any Turing Machine that: (i) halts for every input, and (ii) given the encoding [M] of a
Turing Machine M and an input word w for M, answers ‘yes’ for [M]w iff M halts in a
final state when starting initially with w on its tape.

By reduction of the Halting Problem to each of the following problems, one can show
that also these problems are undecidable:

(i) Blank Tape Halting Problem: given a Turing Machine M, determine whether or not
M halts in a final state when its initial tape has blank symbols only,

(ii) Uniform Halting Problem (or Totality Problem): given a Turing Machine M, determine
whether or not M halts in a final state for every input word in X*, and

(iii) Printing Problem: given a Turing Machine M and a tape symbol b, determine whether
or not M prints b during any of its computations.

Note that it is undecidable whether or not a given binary Turing Machine M ever
writes three consecutive 1’s on its tape (the various instances of the problem being given
by the choice of M), while it is decidable whether or not, given a binary Turing Machine
M starting on a blank tape, there exists a cell scanned by M five or more times (the
various instances of the problem being given by the choice of M) [16, page 193|.

20 Rice Theorem

Let us consider the alphabet X' = {0, 1} and the set RE whose elements are the recursive
enumerable languages over Y| i.e., the recursive enumerable subsets of {0, 1}*.

Let us consider a subset S of RE. We say that S is a property over RE. The property
S is said to be trival iff S is empty or S is the whole set RE.

Any subset S of RE corresponds to a yes-no problem and an instance of that problem
is given by an r.e. language for which we want to know whether or not it is S. We need an
encoding of an r.e. language as a word in {0, 1}*. This can be done by using the encoding
of the Turing Machine which recognizes that r.e. language. Obviously, an r.e. language
is given as input to a Turing Machine via the encoding of the Turing Machine which
recognizes it.

The property () (that is, the empty subset of RE) corresponds to the yes-no problem
‘Is a given r.e. language not an r.e. language?’ (Obviously, the answer to this question is
‘no’), and the property RE corresponds to the yes-no problem ‘Is a given r.e. language an
r.e. language?’ (Obviously, the answer to this question is ‘yes’).
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Now we ask ourselves whether or not a given set S, subset of RE, is itself r.e., i.e.,
whether or not there exists a Turing Machine Mg corresponding to S, such that given
any r.e. set X C 3* Mg accepts X iff X € §. We have the following result whose proof
uses the notion of the language Ly C X* which we have introduced in Section 19.

Theorem 4. |[Rice Theorem for recursive properties over RE| A set S of lan-
guages, subset of RE, is recursive iff it is trivial (that is, the yes-no problem of determining
whether or not an r.e. language belongs to S is decidable iff S = () or S = RE).

Proof. Let us consider a non-trivial subset S of languages in RE. We will prove that S is
not recursive.

We may consider, without loss of generality, that the empty language (which is obvi-
ously an r.e. language) is not in S. Indeed, if the empty language belongs to S then we
will first prove that RE—S is not recursive (and we have that the empty language does
not belong to RE—S). Thus, if RE—S is not recursive we have that S is not recursive
either. (Recall that if a set is not recursive, its complement is not recursive.)

Since S is not empty (because S is not trivial) we have that an r.e. language, say L,
belongs to S. Let us consider the Turing Machine M} which recognizes the language L.

The proof of Rice Theorem is by reduction of the Halting Problem (that is, the mem-
bership problem for the language Ly = {[M]w| the Turing Machine M accepts the
word w}) to the problem of determining whether or not any given r.e. language belongs
to S.

This reduction is done by showing that for any given Turing Machine M and any given
word w there exists an r.e. language, say A, such that M accepts w iff A belongs to S,
that is, for any given Turing Machine M and any given word w there exists a Turing
Machine, say Ny, such that M accepts w iff the language accepted by N4 belongs to S.

Indeed, let us consider the following Turing Machine N4 (see also Figure 24 below).

For any given input word v, N4 simulates the Turing Machine M on the input word w.
If M accepts w then N4 starts working on the input v as the machine M. If M does not
accept w then N4 does not accept v. Thus, if M accepts w then N4 accepts L (which
is a language in S), and if M does not accept w then N, accepts no word, that is, Ny
accepts the empty language (which is a language not in S). Therefore, M accepts w iff
the language accepted by N4 belongs to S.

From the above reduction of the Halting problem to the problem of determining
whether or not any given r.e. language A belongs to .S, and from the fact that the Halting
Problem is undecidable (because the language Ly is not recursive) we get that the set S
is not recursive. O

As simple corollaries of Rice Theorem, we have that:

(i) the set {[M]|[M] is an encoding of a Turing Machine M such that L(M) is empty} is
not recursive,

(ii) the set {[M]|[M] is an encoding of a Turing Machine M such that L(M) is finite} is
not recursive,

(iii) the set {[M]|[M] is an encoding of a Turing Machine M such that L(M) is regular}
is not recursive, and
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Fig. 24. Construction of the Turing Machine N,4. If M accepts w then N4 accepts the
language L (which is in S). If M does not accept w then N4 accepts the empty language
(which is not in 5).

(iv) the set {[M]]|[M] is an encoding of a Turing Machine M such that L(M) is context-
free} is not recursive.

We state without proof the following result which is the analogous of the Rice Theorem
with respect to the r.e. properties, instead of the recursive properties.

Theorem 5. |[Rice Theorem for r.e. properties over RE| A subset S of r.e. lan-
guages in RE is r.e. iff S satisfies the following three conditions:

(1) (r.e. upward closure) if L1 C {0,1}* is in S and L1 C L2 for some L2 which is r.e.,
then L2 isin S,

(2) (existential finite downward closure) if L is an infinite r.e. language in S, then there
exists some finite (and thus, r.e.) language Ly subset of L such that Ly is in S, and

(3) the set of the finite languages which are elements of S, is r.e. O

We have the following simple corollaries of Rice Theorem for r.e. properties over RE:

(i) the set {[M]|[M] is the encoding of a Turing Machine M such that L(M) is empty}
is not r.e. (because condition (1) does not hold),

(ii) the set {[M]]|[M] is the encoding of a Turing Machine M such that L(M) is X*}, is
not r.e. (because condition (2) does not hold),

(iii) the set {[M] | [M] is the encoding of a Turing Machine M such that L(M) is recursive}
is not r.e. (because condition (1) does not hold),

(iv) the set {[M]]|[M] is the encoding of a Turing Machine M such that L(M) is not
recursive} is not r.e. (because condition (1) does not hold),

(v) the set {[M]|[M] is the encoding of a Turing Machine M such that L(M) is regular}
is not r.e. (because condition (1) does not hold),

(vi) the set {[M]|[M] is the encoding of a Turing Machine M such that L(M) consists of
one word only} is not r.e. (because condition (1) does not hold), and

(vii) the set {[M]|[M] is the encoding of a Turing Machine M such that L(M)— Ly # 0}
is not r.e. (because condition (3) does not hold. Indeed, take a finite set, say D, with
empty intersection with Ly. The set X* — Ly is a superset of D and yet it is not r.e.,
because Ly is r.e. and not recursive. Recall also that L(M) — Ly # () is the same as

L(M) N (Z* — Ly) #0.).
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We also have the following corollaries:
(viil) the set {[M]|[M] is the encoding of a Turing Machine M such that L(M) # 0} is

r.e. (and we also have that it is not recursive),

(ix) for any fixed k(> 0), the set Sy, = {[M]|[M] is the encoding of a Turing Machine M
such that L(M) has at least k elements} is r.e.,

(x) for any fixed word w, the set S,, = {[M]|[M] is the encoding of a Turing Machine M
such that L(M) has at least the word w} is r.e., and

(xi) the set {[M]]|[M] is the encoding of a Turing Machine M such that L(M)N Ly # 0}

isr.e.

21 Post Correspondence Problem

An instance of the Post Correspondence Problem, PCP for short, over the alphabet X, is

given by two sequences of k words each, say u = (uq, ..., u;) and v = (vy,...,v;), where
the u;’s and the v;’s are elements of L*. A given instance of the PCP has a solution iff
there exists a sequence of indexes taken from the set {1,...,k}, say (i1,...,i,), forn > 1,

such that the following equality between words of 2™, holds:

Uiy + oo Wiy = Vg -+« . U4,
An instance of the Post Correspondence Problem can be represented in a tabular way as
follows:

‘ u v

1 Uy — U1
k| u, — v
and, in this representation, a solution of the instance is given by a sequence of row indexes.

One can show that the Post Correspondence Problem is unsolvable if |X] > 2 and
k > 2 by showing that the Halting Problem can be reduced to it.

The Post Correspondence Problem is semisolvable. Indeed, one can find the sequence
of indexes which solves the problem, if there exists one, by checking the equality of the
words corresponding to any sequence of indexes taken one at a time in the canonical order
over the set {i|1<i<k}, thatis, 1,2, ..., k, 11,12, ..., 1k, 21, 22,..., 2k, ... kk, 111,
.., kkE, ...

There exists a variant of the Post Correspondence Problem, called the Modified Post Cor-
respondence Problem, where it is required that in the solution sequence, if any, the index
i1 be 1. Also the Modified Post Correspondence Problem is unsolvable and semisolvable.

If the alphabet X has one symbol only, then the Post Correspondence Problem is
solvable. Indeed, let us denote by |u| the number of symbols of X in a word u.

If there exists i, with 1 < ¢ < k, such that u; = v; then the sequence (i) is the solution.
If for all 7, 1 < i < k, u; # v; then there are two cases: (1) either for all ¢, |u;| > |v;], or
for all 4, |u;| < |v;|, and (2) there exist ¢ and j, with 1 <4,j <k, such that |u;| > |v;| and
|ug] < lvs].
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In Case (1) there is no solution to the Post Correspondence Problem, and in Case (2)
there is a solution which is given by the sequence of p (> 1) i’s followed by ¢ (> 1) j’s
such that:

P(luil = fvil) + q(Juj| = Jvs]) = 0.
We can always take p to be —(|u;| — |v;|) and g to be |u;| — |v;|. Note that both p and
q are positive integers.

If k=1 then the Post Correspondence Problem is decidable, and it has a solution iff
Uy = vq.

Ezample 3. Let us consider the instance of the Post Correspondence Problem over {0, 1},
given by the following table:

‘u v
1101 — 11011
21001 — 00
3111 — 11

This instance of the Post Correspondence Problem has the solution (2,3, 1, 3), because:
UgUzU U3 = VU3V V3. Indeed, we have that ususuiusz = vevzvivg = 00111101111, O

22 Decidability and Undecidability in Formal Languages

In this section we present some decidability and undecidability results about context-free
languages. In particular, using the undecidability of the Post Correspondence Problem,
we will show (see Theorem 6 on page 99) that it is undecidable whether or not a given
context-free grammar G is ambiguous, that is, it is undecidable whether or not there
exists a word w such that using the grammar G, the word w has two distinct leftmost
derivations.

For the reader’s convenience let us first recall a few basic definitions about grammars
and formal languages. More information on these subject can be found, for instance,

in [16].

Definition 8. [Formal Grammars| A grammar (also called a type 0 grammar) is a
4-tuple (Vp, Vi, P, S), where:
- Vr is a countable set of symbols, called terminal symbols,
- Vv is a countable set of symbols, called nonterminal symbols or variables,
with Vp NV # 0,
- P is a set of pairs of strings, called productions, each pair being denoted o« — (3,
where o € V't and f € V*, with V = Vy U Vy, and
- S is an element of Vy, called aziom or start symbol.

For any string o € V*, we stipulate that the length of a string o, denoted length(o) or
lo|, is n iff 0 € V™. A grammar is said to be context-sensitive (or of type 1) iff for every
production @« — (3 we have that: either (i) a« = yAd and [ = ~wd, with v,6 € V*,
A € Vy,and w € VT, or (ii) the production @« — [ is S — ¢, and the axiom S does
not occur in the right hand side of any production. A grammar is said to be context-free
(or of type 2) iff for every production a — (3, we have that a € Vy. A grammar is said
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to be regular (or of type 3) iff for every production @ — /3, we have that @ € Viy and
B € VrVy UVp U {e}, that is, § is either a terminal symbol followed by a nonterminal
symbol, or a terminal symbol, or the empty string e.

The language L(G) generated by the grammar G = (Vp, Vi, P, S) is the set of strings
in V;* which can be derived from S by successive rewriting according to the productions
in P (for a formal definition the reader may refer to [16]). For instance, the language
generated by the grammar ({a, b}, {S}, {S — aSb, S — ab}, S) is {a"b" |n > 1}.

A grammar G1 is said to be equivalent to a grammar G2 iff L(G1) = L(G2).

A symbol X in the set Viy of the nonterminal symbols, is said to be useful iff there is
a derivation S —* a X3 —* w for some «, f € (VpUVy)*, and some w € V. X is useless
iff it is not useful.

A language L C V' is said to be context-free (or context-sensitive) language iff it is
generated by a context-free (or context-sensitive, respectively) grammar. A deterministic
context-free language is a context-free language which is recognized by a deterministic
pushdown automaton. A context-free language L is said to be inherently ambiguous iff
every context-free grammar generating L is ambiguous. A grammar G is said to be am-
biguous iff there is a word in the language generated by GG which has two distinct leftmost
derivations using the grammar G. As already mentioned, the reader who is not familiar
with these notions will find it useful to look at [16]. In [16] the reader will also find the
definitions of the class of LR(k) languages (and grammars), for any k& > 0, which we
will consider in the sequel. These notions are related to the deterministic context-free
languages (and grammars).

Theorem 6. The ambiguity problem for context-free languages is undecidable.

Proof. 1t is enough to reduce the Post Correspondence Problem to the ambiguity problem
of context-free grammars. Consider a finite alphabet X' and two sequences of k (> 1) words,
each word being an element of X*:

U= (uy,...,ux), and

V={(vg,...,0p).
Let us also consider the set A of k new symbols {as,...,a;} such that ¥ N A = (), the
following two languages which are subsets of (X U A)*:

Up = {uj iy .. uja;, .. .a,a;, |7 >1and 1 <iy,ids,...,4. <k}, and

Vi ={vi,viy - 004, . cagay |1 > 1 and 1 <y, io,...,0, < k}.

A grammar G for generating the language Uy UV is as follows:
(Y UA, {S,Sy, Sy}, P, S), where P is the following set of productions:

S — SU, SU —>u,~SUa,~|u,~a,~ for anyi: 1,...,]{3, and

S — Sy, Sy — v Sya;|va; foranyi=1,... k.
To prove the theorem we now need to show that the instance of the Post Correspondence
Problem for the sequences U and V has a solution iff the grammar G is ambiguous.
(only-if part) If w;, ... u;, = vy, ... v;, for some n > 1, then we have that the word w which
is

Uiy Uiy o - Uiy, gy v o - Qi Ay
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is equal to the word

Viy Vi + - U Qi Gy Qi
and w has two leftmost derivations: one derivation which first uses the production S — Sy,
and a second one, which first uses the production S — Sy,. Thus, G is ambiguous.
(if part) Assume that G is ambiguous. Then there are two leftmost derivations for a word
generated by G. Since every word generated by Sy has one leftmost derivation only, and
every word generated by Sy has one leftmost derivation only (and this is due to the fact
that the a;’s symbols force the uniqueness of the productions used when deriving a word
from Sy or Sy ), it must be the case that a word generated from Sy is the same as a word
generated from Sy . This means that we have:

Uiy Uiy« + - Ujp, Ay v oo Qi Gy = Vi Ugy oo U5 Qg v o Ay Ay
for some sequence (iq,1s,...,1,) of indexes with n > 1, each index being from the set
{1,...,k}. Thus,

Uiy Uiy -+« - Ujyy, = Vi Vg« + . Uy

n

and this means that the corresponding Post Correspondence Problem has the solution
(11,09, .+, ip). O

Some more decidability and undecidability results about context-free language can be
proved using properties of the so-called wvalid and invalid computations of Turing Ma-
chines. They are introduced in the following definition where by the word w!* we mean
the word ‘w reversed’, that is, for some alphabet A, (i) €'t = ¢ , and (ii) for any z € A
and w € A*, (wa)? = zw?.

Definition 9. [Valid and Invalid Computations of Turing Machines| Given a Tur-
ing Machine M = (Q, X, T, 9, qo, B, F'), where as usual Q N I" = (), a string of the form
wy #Fwl#ws #Fwl#ws# ... #w, or
wy #wy Fws H#wi Fws# . Fwe Fwlt
where # is a symbol which is not in Q U I', is said to be a valid computation of M iff:
(i) each w; is a configuration of M, that is, a string in I™*QI™, which does not end by the
blank symbol B,
(ii) w; is the initial configuration, that is, w; = gou where u belongs to X*,
(iii) w, is a final configuration, that is, a string in I"™*FI™*, and
(iv) for each i, with 1 <i<n, w; — w;;1.

An invalid computation of a Turing Machine is a string which is not a Turing Machine
valid computation.

We have the following properties.
Property (P1): given a Turing Machine M the set of its valid computations is the inter-

section of two context-free languages (and the two corresponding context-free grammars
can be effectively constructed from M), and

Property (P2): given a Turing Machine M the set of its invalid computations is a context-
free language (and the corresponding context-free grammar can be effectively constructed
from M).

We have the following theorem.
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Theorem 7. (i) It is undecidable whether or not given two context-free grammars G1
and G2, we have that L(G1) N L(G2) = (.

(ii) It is undecidable whether or not given two context-free grammars, they generate the
same context-free language.

(iii) It is undecidable whether or not given a context-free grammar, it generates X' (or X*
if one assumes, as we do, that context-free grammars may have the production S — ¢).
(iv) It is undecidable whether or not given a context-free grammar, it generates a de-
terministic context-free language, that is, it is equivalent to a deterministic context-free
grammar.

Proof. See [16]. The proof of (i) is based on the fact that the problem of determining
whether or not a given Turing Machine recognizes the empty language, can be reduced
to this problem. (Recall the above Property (P1) of the valid computations of a Turing
Machine.) O

It is undecidable whether or not a context-sensitive grammar generates a context-free
language [3, page 208|.

A context-free grammar is said to be linear iff the right hand side of each production
has at most one nonterminal symbol.

It is undecidable whether or not the language L(G) generated by a context-free gram-
mar (G, can be generated by a linear context-free grammar.

A language L is said to be prefiz-free (or to enjoy the prefizx property) iff no word in
L is a proper prefix of another word in L, that is, for every word x € L there is no word
in L of the form zy with y # ¢.

It is undecidable whether or not a context-free grammar generates a prefix-free lan-
guage. Indeed, this problem can be reduced to the problem of checking whether or not two
context-free languages have empty intersection [14, page 262|. If we know that the given
language is a deterministic context-free language, then this problem is decidable |14, page
355].

It is undecidable whether or not given a context-free grammar G there exist k(> 0)
and an LR(k) grammar G1 such that G and G1 generate the same language (see [23] and
3, pages 397-399, Exercise 5.2.12]).

This undecidability result can be derived as follows. We have that: (i) the class of
the LR(0) languages is contained in the class of the LR(1) languages, and (ii) for any
k > 0 the class of the LR(k) languages is equal to the class of the LR(1) languages (which
is the class of deterministic context free languages). Thus, undecidability holds because,
otherwise, it would have been decidable the problem of knowing whether or not a context
free grammar is equivalent to a deterministic context-free grammar.

It is undecidable whether or not given a context-free grammar GG and a number k£ > 0,
G equivalent to an LR(k) grammar |23, pages 397-399, Exercise 5.2.12|. For k£ > 0 we
can reason as follows. Since for any k£ > 0 the class of the LR(k) languages is equal to the
class of the LR(1) languages (which is the class of deterministic context-free languages),
this problem is undecidable for £ > 0 because otherwise, it would have been decidable
the problem of testing whether or not a context-free grammar generates a deterministic
context-free language.
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It is undecidable whether or not given a context-free grammar G there exists k (> 0)
such that G is a LR(k) [38, page 399].

Now we present a theorem which is analogous to Rice Theorem (see Theorem 4 on
page 95), but it refers to the class of context-free languages, rather than r.e. languages.
We need first the following two definitions.

Definition 10. We say that a class C of languages is effectively closed under concatena-
tion with regular sets and union iff for any given language L1 and L2 and any regular
language R, we have that the languages (i) R+ L1, (ii) L1+R, and (iii) L1U L2 are in C,
and it is possible to produce the encodings (as a string in {0, 1}*) of the grammars which
generate those three languages from the encodings of any three grammars which generate
L1, L2, and R.

Definition 11. [Quotient Languages| Given an alphabet Y| a language L C X* and
a symbol b € X we say that the set {w|wb € L} is the quotient language of L with
respect to b.

Theorem 8. [Greibach Theorem| Let us consider a class C' of languages which is
effectively closed under concatenation with regular sets and union. Let us assume that
for that class C' the problem of determining whether or not given a language L € C', we
have that L = X*, for any sufficient large cardinality of Y| is undecidable. Let P be a
non-trivial property of C, that is, P is a non-empty subset of C' different from C itself.

If P holds for all regular sets and it is preserved under quotient with respect to any
symbol in X', then P is undecidable for C'.

We have that:

- the class of context-free languages is effectively closed under concatenation with regular
sets and union, and for context-free languages it is undecidable the problem of determining
whether or not L = X* for |X] > 2,

- the class of regular languages is a non-trivial subset of the context-free languages,
- the property of being a regular language obviously holds for all regular languages, and

- the class of regular languages is closed under quotient with respect to any symbol in Y
(it is enough to delete the final symbol in the corresponding regular expression).

Thus, by Theorem 8, it is undecidable whether or not a given context-free grammar
generates a regular language (see Property D5 on page 103).

Theorem 8 allows us to show that also inherent ambiguity for context-free languages
is undecidable.

It is decidable whether or not given k (> 0) and a context-free grammar G, G is LR(k).
This decidable problem is solvable in nondeterministic 1-exponential time [38, page 399]
when k is given in binary, that is, it is solvable in O(2P(") time by a nondeterministic
Turing Machine, where p(n) is a polynomial in the size of the input grammar G plus the
size of k written in binary.

Given the context-free grammar G, it is decidable whether or not the language L(G) is
infinite. Indeed, it is enough: (i) to derive an equivalent grammar G in Chomsky normal
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form, without useless symbols, e-productions, and unit productions, and (ii) to construct,
as we now indicate, a directed graph D whose nodes are the nonterminals of G¢. In that
graph D we construct an edge from node N; to node N, iff there exists a production in
G¢ such that Ny — Ny A or N; — A N, for some nonterminal A. We have that L(G) is
infinite iff in that graph there exists a cycle [16, page 137|.

For context-free grammars (and, thus, for deterministic context-free grammars) it
is decidable whether or not they generate the empty language. Indeed, it is enough to
determine whether or not the axiom of the given grammar is a useful symbol.

Proposition 1. It does not exist an always terminating algorithm which given a context-
free grammar G which is known to generate a regular language, constructs the regular
grammar which is equivalent to G.

22.1 Decidable Properties of Deterministic Context-free Languages which
are Undecidable for Context-free Languages

Let X be a given alphabet with at least two symbols. Now we list some decidable properties
for deterministic context-free languages, subsets of X*, which are undecidable for context-
free languages, subsets of X*, in the sense we specify below in Proposition 2 (see also [16,
page 246]).

Given a deterministic context-free grammar G which generates the language L(G),
and given a regular language R, it is decidable whether or not:
(D1) L(G) =
(D2) R C L(G )
(D3) ( ) X*, that is, the complement of L(G) is empty,
(D4) X* — L(G) is a context-free language (recall that one can show that the complement
of a deterministic context-free language is a deterministic context-free language),
(D5) L(G) is a regular language, that is, it is decidable whether or not there exists a
regular language R1 such that L = R1,
(D6) L(G) is prefix-free, that is, it is decidable whether or not a deterministic context-free
grammar G generates a language which is prefix-free [14, page 355].

Proposition 2. If G is known to be a context-free grammar (not a deterministic context-
free grammar) then the problems (D1)-(D6) are all undecidable.

Recently the following result has been proved [36].
(D7) It is decidable whether or not L(G1) = L(G2) for any two deterministic context-free
grammars GG1 and G2.

Recall that, on the contrary, it is undecidable whether or not L(G1) = L(G2) for any
two context-free grammars G1 and G2 (see Theorem 7 on page 101).

With reference to Property (D2), note that given a context-free grammar G and a regu-
lar language R, it is decidable whether or not L(G) C R. Indeed, we have that: (i) L(G) C R
iff L(G)N(X*—R) =10, (ii) L(G) N (X*—R) is a context-free language, and (iii) emptiness
of the language generated by a context-free grammar is decidable. The construction of the
context-free grammar, say H, which generates the language L(G) N (X*—R), can be done
in two steps: first, (i) we construct the pda M accepting L(G) N (X*—R) as indicated in
[16, pages 135 136], and then, (ii) we construct H as the context-free grammar which is
equivalent to M.
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22.2 Undecidable Properties of Deterministic Context-free Languages
which are Undecidable also for Context-free Languages

In this section we list some undecidable properties for deterministic context-free languages
which are undecidable also for context-free languages in the sense we specify below in
Proposition 3 [16, page 247].

Given any two deterministic context-free grammars G1 and G2, whose corresponding
languages are L1 and L2, respectively, it is undecidable whether or not:

(U1) L1NL2 =0,

(U2) L1 C L2,

(U3) L1 N L2 is a deterministic context-free language,
(U4) L1U L2 is a deterministic context-free language,
(

U5) L1+ L2 is a deterministic context-free language, where * denotes concatenation of
languages,

(
(

U6) L1* is a deterministic context-free language,

U7) L1 N L2 is a context-free language.

Proposition 3. If G1 and G2 are known to be context-free grammars (not deterministic
context-free grammars) and in (U3)-(U6) we keep the word ‘deterministic’, then the
problems (U1)—(U7) are still all undecidable.

22.3 Summary of Decidability and Undecidability Results in Formal
Languages

In Figure 25 below we summarize some decidable and undecidable properties of the various
kinds of grammars in Chomsky’s Hierarchy. In this figure REG, DCF, CF, CS, and type 0
denote the classes of regular grammars, deterministic context-free grammars, context-free
grammars, context-sensitive grammars, and type 0 grammars, respectively.

Now we list the Remarks (1)—(10) which clarify some entries of Figure 25.

(1) The problem ‘L(G) = X* 7 is trivial for the classes of grammars REG, DCF, CF,
and CS, if we assume, as usual, that those grammars cannot generate the empty string ¢.
However, here we assume that the REG, DCF, and CF grammars are extended grammars,
that is, they may have extra productions of the form A — ¢, and we also assume that CS
grammars may have the extra production S — ¢ and the start symbol S does not occur
in the right hand side of any production. With these hypotheses, the problem of checking
whether or not L(G) = X*, is not trivial and it is solvable or unsolvable as shown in
the figure. Equivalently, we may assume that for the REG, DCF, CF, and CS class of
grammars, the problem is, in fact, ‘L(G) = X* 7', rather than ‘L(G) = X* 7.

(2) This problem can be solved by constructing the finite automaton which is equivalent
to the given grammar.

(3) Having constructed the finite automaton, say F', corresponding to the given grammar
G, we have that: (i) L(G) is empty iff there are no final states in F', (ii) L(G) is finite iff
there are no loops in F.
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problem \ grammar G REG DCF |CF CS |typeO
iswe L(G)? S(2) |S S S U (9)

is L(G) empty ? finite 7 infinite? | S (3) | S S U U (10)
is L(G) = X*7 (1) S (4 S U@®) |U U

is L(G1) = L(G2)? S sG) |\um v |u

is L(G) context-free? S (yes) | S (yes) | S (yes) |U (8)|U

is L(G) regular? S (yes) | S U U U

is L(G) inherently ambiguous? |S (no) |S (no) |U U U

is G ambiguous ? S (no) |S (no) |U U U

Fig. 25. Decidability of problems for various classes of languages and grammars. S means
that the problem is solvable. The entry S (yes) means that the problem is solvable and
the answer is always ‘yes’. Analogously for the entry S (no). U means that the problem
is unsolvable. The numbers (1)—(10) refer to the remarks we have made in the text.

(4) Having constructed the minimal finite automaton, say M, corresponding to the given
grammar G, we have that L(G) is equal to X* iff M has one state only and for each
symbol in X there is an arc from that state to itself.

(5) This problem has been shown to be solvable in [36]. Note that for DCF grammars the
problem ‘L(G1) C L(G2) 7" is unsolvable (see Property (U2) on page 104).

(6) It is undecidable whether or not given a context-free grammar G, we have that L(G) =
X* (see Property (D3) on page 103).

(7) It is undecidable whether or not given two context-free grammars G and Gy, we have
that L(G1) = L(G2) (see Section 22.2 and Theorem 7 on page 101).

(8) It is undecidable whether or not a context-sensitive grammar generates a context-free
language (3, page 208|.

(9) The membership problem for a type 0 grammar is a X;-problem of the Arithmetical
Hierarchy (see Section 24).

(10) The problem of deciding whether or not for a type 0 grammar(G), L(G) is empty is
a II,-problem of the Arithmetical Hierarchy (see Section 24).

23 Decidability and Undecidability of Tiling Problems

In this section we want to consider a different class of problems, the so called tiling
problems, or domino problems. Actually, there are many different classes of tiling problems
one might consider, and we will restrict our attention to a particular class which we now
define.

An instance of a tiling problem is given by a finite set of squares, also called tiles. All
squares have the same area. All tiles have colored edges, being the colors taken from a
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finite set of colors. The tiles differ only because of the different colors of their edges. Tiles
have orientations and, thus, they cannot be rotated. Then we ask ourselves whether or
not by using copies of the given tiles we can cover a given square area, either finite or
infinite. In case the area is finite, we assume that its side is a multiple of the common
size of the given tiles. When covering the given square area we have to comply with the
constraint that two adjacent edges must have equal color.

Tiling problems can be formalized as follows.

Let N be the set of natural numbers. Let S be N x N or {0,...,m} x{0,...,m} for
some m > 0. An instance of a tiling problem is given by a finite set D and two binary
relations H,V C Dx D (H stands for horizontal, and V stands for vertical). The triple
D = (D, H,V) is said to be a tiling system, or a domino system. Then we ask ourselves
whether or not there exists a function 7 : S — D, called a tiling function, such that:

forall z,y € S, (r(x,y), T(x+1Ly)) € H and (r(z,y), 7(z,y+1)) €V (Ad)j)

The set D is the set of tiles and the two binary relations H and V' encode the matching
of the colors of horizontally adjacent tiles and vertically adjacent tiles, respectively.

For instance, in Figure 26 we have depicted two tiles with colors taken from the set
{a,b}. The colors a and b are encoded by a straight edge and an edge with a ‘staple’,
respectively. By using those two tiles we can cover (and actually, in more than one way)
any given square area of size m x n, with m,n > 1. In Figure 26 we have shown a cover of
a b x b area. It is easy to see that, indeed, the entire bidimensional plane can be covered
by using the given two tiles.

T i
e A A T Y

ST
aexfpyd WD |

TSRS

Fig. 26. Two tiles by which we can cover the entire plane. The colors a and b are encoded
by a straight edge and an edge with a ‘staple’, respectively. The dashed line shows a
‘snake’ from (1,0) to (4, 3).
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If the given square area to be covered is finite, the problem is decidable simply because
there is a finite number of possibilities to explore. We have that the tiling problem for
square area of size n x n, with n > 1, is NEXPTIME-complete if n is given in binary,
and it is NP-complete if n is given in unary |29, page 501]. For these notions (which are
complexity measures) the reader may refer to Sections 27 and 28.

We have that the tiling problem is unsolvable as stated by the following theorem.

Theorem 9. It does not exist an algorithm which for any given finite set of tiles, always
provides an answer, and it answers ‘yes’ iff for all m,n > 1 one can cover the square area of
size m x n. Formally, it is undecidable whether or not given a tiling system D = (D, H, V)
there exists a tiling function 7 : N x N — D satisfying the above constraints (Adj).

One can show that for any given finite set of tiles the following holds:
for all m,n > 1, every square of size m x n can be covered by using copies of the tiles iff
the entire bidimensional plane can be covered by using copies of the tiles [13, page 189].

One can also show that the undecidability of the tiling problem implies that there
exists a finite set of tiles such that by using copies of those tiles, we can cover the entire
plane aperiodically, that is, without translational symmetry. However, in the cover of the
entire plane there could be a rotational symmetry with respect to one point, or a mirror-
image symmetry with respect to a symmetry line.

The absence of translational symmetry means that the pattern of tiles never repeats
in an exact way. However, given a bounded region of the covered plane, no matter how
large it is, that region will be repeated an infinite number of times within the cover of the
entire plane.

It has been proved by R.Penrose that one can cover aperiodically the entire plane
with infinite number of copies of two tiles only.

Now let us consider the following class of problems, called domino snake problems. An
instance of a domino snake problem is given by a finite set of squares with colored edges
of the kind we have considered in the tiling problems. We are also given two positions in
the plane, an initial and a final position, called A and B, respectively. We have to place
a snake of tiles so that the first tile is in A and the second tile is in B. (The notion of
a snake will be formalized by that of a D-thread below.) The possible positions for the
snake is the entire plane, that it, the tiles of the snake can be placed anywhere in the
plane. We have to comply with the only constraint that two adjacent tiles must have their
edges of the same color and tiles cannot be rotated. In Figure 26 we have depicted with
a dashed line the snake [(1,0), (2,0), (2,1), (2,2), (2,3), (2,4), (3,4), (4,4), (4,3)] from
the initial position (1,0) to the final position (4, 3).

If the number of positions where the snake can be placed is finite, then the domino
snake problem if decidable. We have the following two results (see, for instance, [13,
Chapter 8|).

(i) If the snake can be placed everywhere in the entire bidimensional plane, then the
domino snake problem is decidable (D.Myers proved in 1979 that it is PSPACE-com-
plete [13, page 383|). For the notion of PSPACE-completeness the reader may refer to
Section 28.
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(ii) If the snake can be placed only in the upper bidimensional half-plane (say, for instance,
the part above the horizontal line passing through the origin of the plane), then the domino
snake problem is undecidable (H.-D. Ebbinghaus proved in 1982 that it is X';-complete |13,
page 383|. For the notion of Xj-completeness the reader may refer to the Arithmetical
Hierarchy in Section 24).

Domino snake problems can be formalized as follows.

Let S, be the rectangle {0,...,m} x{0,...,n} for some m,n > 0. Let © be a thread
in Sy, that is, a finite sequence [sq ... s;] of elements of S, such that for all s;, s; with
i # j they have a common edge iff the two elements are adjacent in the sequence (that
is, |[i—j| = 1). The fact that the elements (zy,y;) and (xs,ys) in S, have a common
edge can be formally expressed by the following property: (x; =z A |y1—y2| =1) V
(|71 —22|=1 V y1=12).

Let D = (D, H, V') be a tiling system. A D-thread is a function 7 : @ —D which covers
the thread @ by tiles in D, that is, by elements of D which satisfy the constraints (Adj)
imposed by H and V.

We have the following two results.

Theorem 10. (i) It is decidable whether or not, given a tiling system D = (D, H, V)
and a pair of numbers (m,n) € N x N, there exists a D-thread in Z x Z from (0,0) to
(m,n).

(ii) It is undecidable whether or not, given a tiling system D = (D, H,V) and a pair of
numbers (m,n) € NxN, there exists a D-thread in ZxN (not ZxZ) from (0, 0) to (m,n).

Note that the undecidability of the domino snake problem for an infinite set A of possible
positions for the snake, does not imply the undecidability of the domino snake problem for
a set of possible positions which is an infinite proper subset of A. Thus, the undecidability
of a problem does not depend on how large is the infinite search space which should be
explored for finding a solution. In particular, a problem which is decidable and has an
infinite search space A, can become undecidable if its search space is restricted to an
infinite proper subset of A.

24 Arithmetical Hierarchy

Let us consider unary properties, that is, subsets, of the set NV of natural numbers. We
may also consider properties of arity n > 1, in which case they can be viewed as subsets
of N*. However, since there exists a bijection between N* and N, we may consider any
property of arity n, with n > 1, to be a subset of V.

Let us recall some notions we have introduced in Section 19. We say that a property
(or a predicate) R(z) of N is decidable (or recursive, or solvable) iff there exists a Turing
Machine M that always halts and for any input value x in N, M tells us whether or not
R(z) holds by halting on a final or a non-final state, respectively.

This notion of decidability of a property is consistent with the notion of decidability
of a problem. Indeed, the yes-language corresponding to a problem is a subset of X* and
that language can be viewed as a property which is enjoyed by some elements of X*.
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We say that a property P(z) of N is semidecidable (or semirecursive, or r.e., or
semisolvable) iff there exists a Turing Machine M such that for any input value x in N
for which P(x) holds, we have that M enters a final state and halts.

Semidecidability is a particular ‘degree of undecidability’. There are, indeed, various
degrees of undecidability, and they can be structured in the so-called Arithmetical Hier-
archy (see also Figure 27).

U
Dg, ={z | Jy Vz R3(x,y,2)} / \ Total = {x | Vy3z Rs(x,y, 2)}
2 e
p.r.f.’s with finite domain \\ / total p.r.f.’s
ﬂ

D= {o| Iy Rolwy)} >/ N D= (e Ralo)

re =2, II; = co-r.e.
p.r.f.’s with non-empty domam\ N )( p.r.f.’s with empty domain
2Nl = = [Ily = recursive

Fig. 27. The Arithmetical Hierarchy. R, and R3 are recursive predicates. Turing com-
putability is below the dashed line. p.r.f.’s stands for ‘partial recursive functions’. Con-
tainments are all strict. A is contained in B iff A is drawn below B. U is union and N is
intersection.

Definition 12. [Arithmetic Hierarchy| We say that the subset A of NV is a X, set (or
simply X,) iff for some n > 0, there exists a recursive predicate R(z, 1, ...,y,) in N"*1
such that

A={z|TInVys... R(x,y1,...,yn)}. (All variables y;’s are alternatively quantified.)
We say that the subset A of N is a 1, set (or simply II,,) iff for some n > 0, there exists
a recursive predicate R(x,y1,...,y,) in N such that

A={x|Vy1Jys... R(x,y1,...,yn)}. (All variables y;’s are alternatively quantified.)

In order to understand the definition of the classes Y, and II,,, the reader should also
recall that a contiguous sequence of universal quantifications is equivalent to one uni-
versal quantification only. The same holds for existential quantifications. Thus, in the
definitions of the classes X, and II,,, it is important both (i) the nature of the outermost
quantification, and (ii) the number of alternations in the quantifications.

As a consequence of the above definitions we have that an r.e. subset of N is an element
of Y. Thus, the following is an alternative definition of an r.e. set.
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A set A is said to be r.e. iff there exists a decidable predicate R(x,y) such that x € A
iff 3y R(x,y). The predicate R can be taken to be primitive recursive [6, page 124].

Given an r.e. set {zx | P(x)}, the set {z|not(P(x))} is said to be co-r.e. The set II; is
by definition the set of all co-r.e. subsets of V.

We have that Xy N Il is the set of the recursive subsets of N.

For any given n > 1, we have that 33, page 305] (see also Figure 27):

(i) {z| P(z)} is in X, iff {z |not(P(x))} is in 11,

(ii) X, and II, are both proper subsets of X, U IT,,

(iii) X, U I1, is a proper subset of X, .1 N II,,1, and

(iv) X1 N 1,41 is a proper subset of both X, 1 and I7,,;.

An example of a recursive predicate is the so-called Turing Predicate T(i,z,y,t).
T(i,x,y,t) means that the Turing Machine whose encoding is the natural number 4, given
the input z, after exactly t steps, enters a final state and produces the output y.

Given a recursive property Ra(z,y) we get a semirecursive property by considering its
existential closure with respect to one of the two variables.

The set Dom,,. of partial recursive functions with non-empty domain, is in 2, because

Domye = {i| 3z Iy 3t T(i,z,y,t)}.

The set Dom, of partial recursive functions with empty domain, is in I1;, because

Dom, = {i|Vx Yy Vt not(T(i,x,y,t))}.

The set Domy;,, of partial recursive functions with finite domain, is in X, because

Domyn, = {i| 3maxVx Yy Vt not(T(i,z,y,t)) or x<max},
because:

dmaxVx if (Jy3t T(i,z,y,t)) then x<mazx iff

Imax Ve Vy vt (not(T(i,x,y,t)) or x<max).

The set Total of partial recursive functions which are total, is in I15, because

Total = {i|Vx Iy 3t T(i,z,y,t)}.

The set Rpouna Of total partial recursive functions with finite image, is in X3 N 113, because

Rpouna = {i| (3maxVa 3y 3t T'(i,z,y,t) and y<max) and VrIy3t T(i,z,y,t)}.
As it is written, the predicate relative to the definition of Rpyyung, indicates that Rpoung
is in X3 N Ily, but since I1, C I3, it is also true that Rpyung is in X3 N I13.

We have seen that the above sets Dom., Domy;,, and Total are examples of II;, Xy,
and Il sets. They are, so to speak, significant examples, as we now illustrate via the
following completeness notions.

Definition 13. [Hard and Complete Sets| Given two subsets, say A and B, of N, we
say that A is 1-reducible to B, and we writeA <; B, iff there exists an injective function
f such that Ya € A a € Aiff f(a) € B.

Given a class C' of subsets of N, and a reducibility relation <, we say that a set
A is hard with respect to C' and < (or C-hard with respect to <, or <-hard in C) iff
VXeC X<A.
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Given a class C of subsets of N, and a reducibility relation <, we say that a set A is
complete with respect to C and < (or C-complete with respect to <, or <-complete in C)
iff (VXeC X<A)and AcC.

We have that [40, page 43|:
(i) K ={i| 3y 3t.T(i,i,y,t)} is Xi-complete with respect to <y,
(ii) Dom, is II;-complete with respect to <j,

(iii) Domy;, is Xy-complete with respect to <y, and

(iv) Total is IIy-complete with respect to <j.

The notion of hardness and completeness with respect to a class C' of subsets of N
and the reducibility relation <;, can also be defined with respect to other classes of sets
and other (reflexive and transitive) reducibility relations.

For instance, in the literature one finds the notions of NP-hard problems or NP-com-
plete problems. These notions are given with respect to the class of NP problems and the
logarithmic-space reductions |16, page 324]|. (Actually, many authors use polynomial-time
reductions rather than logarithmic-space reductions and we refer to [16] for more details
on this matter.) We will consider these notions in the following chapter.

Before closing this section we would like to analyze the ‘relative difficulty’ of some
problems in different classes of sets. Let us consider Figure 28 on page 112 and the three
classes of sets indicated there:

1. REG (that is, the regular languages over X' = {0, 1}*),
2. CF (that is, the context-free languages over X' = {0,1}*), and
3. PRF (that is, the partial recursive functions from N to N).

For each of these classes we consider the following three problems:
(1) the Membership Problem,
(2) the Emptiness Problem, and
(3) the Totality Problem.

We have that the relative difficulty of these problems is preserved within each class of
sets, in the sense that we will specify in the following Points («), (), and (). In Figure 28
within each class of sets we have drawn ‘more difficult’ problems above ‘easier’ problems
according to this layout:

Class of functions (or languages):

(3) Totality Problem

(1) Membership Problem (2) Emptiness Problem

Point («). In the partial recursive functions the Membership Problem (3.1) is in X}, while
the Totality Problem (3.3) is ‘more difficult’ being in I15. The Emptiness Problem (3.2)
isin I1;.

Point (). In the context-free languages the Membership Problem (2.1) is in X (that is,
it is decidable), while the Totality Problem (2.3) of determining whether or not a given
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3. For f € PRF (partial recursive functions):

(3.3) ‘is f total?’ is in IT,

(3.1) ‘is x € Dom(f)?" is in X} (3.2) ‘is f totally undefined ?’ is in II;

2. For L € CF (context-free languages):

(2.3) is L=X* 7 is in 1T,

(2.1) isw € L7 is in X (2.2) ‘is L=07 is in X

1. For L € REG (regular languages):

(1.3) ‘is L=X*7" is PSPACE-complete

(1.1) iswe L? isin P (1.2) s L=0?" isin P

Fig. 28. Comparison of problem difficulties in the classes of sets PRF, CF, and REG.
Within each class more difficult problems are drawn above easier problems. The com-
plexity classes: (i) P, that is, the polynomial time class, and (ii) PSPACE-complete, that
is, the polynomial-space complete class (with respect to polynomial-time reductions) are
defined with respect to the size of the regular expression denoting the regular language L
(see also Sections 26-28).

language L is equal to X*, is ‘more difficult’ being in I7;. The Emptiness Problem (2.2)
for context-free languages is in 2.

Point (7). In the regular languages the Membership Problem (1.1) can be solved in poly-
nomial time (it is in P), while the Totality Problem (1.3) of determining whether or
not a given regular language L is equal to X*, is ‘more difficult’ being polynomial-space
complete with respect to polynomial-time reductions. Indeed, as a consequence of The-
orem 14 in Section 29.1 and Theorems 15 (ii.2) and 16 in Section 29.2, we will see that
P C PSPACE C DTIME(2P™), where p(n) is a polynomial in the size n of the regular
expression denoting the language L. The Emptiness Problem (1.2) for regular languages
is in P.

Remark 3. In the case of the regular languages we should have said that maybe the To-
tality Problem is ‘more difficult’ than the Membership Problem, because it is an open
problem whether or not the containment P C PSPACE is proper (see page 115).

More results on decidability and computability theory can be found in [8,15].



Chapter 4

Computational Complexity

25 Preliminary Definitions

We start off by indicating the models we will consider for measuring the complexity of
computations.

In order to measure the space complexity, we will consider the off-line k-tape deter-
ministic Turing Machine model with one read-only input tape, and k(> 1) semi-infinite
storage tapes (also called working tapes). We will use this model because the off-line
Turing Machine allows us to consider space complexities less than linear.

By S(n) we will denote the space complexity of a computation relative to an input of
size m, that is, the maximum number of tape cells used in any of the k storage tapes. In
order to capture the intuition that at least one memory cell is used in any computation,
by S(n) we actually mean the integer not smaller than maz (1, S(n)), for any n > 0.

We denote by DSPACE(S(n)) the family of languages (or problems) recognized by a
deterministic Turing Machine by a computation whose space complexity is S(n).

We denote by NSPACE(S(n)) the family of languages (or problems) recognized by a
nondeterministic Turing Machine by a computation whose space complexity is S(n).

If S(n) > n for any input of size n, we may restrict k& to be 1, without changing the
class DSPACE(S(n)). The same holds for the class NSPACE(S(n)).

For measuring the time complexity of a computation, we will consider the two-way
infinite k-tape deterministic Turing Machine model. When studying the time complexity,
one should, in general, specify the number % of tapes of the Turing Machine considered
(see Theorem 4 below).

By T'(n) we will denote the time complexity of a computation relative to an input of
size n, that is, the number of moves which the Turing Machine makes before halting.

In order to capture the intuition that in any computation the whole input of size n
should be read, by T'(n) we actually mean the integer not smaller than maz(n+1,7T(n))
for any n > 0. We have maz(n+1,T(n)), instead of max(n,T(n)), because one time unit
is required to check that the input is terminated.

Note that there are Turing Machines which compute their output without reading their
input (they are Turing Machines which compute constant functions) and in our theory of
computational complexity we will not consider them.

We denote by DTIME(T'(n)) the family of languages (or problems) recognized by a
deterministic Turing Machine by a computation whose time complexity is T'(n).

We denote by NTIME(T'(n)) the family of languages (or problems) recognized by a
nondeterministic Turing Machine by a computation whose time complexity is T'(n).

113
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Example 1. Let us consider the language L = {ww® |w € {0,1}*}, where w® denotes ‘w
reversed’, that is, e = ¢ | (w0)® = 0w’ and (w1)® = 1w®. L can be recognized in
time complexity 2n + 1, where n is the length of w. L can also be recognized in O(log, n)
space complexity as the following algorithm indicates:

let n be the length of the word w;

fori=1,...,|wl|, let w; be the i-th symbol (from the left) of w;

for i = 1 to n check whether or not (ww?); = (ww!),_ ;11

(this check can be done by counting symbols and testing for equality)

Since this algorithm uses numbers (written in binary) and tests for 0 and 1 only, it requires
only O(log, n) cells on the off-line Turing Machine storage tape. O

Theorem 1. [Tape Compression| If a language L is accepted by an off-line k-tape
deterministic Turing Machine in space S(n) then for any ¢ > 0, the language L is accepted
also by an off-line k-tape deterministic Turing Machine in space ¢ S(n).

Theorem 2. [From £ tapes to 1 tape with respect to space complexity]| If a lan-
guage L is a language accepted by an off-line k-tape deterministic Turing Machine in
space S(n), then L is accepted also by an off-line 1-tape deterministic Turing Machine in
space S(n).

The proof of this theorem is based on the use of tracks on one tape to simulate k tapes.

From now on, unless otherwise specified, for measuring space complexity we will refer
to a Turing Machine M such that: (i) M has the input tape and only one storage tape,
and (ii) if S(n) > n then M has exactly one storage tape and not the input tape (that is,
the input is assumed to be written in the leftmost part of the storage tape).

Given a function f(n), let sup,_, . f(n) denote the least upper bound of f(n) for
n — o0, and let inf,_ 1 f(n) denote the greatest lower bound of f(n) for n — +o0.

Theorem 3. [Linear Speed-up| If a language L is accepted by a k-tape deterministic
Turing Machine in time 7'(n) with £>1 and inf,— 1« @ = 400 (that is, T'(n) is growing
more than linearly), then for any ¢ > 0, L is accepted by a k-tape deterministic Turing
Machine in time ¢7T'(n).

For any k£ > 1, if L is a language accepted by a k-tape deterministic Turing Machine
in time T'(n) and T'(n) = cn for some ¢>0 (that is, T'(n) is linear), then for any £ >0, L

is accepted by a k-tape deterministic Turing Machine in time (1 + €) n.

Theorem 4. |[Reduction of tapes| For any k£ > 1, if L is a language accepted by a
k-tape deterministic Turing Machine in time T'(n), then L is accepted by a two-tape
deterministic Turing Machine in time T'(n) log(7'(n)) and L is accepted by a l-tape
deterministic Turing Machine in time 7?2(n).

Theorems 1, 2, 3, and 4 hold also when replacing ‘deterministic Turing Machine’ by
‘nondeterministic Turing Machine’.

Recall that we are not interested in the base of the logarithms, because, as indicated
by Theorems 1 and 3, multiplicative constants are not significant for the validity of most
of the complexity results we will present.
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We will use the following abbreviations:

EXPSPACE =, ., DSPACE(2")

k

NEXPTIME =4 Uy, NTIME(2"
EXPTIME =4 Uy, DTIME(2"
PSPACE =4 U,., DSPACE(n*)

)
)
Y NSPACE =4 U, NSPACE(n*)
NP =y Ui NTIME(n*)

P =4 Ugoo DTIME(n)

We have that:
PC NP C PSPACE W NSPACE C EXPTIME C NEXPTIME C EXPSPACE.

The equality W above, that is, PSPACE = NSPACE, is established in Theorem 16 on
page 143.
It is an open problem
(1) whether or not P = NP (see page 124 at the end of Section 26),
(ii) whether or not NP = PSPACE [19, page 98|,
(iii) whether or not PSPACE = EXPTIME |19, page 102], and
(iv) whether or not EXPTIME = NEXPTIME |19, page 103].
Note that it is also an open problem whether or not P = PSPACE. If P = NP then
EXPTIME = NEXPTIME [19, page 103]. We will return to these issues in Section 28.6.

26 P and NP Problems

Let us begin this section by giving the definition of the classes P and NP of problems
(or languages, or predicates). Actually, we will give three equivalent definitions of the
class NP.

Informally, we may say that the class P of problems (or languages, or predicates)
corresponds to the class of predicates which can be evaluated in polynomial time with
respect to the size of the input by a deterministic algorithm. More formally, we have the
following definition.

Definition 1. [Class P. Polynomial Class| A predicate p(z) is in the class P iff there
exists a deterministic Turing Machine M and a polynomial r(n) such that for any input
x of size n, M evaluates p(z) in a sequence of moves whose length is at most r(n).

Note that in the polynomial 7(n) we do not care about the exponent of the highest power
of n. Thus, here and in the sequel, by the phrase “in polynomial time with respect to
n” where n is the size of the input, we mean “in a sequence of moves whose length is at
most ¢n®, for some constants ¢>0 and k> 1, independent of n”.

A definition of the class of NP problems (or languages, or predicates) can be given in
terms of nondeterministic Turing Machines which at each step of the computation have
the choice of one among a bounded number of possibilities, and that bounded number



116 4. COMPUTATIONAL COMPLEXITY

is independent of the input value. Recall that an input word is accepted by a Turing
Machine M iff at least one of the possible sequences of moves of M leads from the initial
state to a final state.

Definition 2. [Class NP. Version 1| A predicate p: D — {true, false} is in the class NP
iff there exists a nondeterministic Turing Machine M such that for all d € D,

(i) if p(d) holds then M evaluates p(d) to true in polynomial time with respect to the size
of the input d, and

(ii) if p(d) does not hold then M evaluates p(d) to false in finite time, but nothing is said
about how much time it takes in this case.

Now we will give two more definitions of the class NP, but we will not provide the proof of
their equivalence. The first definition captures the intuition that the class NP of problems
is the class of predicates which can be evaluated in polynomial time by a deterministic
Turing Machine after ‘a search of polynomial depth’.

Definition 3. [Class NP. Version 2| A predicate p: — {true, false} is in the class NP
iff it can be evaluated as follows:

(i) there exists a finite alphabet X,

(ii) there exists a predicate m: D x X* — {true, false} which for every d € D and
we X", is evaluated by a deterministic Turing Machine in polynomial time with respect
to size(d)x size(w), and

(iii) there exists k>0 such that for all de D,

Step (1): we consider the set of words W = {w|w € X* and size(w) = (size(d))*}, and
Step (2): we return the truth value of p(d) = if IweW = (d, w) then true else false.

Since for any d € D, the predicate m can be evaluated in polynomial time with respect
to size(d)x size(w), that is, (size(d))**!, we have that 7 can be evaluated in polynomial
time with respect to size(d).

According to Definition 2, the evaluation of the predicate p can be viewed as a re-
stricted type of exponentially long computation, in the sense that we may evaluate p
by constructing in a nondeterministic way, a tree of polynomial depth using a set W
of words, and then computing 7(d,w) for the word w at each leaf. These computations
at the leaves can be carried out independently, in parallel. Only at the end, one should
synchronize their results for obtaining the required value, that is, Jw € W 7(d, w) (see
Figure 29 on page 117). Thus, the evaluation of the predicate p can also be viewed as the
search in a polynomially deep tree for a leaf, if any, associated with a word w, such that
m(d, w) = true.

Here is a third definition of the class NP.

Definition 4. [Class NP. Version 3| A predicate p: D — {true, false} is in the class NP
iff

(i) there exists a finite alphabet X,

(ii) there exists a function ¢ : D — X* such that

- for any d € D, the string ¢(d), called the certificate of d, is in X*, and

- ¢(d) is evaluated by a deterministic Turing Machine inpolynomial time with respect
to size(d), and
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0 \1 depth of

the order of
AN

(size(d))*
w=01...0 e

Fig. 29. The nondeterministic construction of a polynomially deep tree. We have assumed
that X' = {0,1}. d € D is the input value whose size is denoted by size(d).

(iii) there exists a function o : D x X* — {true, false} which
- takes an element d € D and the corresponding string c¢(d) € X* and
- can be evaluated by a deterministic Turing Machine in polynomial time with respect
to size(d) x size(c(d)) such that
for all d € D, p(d) = true iff a(d, c¢(d)) = true.

Note that: (i) by our hypotheses, the function o can be computed in polynomial time
with respect to size(d), because size(c(d)) is polynomial with respect to size(d) (because
¢(d) is computed in polynomial time w.r.t. d), and (ii) with reference to Definition 4, if
p(d) is true, then the certificate d can be identified with a word w for which 7(d,w) is
true.

In the above definitions of the classes P and NP the reference to the Turing Machine
is not actually necessary: indeed, one may refer also to other model of computations (see
Section 31 below), and thus, we may replace the concept of ‘a Turing Machine’ by that
of ‘an algorithm’.

We now show that some problems are in NP. Let us first consider the following problem.

MINIMAL SPANNING TREE

Input: a weighted undirected connected graph G with N nodes and a weight k. Weights
are assumed to be natural numbers.

Output: ‘yes’ iff G has a spanning tree of weight not larger than k.

This problem (which is a variant of the one described in [32, page 101]) is in NP because
it can be solved in the following two steps. Let us consider X' to be the set {0, 1,2}.
Step (1): we construct the set W C X* of the encodings of all (N —1)-tuples of arcs of G
(recall that the spanning tree of a graph with N nodes has N —1 arcs), and
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Step (2): we return ‘yes’ iff there exists a (N —1)-tuple w € W such that w represents a
spanning tree, that is, it includes all nodes of GG, and the sum of the weights of w is not
larger than k.

These two steps can be described in more details as follows.

Step (1). Let us assume that every node is denoted by a natural number n, with
0<n<N-—1. Then any arc (m,n) of G can be represented by a sequence of the form:

a2 32+, called the encoding of the arc (m,n),

where «, (3, and 7 are sequences in {0,1}" which represent the binary expansion of m,
the binary expansion of n, and the weight of the arc (m,n), respectively. The graph G
can be encoded by the sequence of the form:

(22 ‘encoding of an arc’)™ 22.

Let h be the maximum weight on the arcs of G. Let A,, be the length of the longest
encoding of an arc. Obviously, A,, is a polynomial function of N and h.

Thus, Step (1) consists in constructing the set W of all strings of the form:
(22a232~)N-122,

where the length of a2 32~ is not greater than A,,.

In the set W, besides other strings, there are the encodings of all spanning trees of G.
Actually, every spanning tree is, in general, represented in W more than once, because
the order in which the arcs of the tree are listed is not relevant. Some strings in W may
be ill-formed or may not represent a tree (this is the case, for instance, when an arc is
represented more than once).

The length of a word in X* which encodes a (N —1)-tuple of arcs of G, is of the order
of (N—1) x A, (+ lower order terms), and thus, it is bounded by a polynomial of N
and h.

Step (2) consists in testing for each string w in W whether or not w represents a spanning
tree of G with total weight not larger than k. For each string w that test can be done in
polynomial time, because it is enough to scan the string w and check whether or not

- it represents a subgraph of GG which includes all nodes of G, and
- it does not have cycles, and
- the total weight of its arcs is not larger than k.

Note that a subgraph of G is a tree iff it does not have cycles, and the presence of a
cycle in a given set of arcs can be detected by matrix multiplication (see, for instance, [32,
Chapter 1]).

Actually, the minimal spanning tree problem is in P. Indeed, given any weighted
undirected graph G, using Kruskal’s algorithm we may compute a spanning tree of minimal
weight in polynomial time (see, for instance, [32, page 101]).
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Let us consider the following problem on undirected graphs.

HAMILTONIAN CIRCUIT
Input: a weighted undirected connected graph G with N nodes.

Output: ‘yes’ iff in G there exists a node n and a path from n to n (that is, a cycle
including the node n) which visits every node of G exactly once.

This problem is in NP because it can be solved as indicated by the following steps.

Step (1): we construct the set W of the encodings of all (V—1)-tuples of nodes of G, and
Step (2): we return ‘yes’ iff in W there exists an encoding w of an (N —1)-tuple of nodes
which is a cycle which visits every node of G exactly once.

Step (1) can be performed as indicated in the case of the minimal spanning tree
problem. With reference to Step (2) it is not difficult to see that the test whether or
not a given tuple w represents a cycle which visits exactly once every node of G can
be performed in polynomial time with respect to the size of the encoding of the input
graph G.

Let us consider the following problem.

CO-PRIME
Input: a positive integer ¢ in binary notation, using k = [log, ¢| bits.

Output: ‘yes’ iff ¢ is not a prime.

The ‘CO-’ prefix in the name of this problem stands for ‘complement of’, in the sense
that the output is ‘yes’ iff the input is not a prime.

Proposition 1. The CO-PRIME problem is in NP.

Indeed, an instance of the CO-PRIME problem can be solved as indicated by the following
two steps.

Step (1): we construct the set W € {0, 1}* of the encodings of all positive numbers i, for
1<i<gq,and

Step (2): we return ‘yes’ iff there exists an encoding w € W such that w represents
a number which divides ¢q. Obviously, to test whether or not a given number divides ¢
requires polynomial time with respect to k.

Now let us consider the following argument. Two factors of a given number p can be
chosen in p? ways. Each pair can be multiplied in O(p?) time. So in O(p?) time we may
know whether or not a number is non-prime.

However, by this argument we cannot conclude that CO-PRIME is in NP, because the
size of the input is [log, p] (and not p), and since p < 2M°22 71 we have that it is possible
to solve the CO-PRIME problem in O(2*/1°%2 I time, which is an exponential amount of
time with respect to the size of the input.

Let us also consider the complement problem of CO-PRIME, called PRIME, defined
as follows.
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PRIME
Input: a positive integer p in binary notation.

Output: ‘yes’ iff p is a prime.

In [1] the reader may find a proof that PRIME is in P. Thus, by that proof we may
conclude that also CO-PRIME is in P.

We have the following proposition.
Proposition 2. The problem PRIME is in NP.

The reader should realize that the complement (or negation) of a problem in NP is not,
in general, in NP. Indeed, in the complement problem, that is, the CO-PRIME problem,
the existential quantifier of Step (2) becomes a universal quantifier. Thus, having shown
above that CO-PRIME is in NP, we cannot conclude that PRIME is in NP.

Let us begin the proof that PRIME is in NP by noticing that the size of the input to
the problem is [log, p], for any given input p. In the proof we will write a = b (mod p) to
denote that | a — b |= kp for some integer number k£ > 0. We use the following theorem.

Theorem 5. |[Fermat’s Theorem| A number p (> 2) is prime iff there exists x with
1 <z < p, such that

Condition (a): P71 =1 (mod p) and

Condition (3): for all ¢, with 1 <i < p—1, 2* # 1 (mod p).

Note that since for z such that 1 < z < p, we have that: 2! # 1 (mod p), and thus, in
Condition () of the above Theorem 5 we can write 1 < i < p—1, instead of 1 <1i < p—1.

Example 2. Let us consider the prime number p = 7. We have that there exists the
number x = 3 such that: 1 < x <7 and
Condition (a) holds because: 37! = 729 = 1 (mod 7), and

(
3! =3 (mod 7)
3?2 =2 (mod 7) (indeed, 3 x 3=9="7+2)
3% =6 (mod 7) (indeed, 2 x 3 = 6)
3* =4 (mod 7) (indeed, 6 x 3 =18 = (2 X 7)+4)
3% =5 (mod 7) (indeed, 4 x 3 =12 = 7+5) 0

Given two positive integers n and m, by rem(n/m) we denote the remainder of the division
of n by m. Given an integer number m (> 2) we define pfactors(m) (where the name
‘pfactors’ stands for ‘prime factors’) to be the set {p;|p; > 2 and p, is prime and
pem(m/p;) = 0}.

For any m > 2, the cardinality of the set pfactors(m) is at most |log, m|. For instance,
we have that pfactors(2) = {2} whose cardinality is 1 = |log, 2].

Let us first recall the following theorem.
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Theorem 6. For 1 <z,y <p:

(1) z +y (mod p) takes O(log, p) time,

(2) zy (mod p) takes O((log, p)?) time,

(3) the computation of the quotient and the remainder of the integer division (mod p) of
x by y takes O((log, p)?) time, and

(4) 2¥ (mod p) takes O((log, p)?) time.

Proof. (1), (2), and (3) are immediate because when computing in the modular arithmetics
modulo p, we need at most [log, p] bits. (4) derives from the fact that we can compute
2¥ (mod p) by computing z (mod p), z* (mod p), x* (mod p), ... (this takes at most
log, p multiplications because y is smaller than p) and then multiplying the powers of x
which correspond to the 1’s of the binary expansion of y (and this takes at most log, p
multiplication). O

For testing Condition («) we construct the binary encoding of every z, with 1 < x < p, as
a path of a binary tree. The length of each of these encodings is at most [log, p]. Thus,
the test of Condition («) is bounded by a polynomial of the length log, p of the input
(see Figure 30).

For any such z we have to test whether or not ~! = 1 (mod p) and by Theorem 6,
each test can be done in O((log, p)?) time.

For each z, with 1 < x < p, we have also to test Condition (/3), that is, we have to test
whether or not for all i, 1 < i < p—1, 2° # 1 (mod p). (Recall that the test for i = 1 is not
necessary because we have that = # 1.) These tests are ‘too many’ to show that PRIME
is in NP, because p—1 is of the order of 2'°¢2 ? which is an exponential with respect to the
size of the input, which is log, p. Thus, the total time is not within polynomial time with
respect to log, p. However, the number of these tests can be reduced by using the result
of Theorem 9 below, which we will state and prove below.

Fig. 30. Finding the binary encoding of every x, with 1<z <p.

Let us first recall that: a (mod p) + b (mod p) = (a+b) (mod p) , and
a (mod p) x b (mod p) = (a x b) (mod p).

To show Theorem 9 we first need the following Theorems 7 and 8.

Theorem 7. If 2' = 1 (mod p) for some i then ¥ = 1 (mod p) for any integer number
k> 1.

Proof. Any power of 1 is 1. O
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Theorem 8. Let us assume that p > 2 and 1 < x < p.

If (Condition A) zP~* =1 (mod p) and

(Condition B) i is equal to the smallest natural number h such that 1 < h < p—1 and
2" =1 (mod p) then

(Condition C) ¢ divides p—1.

Proof. Let us consider the following Condition B#:

i is a natural number such that 1 <i < p—1 and 2 =1 (mod p) (B#)
We have that: (B) implies (B#). To show that: if (A) and (B) then (C), it is enough to
show that: if (A) and (B) and (B*) then (C'), that is, if (not C') and (A) and (B¥) then
(not B).

By (not C), if i does not divides p—1 we have that: p—1 = ki+r, for 0 < r < 7. Thus,
P71 (mod p) = 2F*7 (mod p) = 2" (mod p), by (B#) and Theorem 7. By (A) we have
that 27~ = 1 (mod p) and thus, we also have that 2" (mod p) = 1. Moreover, we have
that r # 1, because 1 < < p and 2" (mod p) = 1. Thus, 1 < r < i. Hence, i is not equal
to the smallest natural number h such that 1 < h < p—1 and 2" = 1 (mod p). O

Theorem 9. Let us assume that: (i) p>2, (ii) 1<z <p, and (iii) 27" =1 (mod p).
If for all p; € pfactors(p—1), z®P~V/Pi % 1 (mod p) then for all i, with 1 < i < p—1, we
have that z° # 1 (mod p).

Proof. Let us prove the contrapositive. Let us assume that there exists ¢, with 1 <i<p—1,
such that z* = 1 (mod p). Then, there exists a smallest such i and, by Theorem 8, we may
assume that ¢ divides p—1. That is, i = (p — 1)/(by x ... X b,) for some (not necessarily
distinct) by, ..., b, in pfactors(p—1) and r > 0.

Thus, z®~1/rxxbr) — 1 (mod p) for some by, ...,b. in pfactors(p—1) and r > 0.
By Theorem 7, for any natural number ¢ > 1, 2P=D/(1xxbr) — 1 (mod p). Thus, by
choosing ¢ = by x ... x b, if r > 2, or ¢ = 1 if r =1, we get that there exists p; in
pfactors(p—1) such that z®~Y/Pi =1 (mod p). O

Thus, if 1 <z < p and 277! =1 (mod p) then, in order to test that
for all 7, with 1 <4 < p—1, ' # 1 (mod p)
it is enough to test that
for all p; € pfactors(p—1), z®~V/Pi £ 1 (mod p).
These tests are not ‘too many’, because the cardinality of pfactors(p—1) is at most [log, p].

Ezample 3. With reference to Example 2 on page 120, in order to test Condition (3) we
need to test that:
3'#1 (mod 7)
32#1 (mod 7) (%)
3#1(mod7) (%)
31 # 1 (mod 7)
3°# 1 (mod 7).
Indeed, all these inequalities hold, because
3' =3 (mod 7),
32 =9=2 (mod 7),
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33 =27 =6 (mod 7),

3% =81 =4 (mod 7), and

3° =243 =5 (mod 7).
Now Theorem 9 tells us that in order to test Condition (3), it is enough to test that
35/2 £ 1 (mod 7) and 353 # 1 (mod 7), because pfactors(6) = {2,3}. Thus, we have to
test only the above disequations marked with (x). O

As a consequence of Theorem 9, in order to test Condition ((3) we first construct all prime
factorizations p; x ... X p of p—1, that is, we construct all lists [py, ..., px such that:
(a) p1 X...xpr=p—1and
(b) for j =1,..., k, we have that: p; is a prime number and 2 < p; < p—1.

For instance, we have the following three prime factorizations of 12: [2,2, 3], [2, 3, 2],
and [3, 2, 2].

The prime factorizations of a number, say m, can be constructed in two steps as
follows.
Step (1): we first generate all possible lists of length at most |log, m| of (not necessarily

distinct, not necessarily prime) numbers each of which is in the interval [2,...,m] (and,
thus, each number can be represented with at most [log, m| bits), and then

Step (2): we select among those lists, those of the form [m, ..., my] such that: for j =
1,...,k, we have that m; is prime, and m; X ... X my = m.

The lists of Step (1), called candidate factorizations, can be viewed as words in {0, 1},
each of which consists of at most |log, m| subwords and each subword is at most of
[log, m] bits. These words can be arranged as paths from the root to the leaves of a
binary tree (see Figure 31.

Note that that binary tree is polynomially deep with respect to the size of the input
which is [log, p]. Its depth is at most |log,(p—1)] x [log, p].

Now we will measure the cost of testing Condition (3), after constructing the tree of the
candidate factorizations of p—1.

Let us assume that we can solve the PRIME problem in ¢ [log, p]* time, for some
constant ¢ > 0, for any number p whose size is [log, p|. (From now on what follows we
will feel free to write log, p, instead of [log, p| or |log, p|, because by doing so we do
not modify the asymptotic complexity measures.)

We have the following three contributions (51), (42), and (3) to the cost of testing
Condition ().

(81) We check that py,...,py are all prime in time X;<;<; ¢ (log, p;)* (by induction hy-
pothesis).

(62) We check that p—1 = p; X ... X py by performing (k—1) (< log, p) multiplications
each of log, p bits. (Recall that the multiplications are modulo p. So we need at most one
extra bit to test whether or not the result of a multiplication is larger than p—1.) These
multiplications take ¢; (log, p)® time, for some constant ¢; > 0.

(43) For each factorization of p—1, that is, for each leaf of the tree in Figure 31, by
Theorem 9, we need to test whether or not for all p; € pfactors(p—1), we have that
x®=D/Pi £ 1 (mod p).

For Point (33) we have the following three contributions to the computational cost.
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Fig. 31. Construction of the factorization of p—1. The tree is polynomially deep with
respect to [log, p|. Its depth is at most |log,(p—1)] x [log, p].

(43.1) We compute, by successive squaring modulo p, the binary expansion of the powers
modulo p of z, that is, the set S = {x, 2% (mod p), z* (mod p), ..., %" (mod p)}, where 2"
is the largest natural number such that 2" < p—1. We need to perform at most log, (p—1)
multiplications modulo p.

(83.2) We compute the values of (p—1)/p; for each p; € pfactors(p—1). Since the cardinality
of pfactors(p—1) is at most log, p, we need to perform at most log, p divisions modulo p.

(83.3) For each value in the set {(p—1)/p; | p; € pfactors(p—1)} we add modulo p at most
log, p powers of x occurring in S.

Thus, the total cost Cy,; of the primality test is:

Ciot = co (logy p)? (for )
+X1<j<k ¢ (logy pj)*  (for B1)
+¢1 (logy p)? (for 32 and (33.1)
+cz (logy p)? (for 33.2)
+e3 (log, p)’ (for 33.3),

for some suitable positive constants c, cg, ¢1, ¢o, and c;.

Now, in order to conclude that the PRIME problem is in NP it is enough to observe
that Cys < c(log, p)* for some suitable constant ¢ > 0. This observation follows from the
fact that:

-if p—1=p; X ... X pg then log, (p—1) =log, p1 + ... + log, px, and
- for h > 1 and p—1 > 2 we have that:
(log, p)" > (log, (p—1))" > (logy p1)" + ... + (logy p)". O

Note that it is well-known open problem to determine whether or not any problem in NP
can be computed by a deterministic Turing Machine within polynomial time with respect
to the size of the input. This problem is known as the ‘P = NP problem’.



27. PROBLEM REDUCIBILITY 125

We have already seen that the minimal spanning tree problem can be solved in deter-
ministic polynomial time by Kruskal’s algorithm, but every algorithm which is currently
known for solving the Hamiltonial circuit problem takes exponential time in a determin-
istic Turing Machine.

There are problems in NP which are complete (see Section 28 on page 128) in the sense
that if a polynomial time, deterministic Turing Machine can be found for the solution of
any NP-complete problem, then all problems in NP can be solved in polynomial time by
a deterministic Turing Machine, and thus, P = NP.

In view of the fact that deterministic Turing Machines and IA-RAM’s are polynomially
related (see Section 31 on page 147), in the above sentence we can replace ‘deterministic
Turing Machine’ by the informal notion of ‘algorithm’.

In order to define the class of NP-complete problems in the following section we in-
troduce the notion of problem reducibility.

27 Problem Reducibility

In Section 19 we have explained that via a suitable encoding, a problem A can be viewed
as a language L4 on an alphabet Y4, that is, a problem A can be viewed as a subset of
27%. The language L4 can also be viewed as a predicate R4 on X%, that is, a function
from X% to {false, true} such that w € Ly iff Ry = true.

Definition 5. [Problem Reduction in Polynomial-Time or Logarithmic-Space]
Given a problem A associated with the language L4 C X and a problem B associated
with the language Ly C X%, we say that problem A is polynomial-time reducible to
problem B (or equivalently, predicate R4 is polynomial-time reducible to predicate Rp)
and we write A —, B (or A <, B), iff there exists a deterministic Turing Machine M
which for each w in X7, produces, in a polynomial time with respect to the size of w, a
word, call it f(w), in X%, such that w € L4 iff f(w) € Lp.

Instead of polynomial-time reductions, we may introduce the logarithmic-space reduc-
tions, denoted <;o4p, by replacing in the above Definition 5 ‘polynomial-time reducible’
by ‘logarithmic-space reducible’ and also ‘in a polynomial-time’ by ‘by using logarithmic-
space’. We will see the relationship between these two reductions in Section 28.1 on
page 134.

It is easy to show that:
-if A —, B and B is in the class P then A is in the class P, and
-ift A —, B and B is in the class NP then A is in the class NP.

(It is enough to observe that given any word w € L4, the size of the word f(w) € Lg is
a polynomial of the size of w.)
Given a problem A which is polynomial-time reducible to a problem B, the notation
A <, B reminds us that, informally speaking, ‘A is below B in the level of difficulty’.
Given two problems A and B, it A <, B and B <, A, then we say that the two
problems are polynomial-time interreducible, and we write A =, B.

The composition of two polynomial-time reductions is a polynomial-time reduction.

Two problems which are polynomial-time interreducible, are the following ones.
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C-SATISFIABILITY
Input: a boolean formula F' in conjunctive normal form (CNF), that is, a formula made
out of and’s (A), or’s (V), not’s (—), variables, and parentheses.

Output: ‘yes’ iff I is true for some truth assignment of the variables in F'.

K-CLIQUE
Input: an undirected graph G with n > 1 nodes and an integer k£ > 1.

Output: ‘yes’ iff G has a k-clique, that is, a set of k£ nodes such that all k (k—1)/2 pairs
of nodes are connected by an arc.

We will not formally prove the interreducibility between the C-SATISFTABILITY problem
and the K-CLIQUE problem. That proof is left to the reader as an exercise. We will
simply present the polynomial-time reduction of the C-SATISFIABILITY problem to the
K-CLIQUE problem and the polynomial-time reduction of the K-CLIQUE problem to
the C-SATISFIABILITY problem.

Let us start by constructing a function, call it g, such that the CNF formula F' with
k conjuncts is satisfiable iff g(F") has a k-clique.

Let F' be the conjunction F} A F5 A ... A Fj, where for ¢ = 1,...,k, the disjunction
F; is of the form: x;; V...V z;,,. The function g is defined as follows. ¢g(F’) is the graph
whose nodes are:

{li,j]] 1<i<kand1<j<mr},

that is, each node corresponds to the occurrence w;; of a literal (variables or negated
variables) in F', and whose set of arcs is:

{61 [t | i # s and (235 # —wsp or a7 244)},

that is, an arc connects nodes = and y iff  and y belong to different conjuncts and they
correspond to literals which are not negation of each other.

An example will clarify the ideas. Let us consider the formula F' = (aV=b) A (bV —¢) A
(ma V —bV —c). Let us consider the following three conjuncts of the formula F":

Fi=(aVv-b), Fs=(bV —c), and F3 = (—aV —bV —c).

From F we can construct the graph g(F') (see Figure 32). One can show that our given
F is satisfiable iff g(F") has a 3-clique.

It is not difficult to prove that for any F', the construction of the graph g(F') can be
done in polynomial time with respect to a suitable notion of the size of F', that is, for
instance, with respect to the number of occurrences of literals in F'.

Now we show how to reduce in polynomial time the K-CLIQUE problem to the
C-SATISFIABILITY problem. Let us construct a function, call it f, such that the graph
G has a k-clique iff f(G) is satisfiable.

Let us assume that the n nodes of G are called 1,2,...,n. We have that G has a
k-clique iff there exists a total injection function h from {1,...,k} into {1,...,n}. The
function f translates this statement into a CNF boolean formula using the following
n? + n k variables:

{Aij|1<i,7<n} U{H;|1<i<kAN1<j<n}
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aV —b

—aV —bV —c

Fig. 32. The graph ¢g(F) corresponding to F'= (aV =b) A (bV —¢) A (ma V =bV —c¢).

where A;; is true iff (7, j) is an arc of G, and H;; is true iff h(i) = j.
f(G) is the formula ' = F1 A F2 N F3 A F4 A F5, where:

F1= Nigec Ais N Njge ~Ais
which ensures that the set {A;; |1 <4,j < n} denotes the arcs of G
which ensures that h is defined for all : =1, ..., k,

F3 = Algigk,lgj;émgn = (Hij A Him)
which ensures that A is single valued

FA= Nicizjcr1<men = (Him A Hjm)
which ensures that h is an injection

F5 = Algi;ﬁjgk,lgs,tgn ((His N Hji) — Ast)

which ensures that for all 4, j with 1 <i # j <k, (h(i),h(j)) is an arc of G.

To put F' in conjunctive normal form we need to recall that (a Ab) — c=—-a V =b V ¢
and —(a A b) = —a V —b.

It is easy to prove that the transformation f can be done in polynomial time. For
this proof one should replace the /A conjunctions by the corresponding sequences of A
conjunctions.

In order to show that the K-CLIQUE problem can be reduced in polynomial-time to
the C-SATISFIABILITY problem one need to show that G has a k-clique for some £>1
iff f(G) is satisfiable.

Exercise 3. Verify that the C-SATISFIABILITY problem and the K-CLIQUE problem
are both in NP. O
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The reader should note that the definition of the reducibility between two problems, say
A and B, makes reference to the pair of alphabets X4 and X'z, and to the representations
of the input words. Strictly speaking, in order to state a reducibility relationship, one
should also specify those alphabets and representations.

It is the case, however, that various standard representations are polynomial-time re-
lated, so that it is not necessary to specify under which representations the given problems
are polynomial-time reducible. Care should be taken for the representation of the integers,
where the integer n is usually assumed to be represented by log, n bits.

28 NP-Complete Problems

Definition 6. [NP-complete Problems| A given problem A is NP-complete iff A is in
NP and for every other problem B in NP we have that B <, A (Cook, 1971).

Thus, we may say that NP-complete problems are the ‘most difficult’ problems in the
class NP. Many well-known problems are NP-complete problems and thus, any two of
them are polynomial-time interreducible.

If an NP-complete problem were shown to be in P then P = NP, because, by definition,
every problem in NP is polynomial-time reducible to any NP-complete problem.

Let us list the following NP-complete problems [16].

1. C-SATISFIABILITY
Input: a CNF boolean formula F', that is, a boolean formula in conjunctive normal form.
Output: ‘yes’ iff F' is satisfiable.

The size of the input formula is the number of the symbols of the formula.
The variant of the C-SATISFIABILITY problem, called SATISFIABILITY, where one
does not insist that the given boolean formula be in conjunctive normal form, is also
NP-complete.

2. 3-SATISFIABILITY

Input: a 3-CNF boolean formula F', that is, a boolean formula in conjunctive normal form
with at most three literals in each disjunct. (By literal we mean either a variable or a
negated variable.)

Output: ‘yes’ iff F is satisfiable.

3. K-CLIQUE

Input: an undirected graph G, with n > 1 nodes and an integer k£ > 1.

Output: ‘yes’ iff in G there exists in a k-clique, that is, a subgraph with k& nodes such that
there is an arc between any two nodes of that subgraph.

4. HAMILTONIAN CIRCUIT in a directed graph

Input: a directed graph G.

Output: ‘yes’ iff in G there is an Hamiltonian circuit, that is, a cycle which touches every
node exactly once. Obviously, the first and the last node of the graph are the same node.

5. HAMILTONIAN CIRCUIT in a undirected graph

This problem is analogous to the problem of HAMILTONIAN CIRCUIT in a directed
graph, but the input graph is now assumed to be an undirected graph and the circuit
should be made out of undirected arcs.
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6. VERTEX COVER

Input: an undirected graph G and an integer k.

Output: ‘yes’ iff there exists a set S of k£ nodes such that every arc of G has at least one
of its two nodes in S.

7. COLOURABILITY

Input: an undirected graph G and an integer k.

Output: ‘yes’ iff each of the nodes can be assigned one of k colours such that no arc of G
has its two nodes of the same colour.

8. SUBSET SUM
Input: a set {ig,i1,...,14.} of positive integers.
Output: ‘yes’ iff there exists a subset S of {iy,... 4.} such that the sum of the integers
in S is ig.
9. NOSTAR-REG-EXPRESSIONS
Input: a regular expression E over a finite alphabet X not involving * (that is, involving
. and + only), and an integer k > 0.
Output: ‘yes’ iff E # X% (that is, F denotes a language which is not 2*¥).
Note that in F the empty string € is not allowed, because € is an abbreviation for (J*.

10. COOK’S PROBLEM
Input: the description of a nondeterministic Turing Machine M over the input alphabet X
such that M may run for a polynomial number of steps only, and an input string w € X*.
(The polynomial is with respect to the size of w.)
Output: ‘yes’ iff M accepts w.

Cook’s problem is NP-complete by definition.

Theorem 10. |[Cook’s Theorem, 1971] Cook’s problem is polynomial-time reducible
to the C-SATISFIABILITY problem.

Proof. Omitted. See [10]. O

The proof that the above problems are all NP-complete, can be found in [2,10,16]. Those
proofs are based on the reductions indicated in Figure 33 on page 130.

In order to show that a given problem A is NP-complete it is enough to show that
a NP-complete problem is polynomial-time reducible to A. For instance, it is enough to
show that C-SATISFIABILITY is polynomial-time reducible to A. Note that in practice
some reductions between NP-complete problems are much easier than others, thus, the
choice of the problem which is already known to be NP-complete is important.

Now we prove that the 3-SATISFIABILITY problem is NP-complete by reduction of
the C-SATISFIABILITY problem to 3-SATISFIABILITY problem. Let the given formula
F be expressed by conjunctions of disjunctions. For each disjunction D of the form (z; V
...V ay) for k > 3, we consider the following formula:

E=(xiVy) (Ve Vya) (myaVasVys) oo (tyk—2 Va1 VY1) (TYr—1 V Ty)
where y1, ¥, . . ., yx_1 are new variables, and for simplicity we used juxtaposition to denote
conjunction.
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Undirected Hamiltonian Circuits

T

Directed Hamiltonian Circuits

T

Vertex Cover Colourability
k-Cliques 3-Satisfiability

===

C-Satisfiability

Fig. 33. Reducibility among NP-complete problems. The fact that A <, B is denoted by
an arrow from A (drawn below) to B (drawn above).

We now show that for each assignment to the variables zq,...,z;, there exists an
assignment to the variables 41, s, ..., yr_1 such that E has value 1 (standing for true) iff
D has value 1 (that is, one of the z;’s has value 1).

Indeed, let us assume that x; has value 1. We set y; to 1 for 7 < 4, and y; to 0 for
j>1i. Then FE ha value 1. Conversely, if E has value 1 there are three cases:
either (i) y; =0, in which case 1 has value 1, or (ii) yx_1 =1, in which case z} has value 1,
or (iii) (y1 =1 and yx_1 =0). In this last case we have that £ = (23 Vys) (-y2 Va3 Vys) ...
(myk—2 Vxr_1) = 1, and this implies that at least one of x;’s has value 1. Indeed, if all z;’s
have value 0 then for all possible assignments to s, ..., yr_2, we have that:

(@2 Vy2) (my2VazVys) . (tyk-2Var-1) =32 ("y2Vys) - (Wk-3V Yr—2) (7yk—2) = 0

The 2-SATISFIABILITY problem (where each conjunct is of at most two literals) is
in P. This can easily be seen because by resolution of two conjuncts of at most two
literals each, we get a new conjunct of at most two literals. Then the fact that the
2-SATISFIABILITY problem is in P follows from the fact that there are at most O(n?)
different conjuncts of at most two literals each, being these literals taken from the set

{ZL’l, Ce ,[L’k} U {_|[L’1, .. .,ﬁl’k}.

FExercise 4. Show that the following so called Time-Tabling problem is NP-complete. Con-
sider a set C' of candidates, a set E of examinations, and for each candidate the set of
examinations (subset of E) he/she has to take. To avoid clash, every candidate needs at
least as many examination periods as the cardinality of the set of examinations he/she
has to take. It is required to determine the minimum number of examination periods to
avoid clashes for every candidate.

| Hint: equivalence to colourability.] O

FExercise 5. Consider the NOSTAR-REG-EXPRESSIONS problem over the alphabet
{0,1}.
Input: a regular expression F (with the operators 4+ and », and without the Kleene’s star

operator*) over {0, 1} and an integer k£ > 0.
Output: ‘yes’ iff E # {0, 1}*.
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Consider the following function r from boolean expressions to regular expressions over
{0,1}:
if = F NFyA...N\F, with variables {z1,%s,...,2,}
then r(F) = Ey+ Ey+ ...+ Ep, where fori = 1,..., h, E; = e;1=€;0+...€;,, and for each
j=1,...,n, we have that:

ei; = 0 if z; occurs in F;

eij = 1 if —~x; occurs in Fj

e;; = 1 if neither x; nor —z; occurs in Fj.
Show that C-SATIFIABILITY problem <, NOSTAR-REG-EXPRESSIONS problem.
Deduce from this reduction that given two regular expressions F; and E5 not involving ,
the problem of answering ‘yes’ iff £ # FE,, is NP-complete. What happens when we
allow *? (See the REG-EXPRESSIONS problem in Section 28.6 below. We have that
the REG-EXPRESSIONS problem is PSPACE-complete with respect to polynomial-time

reductions). O

Let us also consider the following NP-complete problems [30].

11. TRAVELING SALESMAN (TSP, for short).

Input: a weighted undirected graph G (weights are non-negative integers).

Output: ‘yes’ iff there exists a Hamiltonian circuit (that is, a circuit which touches every
node exactly once) of minimal total weight.

A variant of this problem, called the k-Traveling Salesman problem (or k-TSP, for
short), is defined as follows.
Input: a weighted undirected graph G and an integer k£ > 0.
Output: ‘yes’ iff there exits a Hamiltonian circuit in G whose weight is less or equal k.
Also this problem is NP-complete.

The variant of the TSP in which we insist that G be a complete graph (that is, there
is an arc between any two nodes), is NP-complete as well. Indeed, TSP is an instance of
this variant if some weights are 0.

12. INTEGER LINEAR PROGRAMMING (ILP, for short).
Input: an nxm matrix A of integers, and a column vector b (n x 1) of integers (the integers
in A and b are not necessarily positive).
Output: ‘yes’ iff there exists a column vector x of m x 1 integers such that Az > b and
x > 0 (that is, each component of x is a non-negative integer). (An equivalent formulation
of the ILP problem is the one where we impose the condition Az = b, instead of Az > b.)
A variant of the ILP problem is as follows. We have in input also a row ¢ of 1 xm
integers (not necessarily positive) and we give the answer ‘yes’ iff the column vector x
also minimizes the product cz. Also this variant is NP-complete.
Starting from the first definition of the ILP problem with either Az >b or Az =0, if we
do not insist that x be made out of integers, the problem is called LINEAR PROGRAM-
MING (LP, for short), and it is in P [21].

13. BINARY PARTITION

Input: a set S of positive integers cq, ..., C,.

Output: ‘yes’ iff there exists a subset A of S such that the sum of the elements in A is
equal to the sum of the elements in S— A.
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14. KNAPSACK

Input: a set S of positive integers ci, ..., ¢, (called sizes), a set V of positive integers
v1, ..., 0, (called values), and a positive integer B (called bin capacity).

Output: ‘yes’ iff there exists a subset S1 of S and a corresponding (that is, with the
same subscripts) subset V1 of V' such that the sum of the sizes is not larger than B and
the sum of the values is maximal (among all possible choices of the subset S1 and the
corresponding subset V'1).

A variant of the Knapsack problem, called the k~-KNAPSACK problem, is as follows.

Input: a set S of positive integers cy, ..., ¢, (called sizes), a set V of positive integers
V1, ..., Uy, (called values), a positive integer B (called bin capacity), and a positive inte-
ger k.

Output: ‘yes’ iff there exists a subset S1 of S and a corresponding (that is, with the same
subscripts) subset V1 of V' such that the sum of the sizes is not larger than B and the
sum of the values is not smaller than k.

Also this problem is an NP-complete problem.

15. BIN PACKING

Input: a set S of positive integers cy, ..., c., and a positive integer bin capacity B.
Output: ‘yes’ iff there exists a partition of S in the minimum number of disjoint subsets
such that the sum of the integers in each subset is not greater than B.

A variant of the BIN PACKING problem, called the k-BIN PACKING problem, is as
follows.
Input: a set S of positive integers cq,...,c,, a positive integer bin capacity B, and a
positive integer k.
Output: ‘yes’ iff there exists a partition of S in k disjoint subsets such that the sum of
the integers in each subset is not greater than B.

Also this problem is NP-complete.

Note 1. In the Problems 11-15 above, instead of giving the answer ‘yes’, we may as well
give the witness of that answer. For instance, in the case of the TRAVELING SALESMAN
PROBLEM we may give the Hamiltonian circuit with minimal weight. O

One can argue that the k-Traveling Salesman problem, the --KNAPSACK problem, and
k-BIN PACKING problem are in NP from the fact that the so called corresponding
‘optimization variants’ where one has to find minimal or maximal solutions, are in NP by
reducing the optimization variants to a polynomial number of the k-variants as we now
indicate. We assume that we can compute in polynomial time (w.r.t. the size of the input)
a polynomial bound (w.r.t. the size of the input), call it dy, for the value of k.

We solve the optimization variant by solving the k-variants for k = dy, k = dy, k = ds,
and so on, where the values of dy, ds, etc., are obtained by binary search, starting from
dy, until the optimal solution is found. By doing this, we need to solve at most O(log, do)
k-variants for finding the optimal solution, and thus, we remain within polynomial-time
cost (w.r.t. the size of the input).

The reader may notice that the k-variants can be associated with a language in a more
direct way than the corresponding optimization variants. For instance, in the case of the
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k-TSP it is easy to consider a word for each encoding of a Hamiltonian circuit whose total
weight is less or equal to k.

In order to show that a problem in NP-complete one may also use the so called
restriction technique.

For instance, NP-completeness of the k-Traveling Salesman problem is derived from
the fact that the set of all instances of the k-Traveling Salesman problem such that all
weights are 1’s, for k sufficiently large constitutes the Hamiltonian circuits problem in
undirected graphs.

NP-completeness of the k-KNAPSACK problem is derived from the fact that the set
of all instances of the k-KNAPSACK problem such that for ¢ = 1,...,r, ¢; = v; and
B =k = (X, ¢;)/2 constitutes the BINARY PARTITION problem.

Analogously, the BIN PACKING problem can be shown to be NP-complete, because
the set of all its instances such that B = (3; ¢;)/2 constitutes the BINARY PARTITION
problem. Indeed, (i) to check whether or not there is a solution for k = 2, corresponds
to solve the BINARY PARTITION problem, and (ii) to minimize k, that is, the number
of disjoint subsets, it is required to get as close as possible to £ = 2, and since k = 1 is
impossible (because B = (¥; ¢;)/2), one needs to check whether or not there is a solution
for k = 2.

Recall that, even if the answer to some instances of the problems we have mentioned,
can be determined within polynomial time (like, for instance, for BINARY PARTITION
when the sum of the weights is odd, or in the case of BIN PACKING, when B < mazx {¢;}),
this does not necessarily make the problem not to be NP-complete, because for a problem
to be in P we require that its solution should be determined within polynomial time for
every input.

FExercise 6. Show that BINARY PARTITION is in NP.

|Hint. Let S be {¢1,...,¢.}. Consider a full binary tree where for h = 1,...,r, at level h
it is decided whether or not ¢;, should be in the set A to be found. In every node at level
r we determine whether or not the sum of the chosen integers is equal to the sum of the
ones in S which are not chosen.] a

FEzercise 7. Show that the language of the boolean expressions (with A, V, -, and vari-
ables) which are not tautologies is NP-complete [2, page 400]. O

FExercise 8. Show that the problem of determining whether a regular expression over
Y = {0} does not denote 0* is NP-complete |2, page 401]. O

The reader should notice that the notion of NP-completeness does not imply that problems
are either polynomial-time or exponential-time in the sense that they may be in between,
that is, they could require O(n'°&2") time.

Note 2. Recall that for any constant a > 0 and b > 1 we have: O(n?%) C O(n'°%2") C O(b"),
in the sense that:

n® = 0(n'°2™) for a > 0, and n'°&2" = O(b") for any b > 1, while

nlog2m £ O(n®) for a > 0, and b" # O(n'°&2") for any b > 1. O
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If every problem in NP is polynomial-time reducible to a problem in DTIME(7T(n)) then
NP C ;. DTIME(T'(n")), because a polynomial-time reduction from problem A to prob-
lem B cannot generate an input for problem B which is more than a polynomial of the
size of the input of problem A.

This statement holds also if we replace ‘polynomial-time reducible’ by ‘logarithmic-
space reducible’ (see Definition 5 on page 125). In the following Section 28.1 we will say
more about the relationship between these two notions of reducibility.

28.1 Polynomial-Time versus Logarithmic-Space Reductions

In Definition 5 of Section 27 we have introduced two concepts of reducibility between
problems: (i) the polynomial-time reducibility, denoted <,, and (ii) the logarithmic-space
reducibility, denoted <;,4,. Recall that in order to define the notion of logarithmic-space
reducibility we consider, instead of a deterministic Turing Machine, a deterministic, off-
line Turing Machine M (see Section 4.4 on page 27 and Section 25 on page 113). We
assume here that such an off-line deterministic Turing Machine has a read-only nput
tape (the head moves to the right and to the left), together with a write-only output
tape (where the head moves to the right only and always reads the blank symbol), and
a working tape (where, as usual, the head may move to the left and to the right, and
it may read and write). As indicated in Theorem 2 of Section 25 on page 114, we may
equivalently have k(> 1) working tapes, instead of one only. Moreover, with respect to
Section 25 we assume here, as some authors do, that the off-line deterministic Turing
Machine M has an output tape. Note, however, that this assumption does not modify the
computational power of the machine M because the output tape can be seen as an extra
working tape (with restrictions on the allowed operations).

Theorem 11. If a problem A is logarithmic-space reducible to a problem B (that is,
A <jpsp B), then problem A is also polynomial-time reducible to problem B (that is,
A<, B).

Proof. 1t is enough to show the following implication («): if an off-line deterministic
Turing Machine M when solving the problem A with input word w, can use in the working
tape only a number of cells which is proportional to log,(size(w)), then M can determine
at most a polynomial number of different 5-tuples whose components are: (i) the internal
state of M, (ii)—(iv) the positions of the heads in the input tape, the working tape,
and the output tape, and (v) the content of the whole working tape. Having proved the
implication («), and taking into account that the moves of M are determined by the
values of these 5-tuples, we will have that: either M stops within a polynomial number
of steps or it loops. Since we have assumed (see Definition 5 on page 125) that M given
an instance i4 of the problem A, generates an instance ig of the problem B (so that the
answer to ip is also the answer to i4), then M will do so in polynomial-time.

Now, we will prove the above implication («). Let @) denote the set of the internal
states and I" denote the set of the tape symbols. We have that the number of different
5-tuples is bounded by the following product P for some values of the constants ¢ and d:
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P = Q]| (for the internal state)

x size(w) (for the position of the head in the input tape)

x ¢ logy(size(w)) (for the position of the head in the working tape)

x 1 (for the position of the head in the output tape)

x | "] 4 loe2(s1ze(w)) (for the content of the working tape).
Note that: (i) the input tape cannot be written and thus, it contributes to the product
P by a factor size(w) (and not | I" [¥**(®)) and (ii) the head on the output tape always
scans a cell with a blank symbol and thus, it contributes to the product P by a factor 1
only. We have that P is a polynomial of size(w), because:

a®loers = gdlogra  for g d,s >0 and b # 1.

This completes the proof. O

As a consequence of this theorem, we have that:
(i) if A <jp4sp B and B is in the class P then A is in the class P, and
(ii) if A <4ogsp B and B is in the class NP then A is in the class NP.

We also have that the compositions of two logarithmic-space reductions is a logarithmic-
space reduction.

Note that if we use the logarithmic-space reductions, instead of polynomial-time re-
ductions, we get a different notion of NP-completeness.

However, as shown in [16], the problems listed above, that is, Satisfiability, C-Sat-
isfiability, 3-Satisfiability, k-Clique, Hamiltonian Circuit (in directed and undirected
graphs), Vertex Cover, Colourability, Subset Sum, Nostar-Reg-Expressions, Cook’s prob-
lem, Traveling Salesman problem, Binary Partition, Bin Packing, Knapsack, Integer Lin-
ear Programming are all NP-complete also with respect to logarithmic-space reductions.

If a problem A is NP-complete with respect to logarithmic-space reductions and we
have that A is in DSPACE(log n), then NP = DSPACE(log n).

Note that if all problems in NP are polynomial-time reducible to a problem A and we
have that A is in DSPACE(log n) then we cannot conclude that NP = DSPACE(log n)
(because polynomial-time reduction from a problem B; to a problem By does not imply
a logarithmic-space reduction from problem B; to problem Bj).

28.2 NP-Complete Problems and Strongly NP-Complete Problems

Let us consider the following three problems: BINARY PARTITION, KNAPSACK, and
BIN PACKING. The first two differ from the last one, because they are not strongly
NP-complete, while the last one is strongly NP-complete.

Definition 7. [Strong NP-complete Problems| A problem is said to be strongly NP-
complete iff it is NP-complete also when the numbers involved are represented in unary
(and not in binary) notation.

Here is a Dynamic Programming technique for solving the BINARY PARTITION prob-
lem. This technique shows that BINARY PARTITION is not strongly NP-complete.

Let the given set S of positive integers be {cy,...,c.}. We first compute the sum
B of the elements in S. Then we construct the following sequence s of lists of integers:
Ap, Ay, ..., A, where the list Ay is made out of 0 only (that is, Ay = [0]), and for any
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1 >0, the list A; is obtained by adding ¢; to each element of the lists Ag, Ay,..., A;_1 and
then by concatenating the resulting lists together. In particular, if r > 3 we have that:
AO = [0], Al = [Cl], A2 = [02, Cl—l—CQ], and Ag = [03, Cl—|—03, Co + 3, Cl+02—|—03]. While
performing the concatenation of those lists we also erase the duplicated elements and the
integers larger than B/2. We return ‘yes’ iff B/2 occurs in the sequence s.

In each list A;, for 0 <i <r, we have to consider up to B/2 + 1 different integers,
because in [Ag, A1, ..., A;_1] there are at most B/2 + 1 integers (The term ‘+1’ is due
to the presence of the integer 0), each integer being of at most log,(B/2) bits, and this
is done at most r times. Thus, in the worst case, the total number of steps to construct
the sequence s is at most r x (B/2 + 1) x log,(B/2). This is a polynomial of the size of
the input when the input is written in unary. In this case, in fact, the size of the input is:
c1 + ...+ ¢, which is equal to B, and we also have that r <B.

However, r x (B/24 1) x log,(B/2) is not a polynomial of the size of the input, when
the input is written in binary, in which case the size of the input is log, c; + ... + log, ¢,
which is at most 7 X (log, B). Indeed, it does not exist any polynomial of r x (log, B) which
is asymptotically above r X B (because it is not the case that there exist k, 1o, By > 0
such that for all r>7y and for all B> By we have that: rB < (r log, B)*).

28.3 NP Problems and co-NP Problems

It is an open problem to determine whether or not the class NP is closed under comple-
mentation, that is, whether or not NP = co-NP.

If NP # co-NP, then P # NP (because we have that P = co-P, that is, the class P of
languages (or problems) is closed under complementation). The converse does not hold,
that is, P # NP does not imply that NP # co-NP, and thus, it may be the case that
P # NP and NP = co-NP [13, page 182].

Theorem 12. NP is closed under complementation iff we have that the complement of
some NP-complete problem is in NP.

Proof. (only-if part) It is obvious. (if part) Let us consider an NP-complete problem p
and let us assume that its complement, call it co-p, is also in NP. Let us consider a
problem b in NP. We have to show that also its complement co-b is in NP. First, we have
that b is polynomial-time reducible to p because p is NP-complete. We also have that
co-b is polynomial-time reducible (by the same reduction) to co-p, which is in NP. We
conclude that co-b is in NP, as we wanted to show. Note that this proof is valid both for
polynomial-time reductions and logarithmic-space reductions. O

28.4 Complete Problems and Hard Problems with respect to a Class of
Problems

In Section 24 we have introduced the notions of hard and complete subsets of the set of nat-
ural numbers with respect to 1-reducibility between sets (see Definition 13 on page 110).
Now we will introduce the very similar notions of hard and complete problems of a class
of problems.

The notions of hard and complete subsets were based on the 1-reducibility relation-
ship between sets (see again Definition 13 on page 110). Similarly, the notions we will
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introduce in the following definition are based on reducibility relationships between prob-
lems. In Definition 5 on page 125 we have already introduced two such relationships: the
polynomial-time reductions and the logarithmic-space reductions.

Definition 8. [Hard and Complete Problems]| Let us consider a class C' of problems
and a set R of reductions between problems. We say that a problem p is C-hard with
respect to the set R iff every problem in C' can be reduced via a reduction in R to the
problem p.

We say that a problem p is C-complete with respect to the set R iff (i) every problem
in C' can be reduced via a reduction in R to the problem p, and (ii) p € C.

Thus, a problem p is NP-complete with respect to the polynomial-time (or logarithmic-
space) reductions iff it is NP-hard with respect to the polynomial-time (or logarithmic-
space) reductions and it is in NP.

For instance, we have that ILP (Integer Linear Programming) is NP-complete with
respect to logarithmic-space reductions, and this can be shown by proving that: (i) ILP is
NP-hard with respect to logarithmic-space reductions, and (ii) ILP is in NP [16, page 338|.

28.5 Approximation Algorithms

There are algorithms which take polynomial-time and solve in an approximate way NP-
complete problems in the sense we will now explain [16,30]. Consider, for instance, the
METRIC TRAVELING SALESMAN problem (denoted ATSP), that is, the TRAVELING
SALESMAN problem with the hypothesis that the given distances satisfy the triangle
inequality: d(a,c) < d(a,b) + d(b,c).

ATSP is NP-complete when the input is a weighted undirected graph G and an integer
k>0, and the output is a Hamiltonian circuit whose weight is less or equal k.

For ATSP there exists an algorithm due to Christofides, which finds a solution, which
is within 3/2 of the cost of the optimal solution [30, page 416].

Note, however, that if the hypothesis on the triangle inequality is not assumed (that
is, if we consider the standard TRAVELING SALESMAN problem) then the existence of
a polynomial-time algorithm which finds a circuit, which is within twice the cost of the
optimal circuit, implies that P = NP.

28.6 Stratification of Complexity Classes

Figure 34 on page 139 gives a pictorial view of the inclusions of some classes of problems

(denoted in bold, capital letters) of different computational complexity. If a class A is

below class B then AC B. With reference to that figure we recall the following points.
As indicated in Section 25 on page 115, it is an open problem

(i) whether or not P = NP (see end of Section 26 on page 26),

(ii) whether or not NP = PSPACE [19, page 98|,

(iii) whether or not PSPACE = EXPTIME |19, page 102], and

(iv) whether or not EXPTIME = NEXPTIME [19, page 103].

Let EXPTIME be Uk>0DTIME(2nk), that is, the set of all problems solvable in time
O(2p(n)), where p(n) is a polynomial in the size n of the input. Let 2-EXPTIME be
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k n
U,oDTIME(22" ), that is, the set of all problems solvable in time O(22p( )), where p(n)
is a polynomial in the size n of the input. In general, for any k£ >2, k--EXPTIME is the

‘zp(n)

set of all problems solvable in time O(2° ), where p(n) is a polynomial in the size n
of the input and there are k occurrences of 2 in the ladder of 2’s.
The class ELEMENTARY =4 |J,-, k-EXPTIME is a proper subset of REC.

We have the following inclusions (see also Section 29.1 on page 142 and Section 29.2 on
page 143):

PSPACE C EXPTIME C EXPSPACE C 2-EXPTIME C 2-EXPSPACE C

C 3-EXPTIME C and so on.

It is also an open problem whether or not P = PSPACE. If P = NP then EXPTIME =
NEXPTIME [19, page 103|.

We have that: P C NP C PSPACE (= NSPACE) C EXPTIME

where at least one of these containments is proper, because we have that P C EXPTIME
as a consequence of the Deterministic Time Hierarchy Theorem 14 on page 142.

We have that: DSPACE(log n) C P C NP C PSPACE (= NSPACE), where at least one
of these containments is proper, because we have that DSPACE(log n) € NSPACE(log n)
C PSPACE (= NSPACE) as a consequence of the Nondeterministic Space Hierarchy
Theorem 17 on page 144. We also have that: NP C NEXPTIME (see Theorem 18 on
page 144). It is an open problem whether or not PSPACE = NEXPTIME (see also what
we have stated on page 161 at end of Section 33).

It may be that P = NP and NP € PSPACE (proper containment).

If P # NP then it is undecidable to determine whether or not a given language L is
in P, when it is known that L is in NP.

If there exists an NP-complete language L C 0* then P = NP [16, page 369|.

The class REC (short for recursive) is the class of the decidable problems. Sometime,
in the literature that class is also called DECIDABLE. This terminology is consistent with
the one we have used in Definition 13 on page 78 at the end of Section 14.

Now we give the formal definitions of the theories and problems which are indicated in
Figure 34 on page 139.

(A) The WSIS theory is the Weak Monadic Second Order Theory of Successor (1 in WS1S
stands for 1 successor). It is a theory of the natural numbers with 0 (zero), s (successor),
<, =, the usual propositional connectives, comma, parentheses, existential and universal
quantifiers, individual variables (ranging over natural numbers), and a countably infinite
set of monadic predicate variables, called set variables (ranging over finite sets of natural
numbers).

If F'is a set variable, we write € F', instead of F'(z). For instance, the following is a
sentence of WS1S:

JFxVy(z € F N (y>x—y g F)).

This sentence is true and it says that there exists a non empty subset with a largest
element.
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REC e Regular Expressions with exponents and —: not elementary recursive
e Weak Monadic 2nd Order Theory of 1 Successor (WS1S): not elementary recursive
e Presburger Arlthmetlcs has EXPSPACE lower bound.
Decidable in 0(22 ) determ. time and O(2%") (determ. or nondeterm.) space.
Lower bound of O(22"") nondeterministic time.

EXPSPACE-complete | EXPSPACE = DSPACE(2°™)
e Regular Expressions () o Intersection Regular Expressions = 2™ with -, 4+, %, N

with exponents = 2* (lower bound of beV™/1°8™ space, for some constants
b>0,c>1, and infinitely many values of n)
e Theory of Reals with Addition. e; =es is decidable in O(2°") deterministic space
and O(2*") deterministic time. Lower bound of O(2") nondeterministic time.
EXPTIME = DTIME(2°™)

e Simplex (Dantzig 1947) for Linear Programming
[|?

I
/PSPACE—complete (1)] PSPACE = NSPACE (Savitch 1970) \\

e Regular Expressions | ® Quantified Boolean Formulas

min z = clx

with Az =b,2>0

= 5" (with -, +, %) Eglghiut/\fr\e/(; variables) = true

e CS membership |7 Tty

/ NP-complete | |

o Traveling Salesman | nrp co-NP

e Integer Linear Progr. 0

e Satisfiability of CNE :
| ? NP Nco-NP

P-complete | P (deterministic polynomial time)= co-P

e Emptiness of CF e Linear Programming (Khachyan 1979)
e Primality (Agrawal et al. 2002)
languages e Co-Primality

NSPACE(logn)

‘ NSPACE(logn) complete

e Reachability in
directed graphs

DSPACE(logn)
‘ / DTIME (log n) \
e Binary Search
Fig. 34. Inclusions of some computational complexity classes. p(n) is a polynomial in n.
The complete classes marked with (f) are complete w.r.t. polynomlal time reductions.
The other complete classes are complete w.r.t. logarithmic-space reductions (and, by

Theorem 11 on page 134, also w.r.t. polynomial-time reductions). We drew neither the
class NEXPTIME nor the class ELEMENTARY. We have that:

EXPTIME C NEXPTIME C EXPSPACE ¢ ELEMENTARY C REC.

?
The symbols == and || 7 relate two classes whose equality is an open problem.
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Given any algorithm for deciding WS1S (and there exist algorithms for doing so), for
any k > 0 there exists a formula of length n for which that algorithm takes time:

27127...(27Tn)...)
where: (i) T denotes exponentiation, and (ii) 2 occurs k times in the above expression. The
same holds for the space requirements of formulas in WS1S [27]. Thus, it does not exist
any m such that the decidability problem of the WSI1S theory is in | J,_,, s~-EXPTIME.
We state this fact by saying that the decidability problem of the WS1S theory is not
elementary recursive.

(B) The regular expressions with exponents and negation over the alphabet Y are the
regular expressions with the usual operators =, 4+, and *, where we also allow exponents
(written in binary) and negation. For instance, the expression (a'' +b)* with the exponent
11 (which is 3 in binary) denotes the set {e,aaa,b, aaaaaa,aaab,baaa,bb, ...}, and the
language L(—e) denoted by the regular expression —e is X* — L(e).

The equivalence problem between two regular expressions with exponents and negation
is decidable, but it is not elementary recursive, that is, it does not exist any m such that
this equivalence problem is in J,_,, k-EXPTIME [29, page 504].

(C) Presburger Arithmetics is the theory of (positive, negative, and 0) integers with ad-
dition (Z,4,=,<,0,1). It is decidable and its decision procedure requires at least non-
deterministic time O(2%") for some ¢ > 0, infinitely often, that is, for infinitely many n,
where n is the size of the formula. The relation symbol < can be avoided if we consider
only non-negative integers, because s < t holds iff 3x (s+x = t). An example of a formula
of Presburger Arithmetics is:

VedyIz(z+z=y A Jw(w+w=1y))

Presburger Arithmetics can be decided in deterministic time O(222dn) for some d > 0. It
can be decided in (deterministic or nondeterministic) space O(2%") for some ¢ > 0 |16,
page 371].

Recall that, in contrast with Presburger Arithmetics, the set of all true statements
in the Theory of Natural Numbers (N,+, x,=,<,0,1) (also called Peano Arithmetics)
is undecidable (This result is stated in the famous Incompleteness Theorem proved by

K. Godel).

(D) Let us consider the following problem.
e INTERSECTION-REG-EXPRESSIONS

Input: an intersection regular expression (called semi-extended regular expression in [2,
page 418|) E, that is, a regular expression E with the operators: «, 4, %, N (but not —)
over the alphabet /.

Output: ‘yes’ ifft £ = X*.

To solve this problem it takes for any expression E of size n, at least beV ™/ 1°8™ gpace
(and time), for some constants b>0, ¢>1, and for infinitely many values of n.
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(E) The Theory of Real Numbers with addition (R, +, =, <, 0, 1) is decidable and to decide
whether or not e; = e; we need nondeterministic exponential time, that is, there exists a
formula of size n, such that any nondeterministic algorithm takes at least 2" steps, for
some constant ¢ >0 and for an infinite number of n’s. Thus, the decidability of the Theory
of Real Numbers with addition is in the £2(2°*) time complexity class.

The Theory of Real Numbers with Addition is decidable in doubly exponential time,
that is, O(22""), and exponential space, that is, O(2°"). This theory is also nondeterministic
exponential time-hard with respect to polynomial-time reductions.

(F) There are instances of the simplex method (due to G. B. Danzig in 1947) [7] for
solving LINEAR, PROGRAMMING, for which the required time is exponential.

(G) Let us consider the set of regular expressions with ezponents over the alphabet X
that is, expressions constructed from the symbols in X' and the usual operators: =, +, *,
and also the operator Tn (with n written in binary), for n>0. For instance, (a + ) 1101
over the alphabet {a,b} denotes the expression (because 5 = 101,):

(@a+b)« (a+b)+ (a+b)+ (a+1Db)+ (a+0).

In Figure 34 on page 34 we have also considered the following problems.

e REG-EXPRESSIONS WITH EXPONENTS

Input: a regular expression E with exponents over the alphabet Y. The exponents are
written in binary.

Output: ‘yes’ iff £ = X*.

This problem is EXPSPACE-complete with respect to polynomial-time reductions [16,
page 353|.

e QUANTIFIED BOOLEAN FORMULAS without free variables (QBF, for short).
Input: a quantified boolean formula F' (propositional variables: P1, P2, ..., connectives:
and, or, not, quantifiers V, 3) without free variables.

Output: ‘yes’ iff F' = true.

Since the SATISFIABILITY problem is a particular QBF problem, the QBF problem is
NP-hard with respect to logarithmic-space reductions. We have that the QBF problem is
PSPACE-complete with respect to polynomial-time reductions.

e CONTEXT-SENSITIVE MEMBERSHIP.

Input: a context-sensitive grammar G and a word w € XL*.

Output: ‘yes’ iff w € X*.

This problem is in NSPACE(n), that is, (by Savitch’s Theorem 16 on page 143) in
DSPACE(n?). Tt is also PSPACE-complete with respect to polynomial-time reductions.

e REG-EXPRESSIONS.

Input: a regular expression E over the alphabet ', with the operators: =, 4+, and * only.
Output: ‘yes’ ifft £ = 3>,

This problem is PSPACE-complete with respect to polynomial-time reductions.

Note that the NOSTAR-REG-EXPRESSIONS problem is NP-complete with respect to
logarithmic-space reductions. We have already proved in Exercise 5 on page 130 above
that it is NP-complete with respect to polynomial-time reductions.
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e EMPTINESS FOR CONTEXT-FREE LANGUAGES.
Input: a context free grammar G.
Output: ‘yes’ iff L(G) = 0.

This problem is P-complete with respect to logarithmic-space reductions.

e REACHABILITY IN DIRECTED GRAPHS.

Input: a directed graph G with nodes 1,...,n, and two nodes 7 and j.

Output: ‘yes’ iff there is a path from 7 to j.

This problem is NSPACE(log n)-complete with respect to logarithmic-space reductions.

29 Computational Complexity Theory

We briefly recall here some results concerning the Theory of Computational Complexity.

29.1 Deterministic Space and Deterministic Time Hierarchies

By enlarging the time and space limits the class of recognized languages increases, as the
following theorems show.

Definition 9. [Space Constructable and Fully Space Constructable Functions]
A function S(n) is said to be space constructible iff there exists a Turing Machine M
which for each input of size n, computes the result by using at most S(n) cells, and for
some input of size n, M actually uses S(n) cells.

If for all input of size n, M actually uses S(n) cells, we say that S(n) is fully space
constructible.

If a function S(n) is space constructible and for all n >0, S(n)>n then it is fully space
constructible.

If f(n) and g(n) are space constructible also f(n) g(n), 2/ and f(n)29"™ are space
constructible. The functions log n, n, n*, 2", and n! are all fully space constructible.

We will assume analogous definitions of the time constructible functions and the fully
time constructible functions. We have that n, n*, 2", and n! are all fully time constructible.
Note that logn is not time constructible, because we assumed that time complexity is at
least n+1, as indicated in Section 25 starting on page 113 and in [16, pages 299 and 316|.

We have the following theorems.

Theorem 13. |[Deterministic Space Hierarchy Theorem)| If the function Sy(n) is
space-constructible, inf, . S1(n)/S2(n) =0, Si(n) > logyn, and Sy(n) > log, n, then
there exists a language in DSPACE(S(n)) which is not in DSPACE(S;(n)).

As a consequence of this theorem we have that:

(i) for any two real numbers r and s such that 0 < r < s, DSPACE(n") C DSPACE(n?),
(ii) PSPACE does not collapse to DSPACE(n*) for some k > 0, and

(iii) PSPACE C EXPSPACE.

Theorem 14. [Deterministic Time Hierarchy Theorem]| If the function T5(n) is
fully time-constructible and inf, o 71(n)logTi(n)/T2(n) =0, then there exists a lan-
guage in DTIME(75(n)) which is not in DTIME(T} (n)).
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As a consequence of this theorem we have that:

P € EXPTIME (=4 Uyog DTIME(2")) € 2-EXPTIME (=4.; U,», DTIME(22" ) C
and so on. - -

In particular, we have that there are problems solvable in DTIME(n?), but not in
DTIME(n), because inf, ., nlogn/n?=0, and analogously, there are problems solvable
in DTIME(n%), and not in DTIME(n®?). In general, we have that it does not exist a
constant max > 0 such that for all k > 0, every problem solvable in DTIME(n*) is solvable
in DTIME(n™). That is, P does not collapse to any deterministic polynomial time class
DTIME(n™), for some max > 0. If this were the case, then we would deduce that
P # PSPACE because we have that DTIME(f(n)) € DSPACE(f(n)) (see Theorem 15
below).

The comparison of Theorems 13 and 14 tells us that with respect to the deterministic
space hierarchy, in the deterministic time hierarchy we need to have a ‘bigger distance’
between two limiting functions for making sure that there exists a language recognized
within the higher limiting function, but not within the lower one. This result shows that,
in a sense, ‘space’ is a resource which is more valuable than ‘time’.

29.2 Relationships among Complexity Classes

The following theorems establish relationships among classes of complexity measures |16,
page 300 and 317] and [29, page 147|. For reasons of simplicity, in these theorems we
assume that the function f(n) is fully time constructible and fully space constructible.

Theorem 15. (i) DTIME(f(n)) € NTIME(f(n)) € DSPACE(f(n)) € NSPACE(f(n)).
(ii.1) For every language L, if L € DSPACE(f(n)) and f(n) > log,n then there exists
¢>1 depending on L, such that L € DTIME(c/™).

(ii.2) For every language L, if L € NSPACE(f(n)) and f(n) > log,n then there exists
¢>1 depending on L, such that L € DTIME(c(os™+/(m),

(iii) For every language L, if L € NTIME(f(n)) then there exists ¢>1 depending on L,
such that L € DTIME(c/™).

(iv) DTIME(f(n) (log f(n))) € DSPACE(f(n)).

The weak inclusion NTIME(f(n)) € DSPACE(f(n)) (see Point (i)), and Point (ii.2) are
shown in |29, pages 147|. The other points are shown in |16, page 300 and 317].

Points (ii.1), (ii.2), and (iv) show again that ‘space’ is a resource which is more valuable
than ‘time’.

Obviously, the constant ¢ occurring in the above Theorem 15, can be chosen to be 2.

Theorem 16. [Savitch’s Theorem]| If L € NSPACE(S(n)), S(n)>log,n, and S(n) is
fully space constructible then L € DSPACE(S?%(n)).

We can informally rephrase the result of this theorem by saying that a nondeterministic
Turing Machine which uses S(n) space units has the same power of deterministic Turing
Machine which uses S?(n) space units.

Note also that Savitch’s Theorem leaves open the question of whether or not LIN-
SPACE (=4 U,.(DSPACE(cn)) is equal to NLIN-SPACE (=4¢ |, NSPACE(cn)).
(LIN stands for ‘linear’).
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Savitch’s Theorem only shows that NLIN-SPACE C |J,.,DSPACE(cn?). Since NLIN-
SPACE is the class of languages accepted by linear bounded automata (which, by def-
inition, are nondeterministic automata), the question of whether or not LIN-SPACE is
equal to NLIN-SPACE is equivalent to the open question of whether or not deterministic
linear bounded automata are equivalent to nondeterministic linear bounded ones.

29.3 Nondeterministic Space and Nondeterministic Time Hierarchies

The following two theorems are relative to nondeterministic polynomial space and poly-
nomial time hierarchies. Note that the inclusions are proper inclusions.

Theorem 17. If e > 0 and r > 0 then NSPACE(n") C NSPACE(n"*¢).
Theorem 18. If e > 0 and r > 0 then NTIME(n") C NTIME(n"*¢).

As a consequence of this theorem we have that:

NP € NEXPTIME (=g U, NTIME(2")) € 2NEXPTIME (=4 [, -, NTIME(22" ))
C and so on. a -

29.4 Properties of General Complexity Measures

Theorem 19. [Borodin’s Gap Theorem| Consider any total partial recursive function

g such that ¥n>0g(n) > n. Then there exists a total partial recursive function S(n) such
that DSPACE(S(n)) = DSPACE(g(S(n))).

Theorem 20. [Blum’s Speed-up Theorem]| Let r(n) be any total partial recursive
function. There exists a recursive language L such that for all Turing Machine M, ac-
cepting L in space S;(n), that is, L € DSPACE(S;(n)), there exists a Turing Machine M;
accepting L in space Sj(n) such that r(S;(n)) < S;(n), for almost all n (that is, except a
finite number of n’s).

Theorems 19 and 20 hold also if we replace DSPACE by: (i) NSPACE (that is, we con-
sider nondeterministic Turing Machines, instead of deterministic ones), or (ii) DTIME
(that is, we consider, instead of the space, the time taken by a deterministic Turing Ma-
chine), or (iii) NTIME (that is, we consider, instead of the space, the time taken by a
nondeterministic Turing Machine) [16, page 316].

As a consequence of Theorem 19 and its versions for deterministic and nondeterministic
time and space, one can show the following unintuitive result: there exists a total partial
recursive function r(n) such that

DTIME(r(n)) = NTIME(r(n)) = DSPACE(r(n)) = NSPACE(r(n)).
As a consequence of Theorem 20 and its versions for deterministic and nondeterministic

time and space, we have that there are functions which do not have ‘best’ programs (in
time or space).

We also have the following result about Turing Machine computations (see [16, page
317]). Its proof is related to the way in which the spine functions of the Grzegorczyk
Hierarchy grow (see Section 18 starting on page 81). Note also that the size of the input
to a Turing Machine can be assumed to be a primitive recursive function of the input
itself.
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Theorem 21. A Turing Machine which can make a number of moves which is a primitive
recursive function of the size of the input, can compute only a primitive recursive function
of the input.

29.5 Computations with Oracles

In relation to the question of whether or not P is equal to NP we have the following
two theorems which refer to the notion of a Turing Machine with oracles (see also [19,
page 362]).

Let A be a language over the alphabet Y. A Turing Machine with oracle A, denoted by
M4, is a usual 1-tape Turing Machine M with three extra states: g-ask, ¢-yes, and g-no.
In the state g-ask the machine M asks the oracle A whether or not the string on its tape
to the right of scanned cell until the leftmost blank, is in A. The answer is given in the
next move by having the machine to enter the state ¢g-yes or ¢g-no. Then the computation
continues normally until the state g-ask is entered again.

If A is a recursive language then for any Turing Machine M“ there exists an equivalent
Turing Machine (without oracles). If A is not recursive then the language accepted by a
Turing Machine M4 may be not recursively enumerable.

Let P4 be the set of languages accepted in polynomial time by a deterministic Turing
Machine with oracle A. Let NP4 be the set of languages accepted in polynomial time by
a nondeterministic Turing Machine with oracle A. We have the following result.

Theorem 22. P4 = NP4, where A is the oracle which tells us in one time unit whether
or not a quantified boolean formula is true.

This Theorem 22 holds also for any oracle A which solves a PSPACE-complete problem.
We also have the following result.

Theorem 23. There exists an oracle B such that PP # NP5,

30 Polynomial Hierarchy

Let us consider the computational complexity classes of problems depicted in Figure 34
on page 139. The set of problems which lies between the class P and the class PSPACE
can be stratified according to the so called Polynomial Hierarchy, denoted PH. Note,
however, that maybe not all problems between P and PSPACE can be stratified in the
Polynomial Hierarchy because, as we will see below, it is an open problem whether or not
PH is properly contained in PSPACE.

Within the Polynomial Hierarchy we have the classes indicated in the following Defini-
tion 10, where: (i) by P we denote the class of problems solvable by a deterministic Turing
Machine in polynomial time (see Definition 1 on page 115 in Section 26), (ii) by COrecle
we denote the class of all problems which are solvable in the class C' by a Turing Machine
which has an oracle in the class Oracle, (iii) we use the numerical subscripts such as 0, ,
and k+1, for indexing the various classes of problems within the Polynomial Hierarchy,
and (iv) the superscript P is used to recall that the various classes are subclasses of the
Polynomial Hierarchy.
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Definition 10. [Polynomial Hierarchy| Let us stipulate that:
A =% =1F =P, and
for any k>0, A}, = Pi, S = NP, TP 1= co-Xp .
The Polynomial Hierarchy PH is defined to be: (J,-, X} (see also Figure 35).

EXPSPACE = | J,., DTIME (2"")

!

PSPACE

N

PH
‘\\\ ///X
_ pNP
///’ \\\\
¥P =NP 17 = co-NP
‘\\\ ///’
AP =38 =1} =

Fig. 35. The Polynomial Hierarchy PH. An arrow from A to B means A C B.

It is easy to see that:
(i) I}, , = (co-NP)™F, and
(ii.1) AV =P, (ii.2) ¥ = NP, (ii.3) II}’ = co-NP.
We also have the following results which make PH to be a hierarchy.
(a) AP C SP A TTF,
(b) SPUTI C AL,

It is an open problem whether or not in (a) or (b) above, C is, in fact, a strict containment.
In particular, for £ = 1 we have that it is an open problem whether or not P € NP N

co-NP, as we already know.

We have that PH C PSPACE. It is open whether or not PH C PSPACE [19, page 98].

We also have that [19, page 97]:
(i) P = NP iff P = PH,

(ii) if P # NP then PH C ETIME, where the class ETIME, also called single exponential

time, is defined as follows: ETIME = (., DTIME(2°"), and
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(iii) If ¥}, =%}, for some k > 0, then X} = PH, that is, the Polynomial Hierarchy
collapses at level k.

Now we present an interesting characterization of the sets of the Polynomial Hierarchy
in terms of quantified formulas with alternate quantifiers. The reader will note the formal
correspondence with the Arithmetical Hierarchy (see Section 24 on page 108).

Let us consider an alphabet A and the set A* of words over A. For all k£ > 0, the set
Y is the set of all languages L C A* such that

L={z|3yVy2...Que (v, 91,92, ., ys) € R}
where: (i) the quantifiers alternate (thus, @ is 3 if k£ is odd, and @ is V if k is even), and
(ii) for all i € {1,...,k}, |vs| < p(|x]), where p is a polynomial, and (iii) the (k+1)-ary
relation R can be recognized in polynomial time by a deterministic Turing Machine.

In particular, the set NP is the set of all languages L such that

L={x|3y(z,y) € R}
where: (i) |y| < p(|z|), where p is a polynomial, and (ii) the binary relation R can be
recognized in polynomial time by a deterministic Turing Machine.

One can show that the set of true sentences of quantified boolean expressions with
k alternate quantifications starting with 3, is X -complete with respect to polynomial
reductions. An instance of this ¥:}-complete problem is the following problem: we are
given a formula ¢ constructed out of the operators not, and, or, and the variables y; and
Yo, and we ask ourselves whether or not there exists a truth assignment to y; such that
for all truth assignments to y, we have that ¢ is true.

The characterization of II} is obtained from the one of 3} by replacing 3 with V and
vice versa. Thus, for all £ > 0, the set HE is the set of all languages L C A* such that

L={x|Vy3ys. .. Quk (2, Y1, Y2, ..., yx) € R}
where: (i) the quantifiers alternate (thus, @ is V if k is odd, and @ is 3 if k is even), and
(ii) for all s € {1,...,k}, |ys| < p(|z|), where p is a polynomial, and (iii) the (k+1)-ary
relation R can be recognized in polynomial time by a deterministic Turing Machine.
The set of true sentences of quantified boolean expressions with k alternate quantifi-
cations starting with V, is IT} -complete with respect to polynomial reductions.

31 Invariance with respect to the Computational Model

In this section we will present an important fact, which explains why the complexity
results obtained with reference to the Turing Machine model can be applied also to the
case when one uses other models of computations like, for instance, the von Neumann
machine [32, Chapter 2].

In particular, we will show that if a von Neumann machine takes n steps to solve a
problem then there exists a Turing Machine which takes at most p(n) steps to solve that
problem, where p(n) is a polynomial in n.

The proof of this fact is done in three steps: first, (i) we establish the polynomial
relationship between the time complexities of a version of the Random Access Machine,
called IA-RAM (see below), and the Turing Machine, based on the simulation presented
in Section 8 on page 42, then (ii) we show that also the time complexities of the IA-RAM
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without the operations of multiplication and division, and the IA-RAM with the operations
of multiplication and division are polynomially related (see Definition 11 on page 151),
and finally, (iii) we prove that if we allow the program of a Random Access Machine to
be modified while the computation progresses (see the SP-RAM model introduced below)
and we disallow the indirect addressing, then we affect the time and space complexity
measures, with respect to the case of the IA-RAM machine, only by a multiplicative
factor.

Since for no polynomial p(n) we have that: O(p(n)) = O(2"), and for no polynomial
p(n) we have that: O(2P(") = O(2%") all results concerning the polynomial (and expo-
nential and double-exponential, etc.) time and space complexity of algorithms hold for
Turing Machine as well as for [A-RAM’s and SP-RAM’s.

Let us start by introducing the two models of Random Access Machines we have
mentioned above |[2].

The first kind is the Indirect Address RAM, IA-RAM for short. This machine has one
input read-only tape, one output write-only tape, a countable infinite number of memory
locations (or registers), and a program counter (which is not a memory location). The
first memory location is assumed to be the accumulator.

We assume that the registers and the accumulator may hold arbitrary large integers,
and if we have to take into account the value of these integers then we have to consider
also the size of their binary encodings.

We also assume that the program cannot be modified and it does not reside in memory
(like the finite control of a Turing Machine which is not in the working tape).

The instructions available are the usual ones of a basic RAM [32, Chapter 2|, that is,
LOAD, STORE, ADD (addition), SUB (subtraction), MULT (multiplication), DIV (division),
IN (read), oUT (write), JMP (jump), JP (jump on positive), JN (jump on negative), JZ
(jump on zero), STOP. The address part of an instruction is either an integer denoting
the register where the operand is stored, or it is a label where to jump to.

We assume that instructions may have indirect addressing. In this case we mark the
address part by an asterisk (for instance, we write: LOAD xa).

The second kind of Random Access Machine is the Stored Program RAM, SP-RAM
for short. It is like the TA-RAM, but there is no indirect addressing and it is possible to
modify the program which resides in memory. (The IA-RAM is called RASP in [2].) The
SP-RAM is the basic version of the von Neumann machine as described in [32, Chapter 2.

We may say that an IA-RAM is like a Turing Machine with the program encoded in
the finite control, while an SP-RAM is like a Turing Machine with the program stored in
the working tape. The von Neumann machine is a sort of SP-RAM (because the program
can be changed), while the Turing Machine with the tape containing initially the input
only (not the program, which is in the finite control), is a sort of IA-RAM, because the
program cannot be changed.

Let N be the set of natural numbers, and let us consider the natural numbers z1,. . ., x,.
If (the encodings of) those numbers are on the leftmost n cells of the input tape, an TA-
RAM (or an SP-RAM) that writes (the encodings of) the natural number y on the leftmost
cell of the output tape, is said to compute the function f(x1,...,x,) = y. It can be shown
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that the set of functions from N to N computed by an IA-RAM (or an SP-RAM) is
exactly the set of the partial recursive functions from N to V.

Given a string s of symbols in the input tape, an IA-RAM (or an SP-RAM) that
writes 1 on the leftmost cell of the output tape iff s belongs to a language L, is said to

recognize the language L. It can be shown that the set of languages recognized by an
IA-RAM (or an SP-RAM) is exactly the set of r.e. languages.

There are two criteria we may apply for measuring the space cost and time cost of the
execution of an instruction of an IA-RAM or an SP-RAM. Let us first consider the case
of an TA-RAM.

These two criteria are:

- the uniform cost criterion (or constant cost criterion): one register costs 1 unit of space
and one instruction costs 1 unit of time, and

- the logarithmic cost criterion, where to store in a register the integer n costs [log, |n|]
units of space (here |n| denotes the absolute value of n and [z] denotes the least integer
which is greater than or equal to ) and the time units which are the cost for executing
an instruction are indicated in Figure 36 on page 149.

Recall that we assume that the memory registers and the accumulator can hold arbi-
trarily large integers.

To explain the entries of Figure 36 we need to look at the operations involved during
the execution of an instruction and, in particular, we need to take into account the cost
of reading the address part of the instructions and the cost of reading and writing the
integers in the memory registers or in the accumulator.

Instruction ~ Meaning Cost (in units of time)
1. LoAD a C(acc) := C(a) L(a)+L(C(a))
LOAD x*a C/(acc) := C(C(a)) L(a)+L(C(a))+L(C(C(a)))
2. STORE a C'(a) := C(acc) L(C(acc))+L(a)
STORE xa C(C(a)) := C(acc) L(C(acc))+L(a)+L(C(a))
3. ADD a C(acc) := C(acc)+C(a) L(a)+L(C(a))+L(C(acc)) (1)
ADD *a C(acc) := C(acc)+C(C(a)) L(a)+L(C(a))+L(C(C(a)))+L(C(acc)) (1)
4. IN a Cf(a) := input L(a)+L(input)
IN xa C(C(a)) := input L(a)+L(C(a))+L(input)
5. ouT a print C'(a) L(a)+L(C(a))
ouT xa print C(C(a)) L(a)+L(C(a))+L(C(C(a)))
6. JMP [ jump to label [ 1
7. JpP [ jump to label if C'(acc) >0 L(C'(acc)) + 1 (t1)
8. STOP execution stops 1

Fig. 36. The logarithmic costs (that is, the cost for the logarithmic cost criterion) of the
instructions of the machine IA-RAM. (1): we do not indicate the analogous entries for SUB,
MULT, and DIV. (1f): we do not indicate the analogous entries for JN (with C(acc) <0)
and JZ (with C(acc)=0). We may forget about the constant 1 because it is a term of
lower order w.r.t. L(C(acc)), whose order is O(log, C(acc)).
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Given an integer n, let L(n) denote its binary length, that is,
L(n) = if n= 0 then 1 else [log, |n|]

and let C'(n) denote the integer contained in the memory register whose address is n.

As a first approximation, in the IJA-RAM model we may assume that the cost t of
executing an instruction like, for instance, ‘LOAD a’; is the cost of reading the address
part a (proportional to L(a)) plus the cost of reading the operand (proportional L(C(a)))
and writing it into the accumulator (proportional L(C(a))). We may assume that the
proportionality ratios are 1, because in our cost analysis we are not actually interested in
the multiplicative constants. Thus, we have that:

t = L(a) + L(C(a)).
If the instruction has indirect addressing then its logarithmic cost ¢ (that is, its cost under
the logarithmic cost criterion) is given by the following equation:

t =L(a) + L(C(a)) + L(C(C(a))).
The cost of fetching and decoding the operation code of an instruction is assumed to be
constant in the TA-RAM model, because the program does not reside in memory and it
is encoded in the finite control of the machine.

The content of the accumulator is denoted by C'(acc). We assume that the content of
any register and the content of the accumulator can be made 0 in one unit of time.

Since for the TA-RAM the program cannot be changed and it is a finite sequence of
instructions, we may assume that the labels of the instructions can be read in constant
time. They can be stored in a correspondence list which is constructed before the execution
of the program starts.

Ezample 4. If we consider the program for checking whether or not a string in {0, 1}* of
length n has the number of 0’s equal to the number of 1’s (that program uses a ‘counter
register’ which goes one unit up when 1 is encountered and goes one unit down when 0
is encountered), then if we apply the uniform cost criterion, it takes O(n) time (because
the program has to scan the whole string) and O(1) space (because the program uses one
counter only).

If we apply the logarithmic cost criterion, it takes O(n log, n) time (indeed, the pro-
gram performs at most n additions, and each partial sum has at most log, n bits because
the value of a partial sum is at most n) and O(log, n) space (indeed, the program uses
one register only and the content of that register is at most n). O

The space cost and the time cost of the execution of an instruction of an SP-RAM are like
the ones for an IA-RAM for the uniform cost criterion, but in the case of the logarithmic
cost criterion we have to take into account also:

- the time and space for accessing the content of the program counter, and

- the time and space spent during the ‘fetch’ phase and the ‘decode’ phase when inter-
preting an SP-RAM instruction. In this case, in fact, instructions may be changed and
they reside in memory.

Let us now establish a polynomial relationship between the time complexity of the
computations on the TA-RAM model and those on the deterministic Turing Machine
model. We begin with the following definition.
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Definition 11. [Polynomially Related Functions| Given two functions f and g, from
N to N, they are said to be polynomaially related iff there exist two polynomials p; and ps
such that for all n € N, we have that f(n) < p1(g(n)) and g(n) < ps(f(n)).

If we apply the uniform cost criterion, an IA-RAM can simulate in time O(T'(n)) a k-tape
Turing Machine which takes time T'(n) (> n) for any input of size n, because every cell
of the tapes of the Turing Machine can be encoded by a register of the IA-RAM. Other
registers of the IA-RAM are used to represent the positions of the tape-heads. The content
of the tape cells of the Turing Machine can be accessed via indirect addressing through
the memory registers containing the head positions.

If we apply the logarithmic cost criterion, the IA-RAM takes O(T'(n) log,(T'(n))) to
simulate the k-tape Turing Machine which takes time 7'(n) (> n) for any input of size
n. Indeed, for simulating p moves of the Turing Machine, the TA-RAM has to spend
(p x log, p) units of time, because every IA-RAM instruction takes logarithmic time to be
executed (this time is proportional to the length of the address part of the instruction).

Thus, we have that an TA-RAM can simulate a k-tape Turing Machine which takes
T'(n) time units, within O(T?%(n)) time units, if T'(n) > n.

Let us now look at the converse simulation, that is, the one of a IA-RAM by a k-tape
Turing Machine. Let us look at the following IA-RAM program for computing z = 2"
for n>0:

i :=1;  := 2; while i <n do begin z := 2?; i :== i+1 end.

To compute x = 22") this program takes O(n) steps, while assuming that in each tape
cell, the Turing Machine may write 0 or 1 only, it will take 2" cells to store the result,
thus it will take at least 2" time units just to write the result.

Since n and 2" are not polynomially related functions, for the uniform cost criterion
the time complexity measures of Turing Machine operations are not polynomially related
to those of an TA-RAM.

However, we have the following result.

Theorem 24. If an IA-RAM (without using multiplications or divisions) accepts a lan-
guage L in time T'(n) (>n) for the logarithmic cost criterion, then a k-tape Turing Machine
accepts L in time O(T?(n)).

Proof. Let us recall the simulation of an IA-RAM by a k-tape Turing Machine (see Sec-
tion 8 on page 42). We assume that the numbers in the registers of the IA-RAM are
encoded in binary in the cells of the tapes of the Turing Machine.

Now we show that an TA-RAM computation of p time units takes at most O(p?) time
units in a Turing Machine. Let us first observe that, after an IA-RAM computation of
p time units, the non-blank portion of the memory tape of the Turing Machine is O(p)
long.

Let us now consider a ‘STORE a’ operation. It will take at most O(p) steps in the
Turing Machine, because it must search for the encoding of the cell ‘a’ where to store the
content of the accumulator. Analogous time requirements can be established for the other
[IA-RAM operations (apart from the jump instructions). Thus, we have that an IA-RAM
computation of p time units takes at most O(p?) time units in the Turing Machine. O
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If we allow the IA-RAM to perform multiplications or divisions, each in one time unit,
then p such operations take in the IA-RAM without multiplications or divisions O(p?)
time units, because this last machine has to compute using additions (or subtractions)
only. Actually, one can do better than O(p?).

As a conclusion, we have that the k-tape Turing Machine may require at most O(7*(n))
time units to perform any computation done by an IA-RAM in T'(n) time units. Thus,
their time complexities are polynomially related.

A theorem analogous to Theorem 24 holds for space measures, instead of the time
measures.

We also have that the k-tape Turing Machine may require at most O(T®(n)) time
units, instead of O(T*(n)) time units, to perform any computation done by an IA-RAM
in T'(n) time units, if we insist that the Turing Machine should have one tape only. This
is a consequence of the following result.

Theorem 25. A deterministic k-tape Turing Machine which computes a function in time
T(n)(>n) for any given input of size n, can be simulated by a one tape deterministic
Turing Machine which computes the same function in time (7'(n))?2.

Proof. Recall the quadratic slowdown (see Section 4.2 on page 26). O

We may conclude that to solve a particular problem a Turing Machine takes at least time
(or space) T'(n) (>n) iff an IA-RAM takes at least R(n) time (or space) units if we apply
the logarithmic cost criterion, where 7'(n) and R(n) are polynomially related.

Let us now prove that the time complexities of the SP-RAM model and the one of the
IA-RAM model are related by a constant factor.

Theorem 26. (i) For the uniform cost criterion and the logarithmic cost criterion, for
every IA-RAM program which takes 7'(n) time there exists a constant k£ and an SP-RAM
program which computes the same function and it takes at most k& x 7'(n) time. (ii) The
same holds by interchanging ‘1A-RAM’ and ‘SP-RAM’.

Proof. (see also |2]) Part (i). It is enough to construct a program for an SP-RAM from any
given program for an IA-RAM. All instructions can be left unchanged with the exception
of the ones which make use of the indirect addressing. If an instruction has indirect
addressing then we can use SP-RAM instructions:

(1) to save the content of the accumulator,

(2) to compute the address part of the corresponding instruction without indirect ad-
dressing,

(3) replace the old instruction (with indirect addressing) by the new instruction (without
indirect addressing),

(4) to restore the content of the accumulator, and

(5) to execute the new instruction.

These operations require a constant number of SP-RAM instructions. Their total
logarithmic cost is given by a linear combination of quantities which occur also in the
expression of the logarithmic cost of the corresponding TA-RAM instruction. For instance,
if we use the logarithmic cost criterion, the total time cost of the SP-RAM instructions
for simulating the IA-RAM instruction ‘ADD xa’ via the actions (1)—(5) above, is:
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c1 L(a) + co L(C(a)) + ¢3 L(C(C(a))) + ¢4 L(C(acc))

Thus, for any given program of an TA-RAM there exists an equivalent program of an
SP-RAM whose logarithmic time cost is bounded, within a constant factor, by the cost
of the corresponding IA-RAM program. This constant factor depends on the value of the
constants ¢y, ¢, c3, and ¢4 relative to each ITA-RAM instruction which may be subject to
indirect addressing.

The same holds for uniform time cost criterion, instead of logarithmic time cost crite-

rion.
Part (ii). Through an TA-RAM program we may simulate the process of fetching, decod-
ing, and executing any SP-RAM instruction. This simulation can be done by an TA-RAM
program which works as an interpreter (or a universal Turing Machine) by loading the
given instruction, testing its operation code, incrementing the program counter, and per-
forming the instruction on the IA-RAM (updating its memory, or its input tape, or its
output tape, according to the operation code which has been found). If necessary, we
will make the simulating TA-RAM to get the operand of the SP-RAM instruction to be
simulated, by using instructions with indirect addressing.

It is not difficult to see that, in the case of the logarithmic cost criterion, the time
needed for interpreting any given SP-RAM instruction is proportional (within a constant
factor) to the time needed for executing the given SP-RAM instruction on a SP-RAM. This
is basically due to the fact that the cost of interpreting any given SP-RAM instruction,
say I, linearly depends on: (1) the number of the operations codes, (2) the length of its
address part, and (3) the length of the operand. Since the number of operation codes
is bounded by a constant, only the last two quantities affect the logarithmic cost of
interpreting I, and they are already present in the expression of the logarithmic cost of
executing I on a SP-RAM.

In particular, the interpretation of an SP-RAM instruction L which modifies a given
SP-RAM instruction, can be done by changing the content of the register through which,
by indirect addressing, the interpreting IA-RAM gets the operand. This interpretation
process takes only a constant number of IA-RAM instructions, and their logarithmic
cost is a linear combination (with constant factors) of quantities which occur also in the
expression of the logarithmic cost of L on a SP-RAM. O

A theorem analogous to Theorem 26 holds for space measures, instead of time measures.

32 Complexity Classes Based on Randomization and Probability

This section will be based on notions we learnt from [19]. In order to introduce the
classes of computational problems based on randomization and probability, we consider
a particular class of nondeterministic Turing Machines with three tapes:
(i) an input tape, where the input is stored,
(ii) a working tape, where intermediate results are kept and modified, and
(iii) an output tape, where the output is printed.

Every computation performed by a nondeterministic Turing Machine for some input =z,
can be viewed as a tree of configurations called the computation tree: the root of that tree
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is the initial configuration with the code for x on the input tape, and each node of the tree
has as children the configurations which can be reached by legal moves of the machine.

For every nondeterministic Turing Machine M we consider in this section, we assume,
without loss of generality, that:

(i) M is used to solve decision problems and thus, its answers can only be ‘yes’ or ‘no’,
(ii) M accepts the input z iff in the computation tree for that input x there exists at least
one configuration in which the machine enters a final state,

(iii) M stops when a final state is entered,

(iv) for every input x, the computation tree is finite and all the root-to-leaf paths of that
tree have the same length.

The time measure of the computation of a Turing Machine M and an input x is
defined to be the common length of all root-to-leaf paths of the computation tree T
relative to M and x. The space measure is the maximum number, over all configurations
of the computation tree T', of the cells of the working tape which are in use.

Without loss of generality, we make also the following assumptions on the nondeter-
ministic Turing Machines we consider:
(v) all nodes in the computation tree have one or two sons, and
(vi) in every computation tree the root-to-leaf paths have the same number of branch
points, that is, nodes with two sons.

Note that the hypothesis that a node may also have one son, is required by the fact
that we want all paths to have the same length and the same number of branch points.

As a consequence of our assumptions (i)—(vi), we may associate with every leaf of a
computation tree either (1) the answer ‘yes’ if in the configuration of that leaf the Turing
Machine is in a final state, or (2) the answer ‘no’ if in the corresponding root-to-leaf path
it does not exist any configuration where the Turing Machine is in a final state. Note that
in our hypotheses, Case (1) and Case (2) are mutually exclusive and exhaustive.

Definition 12. [Random Turing Machines| A random Turing Machine is nondeter-
ministic Turing Machine M such that for every input z, either (i) all leaves of the com-
putation tree relative to M and z have answer ‘no’ or (ii) at least % of the total number
of the leaves have answer ‘yes’.

A random Turing Machine can be simulated by a nondeterministic Turing Machine which
at each branch point randomly chooses one of the two alternatives. Since we have as-
sumed that all root-to-leaf paths in a computation tree have the same number of branch
points, the probability that at a leaf we have the ‘yes’ answer is exactly the ratio:

number of leaves with answer ‘yes’
total number of leaves

(see also Figure 37 on page 155).

A random Turing Machine never gives the answer ‘yes’ when the answer is ‘no’, because
if the answer is ‘no’ then all leaves must have the answer ‘no’. However, when the answer
is ‘yes’ a random Turing Machine gives the answer ‘yes’ with probability at least %

This asymmetry with respect to the ‘yes’ and ‘no’ answer has the advantage that
by repeating the simulation experiments, we can increase the level of confidence of the
answers. In particular, if after n simulations we have obtained all answers ‘no’, then the
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probability that the correct answer is, instead, ‘yes’ is below 1/(2"). Obviously, if we get
the answer ‘yes’ in any of the simulation experiments, the correct answer is ‘yes’.

As a consequence of this increase of the level of confidence by repetition of the simu-
lation experiments, in the above Definition 12, instead of %, we may equivalently consider
any other number p such that 0 <p <1, with the condition that p should be independent of
the input x. Obviously, if we choose a number p, instead of %, the random Turing Machine
when the answer is ‘yes’, gives the answer ‘yes’ with probability at least p. However, with
two simulation experiments that probability goes up to 2p — p.

To see this, let us consider, for instance, the case where p = i. Then, by making two
simulation experiments, instead of one only, we will have the answer ‘yes” with probability
Ix1 4+ 2x(3x3) = L (indeed, in the two experiments there is one case in which both
answers are ‘yes’ with probability p?, and there are two cases in which only one of the

answers is ‘yes’” and each of these two cases has probability px (1—p)).

Definition 13. [Class RP| The class RP (also called R) is the class of decision problems
which are solved by a random Turing Machine in polynomial time.

input : T T T3 T4

o

X X X X V VX X VvV VvV X X VvV x V

4 I ¢ b ¢ ) ¢ b

output answer : no yes yes yes

number of leaves
with output answer

: 1/1 1/2 3/4 1/2
total number of leaves / / / /

Fig. 37. Computation trees for a problem in RP and various inputs xq,zs,... In the
leaves the symbol v* stands for the answer ‘yes’ and the symbol x stands for the answer
‘no’. The depth of the trees is a polynomial w.r.t. the size of the inputs x;’s and it does
not depend on the index i. We have assumed that: (i) all root-to-leaf paths have equal
length, and (ii) every root-to-leaf path has the same number of branch points (indeed,
every root-to-leaf path of the four trees of this figure has two branch points).

We have the following undecidability result [29, page 255].

Proposition 3. It does not exist an algorithm that
(i) always terminates, and
(ii) given a nondeterministic Turing Machine M, tells us whether or not M is in the

class RP.

The following problem, which is not known to be in P (that is, the polynomial class), is
in RP.
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PRODUCT POLYNOMIAL INEQUIVALENCE

Input: Two sets {Py,...,P,} and {Q1,...,Qm,} of polynomial with variables x,y, ...,
over the rationals. Each polynomial is represented as the list of its terms with non-zero
coefficients.

Output: ‘yes’ iff II1<;<, P; and Il <<, Q; are different polynomials.

Note that the test whether or not I1,<;<, P; = Il1<j<,, @; cannot be done by multiplying
together the P;’s and the @);’s, because the number of terms in the products can be
exponential (w.r.t. the numbers of terms of the given polynomials). Likewise, we cannot
factorize the P;’s and the @);’s and check the resulting two lists of factors because also
in this case, the number of factors can be exponential (w.r.t. the number of terms in the
given polynomials). However, we can perform the test by using a random Turing Machine
as follows. We choose in a random way a set of rational numbers where to evaluate each
polynomial. Then, we multiply together the rational numbers resulting from the evaluation
of those polynomials, and if their products are different then I1,<;<,, P; # II1<j<m @, and
if they are equal then Ili<;<,, P, = Ili<j<n, (; with probability at least 0.5. Indeed, as
it has been shown by Schwartz [35], if the set of rational points are chosen in a suitable
random way, then in case Il1<;<,, P; # Il1<j<m Qj, the products must differ half the time.

Definition 14. [Classes co-RP and ZPP]| The class co-RP is the class of decision prob-
lems whose complement is in RP. The class ZPP (short for zero probability and polynomial
time) is the class of decision problems in RP N co-RP.

In the class co-RP the answer ‘no’ of the randomized Turing Machine is always cor-
rect, while the answer ‘yes” may be incorrect and it is incorrect with probability smaller
than 1/2. Note that in the class co-RP, with respect to the class RP, the roles of the
answers ‘yes’ and ‘no’ are interchanged.

If a problem is in ZPP there exists a random Turing Machine which in polynomial
time gives always the correct answer: it is enough to run both the random Turing Machine
for RP and the random Turing Machine for co-RP in an interleaved way.

Due to this behaviour, every problem in ZPP is also said to have a polynomial ‘Las
Vegas’ algorithm. This terminology refers to randomized algorithms which either give the
correct answer or they do not give any answer at all. Generic randomized algorithms such
as those of Definition 12 on page 154, are, instead, called ‘Monte Carlo’ algorithms.

Now let us consider a new class of nondeterministic Turing Machines which also satisfy
the assumptions (i)—(vi) we have listed above. In this new class of nondeterministic Turing
Machines, which is the class of probabilistic Turing Machines, the rules for giving the ‘yes’
or ‘no’ answers are different from those of random Turing Machines (see Definition 12
on page 154) and, in particular, there is a symmetry between the answer ‘yes’ and the
answer ‘no’.

Definition 15. [Probabilistic Turing Machines| A probabilistic Turing Machine is
nondeterministic Turing Machine M such that for every input x, it gives the answer ‘yes’
if the computation tree for x has more than half of the leaves with answer ‘yes’, and it
gives the answer ‘no’ if the computation tree for x has more than half of the leaves with
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answer ‘no’. If the computation tree for x has the same number of leaves with ‘yes’ and
‘no’ then the answer is ‘don’t know’.

Definition 16. [Class PP| The class PP is the class of all decision problems which are
solved by a probabilistic Turing Machine in polynomial time.

The class PP contains NP U co-NP and it is contained in PSPACE (see Figure 38 on
page 157). We also have that the polynomial hierarchy PH is included in P*Y| that is, PH
is included in the polynomial class P with oracles in PP [19, pages 119-120).

PSPACE
/ \

PH

DRIy

T

NP U co-NP BPP

TW

RPUco- RP

{ co- RP

ZPP RP Nco-RP

P

Fig. 38. Complexity classes for random (RP) and probabilistic (PP) Turing Machines
with polynomial time complexity. An arrow from A to B means that A C B.

Unlike the problems in the class RP, by repeating the simulating experiments on a
given problem of the PP class, we cannot increase the probability of the correctness of
the answers.

However, the following definition identifies a subclass of the problems in PP in which
we can increase the probability of the correctness of the answers by repeating the simu-
lating experiments by using probabilistic, nondeterministic Turing Machines for solving
the problems in that subclass.

Definition 17. [Class BPP| The class BPP is the class of all decision problems which
are solved by a probabilistic Turing Machine in polynomial time in which the answer has

the probability of % + ¢ of being correct, with 6 >0.

The name BPP comes from PP and the B in front means that the probability is ‘bounded
away from %’. Since the probability of the correctness of the answers can be increased by
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repeated simulating experiments, in the above Definition 17 we can replace % + 0 (with
0>0) by, for instance, %, without modifying the class BPP.
We have the following undecidability result [29, page 274|.

Proposition 4. It does not exist an algorithm which (i) always terminates, and (ii) given
a nondeterministic Turing Machine M, tells us whether or not M is in the class BPP.

We have that RP U co-RP C BPP C PP (see Figure 38). We do not know any inclusion
relationship between BPP and NP. Actually, if NP C BPP then RP = NP and the
polynomial hierarchy collapses to BPP. However, we have that: BPP C X5 N 11},

33 Complexity Classes of Interactive Proofs

In this section we will consider the complexity classes which are related to interactive
proof systems. We will follow the presentation done in [17].

In an interactive proof system there are two actors, a prover, also called Alice, and a
verifier, also called Bob, and a statement to be proved which is initially known to both.
As we will see, the notion of proof which is adopted in an interactive proof system, is not
the one that is usually adopted in Mathematics, because the truth of the statement is
established only within certain levels of probability.

The prover and the verifier have computing capabilities and they interact by exchang-
ing messages. While computing, each actor has at his/her disposal a private sequence of
random bits which is generated by a random source. Each message that is sent by an actor,
is computed by taking into account the following information only: (i) the statement to be
proved, (ii) the prefix of the random sequence used by the actor so far, (iii) the transcript
of the messages exchanged so far, and (iv) new random bits from his/her private sequence.

At the end of the interaction, which can be announced by either actor, the verifier
should decide with ‘high probability’” whether or not the given statement is true.

We can formalized an interactive proof system as follows (see [11]). There are two
nondeterministic Turing Machines, called Alice and Bob, with a common input which is
the statement x to be proved. Each machine has a private semi-infinite tape, called to
random tape, which is filled with random bits. This tape is read from left to right, as more
random bits are required. Alice and Bob send each other messages by writing them on
a special interaction tape which can be read and written by both. Each machine is idle
while the other is reading a new message from the interaction tape and computing the
answer to that new message. Alice and Bob have also their own input tape, where x is
stored, and their own working tape.

Alice has no computational limitations, except that every message she generates for
Bob has its length polynomially bounded with respect to the size of x. Bob has com-
putational limitations: the cumulative computation time at his disposal is polynomially
bounded with respect to the size of x.

When either Alice or Bob has announced the end of the interaction, Bob has to
accept or reject the truth of the given input statement = (maybe after making some more
computation steps whose number is bounded by polynomial w.r.t. the size of x), ‘with a
certain probability level’, as we now specify.
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If we view an interactive proof system as a way of recognizing a language L C X* for
some given alphabet Y| that is, z is true iff x € L, it should be the case that for any string
x € X*, (i) (completeness condition) if x € L then Bob has to accept x with probability
at least 2, and (ii) (soundness condition) if x ¢ L then Bob has to reject « (that is, Bob
tells that « ¢ L) with probability at least % (that is, Bob has to accept = with probability
at most ).

Note that: (i) these probability values are related only to the sequence of random bits
which are written in Bob’s random tape and, thus, they do not depend on the sequence of
random bits which are written in Alice’s random tape, and (ii) we can replace the value %
by any other value which is bounded away from % without changing the definition of the
language L. Indeed, by repeating the execution of the interactive proof, we can reach any
desired level of probability.

Definition 18. [Class IP| The class IP is the class of languages recognized by an inter-
active proof system.

We have that: NP C IP. Indeed, every problem in NP can be solved by an interactive
proof system as follows. Alice sends to Bob the encoding of the Turing Machine Alice and
the list of the choices which are made by the nondeterministic Turing Machine Alice for
accepting the input string . Then Bob in polynomial time will act according to that list
of choices and will accept = (with probability 1).

When, as in this case, Bob accepts with probability 1 (and not simply %) then the
interactive proof system is said to satisfy the perfect completeness condition (not simply
the completeness condition). It can be shown that every interactive proof system has an
equivalent interactive proof system (that is, an interactive proof system which recognizes
the same language) which satisfies the perfect completeness condition.

We also have that: BPP C IP. Indeed, every problem in BPP can be solved by an
interactive proof system as follows. Given a problem in BPP, Bob is the probabilistic
Turing Machine whose existence ensures that the given problem is in BPP (recall that
probabilistic Turing Machine are particular nondeterministic Turing Machines). Alice has
nothing to do.

Now we show that the following problem is in IP.

GRAPH NON-ISOMORPHISM.
Input: two directed or undirected graphs G; and Gs.

Output: ‘yes’ iff the graphs G; and G5 are non-isomorphic (that is, they are not equal
modulo a permutation of the names of their nodes).

The interactive proof system which proves that the GRAPH NON-ISMORPHISM prob-
lem is in IP, is initialized by giving the two input graphs, say GG; and Go, both to Alice
and Bob. The interactive proof has two rounds. The first round begins by Bob randomly
choosing an i in {1,2}. Then Bob sends to Alice a graph, say H, which is isomorphic
to G; (and this graph can be obtained by Bob by randomly permuting the vertices of G;).
Then Alice looks for a j in {1,2} such that graph G; is isomorphic to H and she sends j
back to Bob. (Note that Alice will always succeed in finding j, but if the two graphs G
and G9 are isomorphic, j may be different from i.)
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The second round is just like the first round.

When Bob receives the second value of j he announces the end of the interactive proof.

If the two given graphs are non-isomorphic, in both rounds Alice returns to Bob the
same value he sent to her, and thus Bob accepts the given graphs as non-isomorphic with
probability 1.

If the two given graphs are isomorphic, since in each round the probability that Alice
guesses the ¢ chosen by Bob is %, we have that the probability that Bob accepts the given
graphs as non-isomorphic is at most i. That is, the probability that Bob tells that the

two given graphs are isomorphic is at least % (= 1—%), which is larger than %

Note that we do not know whether or not the GRAPH NON-ISOMORPHISM problem
is in NP. We only know that it is in co-NP, because the complementary problem, called
the GRAPH ISOMORPHISM problem is in NP. The GRAPH ISOMORPHISM problem

is defined as follows.

GRAPH ISOMORPHISM.
Input: two directed or undirected graphs G; and Gs.

Output: ‘yes’ iff the graphs G; and G5 are isomorphic (that is, they are equal modulo a
permutation of the names of their nodes).

We leave it to the reader to prove that the GRAPH ISOMORPHISM problem is in NP.
Note that it is an open problem whether or not the GRAPH ISOMORPHISM problem
is NP-complete (see [10, page 285]).

We have the following result which we state without proof.
Proposition 5. IP = PSPACE.

We may extend the model of computation in interactive proof system by allowing k (>1)
provers, instead of one only. This model of computation is said to be a multi-prover inter-
active proof system. As in the case of one prover, in a multi-prover interactive proof system
the provers have no computational limitations, except for the fact that the messages they
send to the verifier should be of polynomial length (w.r.t. the size of the statement to be
proved). The verifier can communicate with each of the provers, but once the exchange of
messages with the verifier has begun, the provers cannot communicate with each other.
This restriction is due to the fact that, otherwise, the provers can make just one of them to
do all the work without limiting the class of languages which the multi-prover interactive
proof system can recognize [18]. The class of language which a multi-prover interactive
proof system with k (>1) provers can recognize, is called MIP; and it is defined as follows.

Definition 19. [Class MIP;, and MIP| For any k£ > 1, the class MIPj is the class of
languages recognized by a multi-prover interactive proof system with k& provers. The class
MIP of languages is defined to be Uk21 MIPy,.

Obviously, we have that: IP =4, MIP; € MIP, C ... C MIP. One can show the following
results which we state without proof.

Proposition 6. (i) MIP = MIP,. (ii) MIP = NEXPTIME.
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Note that the result of this Proposition 6 is compatible with the fact that IP = MIP, be-
cause [P = PSPACE and we do not know whether or not PSPACE is equal to NEXPTIME
(see Section 28.6 starting on page 137).

34 Complexity Classes of Parallel Computations

In this section we briefly present a few basic ideas and results on the complexity of parallel
computations.

A model for parallel computation is the parallel random access machine, PRAM, for
short. It is a machine with: (i) read-only input registers, (ii) write-only output registers,
(iii) read-write registers which constitute a shared memory, and (iv) an unbounded num-
ber of processors. Often PRAM’s are assumed to satisfy the so called ‘concurrent-read,
exclusive-write’ restriction, CREW for short. This restriction means that a register can
be read by two or more processors at the same time, but it cannot be written at the same
time by more than one processor. All processors in a PRAM work in a synchronized way
by performing exactly one step each, in parallel, at every time unit.

As an example of parallel computation, let us consider the following procedure for
sorting an array A of N elements. For reasons of simplicity, we may assume that IV is an
integer power of 2.

parallel-sort(A):

(i) split A into halves, say Al and A2,
(ii) parallel-sort(Al) || parallel-sort(A2), and
(iii) merge the two arrays obtained at Step (ii) into a single array,

where a || b means that the operations relative to the procedures (or processes) a and b are
performed in parallel by two distinct processors. Having N/2 processors we can perform
a tree-like computation for sorting, as depicted in Figure 39 on page 162. If we take
the number of binary comparisons as the measure for the time complexity, we have the
following upper bound on the time spent for merging:
1 (to compare 2 elements at level (logy N)—1)
+ 3 (to merge two 2-element ordered lists at level (log, N)—2)
+ 7 (to merge two 4-element ordered lists at level (log, N)—3)

+ (N —1) (to merge two N/2-element ordered lists at level 0).

The sum 14-3+7+...+(N—1) is less than 2N. Thus, by using O(N) processors and O(N)
time units we can sort any given array A of size N.

Beside the PRAM model, various other models for parallel computations have been
proposed, but if we allow binary comparison operations only, one can prove that all those
models are polynomial-time interreducible, like in the deterministic sequential case we
have that Turing Machine’s and RAM’s are polynomial-time interreducible.

Note, however, that if we allow concurrent reading and concurrent writing in registers,
we may gain an exponential amount of time with respect to the case when reading and
writing cannot be performed in a register by more than one processor at a time (see [13,
page 273|).

However, the class of computable functions (from the natural numbers to the natural
numbers) does not change when we allow parallel models of computation.
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Fig. 39. Parallel sorting in a tree-like fashion of an array A of N elements: A[1],..., A[N].
We have assumed that N is an integer power of 2.

If a problem can be solved in parallel time 7'(n) (that is, time 7'(n) using a PRAM
model) then it can be solved in sequential space p(T'(n)) (that is, space p(T'(n)) using a
sequential Turing Machine model (see Section 2)), where p(m) is a polynomial in m.

If a problem can be solved in sequential space S(n) then it can be solved in parallel
time p(S(n)), where p(m) is a polynomial in m (but we may need an exponential number
of processors). Note, however, that this fact holds in a model of parallel computation
where the time spent for communications among processors is not taken into account.

Thus, if T'(n) and S(n) are polynomials, we get that:
polynomial space for sequential computations (that is, PSPACE) = polynomial time for
parallel computations.

Remark 1. Since the question of whether or not PSPACE is equal to P is open, we cannot
answer the question of whether or not using parallel models of computations, instead of
the sequential ones, we actually increase the class of functions which can be computed in
polynomial time.

Now let us introduce a class of problems which is of interest in case of parallel models of
computations. It is called the NC class in honor of the researcher Nicholas Pippenger who
studied it.

Definition 20. [Class NC| A problem is said to be in NC iff it is solvable on a PRAM
which has a polynomial number of processors and runs within a poly-logarithmic time,
that is, for input of size n, it runs in time O((log n)*), for some k>1.

Together with many other problems, sorting is a problem in NC. Indeed, there is an
algorithm due to by R. Cole, which sorts on a ‘CREW comparison PRAM’ (that is, a
CREW PRAM where assignments and binary comparison operations only are allowed)
using for any input of size n, O(n) processors, and O(log n) time, when counting also the
time spent for: (i) deciding which comparisons should be performed on which processor,
(ii) moving the elements within the various cells of the shared memory, and (iii) performing
the binary comparisons.
For further details see, for instance, [20].
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It can be shown that NC C P. It is open whether or not the containment is proper.

Obviously, if some P-complete problem (with respect to polynomial time reductions)
is in NC then NC = P.
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complete problems vs. hard problems, 136
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complete set (w.r.t. a class of sets and a reducibility
relation), 111

complexity of parallel computations, 161

complexity: invariance w.r.t. computational model, 147
composition of functions, 57, 82-85

computation step, 72

computational complexity theory, 142

concurrent-read, exclusive-write restriction (CREW),
161

constant cost criterion, 149

content of register at address n: C(n), 150

context-free grammar, 98
context-free language, 99, 103
context-sensitive grammar, 98, 105
context-sensitive language, 99
convergence of functions, 55
convergent function, 55
correspondence list, 150

countable set, 9

counter machine, 33, 34
course-of-value recursion, 68

CREW PRAM: concurrent-read,
PRAM, 161

exclusive-write

decidable problem, 88, 90

decidable property, 90, 108

defined function, 55

definition by cases, 62

denumerable set, 9

dequeue statement, 43
deterministic context-free language, 99, 103
deterministic space and deterministic time hierarchies,
142

deterministic Turing Machine, 11
deterministic two-stack machine, 32
divergent function, 55

divisibility function, 61

domain of a partial function, 55
domino problems, 105

domino snake problems, 107
domino system, 106

dove-tailing evaluation, 72, 73
DSPACE, 144

DSPACE(log n), 138
DSPACE(f(n)), 143
DSPACE(g(S(n))), 144
DSPACE(S(n)), 113, 144
DSPACE(S?(n)), 143

DTIME, 144

DTIME(f(n)), 143

DTIME(T (n)), 113

dynamic programming, 135

effectively closed class of languages, 102
ELEMENTARY class, 138

Elementary Recursive class, 140
emptiness problem, 111

empty language, 103

empty string, 9
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empty tuple, 9

empty word , 9

enqueue statement, 43

equivalent grammar, 99

ETIME: single exponential time, 146
existential finite downward closure, 96
exponentiation, 60

EXPSPACE, 115

EXPTIME, 115, 137, 138, 143
extended grammars, 104

factorial, 60

Fibonacci function, 67

finite automaton, 10

free variables, 56

fully space constructible function, 142
fully time constructible function, 142

Godel’s Incompleteness Theorem, 140
Greibach Theorem, 102

growth complexity, 82

Grzegorczyk classes, 82

Grzegorczyk hierarchy, 81, 144
Grzegorczyk Theorem, 82

Halting Problem, 91

Hamiltonian circuit, 131

hard problems, 136, 137

hard set (w.r.t. a class of sets and a reducibility rela-
tion), 110

TA-RAM machine (indirect address RAM), 147, 148
inherent ambiguity problem for context-free languages,
102

inherently ambiguous language, 99

input alphabet, 10

inside-out and left-to-right evaluation, 58

instance of a problem, 88

interaction tape, 158

interactive proof system, 158

interactive proofs: completeness condition, 159
interactive proofs: complexity classes, 158

interactive proofs: multi-prover system, 160
interactive proofs: one-prover system, 158

interactive proofs: perfect completeness condition, 159
interactive proofs: soundness condition, 159

internal states, 10

invalid computation of a Turing Machine, 100
irreflexive total order , 9

iterated counter machine, 34

Kalmar elementary functions, 84
Kleene T-predicate, 70
Kleene Normal Form Theorem, 70

lambda notation, 56

lambda term, 56

language generated by a grammar, 99
Las Vegas algorithm, 156

leftmost derivation of a word, 98
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length of a string, 98

length of a tuple, 9

limited primitive recursion, 82
LIN-SPACE, 143

linear bounded automata, 31
linear context-free grammar, 101
literal, 128

logarithmic cost, 150

logarithmic cost criterion, 149, 151
logarithmic costs for the IA-RAM machine, 149
logarithmic-space reducibility, 111
loop complexity, 82

loop functions of level n, 83

loop hierarchy, 81

loop programs of level n, 83

Markov System, 52

max function, 60

membership problem, 111

min function, 60

min: bounded minimalization operator, 62

minimal spanning tree problem, 117

minimalization operator u w.r.t. a class of functions, 68
minimalization operator p* w.r.t. a class of functions,
68

mirror-image symmetry, 107

model of computation, 72

Modified Post Correspondence Problem, 97

Monte Carlo algorithm, 156

multi-prover interactive proof system, 160

multiple tracks, 19

multiplication, 60

natural numbers, 9

NC class of problems, 162

negated sign function, 60

nested recursion: n-fold, 85

NEXPTIME, 115, 138, 144, 160
NEXPTIME-complete problem, 107

NLIN-SPACE, 143

nondeterministic space and nondeterministic time hier-
archies, 144

nondeterministic Turing Machine, 11

nonterminal symbols, 98

NP class of problems, 115, 144

NP class of problems (Version 1), 116

NP class of problems (Version 2), 116

NP class of problems (Version 3), 116

NP problems vs. co-NP problems, 136

NP4 (set of languages), 145

NP-complete problem, 107, 111, 128

NP-complete versus strongly NP-complete problems,
135

NP-hard problem, 111
NSPACE, 115, 138, 144
NSPACE(log n)-complete:
graphs, 142
NSPACE(f(n)), 143
NSPACE(S(n)), 113, 143

reachability in directed
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NTIME, 144
NTIME(f(n)), 143
NTIME(T (n)), 113
number encoding, 74

occurrence, 56

off-line Turing Machine: input tape, 27

off-line Turing Machine: standard tape, 27
off-line Turing Machine: working tape, 27

open problems in the complexity hierarchy, 137
oracle computations, 145

P = NP, 138

P class of problems, 115

P (set of languages), 145

P-complete: emptiness problem of context-free lan-
guages, 142

pair function: C(z,y), 65

parallel random access machine (PRAM), 161
parallel sorting, 161

parsing problem, 89

partial function, 55

partial recursive functions, 69, 70

partial recursive functions on strings, 80
Peano Arithmetics, 140

pfactors (prime factors), 120

PH: polynomial hierarchy, 145

polynomial hierarchy, 145

polynomial hierarchy: AL, 146

polynomial hierarchy: A}, 146

polynomial hierarchy: IT5, 146

polynomial hierarchy: I}, 146, 147
polynomial hierarchy: ¥, 146

polynomial hierarchy: X}, 146, 147
polynomial-time reducibility, 111
polynomially related functions, 148, 151
position numbers, 73

Post Correspondence Problem, 97

Post Correspondence Problem: one symbol alphabet, 97
Post Machine, 43, 52

Post Normal Form Theorem, 51

Post System, 48, 52

PR (set of primitive recursive functions), 57, 81
PRAM: parallel random access machine, 161
predecessor, 59, 82

predicate, 61

prefix property of a language, 101

prefix-free language, 101

Presburger Arithmetics, 140

PRF (set of partial recursive functions), 55
primality problem, 88

prime factorizations, 123

prime factors (pfactors), 120

primitive recursion, 57

primitive recursion of order n, 85

primitive recursive predicate, 61

printable blank, 34

printing problem on a Turing Machine, 94
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probabilistic computations:

complexity classes, 153
problem, 88
problem reduction, 91
problem: k-BIN PACKING, 132
problem: k-KNAPSACK, 132, 133
problem: k-TRAVELING SALESMAN

(k-TSP), 131, 133
problem: L = X* in context-free languages, 111
problem: L = X* in regular languages, 112
problem: 2-SATISFIABILITY, 130
problem: 3-SATISFIABILITY, 128, 129
problem: BIN PACKING, 132, 133, 135
problem: BINARY PARTITION, 131, 133, 135
problem: C-SATISFIABILITY, 126-129, 131
problem: CO-PRIME, 119, 120
problem: COLOURABILITY, 129
problem: CONTEXT-SENSITIVE MEMBERSHIP, 141
problem: COOK, 129
problem: domino snake, 107
problem: emptiness, 111
problem: EMPTINESS FOR CONTEXT-FREE LAN-
GUAGES, 142
problem: emptiness in context-free languages, 112
problem: emptiness in partial recursive functions, 111
problem: emptiness in regular languages, 112
problem: GRAPH ISOMORPHISM, 160
problem: GRAPH NON-ISOMORPHISM, 159, 160
problem: HAMILTONIAN CIRCUIT (directed graphs),
128

problem: HAMILTONIAN CIRCUIT (undirected
graphs), 119, 128
problem: INTEGER LINEAR PROGRAMMING

(ILP), 131, 135, 137
problem: INTERSECTION-REG-

EXPRESSIONS, 140
problem: K-CLIQUE (undirected graphs), 126-128
problem: KNAPSACK, 132
problem: LINEAR PROGRAMMING, 131
problem: membership, 111
problem: membership in context-free languages, 111
problem: membership in partial recursive functions, 111
problem: membership in regular languages, 112
problem: METRIC TRAVELING SALESMAN
(ATSP), 137
problem: NEXPTIME-complete, 107
problem: NOSTAR-REG-EXPRESSIONS,
141
problem: NP-complete, 107, 128
problem: P = NP, 124
problem: PRIME, 120, 121
problem: PRODUCT POLYNOMIAL INEQUIVA-
LENCE, 156
problem: QUANTIFIED BOOLEAN FORMULAS
(QBF), 141
problem: REACHABILITY IN DIRECTED GRAPHS,
142
problem: REG-EXPRESSIONS, 141

129-131,
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problem: REG-EXPRESSIONS WITH EXPONENTS,
141

problem: SATISFIABILITY, 128, 141

problem: strongly NP-complete, 135

problem: SUBSET SUM, 129

problem: tiling, 105

problem: totality, 111

problem: totality in partial recursive functions, 111
problem: TRAVELING SALESMAN

(TSP), 131
problem: vertex cover, 129
productions, 98
productions of a Post System, 49
projection functions, 57, 82
proper subtraction, 59, 82
properties of complexity measures, 144
property over RE, 94
prover (in interactive proofs), 158
PSPACE, 115, 137, 138, 160, 162
PSPACE-complete: context-sensitive membership, 141
PSPACE-complete: QBF satisfiability, 141
PSPACE-completeness, 107
pushdown automata, 31

quantified boolean expression, 147
quintuples for encoding Turing Machines, 92
quotient function quot, 61, 82

quotient language w.r.t. a symbol, 102

r.e. language, 87
r.e. property, 109
r.e. set, 79, 110
r.e. upward closure, 96
RAM computable function, 42
RAM machine, 148
Random Access Machine, RAM, 42
random tape, 158
randomized computations:
complexity classes, 153
range, 55
RE (set of recursive enumerable languages over X), 94
Recursion Theorem, 59
recursive equations, 58
recursive function, 71
recursive language, 87
recursive predicate, 71
recursive property, 108
recursive set, 78
recursively enumerable language, 87
recursively enumerable property, 109
recursively enumerable set, 72, 79
reducibility of problems, 125
reducibility of problems: inter-reducibility in polynomial
time, 125
reducibility of problems: logarithmic-space, 125, 134
reducibility of problems: polynomial-time vs. logarith-
mic-space, 134
reducibility of problems: polynomial-time, 125, 134
reflexive total order, 10
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REG: regular languages, 111

regular expressions with exponents and negation, 140
regular grammar, 98

reject statement, 43

relationship among complexity classes, 143
rem(n/m): remainder of n/m integer division, 120
remainder function rem, 60, 82

restricted transitive closure, 52

restriction technique, 133

Rice Theorem for r.e. properties over RE, 96

Rice Theorem for recursive properties over RE, 95
rotational symmetry, 107

semidecidable problem, 88, 90
semidecidable property, 90, 109
semiextended regular expression, 140
semirecursive property, 109
semisolvable problem, 88
semisolvable property, 109

sign function, 60

simulation experiment, 154

sink state, 15

solution of a problem, 88

solvable problem, 88

solvable property, 108

SP-RAM machine (stored program RAM), 148
space complexity, 113

space constructible function, 142
spine function, 81, 144

star closure of a set, 9

start statement, 43

start symbol, 98

states, 10

string, 9

strongly NP-complete problems, 135
structural complexity, 83
subrecursive classes, 81

subterm, 56

successor function, 57, 82

tape alphabet, 10

terminal symbols, 98

test statement, 43

theorem: Cook, 129

theorem: deterministic space hierarchy, 142
theorem: deterministic time hierarchy, 138, 142
theorem: Fermat, 120

theorem: gap (Borodin), 144

theorem: linear speed-up, 114

theorem: nondeterministic space hierarchy, 138, 144
theorem: nondeterministic time hierarchy, 144
theorem: recursion, 59

theorem: Savitch, 143

theorem: speed-up (Blum), 144

theorem: tape compression, 114

theorem: tape reduction, 114

theory of real numbers with addition, 141
thread, 108

tiling function, 106
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tiling problems, 105

tiling system, 106, 108

time complexity, 113

time constructible function, 142
total function, 55

total order, 9, 10

totality problem, 94, 111

translational symmetry, 107

trivial property, 94

Turing computable function on numbers, 15
Turing computable function on strings, 16
Turing computable language, 14

Turing Machine,

10, 11, 27

Turing Machine acceptance, 87
Turing Machine as language generator, 38
Turing Machine rejection, 87

Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:

acceptance by final state, 14
accepted language, 14
accepted word, 14

answer ‘no’, 14, 87

answer ‘yes’, 14, 87
bidimensional tape, 28
binary, 38, 91, 92

cells, 10

computation tree, 153
configuration, 12

control, 10

current state, 11

entering a final state, 13
equivalence, 14

halts, 13

halts in a configuration, 13
halts in a state, 13

head marker, 26

initial configuration, 12
input tape, 153, 158

input word, 12

instruction, 10

instruction or quintuple, 11
move as pair of configurations, 13
multi-dimensional tape, 28
multihead, 27

multiple tape, 26

new state, 11
nondeterministic, 29
off-line, 27

off-line k-tape, deterministic, 113
off-line, deterministic, 134
on-line, 28

output tape, 153

printable blank, 15

printed symbol, 11
probabilistic, 156
quintuple, 10

random, 154

read-only input tape, 113, 134
recognized language, 14
recognized word, 14
rejected word, 14
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Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:

function, 11

Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
Turing Machine:
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scanned cell, 10

scanned symbol, 11

shifting the tape content, 23
shifting-over technique, 41
stationary move, 18

step or computation step, 13
stops, 13

stops in a configuration, 13
stops in a state, 13

storage tape, 10, 113
subroutines, 23

tape, 10

transition as pair of configurations, 13
transition

universal, 92, 93

with an oracle, 145

working tape, 10, 113, 134, 153, 158
write-only output tape, 134

tape configuration, 12

Turing Predicate T'(¢,z,y,t), 110
Turing Thesis, 53

two-stack machine, 32

two-way infinite tape, 24

type 0 grammar, 40, 98

type 1 grammar, 98

type 2 grammar, 98

type 3 grammar, 98

undecidable problem, 88, 90
undecidable property, 90

undefined function, 55

uniform cost criterion, 149

uniform halting problem, 94
Universal Turing Machine, 92, 93
Unlimited Register Machine, 51, 52

Unlimited Register Machine: instruction, 51
Unlimited Register Machine: program, 51

unsolvable problem, 88

URM: Unlimited Register Machine, 51
useful symbol, 99

useless symbol, 99

valid computation of a Turing Machine, 100

value of a function, 55

variables, 98

verifier (in interactive proofs), 158
von Neumann machine, 147

Weak Monadic Second Order Theory of Successor, 138

word, 9
WSI1S theory, 138

yes-instance, 88
yes-language, 88

yes-no problem, 88

zero functions, 57, 82
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