

Alberto Pettorossi

Elements of Concurrent Programming

Third Edition

ARACNE

Table of Contents

Preface . 1

1. Deterministic Computations . 3

1.1 Operational Semantics of Arithmetic Expressions . 3

1.2 Operational Semantics of Boolean Expressions . 3

1.3 Operational Semantics of Commands . 4

2. Nondeterministic Computations (Big Step Semantics) 5

2.1 Operational Semantics of Nondeterministic Commands . 5

2.2 Operational Semantics of Guarded Commands . 6

3. Concurrent Programs: Vectorization . 7

3.1 Process Declaration and Process Call . 7

3.2 Concurrency Based on Vectorization Using fork-join . 7

3.3 Concurrency Based on Vectorization Using cobegin-coend 9

3.4 Example: Evaluating Recurrence Relations . 10

3.5 Example: Multiplying Matrices . 11

4. Concurrent Programs Based on Shared Variables . 12

4.1 Preliminary Example: Prefix Sums . 12

4.2 Prefix Sums Revisited . 13

4.3 Semaphores . 17

4.4 Semaphores and Test-and-Set Operations for Mutual Exclusion 19

4.5 Semaphores for Mutual Exclusion for Producers and Consumers 20

4.6 Private Semaphores for Establishing a Policy to Resume Processes 22

4.7 Critical Regions and Conditional Critical Regions . 26

4.8 Monitors . 31

4.9 Using Monitors for Solving the Five Philosophers Problem 36

4.10 Using Semaphores for Solving the Five Philosophers Problem 39

4.11 Peterson’s Algorithm for Mutual Exclusion . 42

4.12 Distributed Computation of Spanning Trees . 51

4.13 Distributed Termination Detection . 58

4.14 Lock-free and Wait-free Synchronization . 63

5. Concurrent Computations in Java . 64

5.1 Mutual Exclusion in Java . 67

5.2 Monitors in Java . 70

5.3 Bounded Buffer Monitor in Java . 73

5.4 Counting Semaphore in Java . 76

ii

5.5 Binary Semaphore in Java . 77

5.6 Bounded Buffer with Binary and Counting Semaphores in Java 77

5.7 Five Philosophers Problem in Java . 80

5.8 Queue Monitor in Java . 82

6. Concurrent Programs Based on Handshaking Communications 85

6.1 Pure CCS Calculus . 85

6.2 Verifying Peterson’s Algorithm for Mutual Exclusion . 89

6.3 Value-Passing CCS Calculus . 94

6.4 Verifying the Alternating Bit Protocol . 96

7. Transactions and Serializability on Databases . 101

7.1 Preliminaries . 101

7.2 SerializabilityTheory . 103

7.3 An Abstract View of Transactions . 103

7.4 Histories and Equivalent Histories . 106

7.5 The Serializability Theorem . 108

7.6 Locking Protocols . 109

7.7 Two Phase Locking Protocols . 112

7.8 Strict Two Phase Locking Protocols . 113

7.9 Deadlocks . 114

7.10 Conservative Two Phase Locking Protocols . 115

7. Appendix: A Distributed Program for Computing Spanning Trees . . 116

Index . 129

References . 132

Preface

These lecture notes are intended to introduce the reader to the basic notions of nonde-
terministic and concurrent programming. We start by giving the operational semantics of
a simple deterministic language and the operational semantics of a simple nondetermin-
istic language based on guarded commands. Then we consider concurrent computations
based on: (i) vectorization, (ii) shared variables, and (iii) handshaking communications à
la CCS (Calculus for Communicating Systems) [16]. We also address the problem of mu-
tual exclusion and for its solution we analyze various techniques such as those based on
semaphores, critical regions, conditional critical regions, and monitors. Finally, we study
the problem of detecting distributed termination and the problem of the serializability of
database transactions.

Sections 1, 2, and 6 are based on [16,22]. The material of Sections 3 and 4 is derived
from [1,2,4,5,7,8,13,18,20]. Section 5 is based on [10] and is devoted to programming
examples written in Java where the reader may see in action some of the basic techniques
described in these lecture notes. In Section 7 we closely follow [3].

We would like to thank Dr. Maurizio Proietti for his many suggestions and his en-
couragement, Prof. Robin Milner and Prof. Matthew Hennessy for introducing me to
CCS, Prof. Vijay K. Garg from whose book [10] I learnt concurrent programming in Java,
my colleagues at Roma Tor Vergata University for their support and friendship, and my
students for their patience and help.

Many thanks also to Dr. Gioacchino Onorati and Lorenzo Costantini of the Aracne
Publishing Company for their kind and helpful cooperation.

Roma, April 2005

In the third edition we have corrected a few mistakes, we have improved Chapter 2, and we
have added in the Appendix a Java program for the distributed computation of spanning
trees of undirected graphs. Thanks to Dr. Emanuele De Angelis for discovering an error
in the presentation of Peterson’s algorithm.

Roma, January 2009

Alberto Pettorossi
Department of Informatics, Systems, and Production
University of Roma Tor Vergata
Via del Politecnico 1, I-00133 Roma, Italy
email: pettorossi@info.uniroma2.it
URL: http://www.iasi.cnr.it/~adp

3

1 Deterministic Computations

We begin by considering deterministic computations such as those denoted by a simple
Pascal-like language. In this language we have the following syntactic categories:

- Integers

n, m, . . . range over Z = {. . . , −2, −1, 0, 1, 2, . . .}

- Locations (or memory addresses)

X, Y, . . . range over Loc

- Arithmetic Expressions

a ranges over AExpr a ::= n | X | a1 + a2 | a1 − a2 | a1 × a2

- Boolean Expressions

b ranges over BExpr b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∨ b2 | b1 ∧ b2

- Commands

c ranges over Com c ::= skip | X := a | c1; c2 | if b then c1 else c2 | while b do c

Below we introduce the operational semantics of our Pascal-like language. The operational
semantics specifies:
- the evaluation of arithmetical expressions,
- the evaluation of boolean expressions, and
- the execution of commands.

In order to specify the operational semantics we need the notion of a state.
A state σ is a function from Loc to Z. The set of all states is called State.

1.1 Operational Semantics of Arithmetic Expressions

The evaluation of arithmetic expressions is given as a subset of AExpr × State × Z. A
triple in AExpr × State × Z is written as 〈a, σ〉 → n and specifies that the arithmetic
expression a in the state σ evaluates to the integer n. The axioms and the inference rule
defining the evaluation of arithmetic expressions are as follows.

〈n, σ〉 → n

〈X, σ〉 → σ(X)

〈a1,σ〉 → n1 〈a2,σ〉 → n2

〈a1op a2, σ〉 → n1 op n2

where op ∈ {+, −, ×} and op is the semantic
operation corresponding to op.

1.2 Operational Semantics of Boolean Expressions

The evaluation of boolean expressions is given as a subset of BExpr ×State ×{true, false}.
A triple in BExpr × State × {true, false} is written as 〈b, σ〉 → t and specifies that the
boolean expression b in the state σ evaluates to the boolean value t. The axioms and the
inference rules defining the evaluation of boolean expressions are as follows.

4

〈true, σ〉 → true

〈false, σ〉 → false

〈a1,σ〉 → n1 〈a2,σ〉 → n2

〈a1=a2, σ〉 → true
if n1 = n2

〈a1,σ〉 → n1 〈a2,σ〉 → n2

〈a1=a2, σ〉 → false
if n1 *= n2

〈a1,σ〉 → n1 〈a2,σ〉 → n2

〈a1≤ a2, σ〉 → true
if n1 ≤ n2

〈a1,σ〉 → n1 〈a2,σ〉 → n2

〈a1≤ a2, σ〉 → false
if n1 *≤ n2

〈b,σ〉 → true

〈¬b,σ〉 → false

〈b,σ〉 → false

〈¬b,σ〉 → true

〈b1,σ〉 → t1 〈b2,σ〉 → t2
〈b1 bop b2, σ〉 → t1 bop t2

where bop ∈ {∨, ∧} and bop is the semantic
operation corresponding to bop.

1.3 Operational Semantics of Commands

We need the following notation. By σ[n/X] we mean the function which is equal to σ
except in X, where it takes the value n, that is:

σ[n/X] (Y) =

{
n if Y =X
σ(Y) if Y *=X

The execution of commands is given as a subset of Com × State × State. A triple in
Com × State × State is written as 〈c, σ〉 → σ′ and specifies that the command c from
the state σ produces the new state σ′. The axiom and the inference rules defining the
execution of commands are as follows.

〈skip, σ〉 → σ

〈a,σ〉 → n

〈X:=a, σ〉 → σ[n/X]

〈c1,σ〉 → σ1 〈c2,σ1〉 → σ2

〈c1;c2, σ〉 → σ2

〈b,σ〉 → true 〈c1,σ〉 → σ1

〈if b then c1 else c2, σ〉 → σ1

〈b,σ〉 → false 〈c2,σ〉 → σ2

〈if b then c1 else c2, σ〉 → σ2

〈b,σ〉 → false

〈while bdo c, σ〉 → σ

〈b,σ〉 → true 〈c,σ〉 → σ1 〈while b do c, σ1〉 → σ∗

〈while b do c, σ〉 → σ∗

Note 1. The ternary operator 〈_, _〉 → _ is overloaded and it is used for the operational
semantics of arithmetic expressions, boolean expressions, and commands.

Here is Euclid’s algorithm for computing the greatest common divisor of M and N using
commands (we assume that M > 0 and N > 0):

{n = N > 0 ∧ m = M > 0}

while m *= n do if m > n then m := m−n else n := n−m od

{gcd(N, M) = n}

5

2 Nondeterministic Computations (Big Step Semantics)

We present the guarded commands first introduced by Dijkstra [9]. They allow non-
deterministic computations. We have the following new syntactic categories (which are
mutually recursively defined):

- Commands
c ranges over Com c ::= skip | abort | X := a | c1; c2 | if gc fi | do gc od

- Guarded Commands
gc ranges over GCom gc ::= b → c | gc1 gc2

where a ranges over the arithmetic expressions AExpr and b ranges over the boolean
expressions BExpr . The operator is assumed to be associative and commutative. The
operational semantics given below specifies:
- the execution of commands and
- the execution of guarded commands.

2.1 Operational Semantics of Nondeterministic Commands

The execution of commands is given as a subset of Com × State × State. A triple in
Com × State × State is written as 〈c, σ〉 → γ and specifies that the command c from
the state σ produces the new state γ. The axiom and the inference rules defining the
execution of commands are as follows.

(1.1) 〈skip, σ〉 → σ

(1.2)
〈a,σ〉 → n

〈X:=a, σ〉 → σ[n/X]

(1.3)
〈c1,σ〉 → σ1 〈c2,σ1〉 → σ2

〈c1; c2, σ〉 → σ2

(1.4)
〈gc,σ〉 → 〈c,σ〉 〈c,σ〉 → σ′

〈if gc fi, σ〉 → σ′

(1.5)
〈gc,σ〉 → fail

〈do gc od, σ〉 → σ (1.6)
〈gc,σ〉 → 〈c,σ〉 〈c;do gc od, σ〉 → σ′

〈do gc od, σ〉 → σ′

Let us informally explain the rules for the if . . . fi and do . . . od commands.

The execution of if gc1 . . . gcn fi is performed as follows.
(i) We first choose in a nondeterministic way a guarded command, say b → c, among
gc1, . . . , gcn, such that the guard b evaluates to true, and then
(ii) we execute the command c.
(iii) If no guarded command among {gc1, . . . , gcn} has a guard which evaluates to true,
the execution of the if . . . fi command is aborted, and the execution of the whole program
is aborted.

The execution of do gc1 . . . gcn od is performed as follows.
(i) We first choose in a nondeterministic way a guarded command, say b → c, among
{gc1, . . . , gcn} such that the guard b evaluates to true, then

6

(ii) we execute the command c and then go to Step (i).
(iii) If no guarded command among gc1, . . . , gcn, has a guard which evaluates to true, the
execution of the do . . . od command is terminated and the execution continues with that
of the command following the do . . . od command.

Note that we gave no rules for the command abort. Thus, for every state σ ∈ State
and every γ ∈ State no triple 〈abort , σ, γ〉 exists in the subset of Com × State × State
which denotes the operational semantics.

2.2 Operational Semantics of Guarded Commands

The execution of guarded commands is given as a subset of GCom × State × ((Com ×
State) ∪ {fail}). A triple in GCom × State × ((Com × State) ∪ {fail}) is written as
〈gc, σ〉 → γ and specifies that the guarded command gc from the state σ produces either
the new 〈command, state〉 pair γ or the value γ = fail. The inference rules defining the
execution of guarded commands are as follows.

(2.1)
〈b,σ〉 → true

〈b→c, σ〉 → 〈c,σ〉 (2.2)
〈b,σ〉 → false

〈b → c, σ〉 → fail

(2.3)
〈gc1,σ〉 → 〈c,σ〉

〈gc1 gc2, σ〉 → 〈c,σ〉 (2.4)
〈gc2,σ〉 → 〈c,σ〉

〈gc1 gc2, σ〉 → 〈c,σ〉

(2.5)
〈gc1, σ〉 → fail 〈gc2, σ〉 → fail

〈gc1 gc2, σ〉 → fail

Note that when evaluating the guard of a guarded command, the state is not changed.
This fact is not exploited in the semantic rules given by Winskel [22].

Instead of the above rules (2.3) and (2.4), we can equivalently use the following two
rules:

(2.3*)
〈b→c,σ〉 → 〈c,σ〉

〈b→c gc2, σ〉 → 〈c,σ〉 (2.4*)
〈b→c,σ〉 → 〈c,σ〉

〈gc1 b→c, σ〉 → 〈c,σ〉

Note also that for all b, c, σ, gc1, gc2, we have that:

(i) 〈b → c, σ〉 → 〈c, σ〉 holds iff 〈b, σ〉 → true, and

(ii) 〈gc1 gc2, σ〉 → 〈c, σ〉 holds iff there exists i ∈ {1, 2} such that gci is b → c and
〈b, σ〉 → true.

Here is Euclid’s algorithm for computing the greatest common divisor of M and N using
guarded commands (we assume that M > 0 and N > 0):

{n = N > 0 ∧ m = M > 0}

do m ≥ n ∧ n > 0 → m := m−n
n ≥ m ∧ m > 0 → n := n−m

od

{gcd(N, M) = if n=0 then m else n}

The assertions between curly brackets at the beginning and at the end of the above
do . . . od command relate the value of the integer variables before and after the execution
of that command.

7

3 Concurrent Programs: Vectorization

The terminology about concurrent programming is not stable. Some authors consider
concurrent programs, distributed programs, and parallel programs to be the same class of
programs. Other authors do not.

We assume three forms of concurrency:

(i) concurrency based on vectorization,
(ii) concurrency based on shared variables (and shared resources), and
(iii) concurrency based on handshaking communications (also called rendez-vous).

With respect to sequential programs the use of concurrent programs allows us: (i) to get
better performance, and (ii) to simulate in a direct way concurrent processes (or agents)
which perform computations in real world systems.

3.1 Process Declaration and Process Call

Process declarations and process calls in parallel languages are like procedure declarations
and procedure calls in sequential languages, but the called processes run together with
the calling processes.

In Concurrent Pascal [5] and Modula [23,24] process declaration can be done at top level
only. In this case we say that the processes are static.

In Ada [17] a process declaration can be inside an enclosing process declaration. In this
case we say that the processes are dynamic.

3.2 Concurrency Based on Vectorization Using fork-join

The fork-join construct was introduced in [7]. We describe here the following two variants:
(1) single fork-join, and (2) multiple fork-join.

(1) Single fork-join:

(Process A) A: (a0)
fork B −→ (Process B) B : (start)

↓ ↓
(a1) (b)

↓ ↓
JB : join B ←− go to JB

(a2)

Process A proceeds after the instruction join B, when process B has terminated.

8

(2) Multiple fork-join:

(Process A) A: (a0)
counter := 3;
fork B

(a1)
fork C

(a2)
go to J

(Process B) B : (b)
go to J

(Process C) C : (c)
go to J

J : join counter
(a3)

Process A proceeds after the instruction join counter, when both process B and process C
have terminated.

Multiple fork-join is used, for example, when one has to sum two arrays, say A1 and
A2, of N elements each, and N is a large number. The sum can be done in parallel by
k processes, each summing N/k elements (we assume that N/k is an integer). These k
processes are generated by a k-fold fork. In particular, process 1 sums the elements of
the arrays A1 and A2 from position 0 to position (N/k) − 1, ..., and process k sums the
elements of the arrays A1 and A2 from position N − (N/k) to position N − 1.

With every fork-join program we can associate a multigraph, called control flow
multigraph, whose nodes are the fork and join instructions and whose arcs connect nodes
according to the usual notion of control flow for sequential programs. (We assume that
the reader is familiar with this notion.) Note that we consider a multigraph, instead of
a graph, because parallel execution may determine two or more arcs between two nodes.
For example, the multigraph corresponding to the above program with processes A, B,
and C, is depicted in the following Figure 1.

!

!"

$"
##(a1) (a2)fork B %

fork C
% join counter%

(b)

(c)

Fig. 1. A control flow multigraph.

The computation continues after a join node n iff the computation relative to every arc
arriving at n is terminated.

With every control flow multigraph we associate a relation, denoted ≤, induced by its
arcs. For instance, in the multigraph of Figure 1 we have that: fork C ≤ join counter,
fork B ≤ fork C, and fork B ≤ join counter. If a1 ≤ . . . ≤ an, for some n ≥ 0, we say

9

that a1 is an ancestor of an or, equivalently, an is a descendant of a1. In particular, any
node a is an ancestor and a descendant of itself.

3.3 Concurrency Based on Vectorization Using cobegin-coend

The cobegin-coend command was introduced in [8]. It has the following syntax:

cobegin S1; ...; Sn coend

Its execution activates n processes, say P1, . . . , Pn. Process P1 executes statement S1, ...,
and process Pn executes statement Sn. The cobegin-coend command terminates when
all processes have terminated.

We assume that every cobegin S1; ...; Sn coend command generates a control flow
multigraph such as the one depicted in Figure 2.

!

!"
$"
% %

.
.
.

Sn

S1

cobegin coend

Fig. 2. The control flow multigraph generated by the cobegin S1; ...; Sn coend command.

Not all control flow multigraphs that can be generated by fork-join constructs (together
with sequentialization, if-then-else, and while-do constructs), can also be generated by
cobegin-coend commands (together with sequentialization, if-then-else, and while-do
constructs). Obviously, in this generation we consider only the topology of the multigraphs
and not the labels of the nodes.

For instance, the multigraph depicted in Figure 3, generated by the program PABC

which consists of the following three processes A, B, and C, cannot be generated by
cobegin-coend commands.

(Process A) A: (a0)
fork B
(a1)
fork C
(a2)

JB : join B
(a3)

JC : join C
go to J

(Process B) B : (b)
go to JB

(Process C) C : (c)
go to JC

J : (a4)

10

!

!"

$
"

#(a1) (a2) (a3)fork B %
(b)

fork C
% JB%

(c)

JC%

Fig. 3. The control flow multigraph generated by the program PABC .

Let us consider the following Property ∆ of a control flow multigraph:

Property ∆: given any two nodes n1 and n2, every descendant of the least common
ancestor of n1 and n2, is predecessor or a descendant of the greatest common successor of
n1 and n2.

We have that if a control flow multigraph can be generated by using cobegin-coend
commands then it satisfies Property ∆. A multigraph which does not satisfy Property ∆
(and therefore, it cannot be generated by using cobegin-coend commands), is the one
depicted in Figure 4. Indeed, in Figure 4 node q which is a descendant of the least common
ancestor m of the nodes n1 and n2, is neither a predecessor nor a descendant of the node p
which is the greatest common successor of n1 and n2.

Notice that Property ∆ is a necessary condition for a control flow multigraph to be
generated by using cobegin-coend commands, but it is not a sufficient condition, as
shown by the multigraph of Figure 3.

% % %
%%

% % %
! !#

##

! !# #

$
$
$
$
$$%

$
$
$
$
$$%

&
&
&
&
&
&
&&'

&
&
&
&
&
&
&&'

m

n1

n2

p

q

Fig. 4. A control flow multigraph which cannot be generated by using cobegin-coend
commands.

3.4 Example: Evaluating Recurrence Relations

In order to compute recursive programs which are not linear recursive we can compute in
parallel the m (>1) recursive calls. For instance, for the Fibonacci numbers we have:

procedure fibonacci(int n, int f);
begin if n ≤ 1 then f := 1 else

begin cobegin fibonacci(n−1, f1); fibonacci(n−2, f2) coend;
f := f1 + f2
end

end

11

3.5 Example: Multiplying Matrices

Given the following two n × n matrices A and B such that

A =

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ and B =

∣∣∣∣
B11 B12

B21 B22

∣∣∣∣, we have that C =

∣∣∣∣
C11 C12

C21 C22

∣∣∣∣ is the product A × B

iff

C11 = A11×B11 + A12×B21, C12 = A11×B12 + A12×B22,

C21 = A21×B11 + A22×B21, C22 = A21×B12 + A22×B22.

Thus, we can compute C by performing in parallel 8 multiplications of n/2×n/2 matrices
as follows. For reasons of simplicity we assume that n is a power of 2.

procedure mult(int n, int A[1..n, 1..n], int B[1..n, 1..n], int C[1..n, 1..n]);
begin if n = 1 then C := A × B else

begin
cobegin

mult(n/2, A11, B11, C1); mult(n/2, A12, B21, C2);
mult(n/2, A11, B12, C3); mult(n/2, A12, B22, C4);
mult(n/2, A21, B11, C5); mult(n/2, A22, B21, C6);
mult(n/2, A21, B12, C7); mult(n/2, A22, B22, C8)

coend;
cobegin

C 11 := C1 + C2; C 12 := C3 + C4;
C 21 := C5 + C6; C 22 := C7 + C8

coend;
C := arrange(C11, C12, C21, C22)
end

end

where arrange is a function that given four n/2 × n/2 matrices, say C11, C12, C21, and

C22, constructs the n×n matrix C =

∣∣∣∣
C11 C12
C21 C22

∣∣∣∣.

12

4 Concurrent Programs Based on Shared Variables

4.1 Preliminary Example: Prefix Sums

Let us present a preliminary example of a concurrent program based on shared variables.
We are given a sequence 〈x0, x1, . . . , xn−1〉 of n numbers and we want to compute the
sequence 〈s0, s1, . . . , sn−1〉 also of n numbers such that:

s0 = x0,
s1 = x0 + x1,
s2 = x0 + x1 + x2, . . ., and
sn−1 = x0 + x1 + . . . + xn−1.

This computation can be performed by the following program, where we assume n pro-
cessors P0, P1, . . . , Pn−1. For i = 0, 1, . . . , n−1, processor Pi initially holds xi and, finally,
Pi holds si. To make subscripts more readable we write 2∧t, instead of 2t.

par-for i = 0 to n − 1 do si := xi od;
for t = 0 to (log n) − 1 do

par-for k = 2∧t to n − 1 do sk := sk + sk−2∧t od (†)
od

In this program the construct

par-for i = 0 to p do body i od

is executed by making every processor Pi, for i = 0, . . . , p, to execute body i independently
and in parallel. The statement terminates when all processors have terminated. Thus, in
line (†) above the values of sk and sk−2∧t in the expression sk + sk−2∧t are the results of
the previous iteration of the par-for loop of the same line (†). In general:

par-for i = 1 to p do body i od

is assumed to be equivalent to:

cobegin body1 ; . . .; bodyp coend.

The above program uses the so called recursive doubling technique. This name comes
from the fact that the number of processors which have no sums to perform, doubles at
each execution of the body of the outermost par-for loop. The flow of data, when n = 8,
is depicted as in Figure 5. There are 8 processors, one for each column. Each row shows
the value computed by the processors at the corresponding time. Values arriving at a
processor along incoming arcs are added together, and copies of the results are sent along
the outgoing arcs.

The complexity or cost of the above program measured in time × number of processors
is O(log n)×O(n), i.e., O(n log n). This cost is not optimal because if we use one processor
only, the time × number of processors complexity is O(n) × O(1), that is, O(n).

Notice that the above program which is used for summing up the numbers of a se-
quence, can also be used for computing the sequence 〈p0, p1, . . . , pn−1〉 of products such
that: p0 = x0, p1 = x0×x1, . . ., and pn−1 = x0×x1×. . .×xn−1, by replacing sk := sk +sk−2∧t

bysk := sk × sk−2∧t. Indeed, that program can be used for any binary operation which is
associative.

13

! ! ! ! ! ! !

&
&
&
&&'

&
&
&
&&'

&
&
&
&&'

&
&
&
&&'

&
&
&
&&'

&
&
&
&&'

&
&
&
&&'

! ! ! ! ! !

$
$
$
$
$
$$%

$
$
$
$
$
$$%

$
$
$
$
$
$$%

$
$
$
$
$
$$%

$
$
$
$
$
$$%

$
$
$
$
$
$$%

! ! !!

(((((((((((((((()

(((((((((((((((()

(((((((((((((((()

(((((((((((((((()

P0 P1 P2 P3 P5P4 P6 P7

time 0 :

time 1 :

time 2 :

time 3 :

x0 x1 x2 x3 x5x4 x6 x7

s0 s1 s12 s23 s34 s45 s56 s67

s0 s1 s2 s3 s14 s25 s36 s47

s0 s1 s2 s3 s4 s5 s6 s7

Fig. 5. The computation of prefix sums of the 8 numbers: x0, x1, . . ., x7. For 0 ≤ i ≤ 7,
si denotes x0 + x1 + . . . + xi. s0 = x0. For 0 ≤ i ≤ j ≤ 7, sij denotes xi + xi+1 + . . . + xj .

Finally, let us notice that sometimes the distinction between concurrent computations
which are based on vectorization and those which are based on shared memory is not so
sharp. Indeed, this distinction very much depends on the amount of interactions among
the various processes (or processors) during the execution of the bodies of the par-for
loops involved in the computation. If there is little interaction, we prefer to say that
the computation is based on vectorization, otherwise, we say that it is based on shared
memory.

4.2 Prefix Sums Revisited

Let us consider again the example of the previous Section 4.1. We will present two new
programs for the computation of the prefix sums of a given sequence x0, . . . , xn−1 of n
numbers. Both programs run on a tree of processors (see also Figure 6 where we consider
the case for n = 8), but they have different complexity measured in terms of time × num-
ber of processors. The first program has O(n logn) complexity (which is not optimal),
while the second program has O(n) complexity (which is optimal). The optimal complex-
ity is O(n) because every program should look at every number of the sequence and the
length of the sequence is n.

Let us consider the first program P1. We assume that we have n processors P0, . . .,
Pn−1, each one at a leaf of a binary tree of processors, and we also have n − 1 processors,
each one at a non-leaf node of that binary tree. For reasons of simplicity, we assume that

14

P0 P1 P2 P3 P4 P5 P6 P7

*
*

*
*
*
**

$
$
$
$
$
$$

&
&
&
&&

+
+
+
++

&
&
&
&&

+
+
+
++

,
,
,
,,

-
-
-
--

,
,
,
,,

-
-
-
--

,
,
,
,,

-
-
-
--

,
,
,
,,

-
-
-
--

x0 x1 x2 x3 x4 x5 x6 x7

P8 P9 P10 P11

P12 P13

P14

Fig. 6. The computation of prefix sums of a sequence x0, . . . , x7 of n (=8) numbers on a
tree of 2n−1 (=15) processors: P0, . . . , P14.

n is a power of 2 (see Figure 6 where n=8). The parallel computation proceeds according
to the following rules (see also Figure 7) in an asynchronous way, that is, a rule is applied
in a node of the tree whenever it can be applied, regardless at what happens in other
nodes:

- rule for the root:
Rule R1.down: the root, after receiving a value v from its left child, sends v to the

right child;

- rules for the internal nodes:
Rule R2.up: an internal node, after receiving the values v1 and v2 from its children,

sends their sum v1 +v2 to the father and sends the value v1 from the left child to the right
child;

Rule R2.down: an internal node, after receiving a value v from its father, sends v to
the two children;

- rules for the leaves:
Rule R3.up: a leaf sends its value x to its father, and this operation is performed only

once at the beginning of the computation;
Rule R3.down: a leaf, after receiving a value v from its father, sums v to its own value.

Notice that throughout the computation: (i) one value only is received by the root and
this value is the only value sent by the root down to its children, (ii) one value only is
sent up by any non-root node to its father, and (iii) one value only is sent down by any
non-leaf node to its children.

15

.
../

//0& /
// .

..1&
#

#

#

#

#

/
// .

..

!

&
/
//2& .

..1&

!

&

/
// .

..1&/
//0& .
..3 &

"
&

"
&

v
v

rule for the root:
R1.down

v1 v2

v1 + v2

R2.down

vvv

v

rules for the leaves:

x

R3.down
s
v

s + v

rules for the internal nodes:

v1

R2.up

R3.up

(initially)
x x

Fig. 7. The rules for the computation of prefix sums for Program P1. The initial value of
s is x. The rule for the root is an instance of the rules for the internal nodes, because the
root has no father.

The time taken by this program is O(log n) because a value has to travel up to the root
and then down to the leaves. The number of processors is 2n−1. Thus, the time × number
of processors complexity is O(n log n).

Now we present a second program P2 for the computation of the prefix sums. This
program P2 is like program P1, except that the rules for the computation at the leaves
are modified.

We assume that we are given a sequence of n numbers, and we have N processors,
named P0,PN−1, placed at the N leaves of the binary tree of processors from left to
right. We have some more N −1 processors located at the non-leaf nodes of the binary
tree. (For reasons of simplicity, we assume that n is a power of 2.) Thus, the total number
of processors is 2N−1. Without loss of generality, we also assume that n/N is an integer.
Let q be that integer. We divide the given sequence x0, . . . , xn−1 in N subsequences of q
numbers each, and we allocate each of these subsequences in left-to-right order to each of
the N processors at the leaves of the binary tree. Each leaf has an associated accumulator
initialized to 0.

Here are the new rules for the computation performed at the leaves (see Figure 8):

16

R3.up: a leaf computes the prefix sums of the associated subsequence of q numbers and
sends the sum of all these q numbers of that subsequence to its father;

R3.down: a leaf, after receiving a value from its father, sums it to its accumulator r;

R3.end : the leaf with processor Pi, after receiving b(i) values from its father, sums the
final value of r to each value of the prefix sums computed at Step R3.up. b(i) is the
number of right-child arcs to take for going from the root to the leaf. It can be computed
as follows:

b(0) = 0
b(2n) = b(n)
b(2n+1) = b(n) + 1

It is the case that b(i) is equal to the number of 1’s in the binary expansion of i. The total
number of values received from the leaf with processor Pi is b(i), thus, the rule R3.end is
applied in each leaf at the end of the computation (hence, the name of the rule).

#

#
!

&
v

s0, . . . , sq−1

r r + v
R3.down

s0, . . . , sq−1

#
R3.end

s0, . . . , sq−1

r s0, . . . , sq−1 for 0<j ≤q−1, sj = sj + r

PiPi

r initialized to 0
s0 = x0

for 0<j ≤q−1, sj = sj−1 + xj

"
&

x0, . . . , xq−1

R3.up

(initially)

sq−1

s0, . . . , sq−1

r

rules for the leaves:

Fig. 8. The rules for the leaf computation of prefix sums for Program P2. Rule R3.end
is applied when b(i) values are arrived at the leaf with processor Pi. The function b(i) is
defined as follows: b(0) = 0, b(2n) = b(n), b(2n + 1) = b(n) + 1.

We have that: (i) R3.up requires O(n/N) time, (ii) rules R1.down, R2.up, and R2.down
require O(log N) time as for program P1, and (iii) rules R3.down and R3.end require
O(n/N) time. Thus, the total time is O(n/N) + O(log N). The total number of proces-
sors is 2N −1. The time × number of processors complexity of Program P2 is: O(n) +
O(N log N) = O(n + N log N), because O(f(n) + g(n)) = O(f(n)) + O(g(n)). Now
O(n + N log N) is equal to O(n), if we take N = n/ log n. Since the base of the loga-
rithm is not significant, we may take it to be 2. This means that if the total length n of

17

the sequence is 1000 then N may be taken to be about 1000/ log2 1000 ≈ 100 to ensure
that the total running time of the algorithm is linear.

Notice that the parallel algorithm for computing the prefix sums is not fully parallel,
in the sense that some operations are done sequentially. For instance, the computation of
the prefix sums of the subsequences in each of the leaves of the tree of processors is done
sequentially, but it can also be done in parallel if enough processors are available.

Exercise 1. We leave to the reader to study: (i) the prefix sums computation on a mesh
architecture, (ii) the sorting problem in parallel, and (iii) the Owicki-Gries calculus for
proving correctness of parallel programs with shared variables.

4.3 Semaphores

Semaphores are used for synchronizing the activities of several processes which run con-
currently. They were introduced by Prof. E. W. Dijkstra in [8]. A semaphore s is an integer
variable which can be manipulated by the following two operations only:
(i) the wait(s) operation (also called P (s) operation), and
(ii) the signal(s) operation (also called V (s) operation).

The initialization of a semaphore to an integer value, say N , is done by the clause
initial(N) added to its definition (see below).

Note 2. Prof. E. W. Dijkstra was Dutch and in Dutch ‘to pass’ is ‘passeren’ (thus, the
letter P) and ‘to release’ is ‘vrygeven’ (thus, the letter V). !

var s : semaphore initial(N); /* initialization. N is an integer */

wait(s) : while s ≤ 0 do skip od; s := s−1;
signal(s) : s := s+1;

In the definition of the wait(s) operation we have used the construct ‘while b do c od’,
instead of the construct ‘while b do c’, for denoting in an unambiguous way the body of
the while-loop. The wait(s) operation is equivalent to:

α: if s ≤ 0 then goto α else s := s−1

In order to understand the behaviour of semaphores it is important to know which oper-
ations are atomic and which are not. Atomic operations are defined as follows.

Definition 1. An operation (or statement or sequence of statements) performed by a
process is said to be atomic iff during its execution no other operation can be executed
by any other process. We also say that an atomic operation (or statement or sequence of
statements) is performed in mutual exclusion with respect to every other operation.

Atomicity of operations (or statements or sequences of statements) is enforced by the
hardware. The wait(s) operation is not atomic, but each execution of the statement

if s ≤ 0 then goto α else s := s−1

is atomic. Thus, in particular, when a process finds that s has positive value, it performs
the assignment s := s−1 on that value of s, because no other process can intervene
between the test and the assignment.

18

We say that the wait(s) operation is completed when the assignment s := s−1 is
performed.

Between two consecutive executions of the statement

if s ≤ 0 then goto α else s := s−1

performed by a process, say P , (and during the first of the two executions we have that
s ≤ 0), a different process, say Q, may perform an operation, and if this operation is a
signal(s) operation then P may complete its wait(s) operation because it may find that
s is positive and performs the assignment s := s−1.

The operation signal(s) is atomic, that is, no other operation occurs on the variable s
while the signal(s) operation takes place.
A semaphore is said to be binary iff the value of s belongs to {0, 1}. For any binary
semaphore s, when s is 1, subsequent signal(s) operations do not have any effect. A
binary semaphore may be realized by a boolean variable s which, after its initialization to
a boolean value B ∈ {false, true}, can be manipulated only by the two operations wait(s)
and signal(s) defined as follows.

var s : semaphore initial(B); /* initialization. B ∈ {true, false} */

wait(s) : while s= false do skip od; s := false;
signal(s) : s := true;

A semaphore which is not binary, is also called a counting semaphore.
The use of semaphores may determine the so called busy waiting phenomenon, which

we now illustrate in the case of counting semaphores. Busy waiting occurs when a process
while performing the wait(s) operation keeps on testing whether or not s ≤ 0, even if at
a previous instant in time, it found s to be non-positive and since then its value has not
been changed.

In order to avoid busy waiting we do as follows. We suspend every process which, while
performing a wait(s) operation, finds s to be non-positive, and we tell every process which
performs a signal(s) operation to wake up a suspended process. Thus, the implementation
of a semaphore s includes an associated (possibly empty) set of waiting processes, that
is, processes which are executing a wait(s) operation on the semaphore s and have not
yet completed that operation. Every process in that set is said to be suspended on the
semaphore s.

When a signal(s) operation is executed on the semaphore s, then exactly one process
in the set associated with s is resumed. In order to satisfy a fairness requirement, that
set of waiting processes is usually served using the first-in-first-out policy, that is, it is
structured as a queue.

Obviously, some properties of the concurrent programs which use a semaphore, may
depend on the policy of serving the set of processes associated with the semaphore. One
such property is, for instance, the freedom of starvation (see end of Section 4.4). Notice,
however, that when a semaphore is used for ensuring mutually exclusive access to a shared
resource (see Section 4.4), that property should not depend on the policy of serving the
set of processes associated with the semaphore.

19

4.4 Semaphores and Test-and-Set Operations for Mutual Exclusion

Let us consider a set of n processes which run concurrently. For i = 1, . . . , n, the i-th
process executes a program Pi that has a section, called critical section, which should be
executed in a mutually exclusive way. This means that the entire sequence of instructions
of a critical section should be executed by a process, while the control point of every other
process in the given set of processes is at an instruction outside a critical section.

When mutual exclusion is ensured, we say that at most one process at any time is
inside a critical section. The following program realizes the mutual exclusion among n
processes by using the binary semaphore mutex.

var mutex : semaphore initial(1); /* mutex ∈ {0, 1} */

process P1(...)
begin ...; wait(mutex); critical section 1; signal(mutex); ... end;

...

process Pn(...)
begin ...; wait(mutex); critical section n; signal(mutex); ... end;

The semaphore mutex is like a token which is put in a basket or is taken from it. There
is one basket and one token only. At any instant in time, in the basket there is at most
one token, and initially, the token is in the basket (see initial(1)). The fact that two or
more processes cannot be inside their critical sections at the same time, is a consequence
of how semaphores behave (see Section 4.3). Thus, mutual exclusion may be ensured by
the use of semaphores.

If the set of processes waiting on the semaphore mutex is served using the first-in-
first-out policy, then there is no starvation.

Mutual exclusion may also be ensured by the use of test-and-set instructions as we
now illustrate. The instruction test-and-set(m, l) acting on the global variable m (that is,
a variable which can be read or written by every process) and the local variable l (that
is, a variable which can be read or written only by the process which has defined it), is a
pair of assignments of the form:

l := m; /* copying the old value of m into a local variable l */
m := 0 /* setting the new value of m to 0 */

with the condition, imposed by the hardware, that no other instruction may be executed
on the variables m and l in between the two assignments of the pair.

Now we present a program which ensures mutual exclusion among n processes using
test-and-set operations and the global variable m. If m = 0 then a process is inside its
critical section, and if m=1 then no process is inside a critical section.

20

var m : 0..1 initial(1); /* m ∈ {0, 1} */
process P1(...)

begin var l1 : 0..1; /* local variable l1 for copying the global variable m */
...;
α1 : test-and-set(m, l1); if l1 =0 then goto α1;
critical section 1;
m := 1; ...

end;
...
process Pn(...)

begin var ln : 0..1; /* local variable ln for copying the global variable m */
...;
αn : test-and-set(m, ln); if ln =0 then goto αn;
critical section n;
m := 1; ...

end;

In this program mutual exclusion is ensured because when m = 0, we have that a process
is inside its critical section and no other process may enter. The variable m is initialized to
1 by the clause initial(1). However, in this program there is the possibility of starvation,
that is, a process which wants to enter its critical section, can never do so it because it is
always overtaken by some other process.

4.5 Semaphores for Mutual Exclusion for Producers and Consumers

Let us consider a set of processes. A process is said to be a producer if it calls the procedure
send, and it is said to be a consumer if it calls the procedure receive (see below).

Let us consider a circular buffer of N cells, from cell 0 to cell N−1 which is implemented
as an array, called buffer, of N elements (see Figure 9). We assume that a cell of the buffer
can be occupied by a message. There are two indexes: in and out, and these indexes are
used for inserting and extracting messages to and from the buffer, respectively.

Initially the N cells of the buffer are all free, i.e., no message is in the buffer. For
instance, a message may be a text page which is generated by a process (viewed as a
producer) and is printed by another process (viewed as a consumer).

The use of the circular buffer by some producer and consumer processes is regulated by
the following procedures and shared variables.

Variables shared among all processes (as usual, the clause initial(n) in the definition of
a variable initializes that variable to the value n):

var buffer : array [0..N −1] of message; /* the circular buffer */
in : 0..N −1 initial(0);
out : 0..N −1 initial(0);

21

'

(

)

*4
445
4
445

+

,

-

.///
N −1 0 1

outin

. . .

Fig. 9. A circular buffer of size N .

mutex_s : semaphore initial(1); /* mutex_s ∈ {0, 1} */
mutex_r : semaphore initial(1); /* mutex_r ∈ {0, 1} */
free_cells : semaphore initial(N); /* free_cells ∈ {0, . . . , N} */
messages_in : semaphore initial(0); /* messages_in ∈ {0, . . . , N} */

Procedure called by a producer :

procedure send(x : message);
begin wait(free_cells); wait(mutex_s);

buffer [in] := x ; in := (in+1) mod N ; /* critical section 1 */
signal(mutex_s); signal(messages_in);

end

Procedure called by a consumer :

procedure receive(var x : message);
begin wait(messages_in); wait(mutex_r);

x := buffer [out]; out := (out+1) mod N ; /* critical section 2 */
signal(mutex_r); signal(free_cells);

end

The semaphore mutex_s forces that at most one process at a time executes the send
procedure. Analogously, the semaphore mutex_r forces that at most one process at a time
executes the receive procedure.

Remark 1. Notice that it is not enough to consider the value of the variables in and out
to ensure a correct behaviour of the circular buffer. Indeed, if in *= out then a producer
and a consumer will act in different cells without interference. However, since in general,
there is more than one producer and more than one consumer, we have to ensure their
mutual exclusive access to the circular buffer by using semaphores. !

22

Having the semaphore free_cells is like having a basket and N tokens, called free_cells
tokens, which initially are all in the basket (see initial(N)). After the execution of
wait(free_cells), a free_cells token is taken away from the basket (which means that there
is one less free cell in the circular buffer), and after the execution of signal(free_cells), a
free_cells token is put back in the basket (which means that there is one more free cell in
the circular buffer).

Having the semaphore messages_in is like having a basket and N tokens, called
messages_in tokens, each of which initially is not in the basket (see initial(0)). After the
execution of signal(messages_in) by the send procedure, a messages_in token is placed
in the basket (which means that at least one message is in the circular buffer), and after
the execution of wait(messages_in) by the receive procedure, a messages_in token is taken
away from the basket (which means that one message has been extracted from the circular
buffer).

These are four possible situations:

(i) either no process is in a critical section, or

(ii) one producer is in its critical section, or

(iii) one consumer is in its critical section, or

(iv) one producer is in its critical section and one consumer is in its critical section.

In order to avoid situation (iv) it is enough to replace the two semaphores mutex_s
and mutex_r by a single semaphore, say mutex.

Since free_cells is initially N , at any time we have that:
number of messages inserted during the whole history by the producers
≤ N+ number of messages extracted during the whole history by the consumers.

4.6 Private Semaphores for Establishing a Policy to Resume Processes

Many processes may be in a busy waiting status when testing the value of the semaphores.
In order to avoid busy waiting, we may suspend processes. Then, we have to establish
a policy for resuming a process among the ones which are suspended. Using a suitable
policy we may avoid starvation as well. To this aim we may use private semaphores, as
indicated in the example below.

Definition 2. A semaphore s is said to be private to a process iff only that process can
execute the wait(s) operation.

Let us assume that there are K processes (from 1 to K), and a shelf with capacity N ,
modeled by an array, called shelf, of N cells (from 0 to N −1), depicted in the following
Figure 10.

Any process, say Pi, if it is a producer, requires m cells (not necessarily contiguous) from
the shelf to place m cakes. We assume that 0 < m ≤ N . This action is performed by
Pi by calling the procedure put(m : integer, i : 1..K) (see below). If the request of m
cells cannot be granted (maybe because m is greater than the current available number
of cells), it is recorded by the assignment request [i] := m, that is, by making the i -th
element of a given array, called request, equal to m. A consumer process which wants to

23

shelf:

0 1 2 . . . N −1

Fig. 10. The array shelf with N cells.

get m cakes from the shelf, calls the procedure get(m : integer) (see below). We assume
that 0 < m ≤ N .

The value of the variable free_cells is the number of cells of the shelf which do not
have a cake (these cells are also called free cells).

Beside the rule which states that the put(m, i) and get(m) procedures should be exe-
cuted in a mutually exclusive way, we use the following rules for regulating the activity
of the producers and the consumers.

Rule R1. A producer which wants to execute put(m, i), that is, wants to place m cakes
on the shelf, can do so if no producer is suspended and m is not greater than the number
of free cells.

Rule R2. A producer which wants to execute put(m, i), is suspended if there are other
producers which are suspended or m is greater than the number of free cells at that time.

Rule R3. If a producer Pi which wants to execute put(m, i), is suspended, it leaves its
request which was not granted by setting request [i] := m. Consumers are never suspended.

Rule R4. During the execution of the procedure get(m), the consumer in its critical section
uses the following policy for activating suspended producers:
α : the consumer considers among the suspended producers the one, say Pk,

with the largest request, say request [k], and
if request[k] cannot be granted

(that is, the number of free cells is smaller than request [k])
then Pk is left suspended, no other producer is activated, and

the consumer exits its critical section,
else Pk is activated, Pk puts as many as request [k] cakes on the shelf, and

the consumer goes back to α and stays in its critical section. !

These rules ensure neither absence of deadlock nor absence of starvation.

The variables shared among all processes are the following ones:

var shelf : array [0..N −1] of cell ; /* the shelf */
request : array [1..K] of integer initial_all(0); /* array [1..K] of integers */
free_cells : integer initial(N); /* free_cells ∈ {0, . . . , N} */
mutex : semaphore initial(1); /* mutex ∈ {0, 1} */
done : semaphore initial(0); /* done ∈ {0, 1} */
priv_sem : array [1..K] of semaphore initial_all(0); /* array [1..K] of 0..1 */

24

A producer process Pi which wants to put m (> 0) cakes on the shelf, executes the following
two instructions:

put(m,i); /* if free_cells < m then no cakes are put on the shelf */
if request [i] = m then begin Pi puts m cakes in the shelf; signal(done) end;

where: (i) no jump from other instructions to the if-then statement is allowed, and (ii) the
procedure put(m, i) is as follows:

procedure put(m : integer, i : 1..K);
begin wait(mutex);

if ∀i, 1≤ i≤K, request [i] = 0 and free_cells ≥ m
then begin free_cells := free_cells−m;

Pi puts m cakes on the shelf;
signal(priv_sem[i]);

end
else request [i] := m;

signal(mutex);
wait(priv_sem[i]);

end

A consumer process Pj which wants to get m (> 0) cakes from the shelf, executes the
following instruction:

get(m);

where the procedure get(m) is as follows:

procedure get(m : integer);
begin wait(mutex);

Pj gets m cakes from the shelf; /* ——— (1) */
free_cells := free_cells + m;
while ∃i, 1≤ i≤K, request[i] *= 0 do

choose a suspended producer with largest request, say Pk;
if request [k] ≤ free_cells

then begin signal(priv_sem[k]);
wait(done);
free_cells := free_cells − request [k];
request [k] := 0;

end
else goto η; od;

η : signal(mutex);
end

Remark 1. If all processes are producers there is deadlock, in the sense that we get into
a situation in which no process can proceed, although each of them wants to proceed.

25

Indeed, if all processes are producers, at a given moment the buffer gets filled with cakes
and subsequent producers will be suspended forever. !

Remark 2. ∀i, 1≤ i≤K, request[i] = 0 means that there is no suspended producer. !

Remark 3. In order to avoid the possibility that a consumer executes the procedure get(m)
with m which is greater than the number of cakes available on the shelf, we should replace
line (1) of that procedure, that is:

Pj gets m cakes from the shelf;
by:

(a) if free_cells + m > N then goto η else Pj gets m cakes from the shelf;
or else:

(b) if free_cells + m > N then m := N− free_cells;
Pj gets m cakes from the shelf;

In Case (a) the consumer is forced to exit the critical section without getting any cake,
while in Case (b) the consumer is allowed to get all the cakes which are on the shelf
(notice that during the execution of statement at line (1), only assignments to the array
shelf are performed). !

Remark 4. Let us assume that a producer, say Pi, is suspended outside its critical sec-
tion because it executes signal(mutex) and then wait(priv_sem[i]) and we have that
request [i] = m. This means that during the execution of the put procedure, the else
branch was taken. When a consumer, say Pj, has executed signal(priv_sem[i]), then Pi

executes:
if request[i] = m then begin Pi puts m cakes on the shelf; signal(done) end

where request[i] = m holds. Thus, Pi puts m cakes on the shelf and then it executes
signal(done). This last signal operation allows the consumer Pj , still in its critical section,
to continue running and thus, it may update the value of free_cells and reset the value of
request [i] to 0 (because now process Pi has no longer a pending request).

Notice also that while the consumer Pj is waiting for the signal(done) to be executed
by the producer Pi, no other producer or consumer may enter a critical section, because Pj

is waiting in its critical section and no signal operation has been done on the semaphore
mutex. !

Remark 5. If ∀i, 1≤ i≤K, request[i] = 0 and free_cells ≥ m holds, then a producer, say
Pi, puts m cakes on the shelf, performs signal(priv_sem[i]), and exits its critical section.
Then, it also exits the put procedure, because the signal(priv_sem[i]) operation allows the
completion of the wait(priv_sem[i]) operation. Then when process Pi executes:

if request[i] = m then begin Pi puts m cakes on the shelf; signal(done) end
we have that request[i] *= m and, Pi correctly neither puts cakes on the shelf nor executes
signal(done). !

Remark 6. Let us assume the following definitions for the producer process and the con-
sumer process. They are variants of the definitions we have given above and do not use
the semaphore done.

26

A producer process Pi which wants to put m (> 0) cakes on the shelf, executes the following
two instructions:

put(m,i); /* if free_cells < m then no cakes are put on the shelf */
if request[i] = m then Pi puts m cakes in the shelf; /* ——— (2) */

The procedure get(m) for a consumer process is:

procedure get(m : integer);
begin wait(mutex);

Pj gets m cakes from the shelf;
free_cells := free_cells + m;
while ∃i, 1≤ i≤K, request[i] *= 0 do

choose a suspended producer with largest request, say Pk;
if request [k] ≤ free_cells

then begin signal(priv_sem[k]); /* ——— (3) */
free_cells := free_cells − request [k];
request [k] := 0;

end
else goto η; od;

η : signal(mutex);
end

These variant definitions for a producer process and the procedure get, are not correct,
because the following undesirable situations (A) or (B) may arise.
(A) After the execution of the statement (3), the consumer may execute the subsequent
two statements (which update the values of free_cells and request [k]) before the producer
process which has been activated may execute the statement (2). The activated producer
will not put its cakes on the shelf because we have that request [i] *= m (indeed, m is larger
than 0 and the consumer sets request [i] to 0).
(B) Assume that when a consumer process, say Pj , is in its critical section, it activates a
producer process Pk which is the only one which is suspended. Then process Pj exits its
critical section because no more suspended producers are present. Before Pk executes the
statement (2), another producer process, say Pz, enters its critical section finding the new
values of free_cells and request [k] as they should be after Pk would have put its cakes on
the shelf. This allows Pz to put cakes in the cells which should be used by Pk. !

4.7 Critical Regions and Conditional Critical Regions

The above section shows that the proofs of correctness of concurrent programs that use
semaphores can be rather difficult. To allow easier proofs of correctness, some new lan-
guage constructs have been proposed such as the critical regions (also called regions), the
conditional critical regions (also called conditional region), and the monitors.

In this section we will consider the critical region construct and the conditional critical
region construct.

Critical Regions

The critical region construct was introduced in [4]. It looks as follows:

27

var v : shared T ; /* v is a variable of type T and
can be shared among several processes */

region v do S end

This construct ensures that during the execution of the statement S, called critical region,
no other process may access the variable v. We also assume that:

(i) for each variable v, at most one process at a time can execute a statement of the form
region v do S end,

(ii) if a process wants to enter a critical region S, that is, it wants to execute the statement
region v do S end, and no other process has access to the variable v, then it will be
allowed to do so within a finite time, and

(iii) if S does not contain any critical region construct, then the execution time of the
construct region v do S end is finite.

Notice that the variable v need not occur inside S.
If a process executes region v do S1 end at about the same time another process

executes region v do S2 end, then the result is equivalent to either S1; S2 or S2; S1,
depending on the first process which enters its critical region according to the actual
scheduling performed by the system.

The system associates a queue, say Qv, with each shared variable v, so that if a process,
say P , must be suspended because another one is inside a critical region associated with v,
then P is inserted in the queue Qv, and it will be resumed according to the first-in-first-out
policy.

By using critical regions we can get mutual exclusion for the access to critical sections
as follows:

var v : shared T ;
process P1(...);

begin ...; region v do critical section 1; end; ...; end;
...
process Pn(...);

begin ...; region v do critical section n; end; ...; end;

The construct region v do S end can be realized by a semaphore as follows:

var mutex_v : semaphore initial (1);
wait(mutex_v); S ; signal(mutex_v);

Notice that if we use critical regions we may get deadlock as the following example shows,
because at Point (1) process P1 waits for process P2 to exit the critical region relative
to the variable w, while at Point (2) process P2 waits for process P1 to exit the critical
region relative to the variable v.

28

var v : shared T1; w : shared T2;
process P1(...);

begin ...;
region v do ...; (1) region w do critical section 1; end; ...; end;
...;

end;

process P2(...);
begin ...;

region w do ...; (2) region v do critical section 2; end; ...; end;
...;

end;

Conditional Critical Regions

This construct was introduced in [12]. When using a semaphore, a process, say P , can
test whether or not a variable is 0 and if it is so the process P is suspended. There is no
way for P to test the value of two variables at the same time. To overcome this limitation
we can use the following construct called conditional critical region:

var v : shared T ; /* v is a variable of type T and
can be shared among several processes */

region v when B do S end

This construct ensures that when the condition B is true, the process executes S and
during the execution of S no other process may access the variable v, in particular, no
other construct of the form: region v when B′ do S ′ end can be executed by a process.

When a process P executes the construct region v when B do S end, first P gets
mutually exclusive access to the variable v (thereby leaving the associated queue Qv) and
then it tests whether or not the condition B is true. If B is true, then P executes S and
exits the critical region. Otherwise, if the condition B is false, then the process P releases
the mutually exclusive access to the variable v and enters another queue, call it QvB.
When a process exits its critical region, all processes in the queue QvB are transferred to
the queue Qv to allow one of them to regain mutually exclusive access to the variable v
and to re-test whether or not the value of B is true. This re-testing generates a form of
busy waiting.

This technique for executing conditional critical regions may determine unnecessary
swaps from the queue QvB to the queue Qv and back. However, in practice, these disad-
vantages are compensated by the simplicity of using conditional critical regions, instead
of semaphores.

When using conditional critical regions, there could be deadlock if the condition B is
false for all processes.

By using conditional critical regions the program for the circular buffer of size N with
producers and consumers is as follows. Our program is equivalent to the one of Section 4.5

29

where the two semaphores mutex_s and mutex_r have been replaced by a single semaphore
mutex. Thus, it is never the case that the procedures send and receive are concurrently
executed.

/* the circular buffer */

var BUFFER : shared record buffer : array [0..N −1] of message
in : 0..N −1 initial(0);
out : 0..N −1 initial(0);
free_cells : 0..N initial(N)

end;

procedure send(x : message);
begin region BUFFER when free_cells > 0 do

buffer [in] := x; in := (in+1) mod N ; /* critical section 1 */
free_cells := free_cells −1; /* critical section 1 */
end

end

procedure receive(var x : message);
begin region BUFFER when free_cells < N do

x := buffer [out]; out := (out+1) mod N ; /* critical section 2 */
free_cells := free_cells +1; /* critical section 2 */
end

end

A semaphore s can be realized by using conditional critical regions as follows:

/* semaphore s realized by using conditional critical regions */

wait(s) : region s when s>0 do s := s−1 end
signal(s) : region s do s := s+1 end

Notice that region s do s := s+1 end is equivalent to

region s when true do s := s+1 end.

The conditional critical region region v when B do S end can be realized by using
semaphores as follows [1]:

/* region v when B do S end realized by using semaphores */

var mutex_v : semaphore initial(1); /* mutex_v ∈ {0, 1} */
testB : semaphore initial(0); /* testB ∈ {0, 1, . . .} */
count_B : integer initial(0); /* count_B ∈ {0, 1, . . .} */

30

wait(mutex_v);
while not B do

begin count_B := count_B + 1; signal(mutex_v);
wait(testB); wait(mutex_v); end;

S ;
while count_B > 0 do

begin signal(testB); count_B := count_B − 1; end;
signal(mutex_v);

With reference to the queues Qv and QvB associated with the implementation of a con-
ditional critical region, the suspended processes waiting on the semaphore mutex_v are
inserted in the queue Qv, and the suspended processes waiting on the semaphore testB
are inserted in the queue QvB.

Now let us illustrate in some detail how the conditional critical regions are executed
by explaining the instructions of the above program and the way in which the semaphores
mutex_v and testB control the activities of the processes.

Let us assume that there are several processes each of which wants to execute its
own conditional critical region. Let us also assume, without loss of generality, that all
conditional critical regions have the same shared variable v, that is, they are of the form:
region v when B do S end, where B and S may vary from process to process. (If two
conditional critical regions have different shared variables, their execution can be done in
any order one desires.) Let us consider one of these processes, say P , and let us assume
that it is trying to execute the conditional critical region region v when B do S end.
First P gets mutually exclusive access to the variable v by performing wait(mutex_v).
Then, if P finds its condition B to be false, it is suspended on the semaphore testB, and
thus, inserted in the queue QvB. The number of processes which are in the queue QvB,
is stored in the variable count_B. Otherwise, if the process P finds the condition B to be
true, it executes S and then it executes signal(testB) as many times as the number of
processes which are suspended in the queue QvB (that is, as many times as the value of
count_B). Finally, the process P releases the mutually exclusive access to the variable v
by performing signal(mutex_v). At this point,

(1) all processes suspended in the queue QvB are removed from that queue and inserted
in the queue Qv, and then

(2) the queue Qv is served according to the first-in-first-out policy and thus, one process in
the queue is activated. If the activated process, say Q, finds its condition B to be false, then
Q releases the mutually exclusive access to the variable v (by executing signal(mutex_v))
and enters the queue QvB (by executing wait(testB)). Otherwise, if Q finds its condition
B to be true, then Q executes S and then it executes signal(testB) as many times as
the number of processes which are suspended in the queue QvB. Finally, the process Q
releases the mutually exclusive access to the variable v by performing signal(mutex_v).

From then on, the state of affairs continues by going again through the Points (1) and
(2) indicated above. The loop around these points terminates when the queues Qv and
QvB are both empty.

31

Notice that in our program there are no statements which explicitly insert processes
into queues or remove processes from the queues. These operations are implicitly per-
formed by the wait and signal operations on the semaphores mutex_v and testB.

Notice also that, in general, the value of the condition B depends also on the value of
the local variables of the individual processes. Thus, a deadlock situation may occur and,
indeed, this happens when for all processes the condition B is false.

The intensive swapping of processes between the queue Qv associated with the sema-
phore mutex_v and the queue QvB associated with the semaphore testB, suggests the use
of the conditional critical regions only for loosely connected processes, that is, processes
whose interactions for accessing shared resources are not very frequent.

4.8 Monitors

In this section we examine the monitor construct which was introduced by Prof. Hoare [13]
for controlling the mutual exclusive access of several processes to their critical sections.

A monitor is an abstract data type with local variables and procedures for reading and
writing these local variables. There are no global variables. The procedures of a monitor
are executed in a mutually exclusive way (see Remark 3 below). This is enforced by the
system.

Here is an example of a monitor (taken from [13]) which can be used for ensuring the
mutually exclusive access to a resource which is shared among several processes which
dynamically take and release the resource.

resource : monitor;
begin free : boolean initial(true); /* declaration and initialization of local data */

available : condition; /* available should not be initialized */
entry procedure take; /* declaration of procedures for external use */

begin if free = false then available.wait ;
free := false;

end;
entry procedure release;

begin free := true;
available.signal ;

end;
end

The boolean variable free whose initial value is true, tells us whether or not the resource
is free for use. If a process wants to take the resource and the resource is not free, then
that process is delayed waiting on the variable available of type condition. This variable
is signalled by a process which releases the resource.

A process which wants to take the resource should execute the procedure take, and a
process which wants to release the resource should execute the procedure release. From a
mathematical point of view, a monitor can also be viewed as an algebra with: (i) its data
(i.e., the variables which are all local variables), (ii) the state of these data (i.e., the value
of the local variables which are not condition variables), and (iii) the operations on these
data.

32

The following remarks will clarify the notion of a monitor. The reader may also refer
to [13] for more details.

Remark 1. There could be more than one reason for waiting. These reasons must all be
distinguished from each other. The programmer must introduce a variable of type condi-
tion for each reason why a process might have to wait. Each variable of type condition is
subject to two operations: the wait operation and the signal operation. The wait opera-
tion on a variable cond of type condition is denoted by cond.wait, and a signal operation
on a variable cond of type condition is denoted by cond.signal.

A variable of type condition does not get values: it is neither true nor false and, thus,
should not be initialized. We can think of a variable of type condition as the label which
is associated with the corresponding wait and signal operations. !

Remark 2. Only entry procedures can be called from outside the monitor. Besides entry
procedures, in a monitor there could be other procedures, local to the monitor. They are
called by the entry procedures. The entry procedures and the other procedures may, in
general, have parameters, and they are collectively called procedures.

Entry procedures and procedures of a monitor can only access the local variables of
the same monitor. These local variables cannot be accessed from outside the monitor. !

Remark 3. We assume that inside a monitor procedure a process is either (i) in the exe-
cution state (i.e., running), or (ii) is in the waiting state (i.e., waiting) (see also Figure 11
below).

A process which has executed a cond.wait operation from inside a monitor procedure
and has not yet resumed execution (see the following Remark 4), is not considered to be
a process which executes that procedure. That process is on a waiting state and not in an
execution state. Notice, however, when that waiting process starts the execution again, it
will resume from the statement just after the cond.wait operation which made it to stop.
Thus, it may be the case that while a process is waiting on a cond.wait operation on a
procedure of a monitor, another process is executing the same or a distinct procedure of
that same monitor.

We have the following properties.

(Mutual Exclusion) For each monitor at any given time, there exists at most one procedure
of the monitor which is executed by a process, and that procedure, if it exists, is executed
by exactly one process (This statement holds regardless whether it is relative to an entry
procedure or a procedure).

(Process Locality) For each process at any given time, there exists at most one monitor
procedure among the procedures of all monitors such that the process is either executing
that procedure or waiting in that procedure (This statement holds regardless whether it is
relative to an entry procedure or a procedure). !

Remark 4. A cond.wait operation performed on a condition variable cond, issued from
inside a monitor procedure, causes the process which performs it, to be stopped and
that process is made to wait for a future cond.signal operation to occur. This cond.signal
operation will be performed by a different process. A cond.signal operation performed on

33

/
0

1
2

/
0

1
2

/
0

1
2

Running

condition queuemutex queue

Locking m
Waiting
for cond

/
0

1
2

#dies
Dead

"cond.signal

!
cond.wait

6666666666667
66

66
66

66
668 try to enter m

enter m

exit from m / 1"

Fig. 11. Diagram of states and transitions for a process and a monitor m (according to
Prof. Hoare’s proposal). In general, more than one condition cond and more than one
corresponding condition queue may be present. The cond.signal operation is performed
by a different process.

the condition variable cond, issued from inside a monitor procedure, causes exactly one
of the processes waiting for a cond.signal operation to be resumed immediately, without
possibility of an intervening procedure call from yet a third process. If there are no waiting
processes, the cond.signal operation has no effect.

We assume, according to Prof. O-J. Dahl, that when a process has performed a signal
operation for a condition on which another process is waiting, then this signalling process
immediately terminates the monitor procedure it is executing. Indeed, we assume that
every signal operation can only occur as the last operation of an entry procedure. A dif-
ferent option, taken by Prof. Hoare, is to assume that the signalling process is delayed
until the resumed process permits it to proceed.

The signal operation on a condition and the immediate resumption of a process waiting
on that condition avoids busy waiting. Thus, possession of the monitor can be viewed as
a privilege which is explicitly passed from the signalling process to the waiting one.

Notice that a process, say P , which performs a cond.wait operation from inside a
monitor procedure, should relinquish the exclusive use of the monitor (see Remark 3),
because otherwise no process may ever perform a cond.signal operation and allow the
process P to resume execution. In other words, when a process P has executed a cond.wait
operation from inside a monitor procedure, then a different process, say Q, may start the
execution, or resume the execution, of a procedure of that monitor. When eventually the
process P resumes the execution of the monitor procedure, it does so from exactly the
same point where it started waiting, that is, it resumes the execution from the statement
following the cond.wait operation. !

Remark 5. In the resource monitor given above, a process which executes the take proce-
dure does not have to retest that free has gone true when it resumes execution after its

34

waiting, because the release procedure has guaranteed that this is so. Recall that we as-
sume that no other process can intervene between a signal operation and the resumption
of a waiting process (and only one will be resumed). !

Remark 6. The processes which are waiting on a condition are resumed according to a
first-in-first-out policy. This ensures a simple queueing discipline so that every process
waiting on a given condition will eventually get its turn, if that condition is signaled
sufficiently many times. Below in this section we will see that by using a parametric
waiting one can establish a different resumption policy. !

In the following example taken from [13], we consider a monitor for controlling a set of
producer-consumer processes which communicate via a circular buffer, also called bounded
buffer (see also Section 4.5). A bounded buffer is defined as a sequence of at most N(≥0)
portions realized by an array of N cells, from cell 0 to cell N −1. A producer appends a
new portion at the end of the buffer in the position of the array denoted by the variable
last, which gets values in the interval [0..N −1] and it is initially 0. A consumer updates
the buffer by removing its first portion which is the position (last − count) mod N , where
count denotes the number of portions in the buffer. Initially the buffer is empty, that is,
count=0.

bounded_buffer : monitor;
begin buffer : array [0..N −1] of portion;

last : 0..N −1 initial(0);
/* last is the buffer position where to append a new portion */

count : 0..N initial(0);
/* count holds the length of the sequence, initially 0 */

nonempty, nonfull : condition;

entry procedure append(x : portion);
begin if count = N then nonfull.wait /* 0 ≤ count < N */

/* wait until the buffer becomes not full */
buffer [last] := x ;
last := (last + 1) mod N ;
count := count + 1;
nonempty.signal

end;

entry procedure remove(var x : portion);
begin if count = 0 then nonempty.wait ; /* 0 < count ≤ N */

/* wait until the buffer becomes not empty */
x := buffer [(last−count) mod N];
count := count − 1;
nonfull.signal

end
end

35

In this bounded_buffer monitor we have indicated within comments two constraints for
the value of the variable count. These constraints hold during program execution at the
point where they are written.

Notice that the use of monitors avoids the repetition of tests of conditions which occurs
if we use conditional critical regions. If we use monitors, in fact, conditions have names
and they can be explicitly signalled.

Now we address the problem of defining the policy for resuming programs waiting on
a condition. Let us follow the approach proposed in [13]. We introduce a wait operation
with a parameter, say p, which indicates the priority of the waiting on a condition cond.
This wait operation is as follows:

cond.wait(p);

where p is an integer expression which is evaluated at the time of the execution of
cond.wait(p). The value of p is associated with the waiting program. After the execu-
tion of cond.signal, it is the program that specified the lowest value of p that is resumed.

When using this parametric wait operation it may happen that a program overtakes
another program infinitely many times. The programmer must take care to avoid such
situation which is often undesirable. It can do so by making p to be a nondecreasing
function of the time at which the wait begins.

Here is an example of a monitor which uses the parametric wait operation. This
monitor allows a program to delay itself for n units of time. In order to do so the program
calls the procedure wakeme(n). The procedure tick is called by the hardware every unit
of time.

alarmclock : monitor;
begin now : integer initial(0);

wakeup : condition;
entry procedure wakeme(n : integer);

begin alarmsetting : integer ;
alarmsetting := now + n;
while now < alarmsetting do wakeup.wait(alarmsetting);
wakeup.signal /* ——— (4) */

end;

entry procedure tick ;
begin now := now + 1; wakeup.signal end

end

The signal operation (4) is for the next waiting program which is due to wake up at the
same time.

The reader is encouraged to read the original paper [13] where monitors are introduced:
it is a beautiful example of precision and clarity.

36

4.9 Using Monitors for Solving the Five Philosophers Problem

The five philosophers problem, also called the dining philosophers problem, was first posed
by Prof. Dijkstra. It can be described as follows. There are five philosophers, denoted by
the numbers 0, 1, 2, 3, and 4, sitting in the clockwise order at a table (see Figure 12).
There are also five forks on the table, each one in between two philosophers. In the center
of the table there is a bowl of spaghetti which is continuously refilled. Each philosopher
is in the following endless cycle:

while true do think; eat od

Thus, each philosopher wants to think and then to eat and then to think again, and so
on. It is assumed that for each philosopher the thinking period and the eating period are
finite. In order to be able to eat each philosopher needs the two forks which are next to
him, the one on his left and the one on his right.

fork 2

fork 1 fork 3

fork 0 fork 4

#$
"!

9
9
9
9
9
9
9
9
9
99
:
:
:
:
:
:
:
::;;

;
;
;
;
;
;;
<
<
<
<
<
<
<
<
<
<<

Philosopher 4

P
h
il
os

op
h
er

3

Phi
los

op
he

r 1 Philosopher 2

P
h
il
os

op
h
er

0

spaghetti

Fig. 12. The five philosophers problem.

We want to provide a mechanism to allow the following:
(i) no fork can be held by two philosophers at the same time,
(ii) no deadlock occurs, that is, for each time t there exists a philosopher i, with 0 ≤ i ≤ 4,
and there exists a time u after t such that at time u the philosopher i eats, and
(iii) no starvation occurs, that is, for each time t and for each philosopher i, with 0 ≤ i ≤ 4,
there exists a time u after t such that at time u philosopher i eats.

Let us first present a tentative (and incorrect!) solution which consists of:
(i) the monitor av_fork_monitor for controlling the access to the forks, and
(ii) for i = 0, . . . , 4, the program philosopher(i) for the i-th philosopher [2, page 78].

For i = 0, . . . , 4, av_fork [i] is the number of available forks for the i-th philosopher and,
initially, av_fork [i] is 2. All additions and subtractions below are performed modulo 5.

37

/* Five Philosophers: tentative solution */

av_fork_monitor : monitor;
begin av_fork : array [0..4] of 0..2 initial_all(2);

two_forks : array [0..4] of condition;

entry procedure takeforks(i : 0..4);
begin if av_fork [i]<2 then two_forks[i].wait ;

av_fork[i+1] := av_fork[i+1] − 1;
av_fork [i−1] := av_fork[i−1] − 1;

end;

entry procedure releaseforks(i : 0..4);
begin av_fork[i+1] := av_fork[i+1] + 1;

av_fork[i−1] := av_fork[i−1] + 1;
if av_fork[i+1] = 2 then two_forks[i+1].signal ;
if av_fork[i−1] = 2 then two_forks[i−1].signal ;

end;
end

process philosopher(i : [0..4]);
begin while true do think; takeforks(i); eat; releaseforks(i); od end;

The main program is:

cobegin
philosopher(0); philosopher(1); philosopher(2); philosopher(3); philosopher(4);
coend

This tentative solution to the five philosophers problem using monitors, is not satisfactory
(and thus, it is not a solution), because it allows the starvation of a philosopher if his two
neighbours perform a suitable sequence of actions.

In the following Table 1 we indicated a sequence of actions which shows this possibility,
so that philosopher 1 and 3 may cause the starvation of philosopher 2. (In Table 1 we have
written -n- in the column of av_fork [i], for i = 0, 2, 4, to mean that the value of av_fork [i]
changed from the previous unit of time, that is, the row above.) Indeed, after time 7, the
subsequence:

releaseforks(1); takeforks(1); releaseforks(3); takeforks(3);

may be repeated forever because the forks at time 7 are exactly as at time 3. This sequence
of actions can be generated by philosophers 1 and 3 which coordinate their actions on the
basis, for instance, of the value of a shared variable.

38

action time av_fork [0] av_fork [1] av_fork [2] av_fork [3] av_fork [4]

0 : 2 2 2 2 2

takeforks(1) 1 : -1- 2 -1- 2 2

takeforks(3) 2 : 1 2 -0- 2 -1-

two_forks[2].wait 3 : 1 2 0 2 1

releaseforks(1) 4 : -2- 2 -1- 2 1

takeforks(1) 5 : -1- 2 -0- 2 1

releaseforks(3) 6 : 1 2 -1- 2 -2-

takeforks(3) 7 : 1 2 -0- 2 -1-

Table 1. Conspiring behaviour of philosophers 1 and 3 against philosopher 2.
Rows at time 3 and 7 are equal.

The cooperation of philosophers 0 and 4 can prevent such conspiring behaviour of philoso-
phers 1 and 3. Indeed, while philosopher 1 is eating, philosopher 4 should prevent philoso-
pher 3 from releasing and taking forks in succession, that is, eating twice (see rows at
time 6 and 7 of Table 1 below). Philosopher 4 can do so by eating once in between the
two eating sessions of philosopher 3, and philosopher 4 can do so if philosopher 0 does
not compete with him for a fork at that time (precisely at this point cooperation between
philosopher 0 and 4 is required). While philosopher 4 is eating, philosopher 2 can eat and
avoids possible starvation planned against him by philosophers 1 and 3.

In order to avoid the conspiring behaviour of philosophers 1 and 3 against philosopher 2
without relying on the cooperation between philosophers 0 and 4 or any other philosophers,
we may use the following improved program for the monitor.

This program provides a correct solution to the five philosophers problem because:
(i) mutual exclusion is ensured, (ii) deadlock is avoided, and (iii) starvation is avoided.
All additions are performed modulo 5.

The tentative solution above is not correct because it allows starvation due to bad
cooperation between some philosophers, while a correct solution should avoid starvation
in all circumstances. In the same way, a correct solution should avoid starvation without
assuming good cooperation between some philosophers.

/* Five Philosophers: monitor solution */

fork_monitor : monitor;
begin freefork : array [0..4] of boolean initial_all(true);

availablefork : array [0..4] of condition;

entry procedure takeforks(i : 0..4);
begin if freefork [i] = false then availablefork [i].wait ;

freefork [i] := false;
if freefork [i+1] = false then availablefork [i+1].wait ;

freefork [i+1] := false;
end;

39

entry procedure releaseforks(i : 0..4);
begin freefork [i] := true;

availablefork [i].signal ;
freefork [i+1] := true;
availablefork [i+1].signal ;

end;

process philosopher(i : [0..4]);
begin while true do think; takeforks(i); eat; releaseforks(i); od end;

The main program is:

cobegin
philosopher(0); philosopher(1); philosopher(2); philosopher(3); philosopher(4);
coend

In this solution to the five philosophers problem the first philosopher who enters the mon-
itor will succeed in taking his two forks and he will eat without any delay. Subsequently,
other philosophers may be delayed, but no deadlock or starvation may occur. Also conspir-
ing behaviour is impossible. The formal proofs of these properties are left to the reader.
These proofs are based on the fact that the programs which are waiting on a condition,
are resumed according to a first-in-first-out policy.

Remark 1. Notice that the monitor fork_monitor which provides a solution to the five
philosopher problem, can be viewed as the generalization ‘to five dimensions’ of the moni-
tor resource presented at the beginning of Section 4.8. Indeed, free : boolean is generalized
to the array freefork : array [0..4] of boolean, and available : condition is generalized to
the array availablefork : array [0..4] of condition. !

Remark 2. In the above monitor solution the level of concurrency is not maximal. Indeed,
for instance, the fact that there is one monitor implies that no two processes may at the
same time release forks. Obviously, the concurrent execution of these actions could have
been allowed without destroying any property of interest such as the absence of deadlock
or the absence of starvation. Likewise, in our monitor solution we have sequentialized
other actions even if there was no real need. For instance, the two if-then statements
inside the takeforks procedure are performed one after the other, while one could have
also allowed their parallel execution. !

4.10 Using Semaphores for Solving the Five Philosophers Problem

In this section we present a solution to the five philosophers problem using semaphores.
Deadlock and starvation are avoided. In particular, one can show that no conspiring
behaviour can be realized even in the presence of malicious philosophers, so to speak.

In this solution fork is an array of semaphores. Initially, for i = 0, . . . , 4, fork [i] is 1 and
it denotes that fork [i] is available to philosopher [i] and philosopher [i+1] (see clause ini-
tial_all(1)). All additions are performed modulo 5. For i = 0, . . . , 4, philosopher [i] needs
fork [i] and fork [i+1] to eat. The extra counting semaphore room allows at most 4 philoso-
phers to enter the dining room. It is easy to see that if there are at most 4 philosophers

40

sitting at the table then one of them, say philosopher [i], has both fork [i] and fork [i+1]
available. Thus, initially, deadlock is impossible. After eating every philosopher has to
leave the room, i.e., he performs signal(room), and thus, deadlock is always impossible.

If we assume that processes waiting on the room semaphore and any fork [i] sema-
phore, for i = 0, . . . , 4, are served according to the first-in-first-out policy, then deadlock
and starvation are impossible and, in particular, conspiring behaviour against a particular
philosopher is impossible. We leave the formal proof of these properties to the reader.

/* Five Philosophers: semaphore solution */

program five_philosophers;
var fork : array [0..4] of semaphore initial_all(1); /* array [0..4] of 0..1 */

room : semaphore initial(4); /* room ∈ {0, 1, 2, 3, 4} */

process philosopher(i : [0..4]);
begin while true do

think; /* non-critical section */
wait(room);
wait(fork [i]); wait(fork [i+1]);
eat; /* critical section */
signal(fork [i]); signal(fork [i+1]);
signal(room) od

end;

cobegin
philosopher(0); philosopher(1); philosopher(2); philosopher(3); philosopher(4);
coend

In the following Points (1) and (2) we briefly compare the semaphore technique for solv-
ing the five philosophers problem with the monitor technique we have presented in the
previous Section 4.9. Indeed, this comparison is based on properties which hold for the
semaphore and monitor techniques in general, not only for the application of these tech-
niques to the solution to the five philosophers problem.
Point (1). In order to achieve the mutually exclusive execution of the critical sections,
that is, for performing the sequences of actions relative to the critical sections in an atomic
way, the semaphore technique relies on the atomicity of the execution of each assignment
and test, and this atomicity is ensured by the hardware. Also monitors achieve mutual
exclusion by relying on the atomicity of each assignment and test.
Point (2). Semaphores do not adopt a fixed policy for scheduling the waiting processes. On
the contrary, monitors assume a fixed queue policy, that is, the first-in-first-out policy. !

In practice, in order to ensure mutual exclusion, people have given preference to the use
of monitors with respect to that of semaphores, or critical regions, or conditional critical
regions. This is because monitors offer the benefit of structuring data and operations in
a single construct that realizes what in mathematical terms is called an algebra.

Let us end this section by listing some general properties a concurrent solution to a
given problem should enjoy and, in particular, these properties are enjoyed by the monitor
solution to the five philosophers problem we have presented in Section 4.9.

41

(i) The solution should be distributed, that is, without a ‘master process’ which schedules
the actions of all other processes and has knowledge of all their activities.
(ii) The solution should be highly concurrent, that is, it should allow as many processes
as possible to operate at the same time, without forcing unnecessary sequentiality among
them.
(iii) The solution should be easily programmable in the given programming language.
(iv) The correctness of the solution should be easily provable.

All these requirements have motivated the various proposals one can find in the litera-
ture for the solution of the five philosophers problem. In particular, the monitor solution:
(i) is distributed at the level of a monitor procedure, that is, one process at a time may
execute a procedure of the monitor (that is, each procedure is executed atomically), (ii) is
highly concurrent because the only queueing mechanism used is the one for scheduling
the processes waiting on a condition, (iii) is easily programmable, and (iv) can easily be
proved correct as it has been demonstrated in practice.

As we have seen in the case of the five philosophers problem, when looking for a
concurrent solution to a given problem, we often want, besides the mutual exclusion
property, other properties to hold. In particular, we may want the absence of deadlock
and the absence of starvation.

In the following section the reader will see an elegant solution to a concurrent problem
which indeed guarantees mutual exclusion, absence of deadlock, and absence of starvation.
However, these properties will be guaranteed through the use of shared variables, not
monitors.

42

4.11 Peterson’s Algorithm for Mutual Exclusion

Let us consider two processes P1 and P2 running in parallel, each of which is of the form:

An abstract process for Peterson’s algorithm: form (#1)

while true do
non-critical section;
critical section;

od

We assume that for each process the non-critical section and the critical section have finite
duration. We want to ensure mutual exclusion, in the sense that at any time at most one of
process can be in its critical section. This property can be achieved by using the following
protocol, called Peterson’s algorithm (see also [15]). Peterson’s algorithm ensures mutual
exclusion at the expense of adding some instructions before entering the critical section
(these instructions are also called pre-protocol or entry-protocol) and some instructions
after exiting the critical section (these instructions are also called post-protocol or exit-
protocol). These instructions refer to variables which are shared between the two processes
P1 and P2. The presence of at least a shared variable is necessary because otherwise no
mutual exclusion can be guaranteed.

Peterson’s Algorithm for 2 processes (Version A)

q1 := false; q2 := false; s := 1;

P1 : while true do P2 : while true do
l1 : non-critical section 1; m1 : non-critical section 2;
l2 : q1 := true; s := 1; m2 : q2 := true ; s := 2;
l3 : await (¬q2) ∨ (s = 2); m3 : await (¬q1) ∨ (s = 1);
l4 : critical section 1; m4 : critical section 2;
l5 : q1 := false; od m5 : q2 := false; od

The vertical bar between the two processes indicates that they are supposed to run con-
currently. The variables q1, q2, and s are shared between the two processes. The variable
q1 can be written by process P1 only, the variable q2 can be written by process P2 only,
and the variable s can be written by both P1 and P2. The existence of the shared variable
s which is written by the two processes is a limitation of Peterson’s algorithm. There exist
other algorithms which ensure mutual exclusion and whose variables are not written by
more than one process. One of these algorithms is the Bakery protocol due to L. Lam-
port [14]. This algorithm, however, requires a variable which can take an unbounded
integer value.

In Peterson’s algorithm the statement ‘await cond ’, where cond is a boolean expres-
sion, stands for the following statement:

43

l : if cond then skip else goto l

Thus, the execution of the statement ‘await cond ’ is equivalent to the execution of a
sequence of one or more statements of the form ‘if cond then skip else goto l’.

During the execution of that sequence of if-then-else statements all evaluations of
the cond expression return the value false, except the last one which returns the value
true.

Notice that Peterson’s algorithm allows that, while a process is in its non-critical
section, the other process may execute its critical section as many times as desired. That
behaviour is obtained by using the variables q1 and q2: this will be clear from the proof
of correctness of the protocol which we will give below in Section 6.2. The variable s is
required for keeping, so to speak, the value of the turn between the two processes when
they desire to enter their critical sections. The initialization of s to 1 or 2 is irrelevant.

An informal explanation of how Peterson’s algorithm works and why it ensures mutual
exclusion is as follows. For this explanation we assume that the two sequences of the
statements, the one at label l2 and the one at label m2, are both atomic (see Definition 1
at page 17). We will say that at time t process P1 (or P2) has made a request to enter
its critical section iff at time t it has completed the execution of the two statements at
label l2 (or m2, respectively). Now let us consider process P1 and a generic execution of
the body of its while-do statement. If during that execution at time t, process P1 has
made a new request to enter its critical section, it may enter its critical section at time
t̄ > t iff (¬q2) ∨ (s = 2) is true at time t̄, that is, either
(Case ¬q2) during the time interval (t, t̄] process P2 executed the statement q2 :=false
and did not make any new request to enter its critical section, or
(Case s = 2) during the time interval (t, t̄] process P2 made a new request to enter its
critical section and, thus, process P2 made its request after process P1.

Analogous argument holds for process P2, instead of process P1, by interchanging 1
and 2.

Many interesting properties of Peterson’s algorithm, as it is the case of many other
protocols, depend on the atomicity of the statements or sequences of statements. Now we
specify that atomicity.

First of all, it is obvious that in Peterson’s algorithm the execution of the entire
sequence of the if-then-else statements which corresponds to the ‘await cond ’ statement,
is not atomic because, otherwise, no process can change the value of the condition cond
and, if a process has to wait before entering its critical section, it will have to wait forever.
Indeed, we require that only the execution of each statement of the form

if cond then skip else goto l

is atomic. This requirement is equivalent to the requirement that the evaluation of the
condition cond of each ‘if cond then skip else goto l’ statement is atomic.

Each execution of an assignment statement is atomic, while the execution of the se-
quence of the two statements ‘q1 := true; s := 1;’ need not be atomic. This means that
mutual exclusion continues to hold if we allow the execution of one or more statements
of process P2 after the execution of q1 := true and before the execution of s := 1. We will
express this fact by writing, according to [15]:

44

l21 : q1 := true;
l22 : s := 1;

instead of:

l2 : q1 := true; s := 1;

(see the Version A1 and the Version B of Peterson’s algorithm below). Analogously, mu-
tual exclusion continues to hold if the execution of the sequence of the two statements
‘q2 := true; s := 2;’ is not atomic.

As already mentioned, in Peterson’s algorithm the variable s can be set and read by
both processes. This is a weakness of the algorithm and may create problems, not for
ensuring the mutual exclusion property, but for ensuring a property, called starvation, as
we now indicate.

Let us first define the notions of starvation and failure in the case of Peterson’s al-
gorithm and then we will see that, unfortunately, a process which executes Peterson’s
algorithm may starve due to the failure of another process.

Definition 3. (i) [Starvation] We say that a process starves iff it does not complete
the execution of an await statement, that is, during the execution of ‘await cond’ the
process always finds the value of cond to be false.

(ii) [Failure] We say that a process fails after statement st occurring in the body of the
while-do iff after executing the statement st, it does not execute any more statements.
We say that a process fails iff there exists a statement st in the body of the while-do
such that it fails after st.

We assume that a process which atomically executes a sequence ‘st1; . . . ; stn;’ of
statements, with n > 1, does not fail after any of the statements st1, . . . , stn−1. If that
process fails during the execution of that sequence, it fails after the statement stn.

Now if we allow a process to fail when executing Peterson’s algorithm, then the following
unfortunate situation may arise: a process, say P1, is at label l3 and the other process
P2 fails after the statement q2 := true and never sets s to 2. In this situation process P1

starves and never enters its critical section.
If we assume the atomicity of the two sequences of statements: ‘q1 := true; s := 1;’

and ‘q2 := true; s := 2;’ then Peterson’s algorithm ensures that a process does not starve
even if the other process fails after any one of the following four statements: (i) s := 1 (for
process P1), (ii) q1 := false (for process P1), (iii) s := 2 (for process P2), and (iv) q2 := false
(for process P2). With these atomicity requirements Peterson’s algorithm also ensures that
a process does not starve even if the other process fails after a statement occurring in the
non-critical section. (However, we do not allow this kind of failures because we assume
that the duration of every non-critical section is finite.)

Even if we assume the atomicity of the two sequences ‘q1 := true; s := 1;’ and
‘q2 := true; s := 2;’ then Peterson’s algorithm does not ensure that a process does not
starve if the other process fails after the await cond statement (that is, after it has found
cond to be true) or after a statement of the critical section. (However, we do not allow
any failure within a critical section because we assume that the duration of every critical
section is finite.)

From now on, unless otherwise specified, we assume that:

45

(i) processes do not fail, and
(ii) the critical and non-critical sections have finite duration.

The use of Peterson’s algorithm ensures various properties such as mutual exclusion,
absence of deadlock, absence of starvation, and bounded overtaking. Now we will formally
define these properties in the general case, when we consider a set P of processes of
the following form (#2) (which is a generalization of the form (#1) introduced at the
beginning of this Section 4.11):

An abstract process for Peterson’s algorithm: form (#2)

while true do
non-critical section;
waiting section (here the process waits to enter its critical section);
critical section;

od

Processes of this form (#2), besides the critical and non-critical sections, have also an
intermediate section, called waiting section, where they wait to enter their critical section.
Notice that we do not assume that the duration of the waiting section is finite.

Now we define the four properties that are guaranteed by Peterson’s algorithm.

Definition 4. (i) Mutual exclusion holds for P iff for each time t there exists at most
one process in P which is in its critical section at time t.
(ii) Absence of deadlock holds for P iff for each time t there exists a process P ∈ P and
there exists a time u after t such that at time u process P is in its critical section.
(iii) Absence of starvation holds for P iff for each time t and for each process P ∈ P there
exists a time u after t such that at time u process P is in its critical section.
(iv) Bounded overtaking of degree k holds for P iff for any process P ∈ P, while P is
in its waiting section, any other process Q ∈ P goes from its critical section to its non-
critical section at most k times. Bounded overtaking of degree 1 is simply called bounded
overtaking.

Remark 1. Since we assume that processes do not fail and for each process the non-critical
section and the critical section have finite duration, we have that the bounded overtaking
property together with the absence of deadlock implies the absence of starvation. !

Remark 2. With reference to Peterson’s algorithm, absence of starvation can be defined
as the conjunction of the following two statements:
(i) process P1 is at label l3 only a finite amount of time (and then it will enter its critical
section at label l4) and, symmetrically,
(ii) process P2 is at label m3 only a finite amount of time (and then it will enter its critical
section at label m4). !

Remark 3. With reference to Peterson’s algorithm and the definition of the bounded over-
taking property (see Definition 4 above), the sentence: ‘process P1 is in its waiting sec-
tion’ should be understood in the sense that process P1 is in the interval of time after

46

the execution of both statements at label l2 and it has not yet performed any state-
ment of the immediately subsequent critical section at label l4, that is, process P1 is
in the interval of time in which it executes the sequence of atomic statements of the
form: ‘if (¬q2) ∨ (s = 2) then skip else goto l3’ which corresponds to the statement
‘await (¬q2) ∨ (s = 2)’.

Analogously, the sentence: ‘process P2 is in its waiting section’ should be understood in
the sense that process P2 is in the interval of time after the execution of both statements
at label m2 and it has not yet performed any statement of the immediately subsequent
critical section at label m4, that is, process P2 is in the interval of time in which it executes
the sequence of atomic statements of the form: ‘if (¬q1) ∨ (s = 1) then skip else goto m3’
which corresponds to the statement ‘await (¬q1) ∨ (s = 1)’. !

Remark 4. The sentences ‘process P1 is in its waiting section’ and ‘process P2 is in its
waiting section’ should be understood in the sense of the previous Remark 3 also in the
case when we consider a variant of Peterson’s algorithm where the two assignments at
label l2 and m2 are interchanged, that is, at label l2 we have ‘s := 1; q1 := true;’ and at
label m2 we have ‘s := 2; q2 := true;’.

Indeed, for instance, during the interval of time in which process P1 has executed the
assignment s := 1 and it has not yet executed the assignment q1 := true, process P2 may
execute its critical section an unbounded number of times because q1 is false.

That variant of Peterson’s algorithm is not good, because it does not ensure the mutual
exclusion property (see below). !

Let us consider Peterson’s algorithm in which each assignment to the variables q1, q2,
and s is atomic, and the two tests ‘¬q2 ∨ s=2’ and ‘¬q1 ∨ s=1’ are atomic. Thus, we
write Peterson’s algorithm as follows:

Peterson’s Algorithm for 2 processes (Version A1: finer atomicity)

q1 := false; q2 := false; s := 1;

P1 : while true do P2 : while true do
l1 : non-critical section 1; m1 : non-critical section 2;
l21 : q1 := true; m21 : q2 := true;
l22 : s := 1; m22 : s := 2;
l3 : if ¬q2 ∨ s=2 then goto l4 m3 : if ¬q1 ∨ s=1 then goto m4

else goto l3; else goto m3;
l4 : critical section 1; m4 : critical section 2;
l5 : q1 := false; od m5 : q2 := false; od

where the execution of the statements at each label is atomic. Thus, in particular, the
execution of each if-then-else statement is atomic.

Now we show that this version of Peterson’s algorithm guarantees mutual exclusion,
absence of deadlock, absence of starvation, and bounded overtaking of degree 1.

Note that the mutual exclusion property does not hold if we interchange the statement
at label l21 with that at label l22 and/or the statement at label m21 with that at label m22.

47

In particular, if we make both of these interchanges and we start from initial state where
q1 = q2 = false and s=1, both processes P1 and P2 may be in their critical section at the
same time, as shown by the following sequence of statements (each of which is performed
by the process indicated between parentheses):

(P1) s :=1;
(P2) s :=2;
(P2) q2 := true;
(P2) if ¬q1 ∨ s=1 then goto m4 else goto m3; (thus, P2 enters its critical section 2)
(P1) q1 := true;
(P1) if ¬q2 ∨ s=2 then goto l4 else goto l3; (thus, P1 enters its critical section 1).

Mutual Exclusion. In order to show that Peterson’s algorithm ensures mutual exclusion
it is enough to show that it is never the case that at the same time process P1 is at label l4
and process P2 is at label m4. The proof of this property is by absurdum.

Let us assume that both P1 and P2 are at the same time in their critical section.
Thus, it should be the case that ((¬q2) ∨ (s = 2)) ∧ ((¬q1) ∨ (s = 1)). We have that
q1 = q2 = true, and therefore, it should be the case that (s = 2) ∧ (s = 1). But this
is impossible. Hence, only one process passed its test at the await statement, and the
second process did some assignments before passing its test, but this cannot happens
either, because the last assignment performed by the second process before the test, sets
s to a value which makes it impossible for it to pass its test. !

Absence of Deadlock and Absence of Starvation. In order to show that Peterson’s
algorithm ensures absence of deadlock it is enough to show that if process P1 is at label l3
and at the same time process P2 is at label m3, then after a finite amount of time,
either process P1 is at label l4 or process P2 is at label m4. Indeed, we will show a stronger
property, that is, absence of starvation. In order to show absence of starvation it is enough
to show that:
(iii.1) if process P1 is at label l3 then after a finite amount of time, process P1 is at label l4
and, symmetrically,
(iii.2) if process P2 is at label m3 then after a finite amount of time, process P2 is at
label m4.

Let us first show Point (iii.1). At label l3 process P1 repeatedly evaluates the expression
(¬q2) ∨ (s=2). While process P1 evaluates that expression, after a finite amount of time,
since process P2 does not fail, one of the following three situations occurs:
(S1) P2 is at label m1: in this case P1 finds q2 to be false and P1 will enter its critical
section and it will be at label l4;
(S2) P2 is at label m3: in this case either P1 or P2 will enter its own critical section because
s=1 or s=2. If P1 enters its critical section we have shown that P1 indeed proceeds. If P2

enters its critical section, after a finite time it will set q2 to false and P1 will then enter
its critical section (see Situation S1).
(S3) P2 is at label mj with j = 2 or j = 4 or j = 5: in this case P2 will leave this label in
a finite time and process P1 will proceed because in a finite time either Situation (S1) or
Situation (S2) will occur.

The proof of Point (iii.2) is analogous to that of Point (iii.1). !

48

Bounded Overtaking. In order to show that Peterson’s algorithm ensures bounded
overtaking (that is, bounded overtaking of degree 1) it is enough to show that:
(iv.1) while process P1 is at label l3, process P2 is at most once at label m4 and, symmet-
rically,
(iv.2) while process P2 is at label m3, process P1 is at most once at label l4.
In other words, Point (iv.1) (and, symmetrically, Point (iv.2)) tells us that while process
P1 is waiting for entering its critical section, process P2 cannot complete more than once
its critical section, that is, P2 can pass from label m4 to label m5 at most once.

Let us show Point (iv.1). We have that after setting the value of s, process P1 has to
wait at label m3 the completion of at most one execution of the critical section by the
other process P2, because at the end of its critical section, P2 sets the value of q2 to false
(thus, at this time process P1 may enter its critical section) and if process P2 tries to enter
its critical section a second time, P2 sets the value of s to 2, thereby giving the turn to P1.

The proof of Point (iv.2) is analogous to that of Point (iv.1). !

We leave to the reader to show that mutual exclusion, absence of deadlock, absence
of starvation, and bounded overtaking of degree 1 also hold for Peterson’s algorithm if we
assume the following properties:
(i) processes do not fail,
(ii) for each process the non-critical section and the critical section have finite duration,
and
(iii) each assignment and test of the variables q1, q2, and s is atomic. Thus, in particular,
we do not assume that the two tests ‘¬q2 ∨ s=2’ and ‘¬q1 ∨ s=1’ are atomic.

In order to denote these atomicity assumptions, when we write Peterson’s algorithm,
we replace the statement:

l3 : await (¬q2) ∨ (s=2);
l4 : ...

by the following two statements:

l31 : if ¬q2 then goto l4 else goto l32;
l32 : if s=2 then goto l4 else goto l31;
l4 : ...

where the execution of each if-then-else statement is atomic. Thus, one or more state-
ments of process P2 may be executed when process P1 has finished the evaluation of ¬q2

and not yet begun the evaluation of s = 2, or it has finished the evaluation of s = 2 and
not yet begun the evaluation of ¬q2.

Analogously, we replace the statement:

m3 : await (¬q1) ∨ (s=1);
m4 : ...

by the following two statements:

m31 : if ¬q1 then goto m4 else goto m32;
m32 : if s=1 then goto m4 else goto m31;
m4 : ...

where the execution of each if-then-else statement is atomic.

We get the following version of Peterson’s algorithm:

49

Peterson’s Algorithm for 2 processes (Version B)

q1 := false; q2 := false; s := 1;

P1 : while true do P2 : while true do
l1 : non-critical section 1; m1 : non-critical section 2;
l21 : q1 := true; m21 : q2 := true;
l22 : s := 1; m22 : s := 2;
l31 : if ¬q2 then goto l4 else goto l32; m31 : if ¬q1 then goto m4 else goto m32;
l32 : if s=2 then goto l4 else goto l31; m32 : if s=1 then goto m4 else goto m31;
l4 : critical section 1; m4 : critical section 2;
l5 : q1 := false; od m5 : q2 := false; od

where the execution of the statements at each label is atomic. Thus, in particular, the
execution of each if-then-else statement is atomic.

Peterson’s algorithm for two processes can be generalized to the case of n (> 2) pro-
cesses. We can explain this n process algorithm by saying that the two process algorithm
presented above is used repeatedly ‘for n−1 levels’. By doing so we eliminate at least
one process per level, until only one process remains and this winning process enters its
critical section. Before performing this generalization, the two process version of Peter-
son’s algorithm is modified by replacing the condition ‘s = 2’ by the equivalent condition
‘s *= 1’ and, analogously, the condition ‘s = 1’ by the equivalent condition ‘s *= 2’. We
also replace false by 0 and true by 1, and we replace the tests ¬q1 by q1 < 1 and ¬q2 by
q2 <1.

In the case of n (>2) processes Peterson’s algorithm requires two shared arrays:
- an array Q[1..n] whose n components are initially set to 0 and may get values from 0 to
n−1, and
- an array S[1..n−1] whose n−1 components are initially set to 1 and may get values from
1 to n.
Each process Pi, for i = 1, . . . , n, is of the form:

The abstract process Pi for Peterson’s algorithm for n processes (with i = 1, . . . , n)

while true do
l1 : non-critical section i ;
l2 : for j = 1, . . . , n−1 do Q[i] := j; S[j] := i;
l3 : await (∀k. k *= i → Q[k] < j) ∨ (S[j] *= i) od;
l4 : critical section i ;
l5 : Q[i] := 0; od

The variables i (i.e., the process number), j (i.e., the index for process i), and n (i.e., the
total number of processes) are local to process Pi. The test ‘S[j] *= i’ at statement l3 is
atomic and, for k *= i, each test ‘Q[k] < j’ is atomic. However, the whole test

50

‘(∀k. k *= i → Q[k] < j) ∨ (S[j] *= i)’
need not be atomic.

We leave it to the reader to check that Peterson’s algorithm for n processes is correct,
in the sense that, if processes do not fail, it guarantees mutual exclusion and absence
of deadlock. The correctness proof of the n process version of Peterson’s algorithm is a
straightforward generalization of the two process proof we presented above.

Notice, however, that Peterson’s algorithm for n processes guarantees neither absence
of starvation nor bounded overtaking of degree k, for any k ≥ 1, even if:
(i) processes do not fail, and
(ii) for every process Pi, with i = 1, . . . , n, and for every j = 1, . . . , n−1 we assume:

(ii.1) the atomicity of the execution of the sequence ‘Q[i] := j; S[j] := i;’ of statements,
and

(ii.2) the atomicity of the evaluation of the entire condition:

(∀k. k *= i → Q[k]<j) ∨ (S[j] *= i).

In particular, in the case of three processes P1, P2, and P3, process P1 and process P2 may
alternatively enter infinitely many times their critical sections, while process P3 keeps on
testing the condition of its topmost await statement (see the program below).

In the case of three processes Peterson’s algorithm is as follows (for simplicity, we write
Qi instead of Q[i], and Si instead of S[i]):

Peterson’s Algorithm for 3 processes

Q1 := 0; Q2 := 0; Q3 := 0; S1 := 1; S2 := 1;

P1 : while true do P2 : while true do P3 : while true do
non-critical section 1; non-critical section 2; non-critical section 3;
Q1 := 1; S1 := 1; Q2 := 1; S1 := 2; Q3 := 1; S1 := 3;
await (Q2 <1 ∧ Q3 <1) ∨ await (Q1 <1 ∧ Q3 <1) ∨ await (Q1 <1 ∧ Q2 <1) ∨

(S1 *= 1); (S1 *= 2); (S1 *= 3);
Q1 := 2; S2 := 1; Q2 := 2; S2 := 2; Q3 := 2; S2 := 3;
await (Q2 <2 ∧ Q3 <2) ∨ await (Q1 <2 ∧ Q3 <2) ∨ await (Q1 <2 ∧ Q2 <2) ∨

(S2 *= 1); (S2 *= 2); (S2 *= 3);
critical section 1; critical section 2; critical section 3;
Q1 := 0; od Q2 := 0; od Q3 := 0; od

In this section we have considered the problem of ensuring mutual exclusion among sev-
eral processes and its solution via Peterson’s algorithm. Later on in Section 4.13 we will
consider a different problem also concerning the achievement of a global behaviour of a set
of processes which run in a concurrent way. It is the problem of detecting the termination
of all the activities of a collection of processes, each of which
(i) is located at a node of a given graph,
(ii) may perform some computations, and
(iii) may delegate some computations to processes located at neighbouring nodes.

51

In order to illustrate a solution to this problem, we first need to present an algorithm
for computing in a distributed way a spanning tree of a given finite, undirected, connected
graph. This algorithm is presented in the following Section 4.12.

4.12 Distributed Computation of Spanning Trees

Let us consider a finite, undirected, connected graph G = 〈N, E〉 without self-loops. In
particular, we assume that: (i) the set N of nodes is finite and |N |>1, (ii) for every arc
〈n, m〉 ∈ E, there exists in E the arc 〈m, n〉, (iii) for every pair of distinct nodes h and
k there exists a sequence 〈n1, n2〉, 〈n2, n3〉, . . ., 〈np−1, np〉 of one or more arcs such that
n1 =h, and np =k, and (iv) for every node n ∈ N , 〈n, n〉 *∈ E. For every node n ∈ N we
define the two sets P (n) = {p | 〈p, n〉 ∈ E} and S(n) = {s | 〈n, s〉 ∈ E}, which are the sets
of the so called predecessor nodes of n and successor nodes of n, respectively.

We want to construct a spanning tree T of the graph G with a given node n0 as its root
by using a distributed algorithm. During the execution of the algorithm a node may be
either unmarked, denoted !, or marked, denoted ". We assume that, initially, all nodes
are unmarked.

The distributed algorithm for computing the desired spanning tree T consists of a
single initial application of the rule R1 (see Figure 13 on the following page) to the root
node n0, followed by applications of the rules R2 and R3 (see Figure 13). Each rule is
applied to a node of the graph G as follows: if the left-hand-side of a rule depicted in
that figure holds at a node, then the rule fires (that is, is applied to that node) and the
right-hand-side of that rule is realized at that node. The rules R2 and R3 may be applied
concurrently (and in this sense the algorithm is distributed), but they should be applied
in an atomic way, that is, when one of them is applied to a node n, no rule can be applied
to a node in P (n) ∪ S(n).

Note that, since the graph G is modified when a rule is applied, the values of the sets
P (n) and S(n) which are needed for applying the next rule, should be computed in the
graph obtained after the application of the current rule.

Rule R1 is applied to the root node n0: it erases all incoming arcs, marks the root,
and sends a mark-token, denoted ⊗, to every node which is a successor of the root.

Rule R2 is applied to every non-root node iff there is at least an incoming mark-token
from a predecessor node. When applied to node n with a mark-token arriving from node i,
rule R2 erases all arcs incoming from nodes different from i, erases all mark-tokens arrived
at node n, marks the node n, and sends a mark-token to every node which is a successor
of n.

Rule R3 is applied to every marked, non-root node iff all its successor nodes have
sent to that node an end-token, denoted # (thus, the end-tokens travel in the opposite
direction w.r.t. the direction of the arcs). In particular, rule R3 is applied to every marked
leaf node of the spanning tree T , because every leaf node has no successors. When rule R3
is applied to a node n, it erases all end-tokens arrived at node n and sends an end-token
to the node which is the predecessor of n. By construction, it is the case that the node n
to which the rule R3 is applied, has one predecessor only.

One can show that in order to ensure the termination of the algorithm (see below), it
is irrelevant whether or not rule R3 actually erases the end-tokens sent by the successor
nodes.

52

#

#

#

..//
!

//2 ..1...# #

..//

//2 ..1

..1 //2

...

...

//2 ..1

n0 :
..1 //2

...

...

..//
//2 ..1

..1

...⊗ ⊗

..//n0 :
//2 ..1...⊗ ⊗

!

//2 ..1

rule for the root n0:

R1

rule for a node n *=n0:

R2

mark-tokens sent to all (≥0)
successor nodes

only the arc from node i
is left

there is a mark-token
coming from node i

⊗ i i

mark-tokens sent to all (≥0)
successor nodes

rule for the detection of termination
(end-tokens travel in the opposite direction w.r.t. the arrows of the arcs)
rule for a node n *=n0:

R3 i i
(without ⊗) #

...

end-tokens sent by all (≥0)
successor nodes

end-tokens sent by all
successor nodes are erased

Fig. 13. Rules R1, R2, and R3 for the distributed computation of a spanning tree with
root n0, for any given finite, undirected, connected graph without self-loops.

Rules R1, R2, and R3 generate an expanding wave of mark-tokens ⊗ moving from the
root node n0 outward to the leaves, and then a contracting wave of end-tokens # moving
from the leaves to the root. This contracting wave is needed for detecting the termination
of the algorithm.

In what follows we will assume that for every execution of our distributed algorithm
which makes k (≥ 0) rule applications (some of these applications may be made in a
concurrent way in different nodes of the graph), there exists an execution of a sequential

algorithm which makes a sequence of those k rule applications in the set R1; (R2 + R3)*

and performs the same graph transformation. That sequence of k rule applications is said
to be a linearization of the given execution of the distributed algorithm. An equivalent way
of stating our assumption is to say that: (i) every execution of our distributed algorithm
can be viewed as a partial order of rule applications where a rule application ai is related
to a rule application aj iff ai occurs before aj (thus, the concurrent applications of the
rules define the elements which are unrelated in the partial order), and (ii) the concurrent
applications of the rules have an interleaving semantics. We also assume that for every

53

execution of the distributed algorithm, every linearization of that execution performs the
same graph transformation.

We say that the Termination Condition holds for a sequence σ of rule applications if
σ has a finite (proper or not) prefix which leads to a situation where every successor node
of the root has sent an end-token # to the root. We say that the algorithm terminates (or
termination occurs) iff the linearizations of all possible executions of the algorithm enjoy
the Termination Condition.

In general, a sequence of rule application may lead to a situation where no rule can
fire and termination does not occur. In that case we say that there is deadlock.

Termination of the algorithm is ensured if we assume the following hypothesis for every
sequence of rule applications in the set R1; (R2 + R3)* it can generate.

Fair Finite Delay Hypothesis for the sequence σ of rule applications:
if a (proper or not) prefix σ1 of σ leads to a situation where a rule Ri can fire at
node n, then
(i) either for some subsequences σ2 and σ3 of rule applications we have that σ =
σ1; σ2; Ri; σ3 and at the end of σ2, rule Ri fires at node n (informally, every rule which
can fire, actually fires within a finite time),
(ii) or there is a (proper or not) prefix of σ for which the Termination Condition holds.

When the algorithm terminates, that is, the Termination Condition holds, the original
graph G has been modified into a directed spanning tree, say Td. Then, the undirected
spanning tree T of the graph G can be obtained from Td by considering for every arc
〈m, n〉 also the symmetric arc 〈n, m〉.

If we assume that rule R3 is applied to every marked node at most once, then the
sequence of applications of the rules is of the form: R1 ; (R2 + R3)2(|N |−1), where in every
prefix the number of R2’s is at least that of R3’s and, in the whole sequence, the number
of R2’s is the same of that of R3’s, that is, |N |−1.

During the computation of the spanning tree Td the following invariants hold: (i) the
marked nodes form a tree with root n0, and (ii) every node which sent upwards an end-
token, is the root of a subtree of the spanning tree Td.

If after the computation of the spanning tree T , the original graph G should be main-
tained for further computations (such as the termination detection algorithm of the fol-
lowing Section 4.13), we need to apply the rules of Figure 13 on the preceding page in a
conservative manner, in the sense that the deletion of the arcs should not be realized and,
instead of deleting arcs, we should simply mark them in some suitable manner.

The computation of the directed spanning tree Td can also be performed by variants
of the rules R1, R2, and R3 in which we stipulate that after the application of the rules,
the nodes are left unmarked. These variants of the rules which we call R1!, R2!, and
R3!, respectively, still send and erase mark-tokens and end-tokens and can be depicted
as rules R1, R2, and R3 shown in Figure 13, except that every marked node " should be
replaced by an unmarked node !.

54

Let us study the termination of the algorithm which uses the rules R1!, R2!, and
R3!. For every sequence of rule applications in the set R1!; (R2!+R3!)* we assume the
following Finite Delay hypothesis (which is weaker than the Fair Finite Delay hypothesis).

Finite Delay Hypothesis for the sequence σ of rule applications:
if a (proper or not) prefix σ1 of σ leads to a situation where a rule can fire at a node,
then
(i) either for some non-empty subsequence σ2 of rule applications we have that σ =
σ1; σ2 (informally, if a rule can fire at a node, then there is a rule, maybe a different
one, which actually fires at a node, maybe a different one, within a finite time),
(ii) or there is a (proper or not) prefix of σ for which the Termination Condition holds.

If the Finite Delay hypothesis holds then the termination of the algorithm which uses
rules R1!, R2!, and R3!, is ensured if the following two extra conditions hold.

Condition (C1): Rule R1! is applied to the root node n0 only once and only at the
beginning of the computation.

Condition (C2): Rule R3! is applied to any given (unmarked) node at most once. Actu-
ally, in order to ensure termination, it is enough to assume Condition (C1) and Condi-
tion (C2′): Rule R3! is applied to any given unmarked node at most a finite number of
times.

The following Properties (1) and (2) hold if we apply the original rules R1, R2, and
R3, and also if we apply the variants R1!, R2!, and R3!.
Property (1): Rule R2 is applied once to every non-root node of the graph. For instance,
given the following undirected graph with three nodes:

n0

/
//2/
//0 .

..1.
..3

n1 n2

a possible sequence of rule applications for computing a directed spanning tree of the
graph with root n0 is: R1; R2; R3; R2; R3, where the leftmost applications of rules R2
and R3 are to the same node (either n1 or n2) .
Property (2): Rule R3 cannot be applied to a node before a mark-token arrives at it.
Indeed, in an undirected, connected graph with at least two nodes and without self-loops,
every node as at least one successor node. Thus, if we consider any path from the root of
the spanning tree Td to one of the leaves of Td, the first application of rule R3 to a node
in that path is to the leaf of that path.

Our algorithm for computing a spanning tree of a given finite, undirected, connected
graph without self-loops, can also be used for computing a spanning tree of a finite, undi-
rected, connect graph with self-loops, that is, when in the set of edges of the given graph
there exists an arc of the form 〈n, n〉 for some node n. Indeed, if the given graph, call it
Gs, has self-loops, it is enough: (i) to consider the graph G which is obtained from Gs by
deleting all self-loops, and then (ii) to construct a spanning tree of G according to our
rules of Figure 13 on page 52.

55

Given a graph G = 〈N, E〉, the three rules depicted in Figure 13 can be realized
by three corresponding rewriting rules on 6-tuples, each 6-tuple being an element of
N ×{false, true}×2N ×2N ×2N ×2N . Each 6-tuple encodes a node of G by providing its
name in the first component of the 6-tuple and, in the other components, information
relative to the marking of the node, the predecessor nodes, the successor nodes, and the
mark-tokens and the end-tokens which have been sent to the node.

In particular, if the first component of a 6-tuple is the number n, denoting the node
n, then
- the second component is false if the node n is unmarked (denoted !) and it is true if the
node n is marked (denoted ") (as already mentioned, all nodes are initially unmarked),
- the third component is the set P (n), that is, the set of predecessors of the node n,
- the fourth component is the set M(n) ⊆ P (n) of so called marking nodes, that is, the
nodes which are predecessors of the node n and have sent a mark-token to the node n
and that mark-token has not been erased by an application of rule R2 (we have that after
the application of rule R2 to node n, M(n)= {}, and we assume that initially, for every
n ∈ N , M(n) = {}),
- the fifth component is the set S(n), that is, the set of successors of the node n, and
- the sixth component is the set E(n) ⊆ S(n) of so called end nodes, that is, the nodes
which are successors of the node n and have sent an end-token to the node n (we assume
that initially, for every n ∈ N , E(n)={}).

The rewriting rules, called ρ1, ρ2, and ρ3, corresponding to the rules R1, R2, and R3
of Figure 13 are as follows. (As usual, a rewriting rule of the form: ' ⇒ r means that the
left-hand-side ' is rewritten into the right-hand-side r, and the other components of the
6-tuple, if any, are left unchanged.)

ρ1: For each node p∈P (n0), S(p) ⇒ S(p)−{n0} (the root has no father)
〈n0, false, P (n0), M(n0), S(n0), {}〉 ⇒ 〈n0, true, {}, {}, S(n0), {}〉 (marking the root)
For each node s∈S(n0), M(s) ⇒ {n0} (sending ⊗ to each successor of the root)

ρ2: Consider a unmarked node n *=n0 such that there exists a node i ∈ M(n).
For each node p∈P (n)−{i}, S(p) ⇒ S(p)−{n} (node i becomes father of node n)
〈n, false, P (n), M(n), S(n), {}〉 ⇒ 〈n, true, {i}, {}, S(n), {}〉 (marking node n and

erasing all ⊗’s arriving at node n)
For each node s∈S(n), M(s) ⇒ M(s) ∪ {n} (sending ⊗ to each successor of node n)

ρ3: Consider a marked node n such that S(n)=E(n) (all sons of n have sent # to n)
and there exists a node i such that P (n)={i}. (node i is the father of node n)
E(i) ⇒ E(i) ∪ {n} (sending # from node n to node i)

In rule ρ3 the condition M(n)={} which appears in Figure 13 on page 52, is not needed
(and we did not included) because if the node n is marked then rule ρ2 must have been
applied to node n, and in that application all mark-tokens have been erased.

As for the rules R1, R2, and R3, also the rules ρ1, ρ2, and ρ3 are applied in an atomic
way, in the sense that when one rule is applied to a node, say n, no other can be applied
to a node in P (n) ∪ S(n).

56

As for the rules R1, R2, and R3, if we assume that rule ρ3 is applied to every marked
node at most once, then the sequence of applications of the rules ρ1, ρ2, and ρ3 is
ρ1 ; (ρ2 + ρ3)2(|N |−1), where in every prefix the number of ρ2’s is at least that of ρ3’s
and, in the whole sequence, the number of ρ2’s is equal to the number of ρ3’s, that is,
|N |−1.

After the initial application of the rule ρ1 to the root node n0, in rule ρ2 we need not
assume that n *=n0, because M(n0)={}. When rule ρ3 is applied to a node n, we have that,
by construction, P (n) is a singleton. Termination is detected whenever S(n0) = E(n0).
The first application of rule ρ3 is done to a node which is a leaf of the resulting spanning
tree, because initially E(n) = {}, and we have that S(n)=E(n) iff S(n) = {}.

The following two properties hold:

(i) when rules ρ1 and ρ2 are applied to an unmarked node n, E(n) = {} and does not
change its value, and after the application of any of these two rules M(n) = {}, and

(ii) when rule ρ3 is applied to a marked node n, M(n) = {} and does not change its
value, and after the application of this rule, the value of M(n) is no longer needed for the
application of any of the rewriting rules.

These two properties allow us to implement the distributed algorithm for constructing
a spanning tree of a graph by using 5-tuples, instead of 6-tuples. Indeed, we can get rid of
the sixth component of the 6-tuples and store the value of E(n) in the fourth component,
instead of the sixth one. Then, in order to know the values of M(n) and E(n) from the
value of the fourth component, we can use the following two facts whose proof is left to
the reader.

(i) If S(n) = {} ∨ P (n) ∩ S(n) *= {} (that is, node n is a leaf of the spanning tree or
rule ρ2 has not been yet applied to node n) then the fourth component stores M(n) and
E(n)={}.

(ii) If S(n) *={} ∧ P (n)∩S(n)={} then the fourth component stores E(n) and M(n)={}.

The above two facts are based on the following properties:

(i) before the application of rule ρ1 or ρ2 to a node n we have that: (P (n) ∩ S(n) *={}) ∨
S(n)={}, and

(ii) after the application of rule ρ1 or ρ2 to a node n we have that: (P (n) ∩ S(n)={}) ∧
|P (n)| ≤ 1.

We can also get rid of the second component of the 6-tuples. This amounts to leave
all nodes unmarked and use 4-tuples, instead of 6-tuples or 5-tuples. In this case we use
the following rules ρ1!, ρ2!, and ρ3!. (We have added the ! superscripts to the names
of those rules to recall that they operate on nodes which are left unmarked.)

ρ1!: For each node p∈P (n0), S(p) ⇒ S(p)−{n0} (the root has no father)
〈n0, P (n0), M(n0), S(n0)〉 ⇒ 〈n0, {}, {}, S(n0)〉
For each node s∈S(n0), M(s) ⇒ {n0} (sending ⊗ to each successor of the root)

57

ρ2!: Consider a node n such that there exists a node i ∈ M(n) and (either S(n)={} or
P (n) ∩ S(n) *={}).
For each node p∈P (n)−{i}, S(p) ⇒ S(p)−{n} (node i becomes father of node n)
〈n, P (n), M(n), S(n)〉 ⇒ 〈n, {i}, {}, S(n)〉 (erasing ⊗ arriving at node n)
For each node s∈S(n), M(s) ⇒ M(s) ∪ {n} (sending ⊗ to each successor of node n)

ρ3!: Consider a node n such that S(n)=E(n) (all sons of n have sent # to n)
and there exists a node i such that P (n)={i}. (node i is the father of node n)
E(i) ⇒ E(i) ∪ {n} (sending # from node n to node i)

It is the case that, having in rule ρ2! the extra condition (w.r.t. rule ρ2) ‘either S(n)={}
or P (n) ∩ S(n) *={}’, we can apply rule ρ2! to every (unmarked) node at most once.

In rule ρ3! the extra condition M(n)={}, which appears in Figure 13 on page 52, is
not needed (and we did not included), because: (i) if the given graph has two nodes only,
then every sequence of rule applications has initial subsequence: ρ1!; ρ2!; ρ3! for which
the Termination Condition holds, and (ii) if the given graph has more than two nodes,
before any firing of the rule ρ3! at node n we need P (n) to be a singleton, and in order
to have P (n) to be a singleton, we need that rule ρ2! has fired at n and this firing made
M(n)={}.

Note that in rule ρ3!, instead of referring to the array E, we may equivalently refer
to the array M , because we assume that those arrays are stored in the same locations.

When we use the rules ρ1!, ρ2!, and ρ3!, in order to ensure termination we have to
assume that Finite Delay hypothesis and the following two conditions.
Condition (C1): Rule ρ1! is applied to the root node n0 only once and only at the
beginning of the computation.
Condition (C2): Rule ρ3! is applied to every (unmarked) node at most once.
This condition on rule ρ3! can be enforced by modifying rule ρ3! so that the nodes n
and i should satisfy the property: S(n) = E(n) ∧ ∃ i, P (n) = {i} ∧ n *∈ E(i), instead of
the property: S(n)=E(n) ∧ ∃ i, P (n)= {i} (again, referring to the array E or referring
to the array M does not make any difference).

Let us make a remark concerning the use of variants of the rules ρ1!, ρ2!, and ρ3!,
called ρ̃1!, ρ̃2!, and ρ̃3!, respectively, where we keep the sixth components but we elim-
inate the second components of the 6-tuples. These variants leave the nodes unmarked.
Technically,
(i) we get ρ̃1! from ρ1! by using 〈n0, P (n0), M(n0), S(n0), {}〉 ⇒ 〈n0, {}, {}, S(n0), {}〉,

instead of 〈n0, P (n0), M(n0), S(n0)〉 ⇒ 〈n0, {}, {}, S(n0)〉,
(ii) we get ρ̃2! from ρ2! by using 〈n, P (n), M(n), S(n), {}〉 ⇒ 〈n, {i}, {}, S(n), {}〉,

instead of 〈n, P (n), M(n), S(n)〉 ⇒ 〈n, {i}, {}, S(n)〉, and
(iii) we get ρ̃3! from ρ3! by making no changes.

We have that we can compute a spanning tree without applying rule ρ̃2!. This occurs,
for instance, for the graph with three nodes depicted on page 54. Indeed, a spanning tree
with root n0 can be computed by the sequence ρ̃1!; ρ̃3!; ρ̃3! of rule applications.

In the Appendix on page 116 we will present a sequential Java program which im-
plements a distributed algorithm for computing a spanning tree of any finite, undirected,

58

connected graph which is represented as an array of nodes. That algorithm works by leav-
ing each node unmarked. Each node is represented as 3-tuple of arrays as we now explain.
We have already seen that a node can be represented as a 4-tuple, instead of a 6-tuple. We
can further reduce the 4-tuples to 3-tuples because the first component of every 4-tuple
stores the name of the node, and for that name we can simply use the index of the array
of nodes that represents the given graph.

4.13 Distributed Termination Detection

We address here the problem of detecting the termination of distributed computations [20].
We are given N processes P0, . . . , PN−1 which are placed at the nodes of a given undirected,
connected graph G. We identify each process with the node where it is located. The
N processes perform a main computation and they exchange messages to neighbouring
processes in the graph. The arcs of the graph represent communication channels. Each
process (and the corresponding node) may be either
- active, that is, it still performs a part of the main computation (and in this case the
process and the node are labelled by A), or
- idle, that is, it has completed the part of the main computation which has been assigned
to it by the last message it has received (and in this case the process and the node are
labelled by I).
We have that:

(1) Only active processes may send messages.
(2) A process may change from idle to active only on receipt of a message.
(3) A process may change from active to idle at any time (thus, we not assume any

knowledge on the duration of the parts of the computations assigned to the processes).
At Point (2) we may replace ‘may’ by ‘must’ because of Point (3).
We say that the main computation has terminated iff all processes are idle.
We say that termination has been detected by a termination detection algorithm if

it is the case that a process, say P0, enters a predetermined, fixed state whenever the
main computation has terminated. To know whether or not the remaining processes have
terminated, process P0 has the ability of sending and receiving messages to all processes
in the graph, but this should be done by sending and receiving messages only to and from
neighbouring processes. The ability of sending and receiving messages is given to every
process in the graph G.

The messages devoted to termination detection are collectively called signals. Signals
are: (i) either tokens or (ii) repeats . We will see below how tokens and repeats are used
by the termination detection algorithm.

The termination detection algorithm we look for, is an algorithm which: (i) at each
node sends or receives tokens or repeats, and (ii) at each node modifies the state of the
process at that node.

Moreover, the termination detection algorithm should satisfy the following conditions:

(1) The modification of each process to incorporate termination detection should be
independent of the definition of the process.

(2) The termination detection algorithm should not indefinitely delay the main com-
putation.

59

(3) No new communication channels should be added among the processes.
(4) The termination detection algorithm should operate at each node on the basis of

the information, tokens, and repeats available at that node only.

We assume that we have computed a spanning tree T of the given undirected graph G with
process P0 at its root. This can be done by the distributed algorithm we have indicated
in the previous Section 4.12 on page 51.

The proposed termination detection algorithm works by making use of waves of tokens
and repeats moving along frontiers of the spanning tree T . A frontier of a tree is a set F
of nodes such that every root-to-leaf path has exactly one node in common with F .

Initially, a contracting token wave goes inwards from the leaves to the root, and if it
reaches the root without detecting termination, then a new wave, called repeat wave, is
generated. This new wave moves outwards from the root to the leaves. As soon as this
repeat wave reaches the leaves, a new wave of tokens starts moving inwards again. Notice
that in some branches of the spanning tree the token wave may be moving inwards while
the repeat wave is still moving outwards along other branches.

The algorithm works by applying in a distributed way, as long as possible, the rules
that we will indicate in the Figures 14 on the following page and 15 on page 61 below. If
the left-hand-side of a rule depicted in these figures holds at a node and the corresponding
condition, if any, is true, then the rule fires and the right-hand-side of that rule is realized
at that node, regardless of the rules which are applied in other nodes at a previous or
later time.

In the spanning tree T of G every node has exactly one parent node, except the root
which has no parent. Every node has a (possibly empty) list of children. The list of children
is empty iff the node is a leaf.

In Figure 14 and Figure 15 below we have adopted the following conventions. The
status s of a node may be either active (A) or idle (I). The color of a node may be either
white (!) or black ($). A token t may be either white (%) or black (#). A repeat is
denoted by •. A pair of symmetric arcs between any two nodes is depicted as a single arc
without arrowheads.

Here are the two rules M1 and M2 for the main computation (see also Figure 14 on
the following page).

Rule M1. It is for sending a message along an arc. An active process sends a message m to
one of its neighbours, and assigns to it a part of the main computation which is encoded
by that message. The process which sends the message m becomes black, and this color
encodes the fact that the process which receives the message m, has begun and not yet
completed the part of the main computation encoded by m.

Rule M2. At any time an active process may become idle regardless of its color. It becomes
idle when it has completed the part of the main computation encoded by the last message
it has received.

We do not assume that nodes remain active for a finite time only. Thus, if a node re-
mains active for an infinite time, then rule R2 never fires at that node and the termination
detection algorithm should never detect termination.

Here are the five rules for the termination detection algorithm (see also Figure 15 on
page 61).

60

A #

A #

"

A

$A

mM1 :

M2 : I

Fig. 14. Rules of the main computation of the termination detection algorithm. The
status s of a node may be either active (A) or idle (I). $ denotes that the color of the
node is black. m is a message of the main computation.

Rule T1.down is for the root of the spanning tree. When the root P0 has received a token
from each of its children, then P0 destroys those tokens, becomes white, and sends a repeat
to each of its children iff either (i) P0 is active, or (ii) P0 is black, or (iii) P0 has received
a black token.

Rule T2.up is for any internal node of the spanning tree (neither the root nor the leaves).
When an internal node Pi has received a token from each of its children and Pi is idle,
then Pi destroys those tokens and sends a new token t to its parent. The token t is black
iff either Pi is black or any of the tokens received from the children is black, otherwise the
token is white.

Rule T2.down is for any internal node of the spanning tree (neither the root nor the
leaves). When the internal node has received a repeat, it destroys that repeat and sends
a repeat to each of its children.

Rule T3.up is for any leaf. A leaf sends its white token to its parent iff the leaf is idle.

Rule T3.down is for any leaf. A leaf which receives a repeat, destroys it, and acquires a
white token.
Initially:
- all nodes are white;
- at least one node is active (and thus, it may become black);
- each leaf has a white token and every other node has neither tokens nor repeats.

These are invariants of the algorithm:
- an active node does not send any token (see Figure 15) and thus, it is impossible for the
termination detection algorithm to indefinitely delay the main computation;
- when a node sends a token it is left without tokens, and analogously, when it sends a
repeat it is left without repeats;
- tokens at the leaves are always white.

We will show below that termination is detected by the process P0 at the root when at a
given time t̄:

(i) the process P0 at the root is idle, and

61

#

#

#

#

#

&

&&

&

& &

"

&
&

+
+

+
+=
&
&'+

+
&
&

!

"

+
+>
&
&?

&
&'

+
+=+

+>
&
&?

!

I %

%

I

...

I

...

c then # else %

......

!

!

t = if c=$ ∨ ∃i. ti =#

P0

...

cs

...

P0

%

repeats to all children

tokens received from all children

t1 tn

I

tokens received from all children repeats to all children

t1 tn

if s=A ∨ c=$

∨ ∃i. ti =#

rule for the root with process P0:

T1.down

rules for the internal nodes:

T2.up

T2.down

rules for the leaves:
T3.up

(initially)

T3.down

Fig. 15. Rules of the termination detection algorithm. The status s of a node may be
either active (A) or idle (I). The color c of a node may be either white (!) or black ($).
A token may be either white (%) or black (#). • is a repeat.

(ii) the color of the root is white, and
(iii) there is a time t before t̄ such that in the interval [t, t̄] every child of the root has

sent to the root one token only and that token is white (it is %).

If Conditions (i), (ii), and (iii) above hold, then the rule T1.down does not fire and no
new repeat wave is generated. At this point P0 has detected termination and it may tell
all other processes to halt. We do not describe here how this last communication may be
realized by suitable messages sent along the arcs of the spanning tree.

The choice between the firing of the rules of the main computation and those of the
termination detection algorithm is nondeterministic. Thus, the main computation need
not be delayed by the termination detection algorithm.

The algorithm is correct independently of the fact that processes have buffers to store
the incoming messages and signals, provided the delay between sending and receiving

62

a message or a signal is sufficiently small, that is, the propagation along the arcs of
the spanning tree is sufficiently fast. Thus, correctness holds provided that the following
hypothesis holds.

Fair Finite Delay Hypothesis for rules and messages: (i) every rule which can fire,
actually fires within a finite time, and (ii) every message takes a finite time to reach
destination.

The proof of correctness of the termination detection algorithm is as follows [20]. We
first show partial correctness. We need the following definition.

Definition 5. Given an undirected, connected graph G and a spanning tree T of G,
a node n of G is said to be outside a set A of nodes of G iff n *∈ A and the path from the
root of T to n (including the root) contains an element of A.

In this definition it is irrelevant whether or not the node n is included in the path from
the root of T to n.

Let S be the set of nodes of the spanning tree T with one or more tokens, regardless
of the colors of the tokens. Let us consider the invariant Inv defined as follows:

Inv ≡ (all nodes outside S are idle
∨ some nodes not outside S is black
∨ some node in S has a black token)

If we take S to be the set of all leaves, we have that the invariant Inv is initially true
because no node is outside S. The invariant Inv is maintained true for each firing of the
rules of Figures 14 and 15 by assuming that the set S is modified by the rules T2.up and
T3.up only, and it is modified as follows:

the node n which sends the token is removed from S, and the parent p of that node is
added to S if it is not already an element of S, that is, S := (S ∪ {p}) − {n}.

Now, since S ={root} implies that all nodes but the root, are outside S, we have that:

(Inv ∧ S={root} ∧ the root is white and idle ∧ all tokens at the root are white)
⇒ all nodes are idle (that is, the main computation has terminated)

Moreover, since Inv is preserved during the firing of the rules of Figures 14 and 15, the
main computation has terminated if S ={root} ∧ the root is white and idle ∧ all tokens
at the root are white.

The termination detection algorithm terminates because:
(i) to test the firing conditions of each rule of Figures 14 and 15 takes a finite amount of
time, and
(ii) if all processes are idle then a finite number of firings of the rules of Figure 15 is
sufficient to allow process P0 to detect termination.

As indicated in [20], we have that the complexity of the termination detection algo-
rithm is O(N ×m), where N is the number of nodes in the graph G (that is, the number of
processes) and m is the number of messages generated by the main computation according
to rule M1.

63

4.14 Lock-free and Wait-free Synchronization

The synchronization techniques based on semaphores, critical regions, conditional critical
regions, and monitors, which we have described in the preceding sections, are not suitable
for fault-tolerant and real-time systems. Indeed, if a process which has mutually exclusive
access to a resource, fails, then no process can access that resource any more. Likewise,
in real-time systems it may be required that a process executes its critical section before
a deadline expires. This may not be guaranteed if there is no a priori bound for the time
in which a process is in its critical section.

Synchronization policies which may be used in fault-tolerant and real-time system
cannot rely on semaphores, critical regions, conditional critical regions, or monitors. We
should use new synchronization techniques which are called lock-free techniques. We will
not enter into this topic here and the reader may refer to [10].

If we want to ensure that the execution of a critical section is performed within a
bounded number of steps we need more sophisticated synchronization techniques, called
wait-free techniques. Also the study of these techniques is left to the enthusiastic reader
who may refer, for instance, to [10].

64

5 Concurrent Computations in Java

In this section we will look at Java programs which implement some of the mechanisms and
techniques we have introduced in the previous sections. This material is derived from [10].

Let us begin by stating the difference between a process and a thread . A process has
three parts: (i) the code (that is, the sequence of machine instructions to be executed),
(ii) the data (that is, the memory locations for storing global variables), and (iii) the stack
(that is, the memory locations for storing local variables and activations records of the
procedure calls).

Processes which share code and data and have distinct stacks are said to be lightweight
processes, or threads. Java allows us to construct and run threads. In Java there exists a
predefined class Thread that we can extend to construct threads. The actual construction
of a thread occurs when a new instruction is executed (see line 1 in the program below).
We override the method run() of the class Thread to define the behaviour of any con-
structed thread (see lines 2 and 3). The actual running of a thread begins only after the
execution of the start() method relative to the thread (see line 4).

The reader should notice that sometimes for simplicity reasons, we will use the word
‘process’ as a synonymous of ‘thread’. Notice also that according to the Java terminology,
people often say that threads are ‘created’, rather than ‘constructed’.

The following is an example of a Java program which constructs a thread and makes
it run.

public class MerryChristmas extends Thread { // 1
public void run() { // 2

System.out.println("Merry Christmas!"); // 3
}
public static void main(String [] args) {
MerryChristmas t = new MerryChristmas();
t.start(); // 4
}

}

Let us save this class in a file named MerryChristmas.java. Then, if we execute the com-
mands:

javac MerryChristmas.java

java MerryChristmas

we get:

Merry Christmas!

In Java there is an alternative way to construct threads. We illustrate this alternative way
by presenting a concrete example of how to construct from a single class several distinct
objects which may run as distinct threads.

65

Let us consider the following class Counter saved in a file named RunnableCounter.java
together with the class RunnableCounter:

class Counter {
private int value;
public Counter (int value) {

this.value = value;
}
public void setValue (int value) {

this.value = value;
}

public int getValue () {
return this.value;

}

public int addOne () {
this.value ++;

}
}

Now let us construct distinct objects from this class Counter. We want these objects to run
as distinct threads. In order to do so we should construct a new class which extends both
the class Counter and the class Thread (which is a class provided by the standard Java
environment). We face a problem here because Java does not allow multiple inheritance,
that is, it does not allow a concrete class to inherit from more than one class.

Note 3. In Java the only form of multiple inheritance is the one of a class which inherits
from a set of interfaces. Indeed, the declaration:

class C implements I1, . . . , In {classbody}

realizes the multiple inheritance of the concrete class C from the interfaces I1, . . . , In. !

This problem of extending both the class Counter and the class Thread, is solved by intro-
ducing the following class RunnableCounter which extends Counter and implements
Runnable, where Runnable is a standard Java interface which declares a single method:
public void run().

The declaration of the class RunCounter is as follows. We assume that it is saved, together
with the above class Counter, in a single file named RunnableCounter.java.

public class RunnableCounter extends Counter implements Runnable {
public RunnableCounter (int v) {

super(v);
}
public void run() {

for (int i = 0; i < 3; i++) {System.out.print(" " + getValue()); addOne();}
}

66

public static void main (String[] args) {
RunnableCounter c1 = new RunnableCounter(10);
Thread t1 = new Thread(c1);
t1.start();
RunnableCounter c2 = new RunnableCounter(c1.getValue() + 10);
Thread t2 = new Thread(c2);
t2.start();

}
}

Then, if we execute the commands:

javac RunnableCounter.java

java RunnableCounter

we get:

10 11 12 20 21 22

Actually, the output we get depends on the Java runtime system in use. One may also
get:

10 11 12 23 24 25

Nothing can be said about the progress of the thread t1 when the thread t2 starts running.
In particular, the thread t1 may not have finished its activities when thread t2 starts
running.

In Java we can make a thread to wait for the termination of another thread by using
join(). The join() operation requires a try-catch statement. The following class Fibonac-
ciThread which computes the Fibonacci numbers, illustrates this mechanism. We assume
that this class is saved in a file named FibonacciThread.java.

public class FibonacciThread extends Thread {
int n;
int value;
public FibonacciThread(int n){
this.n = n;
}

public void run(){
if (n == 0) value = 0;
else if (n == 1) value = 1;
else {FibonacciThread fib1 = new FibonacciThread(n−1);

FibonacciThread fib2 = new FibonacciThread(n−2);
fib1.start(); fib2.start();
try {fib1.join(); fib2.join();
} catch (InterruptedException e){};
value = fib1.value + fib2.value;

}
}

67

public static void main(String [] args){
int n = Integer.parseInt(args [0]);
FibonacciThread fib = new FibonacciThread(n);
fib.start();
try {fib.join();
} catch (InterruptedException e){};
System.out.println("fib("+ n +") = " + fib.value);

}
}

Then, if we execute the commands:

javac FibonacciThread.java

java FibonacciThread 8

we get:

fib(8) = 21.

Threads can communicate with each other by writing and reading static fields, non-static
fields, and array elements. Threads cannot communicate by using local variables and
method parameters.

5.1 Mutual Exclusion in Java

In this section we consider the problem of mutual exclusion between two threads: T1 and
T2. In order to realize the mutually exclusive access to a critical section by one thread at
a time, we implement the following interface which we call EntryExitProtocol.

public interface EntryExitProtocol {
public void entryProtocol(int processId);
public void exitProtocol(int processId);

}

We assume that this interface is stored in a file named EntryExitProtocol.java.

The EntryExitProtocol interface has two methods: a first one, called entryProtocol(i),
which is executed by thread Ti, for i = 1 or 2, before entering its critical section, and
the second one, called exitProtocol(i), which is executed by thread Ti, for i = 1 or 2,
after exiting its critical section. As we will see, the entryProtocol(i) and exitProtocol(i)
methods correspond to the operations of acquiring and releasing a lock as explained in
Section 7.6.

Peterson’s algorithm implements the EntryExitProtocol interface as indicated by the
following class, named PetersonTwoProcesses, saved in a file named PetersonTwoPro-
cesses.java. In this implementation we have assumed that the integer 1 identifies thread
T1 and, likewise, the integer 2 identifies thread T2 (this is in accordance with our conven-
tions of Section 4.11).

68

public class PetersonTwoProcesses implements EntryExitProtocol {
boolean q1 = false;
boolean q2 = false;
int s = 1;
public void entryProtocol(int i){

if (i == 1) { q1 = true; s = 1; while (q2 && s ! = 2); }
else { q2 = true; s = 2; while (q1 && s ! = 1); }

}

public void exitProtocol(int i) {
if (i == 1) { q1 = false; }
else { q2 = false; }

}
}

Notice that the class PetersonTwoProcesses works correctly in the sense it ensures that
the two threads T1 and T2 access their critical sections in a mutually exclusive way, only
if the two threads are indeed identified by the integers 1 and 2, respectively. To assume
this identification of the two threads means that they have to share some extra global
information besides the information which is already shared between them by the fact
that they both access the global variables q1, q2, and s.

We stipulate that the PetersonTwoProcesses class is stored in a file named
PetersonTwoProcesses.java. In order to see the PetersonTwoProcesses class in action,
we may use the following two classes ProtocolThread and PetersonProtocolTester both
stored in a single file named PetersonProtocolTester.java:

class ProtocolThread extends Thread {
int id ;
private static EntryExitProtocol protocol ;
public ProtocolThread (int id, EntryExitProtocol protocol) {

this.id = id ;
this.protocol = protocol ;

}

private void sleeping(int id){
try { if (id == 1) { sleep(50); } else { sleep(300); } // (†)
} catch (InterruptedException e) {};

}

void nonCriticalSection(int id) {
System.out.print(" " + id);
sleeping(id);

}

void CriticalSection(int id){
System.out.print(" [" + id);
sleeping(id);
System.out.print("]");

}

69

public void run() {
while (true) {

nonCriticalSection(id);
protocol.entryProtocol(id);
CriticalSection(id);
protocol.exitProtocol(id);

}
}

}

public class PetersonProtocolTester {
public static void main(String [] args) {

// testing Peterson’s algorithm for 2 processes
EntryExitProtocol petersonTwoProcesses = new PetersonTwoProcesses();
new ProtocolThread(1, petersonTwoProcesses).start();
new ProtocolThread(2, petersonTwoProcesses).start();
}

}

We assume that the file PetersonProtocolTester.java is placed in a single folder together
with the files: (i) EntryExitProtocol.java, and (ii) PetersonTwoProcesses.java. By execut-
ing the commands:

javac PetersonProtocolTester.java
java PetersonProtocolTester

we get:

1 2 [1] 1 [1] 1 [1] 1 [2] 2 [1] 1 [1] 1 [1] 1 [2] 2 [1] 1 [1] 1 [1] 1 [2] 2 . . .

In this output the numbers 1 and 2 denote the thread T1 and T2, respectively. The begin-
ning of each critical section is denoted by ‘[’, and the end of each critical section is denoted
by ‘]’. A number without enclosing square brackets denotes that the corresponding thread
is inside the non-critical section. A number within enclosing square brackets denotes that
the corresponding thread is inside the critical section. Thus, the above output shows that
the two threads T1 and T2 are not at the same time inside their critical section.

The command sleep(n), provided by the Java class Thread, is used for delaying for n
milliseconds the thread which executes it.

In the output we have given above, the reader can verify that while process2 is in its
non-critical section (and it stays there for 300 ms as indicated in the statement (†) of the
sleeping(id) method), process1 which takes 100 ms to cycle through its non-critical and
critical sections, can get into its critical section at most three times.

The reader should also notice that in the above Java implementation of Peterson’s al-
gorithm, we get mutual exclusion when accessing critical sections without using Java syn-
chronized methods. Indeed, the goal of Peterson’s algorithm is exactly that of achieving
mutual exclusion at the level of a sequence of commands, i.e., the sequence of commands
of the critical section, starting from mutual exclusion guaranteed by the hardware at the
level of a single assignment, i.e., the assignment of the shared variables q1, q2, and s.
The mutual exclusion at the level of the single assignment means that, for instance, the

70

variable s is assumed to have, at each instant in time, a value which is either 1 or 2, even
if the method entryProtocol(id) is concurrently executed by two threads.

We leave to the reader the proof that the given implementation of Peterson’s algorithm
guarantees mutual exclusion, absence of deadlock, and bounded overtaking.

5.2 Monitors in Java

In this section we will present a Java implementation of the monitor primitive proposed
by [13].

In Java a monitor is an object whose fields are all private and they are manipulated
only via methods which are executed in a mutually exclusive way in the sense that for
each monitor, at any time, there exists at most one thread which executes a method of
that monitor. Thus, in particular, if a monitor has two or more methods, then at any time
at most one of them can be executed, even if the running threads are two or more.

In Java mutually exclusive execution of the methods of a monitor is obtained by writing
the keyword synchronized in every method of the monitor (see the examples presented
in the following sections). We say that every method of a monitor is synchronized.

In general, in Java an operation on an object (or array, or class) is guaranteed to be
performed in a mutually exclusive way by the use of a lock associated with that object
(or array, or class). We require that for any object (or array, or class): (i) the lock can
be held by at most one thread at a time, (ii) the lock must be obtained from the system
before starting the operation on that object (or array, or class), and (iii) the lock must
be returned to the system after ending the operation on that object (or array, or class).

In order to guarantee that an operation on an object (or array, or class) is performed
in a mutually exclusive way, it is necessary that every thread before starting an operation
on that object (or array, or class), gets the associated lock and, for methods of monitors,
this is enforced by the presence of the keyword synchronized.

Now let us examine how a thread, say u, which executes a method of a monitor object,
say o, uses the lock on o. (That lock on the monitor o was given to u before it started the
execution of the method.) In particular, let us assume that the thread u while executing
the method, requires a resource to become available and this fact is encoded by a boolean
variable which has to become true. The thread u starts waiting for the availability of
that resource by releasing the lock on the object o and this is done by executing o.wait().
At that point the thread u enters the ‘Waiting for o’ state, and it is added to a queue
associated with that state (see Figure 16 below). In that queue, which we call the condition
queue, the thread u waits for a notification on the object o. Such notification has to come
from another thread which has obtained the lock on the object o and has performed either
an o.notify() or an o.notifyAll() operation. The notifying thread does not lose the lock
on o, and after notification, the thread u must get the lock on o before it can proceed.

Thus, there are two cases: either (i) a thread performs an o.notify() operation, or
(ii) a thread performs an o.notifyAll() operation. In Case (i) a thread which is in the
condition queue of the monitor o, is removed from that queue, goes into the ‘Locking o’
state, and is inserted into a different queue, which we call mutex queue, associated with
the ‘Locking o’ state. In Case (ii) all threads which are in the condition queue of the

71

monitor o, are removed from that queue, go into the ‘Locking o’ state, and are inserted
into the mutex queue (see Figure 16).

A thread which is in the ‘Locking o’ state, can get the lock for the object o from the
system and then it will be made enabled to run, that is, it can enter the ‘Enabled’ state.
Then the scheduler will choose an enabled thread and will make it run on the processor,
according to a given processor allocation policy (see Figure 16).

Thus, in Java every monitor object o has two queues: the mutex queue and the condi-
tion queue.

(1) The mutex queue holds every thread which waits for the execution of a method of the
monitor o. This waiting is due to the fact that monitor methods are synchronized and
they can only be executed in a mutually exclusive way.

(2) The condition queue holds every thread which waits for a condition to become true
and that condition depends on a field of the monitor o.

/
0

1
2

/
0

1
2

/
0

1
2

/
0

1
2

/
0

1
2!

"

-
-
-
-
-
-
-
--@ ,

,
,
,
,
,
,
,,A

B

/
/
//2.

.
..3

#

/
0

1
2

Enabled Running

o.wait()
releases lock on o

u died

condition queuemutex queue

Locking o Waiting for o
o.notifyAll()

o.notify()

Sleeping

timeout sleep(n)

u.join()

gets lock on o

scheduled

Joining u

/
0

1
2

/
0

1
2

dies
Constructed Dead

start() 66
66

66
66

68
tries to lock o

Fig. 16. Simplified diagram of states and transitions for a Java thread u relative to an
object o. The commands o.wait() and sleep(n) are performed by the same thread u. The
commands start(), o.notify(), o.notifyAll(), and u.j oin are performed by other threads
different from u. Other actions referring to the thread u are: ‘scheduled’, ‘dies’, ‘tries to
lock o’, ‘timeout’, ‘gets lock on o’, and ‘releases lock on o’. A thread different from u, after
performing u.j oin(), waits for u to die and when this happens, it becomes enabled.

Figure 16 shows the states and the transitions of a Java thread u relative to an object o.
(Actually, for simplicity reasons, in that figure we have depicted only those transitions

72

which are necessary for understanding the examples we have presented below.) The com-
plete diagram with all the transitions can be found in [19]). The state ‘Locking o’ is a
collection of states, one for each object o. Analogously, ‘Waiting for o’ is a collection of
states, one for each object o, and ‘Joining u’ is a collection of states, one for each thread u.
For further details the reader may refer to [11,19].

Notice that it is the thread which performed an o.notify() (or o.notifyAll()) operation
that continues its execution on the processor, not the thread which was notified. This is
not what happens in the monitor proposal by Prof. Hoare [13]. In Hoare’s proposal, in
fact, a thread which is removed from the condition queue, starts immediately running
without the intervention of any other thread. Hoare’s proposal has the advantage that
the thread which is removed from the condition queue and starts running, it can do so
without checking again the value of any variable. The fact that the conditions for running
are satisfied is ensured by the notifying thread (i.e., the signalling process in Hoare’s
terminology).

On the contrary, in a Java monitor the thread which was waiting on a condition
queue and is then enabled to run, before it can actually run, has to check the value of
the condition variable associated with that queue. This check is required because in the
meantime the condition variable might have become false again. Thus, we have that a
Java thread that: (i) runs a (synchronized) method of a monitor o, and (ii) waits for a
condition B to become true when B depends on a (private) field of the monitor o, should
execute the following typical program fragment:

while (!B)
try { o.wait();

} catch (InterruptedException e) {};

(see, for instance, Sections 5.4 and 5.5). Notice that in Java an o.wait() operation requires
a try-catch construct, and recall that all methods of a Java monitor are synchronized
and all fields are private.

The reader should notice also that in a Java monitor o there is a unique condition
queue, common to all conditions relative to that monitor, while in the monitor proposal by
Prof. Hoare [13] for any monitor there exists a distinct condition queue for each condition
variable.

Finally, the reader should notice an important difference between a wait(s) operation
performed on a semaphore s and a wait operation performed by a process while executing a
procedure of a Hoare’s monitor. We have that a process which performs a wait(s) operation
on a semaphore s, continues running for checking the value of s (see Section 4.3) and there
is the busy waiting phenomenon. On the contrary, in a Hoare’s monitor a process after
performing a cond.wait operation on a variable cond of type condition, stops running and
it can be resumed only when a cond.signal operation is performed. Thus, the busy waiting
phenomenon does not occur.

Similarly to the case of a Hoare’s monitor, the busy waiting phenomenon is not present
in a Java monitor. Indeed, after a Java thread has performed an o.wait() operation on a
monitor o (because, for instance, that thread has to wait for a condition variable to become
true), that thread releases the lock on o, stops running, and enters the condition queue
of the ‘Waiting for o’ threads (see Figure 16). However, as already mentioned, in a Java

73

monitor, contrary to the case of a Hoare’s monitor, when a Java thread starts running
again after it has performed an o.wait() operation, it has to check, before any other
operation, that the value of the condition variable which forced that o.wait() operation,
is indeed the expected one. Otherwise, that thread has to perform an o.wait() operation
again.

5.3 Bounded Buffer Monitor in Java

The following class BoundedBufferMonitor realizes a Java monitor for a bounded buffer,
called bBuffer, of size N (> 0). The size of the buffer is the number of cells available in
the buffer. We assume that each cell contains an object of the Java class Object.

We have a variable count which stores the number of items present in the buffer. Thus,
0 ≤ count ≤ N .

The array index in, with 0 ≤ in ≤ N −1, identifies to the cell of the buffer where an
item should be put in by the put(item) method.

The array index, call it out, with 0 ≤ out ≤ N −1, which identifies the cell of the
buffer where an item should be taken from by the get() method, can be computed from
the value of in and the value of count by using the Java remainder operator %, as we now
indicate.

Recall that for any integer k and any integer N ≥ 2,

k % N =def if k < 0 then − remainder((−k)/N)
else if k = 0 then 0
else remainder(k/N)

Thus, for any k ≥ 0 and any integer N ≥ 2, we have that: k % N = k modN . Hence,

out = (in − count) mod N = (in − count + N) mod N = (in − count + N) % N

(see statement (†) in the method get() below).

The two statements below with the comment ‘// tracing’ are needed for tracing the
behaviour of the buffer and they can be deleted if so desired. (In Section 4.8 the reader
may find a similar monitor realized according to the approach of Prof. Hoare. In that
monitor, for historical reasons, we used the identifier last, instead of the identifier in.)

Let us assume that the BoundedBufferMonitor class is saved in a single file named
BoundedBufferMonitor.java.

public class BoundedBufferMonitor {
private Object [] bBuffer ;
private final int N ;
private int in = 0;
private int count = 0;

public BoundedBufferMonitor(int n) {
this.bBuffer = new Object [n];
this.N = n;

74

public synchronized void put(Object item) {
while (count == N)

try { wait();
} catch (InterruptedException e){};

bBuffer [in] = item;
System.out.println("−> " + item.toString()); // tracing
in = (in + 1) % N ;
count ++;
notify();

}

public synchronized Object get() {
while (count == 0)

try { wait();
} catch (InterruptedException e){};

Object item = bBuffer [(in − count + N) % N]; // (†)
System.out.println(" " + item.toString() + " −>"); // tracing
count−−;
notify();
return item;

}
}

Notice that in the above put(item) method we cannot erase the keyword synchronized.
Indeed, let us consider the case where two threads concurrently try to put a new value
in a buffer where there is only one cell available, say the one in position N −1. Without
the keyword synchronized, it may happen that the result of the concurrent running of
these two threads together determine the overwriting of the cell in position 0, because 0
is the new value of the variable in after the execution of one of the two threads.

Analogously, in the get() method we cannot erase the keyword synchronized.

The BoundedBufferMonitor class can be viewed in action by using the following three
classes all saved in a single file named BoundedBufferMonitorTester.java:

(i) the Producer class,

(ii) the Consumer class, and

(iii) the BoundedBufferMonitorTester class.

For the time being do not consider the comments ‘// — (M)’ which we will explain later.

We also assume that the BoundedBufferMonitorTester.java file is in the same folder
where we have saved the BoundedBufferMonitor.java file.

75

class Producer extends Thread {
private BoundedBufferMonitor bBuffer = null ; // — (M)
public Producer(BoundedBufferMonitor bBuffer) { // — (M)

this.bBuffer = bBuffer ;
}
public void run() {

Object item = new Integer(0);
while (true) {

item = new Integer(((Integer)item).intValue()+1); // “ item ++; ”
bBuffer.put(item);
try { sleep(10); // (†)
} catch (InterruptedException e) {}

}
}

}

class Consumer extends Thread {
private BoundedBufferMonitor bBuffer = null ; // — (M)
public Consumer(BoundedBufferMonitor bBuffer) { // — (M)

this.bBuffer = bBuffer ;
}
public void run() {

Object item;
while (true) {

item = bBuffer.get();
try { sleep(100); // (†)
} catch (InterruptedException e) {}

}
}

}

public class BoundedBufferMonitorTester { // — (M)
public static void main(String[] args) {

final int N = Integer.parseInt(args [0]);
BoundedBufferMonitor bBuffer = new BoundedBufferMonitor(N); // — (M)
new Producer(bBuffer).start();
new Consumer(bBuffer).start();

}
}

Then, if we execute the commands:

javac BoundedBufferMonitorTester.java
java BoundedBufferMonitorTester 3

we construct a bounded buffer bBuffer with size N = 3 and we get the following output:

−> 1
1 −>

76

−> 2
−> 3
−> 4

2 −>
−> 5

3 −>
−> 6

. . .

Obviously, this output behaviour depends on the sleep time we have indicated in the
Producer and Consumer classes above (see the two lines marked with (†)). For a buffer
of size N = 1 we get:

−> 1
1 −>

−> 2
2 −>

−> 3
3 −>
. . .

5.4 Counting Semaphore in Java

The Java implementation of a counting semaphore, that is, a semaphore which can take
any integer value (either negative or null or positive, depending on its initial value and the
code of the programs which use it), is given by the following CountingSemaphore class.
We assume that this class is stored in a file named CountingSemaphore.java.

public class CountingSemaphore {
private int value;
public CountingSemaphore(int value){ // value is the initial value of

this.value = value; // the CountingSemaphore
}
public synchronized void Wait() { // corresponds to wait(s) for

while (value <= 0) // a CountingSemaphore s (see Section 4.3)
try { wait();
} catch (InterruptedException e){ };

value−−;
}
public synchronized void Signal(){ // corresponds to signal(s) for

value ++; // a CountingSemaphore s (see Section 4.3)
notify();

}
}

Notice that the above implementation of a counting semaphore is the direct Java trans-
lation of the original Dijkstra’s proposal presented in Section 4.3. We will use counting
semaphores in Section 5.6 below.

77

5.5 Binary Semaphore in Java

The Java implementation of a binary semaphore is given by the following BinarySemaphore
class. We assume that this class is stored in a file named BinarySemaphore.java.

public class BinarySemaphore {
private boolean value;
public BinarySemaphore(boolean value){

this.value = value;
}
public synchronized void Wait() { // corresponds to wait(s) for

while (value == false) // a BinarySemaphore s (see Section 4.3)
try { wait(); // the process joins the queue of waiting processes
} catch (InterruptedException e){ };

value = false;
}
public synchronized void Signal(){ // corresponds to signal(s) for

value = true ; // a BinarySemaphore s (see Section 4.3)
notify();

}
}

This implementation of a binary semaphore is the direct Java translation of the binary
semaphore presented in Section 4.3. In order to get mutual exclusion on a critical section,
say CS, by using a binary semaphore, say mutex, first we must declare the variable mutex
by using, for instance, the following declaration:

BinarySemaphore mutex = new BinarySemaphore(true);

and then we must perform on the variable mutex, before and after the critical section CS,
a Wait() and a Signal() operation, respectively, as follows:

mutex .Wait(); // wait if another thread is in its critical section
CS ; // critical section
mutex .Signal(); // notify other threads waiting for executing their critical section

We will use a binary semaphore for ensuring mutual exclusion in the example presented
in the following Section 5.6.

According to our implementation, a binary semaphore can be viewed a particular
instance of a counting semaphore by encoding the value 1 by true and the value 0 by
false.

5.6 Bounded Buffer with Binary and Counting Semaphores in Java

Now we present the Java implementation of a bounded buffer, called bBuffer, of size
N (> 0) which, instead of a monitor, uses binary and counting semaphores. This imple-
mentation consists of the following class BoundedBuffer. The statements for tracing can
be deleted if not necessary. The array indexes in and out point to the cells of the buffer

78

where items should be put in and taken from, respectively. We stipulate that the indexes
in and out range over the set {0, . . . , N} and they are both initialized to 0.

Notice that the number of the items present in the buffer is not determined by the
values of in and out. Indeed, if in=out then the number of items can be either 0 or N .

The two statements below with the comment ‘// tracing’ are needed for tracing the
behaviour of the buffer and they can be deleted if so desired.

The reader may also refer to Section 4.5 where we have presented the same bounded
buffer example written in an abstract programming language. Notice that in our Java
implementation below, we use the two semaphores mutex_P and mutex_G, instead of a
single binary semaphore, and thus, it is possible to execute the method put(item) together
with the method get(), at the same time, by two distinct threads on the same object of
the BoundedBuffer class. However, those two methods will never be executed at the same
time on the same cell, because the counting semaphores notEmpty and notFull will force
one of the two methods to wait.

We assume that the BoundedBuffer class is saved on a file named BoundedBuffer.java.

public class BoundedBuffer {
private Object [] bBuffer ;
private final int N ;
private int in = 0;
private int out = 0;
BinarySemaphore mutexP = null ;
BinarySemaphore mutexG = null ;
CountingSemaphore notEmpty = null ;
CountingSemaphore notFull = null ;

public BoundedBuffer(int N) {
this.bBuffer = new Object [N];
this.N = N ;
this.mutexP = new BinarySemaphore(true);
this.mutexG = new BinarySemaphore(true);
this.notEmpty = new CountingSemaphore(0);
this.notFull = new CountingSemaphore(n);

public void put(Object item) {
notFull.Wait(); // wait until the buffer becomes not full
mutexP.Wait(); // wait for mutual exclusion
bBuffer [in] = item;
System.out.println("−> " + item.toString()); // tracing
in = (in + 1) % N ;
mutexP.Signal(); // signal for mutual exclusion
notEmpty.Signal(); // notify a waiting consumer, if any

}

79

public Object get() {
notEmpty.Wait(); // wait until the buffer becomes not empty
mutexG.Wait(); // wait for mutual exclusion
Object item = bBuffer[out];
System.out.println(" " + item.toString() + " −>"); // tracing
out = (out + 1) % N ;
mutexG.Signal(); // signal for mutual exclusion
notFull.Signal(); // notify a waiting producer, if any
return item;

}
}

Notice that we did not write the keyword synchronized in the above methods put(item)
and get(), because mutual exclusion is indeed guaranteed by the semaphores mutex_P and
mutex_G.

The BoundedBuffer class can be seen in action by using variants of the classes:
(i) Producer, (ii) Consumer, and (iii) BoundedBufferMonitorTester that we have pre-
sented above when describing the Bounded Buffer monitor in Java in Section 5.3. These
variant classes are obtained by replacing every occurrence of the string (or substring)
‘BoundedBufferMonitor’ in the classes presented above by the string (or substring)
‘BoundedBuffer’ (see the statements marked by // — (M)). We assume that these variant
classes are all stored in a single file named BoundedBufferTester.java.

We also assume that the four files:
(i) BoundedBuffer.java,
(ii) BoundedBufferTester.java,
(iii) CountingSemaphore.java, which defines the CountingSemaphore class, and
(iv) BinarySemaphore.java, which defines the BinarySemaphore class,
are all stored in a single folder. Then, if we execute the commands:

javac BoundedBufferTester.java
java BoundedBufferTester 3

we construct a bounded buffer bBuffer with size N = 3 and we get the following output:

−> 1
1 −>

−> 2
−> 3
−> 4

2 −>
−> 5

3 −>
−> 6

4 −>
−> 7

. . .

This output is equal to the one we have obtained in Section 5.3 in the case of the
BoundedBufferMonitorTester class. This output shows that, after a few steps, the buffer

80

of size 3 gets full, and for each item which is taken from the buffer, a new item is put
in it (for instance, after the item 4 is taken out from the buffer, the item 7 is put in it).
This behaviour is due to the fact that the producer puts items in the bounded buffer at a
faster rate (once every 10 ms) than the rate (once every 100 ms) at which the consumer
takes items away from the bounded buffer.

5.7 Five Philosophers Problem in Java

In this section we present a Java monitor for solving the Five Philosophers Problem. This
monitor guarantees:

(i) mutual exclusion,

(ii) the absence of deadlock, and

(iii) the absence of starvation.

We need the following interface Monitor, stored in the file Monitor.java:

public interface Monitor {
public void takeforks(int i);
public void releaseforks(int i);

}

and the following three classes:

(i) ForkMonitor, stored in the file ForkMonitor.java,

(ii) PhilosopherThread, stored in the file ForkMonitorTester.java, and

(iii) ForkMonitorTester, also stored in the file ForkMonitorTester.java:

public class ForkMonitor implements Monitor {
private static int N ;
private static boolean [] freefork ;
public ForkMonitor(int N) {

this.N = N ;
this.freefork = new boolean[N];
for (int i=0; i<n; i++) this.freefork [i] = true;

}

public synchronized void takeforks(int i) {
while (freefork [i] == false)

try { wait(); // availablefork [i].wait ;
} catch (InterruptedException e){};

freefork[i] = false;
while (freefork[(i + 1) % N] == false)

try { wait(); // availablefork[(i + 1) % n].wait ;
} catch (InterruptedException e){};

freefork[(i + 1) % N] = false;
}

81

public synchronized void releaseforks(int i) {
freefork[i] = true;
notify(); // availablefork [i].signal ;
freefork [(i + 1) % N] = true;
notify(); // availablefork [(i + 1) % n].signal ;

}
}

class PhilosopherThread extends Thread {
private int id = 0;
private static ForkMonitor forkMonitor = null ;

public PhilosopherThread(int id, ForkMonitor forkMonitor) {
this.id = id ;
this.forkMonitor = forkMonitor ;

}

public void run() {
while (true) {

try {
sleep(15 + 20 ∗ id); // thinking ——— (†)
forkMonitor.takeforks(id);
System.out.print(id + " "); // id : the eating philosopher
sleep(6); // eating
forkMonitor.releaseforks(id);
} catch (InterruptedException e) {}

}
}

}

public class ForkMonitorTester {
public static void main(String[] args) {

final int N =Integer.parseInt(args [0]);
ForkMonitor forkMonitor = new ForkMonitor(N);
for (int id=0; id<5; id++) new PhilosopherThread(id, forkMonitor).start();

}
}

Notice that from a theoretical viewpoint, we could allow two threads to concurrently run
the releaseforks(id) method. However, we cannot erase the keyword synchronized in the
releaseforks(id) method, because if we call notify() or wait() within a method that is not
synchronized, Java does compile the program but at run time it raises an exception named
IllegalMonitorStateException.

Then if we execute the commands:

javac ForkMonitorTester.java
java ForkMonitorTester 5

82

we construct 5 PhilosopherThread objects, from PhilosopherThread 0 to Philosopher-
Thread 4, and we get the following sequence of eating PhilosopherThreads (below, for
reasons of simplicity, we will refer to these PhilosopherThreads as ‘philosophers’):

0 1 2 0 3 4 1 0 2 0 3 1 0 2 4 1 0 3 2 0 1 ...

Notice that the eating frequency is higher for philosophers who have smaller id. In par-
ticular, philosopher 0 eats 7 times, philosopher 1 eats 5 times, philosopher 2 eats 4 times,
philosopher 3 eats 3 times, and philosopher 4 eats twice. This phenomenon is due to the
fact that the thinking time is longer for philosophers with higher id (see line (†) in the
PhilosopherThread class).

We leave to the reader to show that the above ForkMonitor class guarantees: (i) mutual
exclusion, (ii) absence of deadlock, and (iii) absence of starvation.

5.8 Queue Monitor in Java

In this section we present the implementation in Java of a monitor for queues based on
linked lists. This monitor is realized as a class called QueueMonitor stored in the file
QueueMonitor.java.

public class QueueMonitor {
private class Element { // Element is a member class

private Object datum;
private Element next ;

}
private Element first = null ;
private Element last = null ;
public QueueMonitor(){ // constructor

this.first = null ;
this.last = null ;

}

public synchronized void enqueue(Object datum) {
Element newElement = new Element();
newElement.datum = datum;
newElement.next = null ;
if (first == null){ first = newElement ; }
else { last.next = newElement ; };
last = newElement ;
notify();

}

public synchronized Object dequeue() {
while (first == null)

try {wait();
} catch (InterruptedException e){}

Object datum = first.datum;
first = first.next ;
return datum;

}

83

public synchronized void print() {
Element first1 = first ;
System.out.print("queue: < ");
while (first1 != null) {

System.out.print(first1.datum + " ");
first1 = first1.next ;

};
System.out.println("<");

}
}

We can see this QueueMonitor class in action by using the following QueueUser and Con-
curQueueMonitorTester classes both stored in the file ConcurQueueMonitorTester.java:

class QueueUser extends Thread {
static QueueMonitor queue = null ;
public QueueUser(QueueMonitor queue){

this.queue = queue;
}

public void run() {
queue.print();
queue.enqueue(new Integer(7)); queue.print();
try { sleep(10);
} catch {InterruptedException e) { };
queue.enqueue(new Integer(8)); queue.print();
queue.dequeue(); queue.print();

}
}

public class ConcurQueueMonitorTester {
public static void main(String[] args) {

QueueMonitor queue = new QueueMonitor();
new QueueUser(queue).start();
new QueueUser(queue).start();

}
}

If we execute the commands:

javac ConcurQueueMonitorTester.java
java ConcurQueueMonitorTester

the following classes are generated:

(i) QueueMonitor.class, (ii) QueueMonitor$Element.class, (iii) QueueMonitor$1.class,
(iv) QueueUser.class, and (v) ConcurQueueMonitorTester.class, and we get the follow-
ing output:

84

queue: < <
queue: < 7 <
queue: < 7 <
queue: < 7 7 <
queue: < 7 7 8 <
queue: < 7 8 <
queue: < 7 8 8 <
queue: < 8 8 <

In this output the ‘<’ signs are used to indicate that a number enters the queue from the
right end and exits the queue from the left end.

85

6 Concurrent Programs Based on Handshaking Communications

We will present the pure CCS calculus and the value-passing CCS by Prof. Milner [16].
CCS stands for Calculus for Communicating Systems.

6.1 Pure CCS Calculus

In this section we present the pure CCS calculus by Milner [16]. Here are the syntactic
categories.

- Names: A (A is a given set)
For every name ' we assume a co-name denoted by ' . The set of co-names is A.

We assume that ' = ' for any ' ∈ A.

- Labels: A ∪ A
' ranges over Labels

- Actions: Act = A ∪ A ∪ {τ} (τ is a distinguished element)
α, β, . . . range over Act.
Often the actions in A ∪ A are said to be the visible actions, and the action τ is said to
be the invisible action. A function f from Act to Act is said to be a renaming function
iff f(')=f(') and f(τ)=τ .

- Identifiers
P ranges over Id (Id is a given set)

- Processes
p ranges over Proc p ::= 0 | α.p |

∑
i∈I pi | p1 | p2 | p\L | p[f] | P

where: I is a set of indexes, L ⊆ A is a set of names, and
f is a renaming function.

- Definitions
P =def p

Processes will also be called terms. Process 0 can be viewed as syntactically identical to∑
i∈I pi, whenever I = ∅.

∑
i∈{1,2} pi is also written as p1 + p2. The operators + and |

are commutative and associative.
In definitions we allow ourselves to write =, instead of =def .

Now we define the operational semantics of processes by defining the following relation
α

−→ ⊆ Proc × Proc for each α ∈ Act.

Prefix (the process α.p can do the action α and becomes the process p):

α.p
α

−→ p

Sum:

pj
α

−→ q
∑

i∈I pi
α

−→ q
if j ∈ I

86

Composition (or parallel composition):

p1
α

−→ p′
1

p1 | p2
α

−→ p′
1 | p2

p2
α

−→ p′
2

p1 | p2
α

−→ p1 | p
′
2

p1
"

−→ p′
1 p2

"
−→ p′

2

p1 | p2
τ

−→ p′
1 | p

′
2

Restriction:

p
α

−→ q

p\L
α

−→ q\L
if α /∈ L ∪ L for any set L ⊆ A of names

Relabelling:

p
α

−→ q

p[f]
f(α)
−→ q[f]

for any renaming function f

Identifier:

p
α

−→ q

P
α

−→ q
where P =def p

Definition 1. If A
α

−→ A′ we say that A′ is an α-derivative of A for any α ∈ Act .

We have that, for any action a and any process A and B,

(i) a.A | a.B
a

−→ A | a.B (ii) a.A | a.B
a

−→ a.A |B, and (iii) a.A | a.B
τ

−→ A |B.

We also have that, for any action a and any process A and B,
(a.A | a.B)\{a}

τ
−→ A |B, and neither a-derivative nor a-derivative exists for the term

(a.A | a.B)\{a}.

Let us define the following relations ≈ and = on Proc × Proc. The relation ≈ is
called bisimulation equivalence or bisimilarity, and the relation = is called bisimulation
congruence, or equality when no confusion arises. They are defined as the largest relations
satisfying the following properties:

P ≈ Q iff ∀α ∈ Act . (i) ∀P ′. if P
α

−→ P ′ then (∃Q′. Q
bα

=⇒ Q′ and P ′ ≈ Q′) and

(ii) ∀Q′. if Q
α

−→ Q′ then (∃P ′. P
bα

=⇒ P ′ and P ′ ≈ Q′)

P = Q iff ∀α ∈ Act . (i) ∀P ′. if P
α

−→ P ′ then (∃Q′. Q
α

=⇒ Q′ and P ′ ≈ Q′) and
(ii) ∀Q′. if Q

α
−→ Q′ then (∃P ′. P

α
=⇒ P ′ and P ′ ≈ Q′)

where the relations
α

−→,
α

=⇒, and
bα

=⇒ are defined as follows.

Let t be any sequence of elements in Act, that is, t ∈ Act∗ and ε be the empty sequence.
By t̂ we denote the sequence obtained from t by erasing all τ ’s. We have that τ̂n = ε for
any n≥0. Since α ∈ Act , we have that: if α=τ then α̂=ε else α̂=α. By (

τ
−→)∗ we denote

the reflexive, transitive closure of
τ

−→, that is, for all processes P and Q, P (
τ

−→)∗ Q iff
there exists n≥0 such that P (

τ
−→)n Q. Then,

87

(i) when writing P
t

−→ Q for t = α1 . . .αn and n ≥ 0, we mean that

P
α1−→ . . .

αn−→ Q;

(ii) when writing P
t

=⇒ Q for t = α1 . . .αn and n≥0, we mean that

P (
τ

−→)∗
α1−→ (

τ
−→)∗ . . . (

τ
−→)∗

αn−→ (
τ

−→)∗ Q and τ may occur in t; and

(iii) when writing P
bt

=⇒ Q for t = α1 . . .αn and n≥0, we mean that

P (
τ

−→)∗
β1−→ (

τ
−→)∗ . . . (

τ
−→)∗

βm−→ (
τ

−→)∗ Q where t̂ = β1 . . .βm, for m≥0, is obtained
from t by erasing all τ ’s. Thus, for all processes P and Q, P

ε
=⇒ Q iff P (

τ
−→)n Q for

some n≥0. In particular, for every process P , P
ε

=⇒ P .

Let a CCS context C[_] be a CCS term C without a subterm.
For instance α._, P + _, _ |P , and (_ |P) + Q are CCS contexts. (_|_) is not a CCS
context.

We have that ≈ is an equivalence relation. ≈ is not a congruence, that is, there exist a
context C[_] and two terms t1 and t2 such that t1 ≈ t2 and C[t1] *≈ C[t2]. Indeed, for
some distinct actions a and b in Act, one can show that:

(i) b.0 ≈ τ.b.0 and (ii) a.0 + b.0 *≈ a.0 + τ.b.0.

The proofs are as follows.

(i) holds because b.0
b

−→ 0 and τ.b.0
bb

=⇒ 0 (because τ.b.0
τ

−→
b

−→ 0), and

(ii) holds because a.0 + τ.b.0
τ

−→ b.0 and a.0 + b.0
bτ

=⇒ a.0 + b.0 (and obviously,
b.0 *≈ a.0 + b.0).

One can show that = is a congruence and it is the largest congruence contained in ≈. We
leave as an exercise to the reader to show that:

P | τ.Q ≈ P |Q and P | τ.Q *= P |Q.

The equivalence ≈ satisfies the following laws which hold for any process P , Q, and R,
any action α and β, any set L ⊆ A of names, and any renaming function f .

Monoid laws:
1. P + Q ≈ Q + P
2. (P + Q) + R ≈ P + (Q + R)
3. P + P ≈ P
4. P + 0 ≈ P

τ laws:
5. P + τ.P ≈ τ.P
6. α.τ.P ≈ α.P
7. α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q

Restriction laws:
8. 0\L ≈ 0
9. (P + Q)\L ≈ P\L + Q\L

10. (α.P)\{β} ≈ if α ∈ {β, β} then 0 else α.(P\{β})
Renaming laws:

11. 0[f] ≈ 0
12. (P + Q)[f] ≈ P [f] + Q[f]
13. (α.P)[f] ≈ f(α).(P [f])

88

For any process P we have that 0 |P ≈ P | 0 ≈ P .

Theorem 1. [Expansion Theorem] Let P be
∑

i∈I αi.Pi and Q be
∑

j∈J βj .Qj .

Then P |Q ≈
∑

i∈I αi.(Pi |Q) +
∑

j∈J βj .(P |Qj) +
∑

αi=βj
τ.(Pi |Qj).

Thus, every | can be replaced by +. For instance, for every action a, b, a1, a2, b1, and b2

in Act, we have that:

(i) a.0 | b.0 ≈ a.b.0 + b.a.0
(ii) a1.a2.0 | b1.b2.0 ≈ a1.a2.b1.b2.0 + a1.b1.a2.b2.0 + a1.b1.b2.a2.0 +

b1.a1.a2.b2.0 + b1.a1.b2.a2.0 + b1.b2.a1.a2.0
(iii) a.0 | ā.0 | b.0 ≈ τ.b.0+ a.(ā.b.0 + b.ā.0)+ ā.(a.b.0 + b.a.0)+b.(τ.0 + a.ā.0 + ā.a.0)

Equivalences (i) and (ii) tell us that, if two processes cannot perform a τ action together,
then their parallel composition is reduced to the interleavings of their actions.

An interleaving of two sequences σ1 = 〈a1, a2, . . . , an〉 and σ2 = 〈b1, b2, . . . , bm〉 is a
sequence σ = 〈c1, c2, . . . , cn+m〉 such that: (i) for i = 1, . . . , n+m, ci is either an element
of σ1 or σ2, (ii) if we erase all the ai’s from σ we get σ2, and (iii) if we erase all the bi’s
from σ we get σ1.

Exercise 2. Show that: (i) for every process P , 0 |P ≈ P , and
(ii) for any process P and Q, P + τ.(P + Q) ≈ τ.(P + Q).
Solution of (ii). P +τ.(P +Q) ≈ P +(P +Q)+τ.(P +Q) ≈ P +Q+τ.(P +Q) ≈ τ.(P +Q).

We say that A is stable iff A has no τ -derivatives.
If P ≈ Q and P and Q are stable, then P = Q.

Definition 2. A process A is said to be finite iff it is of the form:

A ::= 0 | α.A |
∑

i∈I Ai

and I is a finite set.

Below we list a system of seven axioms for =. These axioms hold for any process P , Q,
and R, and any action α. The Monoid laws and the τ laws are analogous to those of the
bisimulation equivalence we have listed above.

Monoid laws:
1. P + Q = Q + P
2. (P + Q) + R = P + (Q + R)
3. P + P = P
4. P + 0 = P

τ laws:
5. P + τ.P = τ.P
6. α.τ.P = α.P
7. α.(P + τ.Q) = α.(P + τ.Q) + α.Q

This system of axioms is complete for finite processes, that is, these axioms are sufficient
for showing all equalities between finite processes.

We also have the following equalities which hold for any process P and Q, any action
α and β, any set L ⊆ A of names, and any renaming function f .

89

Restriction laws:
8. 0\L = 0
9. (P + Q)\L = P\L + Q\L

10. (α.P)\{β} = if α ∈ {β, β} then 0 else α.(P\{β})

Renaming laws:

11. 0[f] = 0
12. (P + Q)[f] = P [f] + Q[f]
13. (α.P)[f] = f(α).(P [f])

The following theorem is analogous to Theorem 1 on the facing page.

Theorem 2. [Expansion Theorem] Let P be
∑

i∈I αi.Pi and Q be
∑

j∈J βj .Qj .

Then P |Q =
∑

i∈I αi.(Pi |Q) +
∑

j∈J βj.(P |Qj) +
∑

αi=βj
τ.(Pi |Qj).

Theorem 3. For any process P , Q, and R, any action α, any set L of names, and any
renaming function f , if P = Q we have that:
(i) α.P = α.Q, (ii) P + R = Q + R, (iii) P |R = Q |R, (iv) P\L = Q\L, and
(v) P [f] = Q[f].

The following theorem relates bisimulation equivalence and equality.

Theorem 4. P ≈ Q iff (P = Q or P = τ.Q or τ.P = Q).

Exercise 3. Show that: (i) for every process P , 0 |P = P , and
(ii) for any process P and Q, P + τ.(P + Q) = τ.(P + Q).

6.2 Verifying Peterson’s Algorithm for Mutual Exclusion

Let us consider Peterson’s algorithm for two processes P1 and P2 running in parallel. We
follow the approach described in [21]. The general case for more than 2 processes is left
to the reader.

We begin by presenting the encoding of a boolean variable as a CCS term. A boolean
variable B holding the value true can be encoded as the CCS identifier Bt defined as
follows:

Bt =def brt .Bt + bwt .Bt + bwf .Bf

A boolean variable B holding the value false can be encoded as the CCS identifier Bf
defined as follows:

Bf =def brf .Bf + bwt .Bt + bwf .Bf

The idea behind this encoding is that a boolean variable B is a register that may output
the value it stores through the read actions brt (short for: B is read and returns true)
and brf (short for: B is read and returns false) or it may accept the write actions bwt
(short for: B is written and becomes true) and bwf (short for: B is written and becomes
false). According to the actions that the register performs, either it stays in its original
state (which is either Bt or Bf) or it modifies its state (that is, it goes either from Bt to
Bf or from Bf to Bt).

90

Similar encoding can be done for every variable which may take a finite number of
values.

For the encoding of Peterson’s algorithm we need two boolean variables q1 and q2,
initialized to false, and an integer variable s which may take the value 1 or 2 only and is
initialized either to 1 or 2. Recall that the processes P1 and P2 are defined as follows:

process P1: process P2:

while true do while true do
non-critical section 1; non-critical section 2;
q1 := true; s := 1; q2 := true; s := 2;
await (¬q2) ∨ (s = 2); await (¬q1) ∨ (s = 1);
critical section 1; critical section 2;
q1 := false; od q2 := false; od

and they run concurrently. The definition of process P2 is obtained from that of process
P1 by interchanging 1 and 2.

For the variable q1 we have:

Q1t =def q1rt .Q1t + q1wt.Q1t + q1wf .Q1f
Q1f =def q1rf .Q1f + q1wt.Q1t + q1wf .Q1f

For the variable q2 we have:

Q2t =def q2rt .Q2t + q2wt .Q2t + q2wf .Q2f
Q2f =def q2rf .Q2f + q2wt .Q2t + q2wf .Q2f

For the variable s we have:

S1 =def r1.S1 + w1.S1 + w2.S2
S2 =def r2.S2 + w1.S1 + w2.S2

For the process P1 we have the following three equations, collectively denoted by (†P1):

P1 =def q1wt.w1.P11
P11 =def q2rt .P11 + r1.P11 + q2rf .P12 + r2.P12
P12 =def in.out .q1wf.P1

(†P1)

For the process P2 we have the following three equations, collectively denoted by (†P2):

P2 =def q2wt.w2.P21
P21 =def q1rt .P21 + r2.P21 + q1rf .P22 + r1.P22
P22 =def in.out .q2wf.P2

(†P2)

The initial value of q1 and q2 is false and we take the initial value of s to be 1.
In the above CCS definitions of the process P1 and P2, the critical sections are encoded

by the two sequence of actions ‘in.out ’, while the non-critical sections are not encoded.
Indeed, in order to prove the properties of Peterson’s algorithm we are interested in, there
is no need to encode the non-critical sections and, as the reader may convince himself,
these non-critical sections may be incorporated in the actions q1wt and q2wt, respectively.

The fact that Peterson’s algorithm satisfies the properties of mutual exclusion and
absence of deadlock can be shown by proving the following equivalence:

R ≈ (P1 |P2 |Q1f |Q2f |S1)\L (†)

91

where: (i) L = {q1rt , q1rf , q1wt , q1wf , q2rt , q2rf , q2wt , q2wf , r1, r2,w1,w2} and
(ii) the process R is defined as follows:

R =def in.out .R (mutual exclusion and absence of deadlock)

The above equivalence (†) holds with S2, instead of S1, and also with S1 + S2, instead
of S1, because the initial value of the variable s is insignificant for the validity of that
equivalence.

The equation for P11, and analogously the equation for P21, requires some expla-
nation. When q2 = false ∨ s = 2 holds, process P1 goes from P11 to P12, as desired.
However, process P1 remains at P11 when q2 = true ∨ s *= 2 holds, while it should do so
when ¬ (q2 = false ∨ s = 2) (that is, q2 = true ∧ s *= 2) holds. Thus, our equation for P11
makes process P1 to stay in P11 more often than expected. This forces the presence of
an extra τ -loop in the operational semantics of (P1 |P2 |Q1f |Q2f |S1)\L. Nonetheless,
this extra τ -loop is irrelevant because for every action a, process A, and process P such
that P =def τ.P + a.A, we have that: P ≈ a.A.

Notice that, if we replace the equation P11 =def q2rt .P11 + r1.P11 by the equation
P11 =def q2rt .(r1.P11+ r2.P12) + r1.(q2rt .P11+ q2rf .P12), there is still the possibility
that process P1 stays in P11 more than expected. This happens, for instance, when q2

from true becomes false (i.e., P2 exits its critical section and enters its non-critical section)
during the interval of time between the action q2rt and the action r1 of the subterm
q2rt .(r1.P11 + r2.P12), i.e., the interval of time between the reading of the value of q2

(which is true) and the reading of the value of s (which is 1).

Remark 1. From our discussion above, it follows that if in the initial definitions (†P1)
and (†P2) of processes P1 and P2, we replace the equations:

P11 =def q2rt .P11 + r1.P11 + q2rf .P12 + r2.P12
P21 =def q1rt .P21 + r2.P21 + q1rf .P22 + r1.P22

by the equations:

P11 =def q2rt .(r1.P11+r2.P12) + r1.(q2rt .P11+q2rf .P12) + q2rf .P12 + r2.P12
P21 =def q1rt .(r2.P21+r1.P22) + r2.(q1rt .P21+q1rf .P22) + q1rf .P22 + r1.P22

we still have that: R ≈ (P1 |P2 |Q1f |Q2f |S1)\L. !

Remark 2. If in the initial definitions (†P1) and (†P2) of processes P1 and P2, we replace
the equations:

P12 =def in.out .q1wf.P1
P22 =def in.out .q2wf.P2

by the equations:

P12 =def in1.out1.q1wf.P1
P22 =def in2.out2.q2wf.P2

and we replace R =def in.out .R by R =def in1.out1.R + in2.out2.R, we have that:

R *≈ (P1 |P2 |Q1f |Q2f |S1)\L.

Now let us explain why R ≈ (P1 |P2 |Q1f |Q2f |S1)\L does not hold. Let us first indicate
how to construct a graph G(p) for any given CCS process p:

92

(i) the nodes of G(p) are the distinct equivalence classes in which the bisimulation equiv-

alence ≈ partitions the set N(p) = {q | ∃t ∈ Act∗ p
t

−→ q} of processes, and
(ii) the arcs of G(p) correspond to the operational semantics of CCS in the sense that in

G(p) there is an arc from node r to s with label α, denoted r sα
, iff there exist a

process r̄ in r and a process s̄ in s such that
α

r̄ −→ s̄ for some action α ∈ Act.

Now let us consider the two graphs G(R) and G((P1 |P2 |Q1f |Q2f |S1)\L) depicted
in Figure 17 below. In that figure node 0 denotes the equivalence class of the process
(P1 |P2 |Q1f |Q2f |S1)\L. Since:
(i) 0

τ
−→ 1

τ
−→ 15

τ
−→ 12,

(ii) in state 12 only the in1 action can be performed,

(iii) the only state Z such that R
dτττ
=⇒ Z, that is, R

ε
=⇒ Z, is R itself, and

(iv) in state R both actions in1 and in2 can be performed,
we have that:

R *≈ (P1 |P2 |Q1f |Q2f |S1)\L. !

R1R

R2

out1

in1

in2out2

#τ

B

#τ

B

0
3

2
1

4

6

7

10

11

14

5
8

9

12

13

15

out1

τ τ

τ

τ

τ

τ

τ

τ

τ τ

ττ

τ

in1

in2

out2

in2

out2

in1out1

in2

out2

in1out1

ττ

Fig. 17. Graphs associated with the processes R (left) and (P1 | P2 | Q1f | Q2f | S1)\L
(right). Node 0 is the equivalence class of the process (P1 | P2 | Q1f | Q2f | S1)\L.

When two processes compete for entering the critical section, Peterson’s algorithm allows
overtaking of one process w.r.t. the other process of at most one turn. More precisely,
Peterson’s algorithm ensures that:
(i) after executing ‘q2 := true; s := 2;’ process P2 has to wait at most one execution of
the critical section by process P1, before P2 enters its critical section and, symmetrically,
(ii) after executing ‘q1 := true; s := 1;’ process P1 has to wait at most one execution of
the critical section by process P2, before P1 enters its critical section.

This bounded overtaking property can be proved by showing the following bisimulation
equivalence: Rbo ≈ (P1a |P2a |Q1t |Q2t | (S1+S2))\L where:

P1a =def q2rt .P1a + r1.P1a + q2rf .P1b + r2.P1b
P1b =def in1.out1.q1wf.P1

93

P2a =def q1rt .P2a + r2.P2a + q1rf .P2b + r1.P2b
P2b =def in2.out2.q2wf.P2

Rbo =def τ.in1.out1.in2.out2.R + τ.in2.out2.in1.out1.R
R =def in.out .R

(†Rbo1)

and P1 and P2 are defined by the equations (†P1) and (†P2). Indeed, the definition
of Rbo forces process (P1a |P2a |Q1t |Q2t | (S1+ S2))\L to perform sequences of visible
actions which begin either by in1.out1.in2.out2 or by in2.out2.in1.out1, that is,
(i) after P2 has executed ‘q2 := true; s := 2;’ and P1 has left its critical section (that is,
after out1 in the sequence in1.out1.in2.out2), P2 enters its critical section before P1 may
enter again its critical section and, symmetrically,
(ii) after P1 has executed ‘q1 := true; s := 1;’ and P2 has left its critical section (that is,
after out2 in the sequence in2.out2.in1.out1), P1 enters its critical section before P2 may
enter again its critical section.

Note that: (i) the term P1a denotes the state where process P1 after executing ‘q1 :=
true; s := 1;’ is waiting to enter its critical section (that is, it is waiting to perform the
action in1) and, symmetrically, (ii) the term P2a denotes the state where process P2 after
executing ‘q2 := true; s := 2;’ is waiting to enter its critical section (that is, it is waiting
to perform the action in2).

Note also that in the definition of Rbo above, we cannot erase any of the two τ ’s
because, otherwise, the equivalence Rbo ≈ (P1a |P2a |Q1t |Q2t | (S1+S2))\L would not
hold. Indeed, the process S1 + S2 tells us that the initial value of the variable s can be
either 1 or 2. We also have that Rbo2 ≈ (P1a |P2a |Q1t |Q2t |S2)\L where:

Rbo2 =def in1.out1.in2.out2.R
R =def in.out .R

(†Rbo2)

Finally, we want to remark that in the above equation (†Rbo1) defining the process Rbo, we
cannot replace R by Rbo, and still preserve the equivalence Rbo ≈ (P1a |P2a |Q1t |Q2t |
(S1+S2))\L. Analoguously, in the above equation (†Rbo2) defining the process Rbo2, we
cannot replace R by Rbo2, and still preserve the equivalence Rbo ≈ (P1a |P2a |Q1t |Q2t |
S2)\L. These facts suggest that in order to show the bounded overtaking property, one
may want to use a notion of equivalence which is weaker than ≈, such as the so called trace
equivalence. For instance, we have that a.b.0 + a.c.0 and a.(b.0 + c.0) are trace equivalent
and yet it is not the case that a.b.0+a.c.0 ≈ a.(b.0+ c.0). We leave the study of this issue
to the interested reader.

Since in the equations (†P1) for process P1 we did not encode the non-critical section,
process P1, immediately after exiting its critical section, makes a new request to enter
again its critical section. The same fact holds for process P2. In order to disciplinate
the accesses to the critical sections of the two processes, one may want the bounded
overtaking property to hold for Peterson’s algorithm and, indeed, that property holds.
As a consequence, we have, for instance, that from state 15 of the graph of Figure 17 (in
that state processes P1 and P2 are both executing the await statement because each of
them may enter its critical section by performing a single τ action) it is impossible to
have a sequence of actions that, forgetting the τ actions, is of the form (in1.out1)n, for
some n > 1. The only possible sequence of actions, forgetting the τ actions, begins by
in1.out1.in2.out2 or by in2.out2.in1.out1.

94

In this section we have seen how properties of protocols can be shown by proving
bisimulation equivalences. However, that it is not always simple to reduce the properties
of interest to bisimulation equivalences. An alternative technique for proving properties of
protocols can be found in [22]. It is a technique based on model checking. The interested
reader may find the description of some more techniques in the relevant literature.

There are various automatic tools which can be used for checking whether or not two
processes are bisimulation equivalent. We would like to suggest to the reader to use the
Edinburgh-Sussex Concurrency Workbench [6]. This tool will give him the opportunity
to perform some experiments and better understand the concepts we have introduced in
this section.

6.3 Value-Passing CCS Calculus

In this section we present the value-passing CCS calculus by Milner [16]. Here are the
syntactic categories.

- Variables
x ranges over Vars (Vars is a given set)
Variables get values over the integers Z (see Section 1).

- Arithmetic Expressions
a ranges over AExpr (see Section 1)

- Boolean Expressions
b ranges over BExpr (see Section 1)

- Channels
α ranges over Chan (Chan is a given set)
Let f be a renaming of Channels, that is, a bijection from Channels to Channels.

- Identifiers with arity
P (x1, . . . , xn) ranges over Id (Id is a given set)

- Processes
p ranges over Proc p ::= 0 | τ.p | α!a → p | α?x → p | b → p

|
∑

i∈I pi | p1 | p2 | p\L | p[f] | P (x1, . . . , xn)

where: τ is a distinguished element, I is a set of indexes, and
L is a set of channels.

- Definitions
P (x1, . . . , xn) =def p

Processes will also be called terms. The familiar construct if b then p1 else p2 is an
abbreviation for (b → p1) + (¬b → p2).
α!a → p means that the value of the arithmetic expression a is sent along the channel
α and then the process α!a → p becomes p. α?x → p means that a value can be
received along the channel α and if the value which is actually received is n then the
process α?x → p becomes p[n/x], that is, the process p where all free occurrences of the
identifier x have been replaced by n.

Instead of α?x → p and α!a → p, we also write αx . p and αa . p, respectively. In
definitions we allow ourselves to write =, instead of =def .

95

Definitions of the form P (x1, . . . , xn) =def p can be avoided by replacing the pro-
cess P (x1, . . . , xn) by the process rec P (x1, . . . , xn).p where rec is a new constructor for
processes [22].

Now we define the operational semantics of processes by defining the relation:
λ

−→ ⊆ Proc×Proc, for each λ∈{α?x |α∈Chan, x∈Vars} ∪ {α!n |α∈Chan, n∈Z} ∪ {τ}.
a → n means that the integer n is the value of the arithmetic expression a. b → true
means that true is the value of the boolean expression b.

Guarded processes:

τ.p
τ

−→ p

(α?x → p)
α?n
−→ p[n/x]

a → n

(α!a → p)
α!n
−→ p

b → true p
λ

−→ p′

(b → p)
λ

−→ p′

Sum:

pj
λ

−→ q
∑

i∈I pi
λ

−→ q
if j ∈ I

Composition (or parallel composition):

p1
λ

−→ p′
1

p1 | p2
λ

−→ p′
1 | p2

p2
λ

−→ p′
2

p1 | p2
λ

−→ p1 | p′
2

p1
α?n
−→ p′

1 p2
α!n
−→ p′

2

p1 | p2
τ

−→ p′
1 | p

′
2

p1
α!n
−→ p′

1 p2
α?n
−→ p′

2

p1 | p2
τ

−→ p′
1 | p

′
2

Restriction:

p
λ

−→ p′

p\L
λ

−→ p′\L
if for some value n, λ is α?n or λ is α!n then α /∈ L

Relabelling:

p
λ

−→ p′

p[f]
f(λ)
−→ p′[f]

Identifier:

p
λ

−→ q

P (x1,..., xn)
λ

−→ q
where P (x1, . . . , xn) =def p

Recursion:

p[(rec P (x1,..., xn).p)/P (x1,..., xn)]
λ

−→ q

rec P (x1,..., xn).p
λ

−→ q

96

The following laws and Theorem 5 are extensions to value-passing CCS of the correspond-
ing laws and Theorem 1 which we have stated for pure CCS in Section 6.1. In these laws
and theorem (i) p, q, and r denote processes, and (ii) γi.p and δj.p denote any of the
following: (ii.1) τ.p, (ii.2) α?x → p, and (ii.3) α!a → p.

Monoid laws:
1. p + q ≈ q + p
2. p + (q + r) ≈ (p + q) + r
3. p + p ≈ p
4. p + 0 ≈ p

τ laws:
5. γ.τ.p ≈ γ.p
6. p + τ.p ≈ τ.p
7. γ.(p + τ.q) + γ.q ≈ γ.(p + τ.q)

The following theorem is analogous to Theorem 1 on page 88 and Theorem 2 on page 89.

Theorem 5. [Expansion Theorem] Let p be
∑

i∈I γi.pi and q be
∑

j∈J δj .qj. Then

p | q ≈
∑

i∈I γi.(pi | q) +
∑

j∈J δj .(p | qj) +∑
γi=α?x, δj=α!a, a→n τ.(pi[n/x] | qj) +∑
γi=α!a, δj=α?x, a→n τ.(pi | qj[n/x]).

6.4 Verifying the Alternating Bit Protocol

Let us suppose that we have a finite stream x1, x2, . . . , xn of data. A sender S wants to
deliver this finite stream to a receiver R by making use of both the medium M1 from S
to R and the medium M2 from R to S. We assume that each medium is unreliable in the
sense that it may loose messages or duplicate them, but loss of messages and duplication
of messages can occur a finite number of times only. More formally, we assume that for
every finite sequence σ = m1, . . . , mk of messages which enters a medium, there exists
a new, finite sequence σ′ which exits from the medium and σ′ is obtained from σ by
replacing one mi by a finite sequence of zero or more mi’s.

Notice that we do not allow a medium to corrupt messages, that is, a message mi of
the sequence σ cannot be replaced by a message different from mi. (Actually, mi can be
replaced by the message mi−1 or mi+1, because this replacement can be simulated by loss
and duplication of messages.) Notice also that a medium is assumed to preserve the order
of messages in the sense that if both mi and mj occur in σ′ and i < j, then mi occurs in
σ′ to the left of mj .

The Alternating Bit protocol allows a reliable transmission of the stream x1, x2, . . . , xn

of data from S to R, even if messages may be lost or duplicated. In order to describe the
Alternating Bit protocol we will find it useful to parameterize both the sender and the
receiver, so that they will be denoted by S(b) and R(b), respectively, where the parameter
b may be 0 or 1.

We need the following notation. If m is a pair of the form: 〈x, b〉 then m1 denotes x
and m2 denotes b. Notice that if m is error then both m1 and m2 are undefined.

We define the unary operator ¬ by stipulating that: ¬1 = 0 and ¬0 = 1.
Then we define the following four CCS processes.

97

(i) A sender process (depicted in Figure 18):

S(b) = inC x. S ′(x, b)
S ′(x, b) = inM1 〈x, b〉. outM2 y . if y = b then S(¬b) else S ′(x, b)

The initial value of b is 1, thus initially, the sender process is S(1).

(ii) A medium process M1 from the sender S(b) to the receiver R(b):

M1 = inM1 m. (outM1 m. M1 + outM1 error . M1)

(iii) A medium process M2 from the receiver R(b) to the sender S(b):

M2 = inM2 y. (outM2 y. M2 + outM2 error . M2)

(iv) A receiver process R(b) (depicted in Figure 18):

R(b) = inM2 ¬b. outM1 m. if m2 = b then outC m1. R(¬b) else R(b).

The initial value of b is 1, thus initially, the receiver process is R(1).

In state S ′(x, b) the sender sends along the medium M1 the datum x together with a bit
b in the form of a pair 〈x, b〉. The bit b may be either 0 or 1. In the definition of the
medium M1 or M2 the error message simulates the loss of a message. In the state R(b)
the receiver sends along the medium M2 the bit ¬b.

The sender and the receiver processes can also be described by the following imperative
procedures (see also Figure 18).

Sender S(b):

σ1: receive x from inC ;
σ2: send 〈x, b〉 to inM1;

receive y from outM2;
if y = b then begin b := ¬b; goto σ1 end ;
goto σ2

Receiver R(b):

ρ: send ¬b to inM2;
receive m from outM1;
if m2 = b then begin send m1 to outC ; b := ¬b end ;
goto ρ

We can show that the Alternating Bit protocol allows a reliable transmission of the stream
x1, x2, . . . , xn of data from S to R by showing that the system:

SYST =def (S(1) |M1 |M2 |R(1))\{inM1, outM1, inM2, outM2}

(depicted in Figure 19) is bisimulation equivalent to the process C defined as follows:

C =def inCx. outC x. C

Process C denotes the behaviour of a perfect channel which delivers in output every
message which it accepts in input.

The equivalence SYST ≈ C can be established by using the laws and the theorem
listed at the end of the previous section. The proof of the equivalence SYST ≈ C proceeds
as follows. Let A denote the set of labels {inM1, outM1, inM2, outM2}.
SYST ≈

≈ {either S(1) communicates via inC or M2 communicates with R(1)} ≈

98

34
56!

!

!

B

.
.1

Sender S(b) :

inCx

b := ¬b

send 〈x, b〉 to inM1;
receive y from outM2

y *= b y = b

34
56!

!

!

B

.
.1

Receiver R(b) :

b := ¬b

outC m1

send ¬b to inM2;
receive m from outM1

m2 *= b m2 = b

Fig. 18. Sender and receiver processes for the Alternating Bit protocol. Initially b = 1.
The initial states are indicated with the incoming diagonal arrow.

#
#

#

BB
S(b) R(b)

M1

M2

inC

inM1 outM1

outM2 inM2

outC

Fig. 19. The system SYST for the Alternating Bit protocol. Initially, b=1.

≈ inC x.(S ′(x, 1) |M1 |M2 |R(1))\A +
τ.(S(1) |M1 | outM2 0.M2 + outM2 error .M2 |

| outM1 m. if m2=1 then outC m1. R(0) else R(1))\A ≈

≈ {either S ′(x, 1) communicates with M1

or M2 communicates with R(1)
or S(1) communicates via inC} ≈

≈ inC x.τ.(outM2y. if y=b then S(¬b) else S ′(x, b) |
| outM1 〈x, b〉. M1 + outM1 error . M1 |M2 |R(1))\A +

inC x.τ.(S ′(x, 1) |M1 | outM2 0.M2 + outM2 error .M2 |
| outM1 m. if m2=1 then outC m1.R(0) else R(1))\A +

τ.inC x.(S ′(x, 1) |M1 | outM2 0.M2 + outM2 error .M2 |
| outM1 m. if m2=1 then outC m1. R(0) else R(1))\A

≈ . . .

Instead of continuing this expansion, for reasons of simplicity, we will consider a smaller
version of the system, called SYSTAB (see Figure 20), where the media M1 and M2 are no
longer present and, instead, the sender S(b) and the receiver R(b) are able to send correct

99

messages and error ’s as well. The case in which an error is sent is also covering the case
when the bit b of a message 〈x, b〉 is modified during transmission (that is, b becomes ¬b).

It will be much simpler to establish that SYSTAB ≈ C, rather than SYST ≈ C.

#
#

B

inC outC
MA

MB

A(b) B(b)

Fig. 20. The simplified system SYSTAB for the Alternating Bit protocol with the sender
A(b) and the receiver B(b). Initially b is 1.

Here are the new definitions of the sender and receiver processes, now called A(b) and
B(b), respectively.

(i) Sender A(b):

A(b) = inC x. A′(x, b)
A′(x, b) = MA 〈x, b〉. A′′(x, b) + MA error . A′′(x, b)
A′′(x, b) = MB y . if y = b then A(¬b) else A′(x, b)

The initial value of b is 1 and, initially, the sender is A(1).

(ii) Receiver B(b):

B(b) = MA m. if m2 = b then outC m1. B′(¬b) else B′(b)
B′(b) = MB ¬b. B(b) + MB error . B(b).

The initial value of b is 1 and, initially, the receiver is B(1).

By expanding the system SYSTAB = (A(1) |B(1))\{MA, MB} we get a sequence of CCS
terms which is depicted in the graph of Figure 21. In that figure we have adopted the
following conventions:
(i) α → m denotes the fact that the message (or bit) m is received from channel α,
(ii) α → (m + n) denotes the fact that the message (or bit) m or n is received from
channel α, and
(iii) m → α denotes the fact that the message (or bit) m is sent out along channel α.

We leave it to the reader to show the equivalence SYSTAB ≈ C. Notice that if the loops
in Figure 21 are performed a finite number of times only, then a message which is sent
by the sender A(b) via channel MA is received by the receiver B(b) after a finite amount
of time, in the sense that, for b ∈ {0, 1}, from the term A′(x, b) |B(b) we derive the term
A′′(x, b) |B′(¬b) after a finite number of applications of the operational semantics rules.
Analogously for messages sent by receiver B(b) to the sender A(b) via channel MB.

The proof that SYSTAB ≈ C shows that the Alternating Bit protocol can cope with
loss of messages, each loss being simulated by an error message output by the medium.

Remark 3. The reader may be unsatisfied by the fact that the equivalence SYSTAB ≈ C
shows that the Alternating Bit protocol is able to cope with loss of messages, because

100

/
/
/

//2

.
.
.
..1

MA → 〈x, 1〉
x → outC

1 → MB

MB → 1
1 → MB

MB → error

MB → (0 + error)
0 → MB

〈x, 1〉 → MA

MA →(〈x, 1〉+error)

!

/
/
/
//2

.
.
.
..1

#

B

inC → x
〈x, 1〉 → MA

MA → error

A(1) | B(1)

A′(x, 1) | B(1)

A′′(x, 1) | B′(0)

A(0) | B(0)
. . .

A′(x, 1) | B(0)

A′′(x, 1) | B′(1)

Fig. 21. The Alternating Bit protocol: Evolution of SYSTAB when b is 1. In this figure all
processes are assumed to be restricted w.r.t. {MA, MB}. The graph below node A(0) | B(0)
is like the graph below node A(1) | B(1), except that 0 and 1 should be interchanged.
When b is 0, the evolution of SYSTAB is obtained from this figure by interchanging 0
and 1.

SYSTAB contains τ -cycles (which corresponds to an indefinite loss and indefinite retrans-
mission), while C does not contain τ -cycles. To satisfy the reader we may consider any
one of the following three approaches.

(1) The first approach is to stipulate that the ability of the Alternating Bit protocol to
cope with loss of messages is formalized by the equivalence SYSTAB ≈ C only in case
the media M1 and M2 do not take the error option infinitely often, that is, there exists a
finite loss of messages only (this is assumption is called fairness assumption).

(2) The second approach is to define the medium M1 and M2 as instances of the following
medium M :

M = inM m.
∑

i∈N
ErrM (i, m)

ErrM (0, m) = outM m. M
ErrM (i+1, m) = outM error . inM m′.ErrM (i, m′)

where N is the set of natural numbers. Thus, along that medium only finite loss of messages
is possible.

(3) Finally, the third approach is to strengthen the definition of bisimilarity so that
τ -cycles are not allowed. The interested reader may look at the discussion concerning
this third approach in [16, pages 147, 166–169]. !

We leave to the reader to show that the Alternating Bit protocol can cope also with
duplication of messages. Notice, however, that the Alternating Bit protocol cannot cope
with corruption of messages.

101

7 Transactions and Serializability in Databases

7.1 Preliminaries

A database is a finite set D of data together with a finite set of operations on D.
Let Loc be a set of locations and Val a set of values. Each element d ∈ D is called a datum.
A datum d is a pair 〈x, v〉 of a location x ∈ Loc and a value v ∈ Val . For each x ∈ Loc
there exists at most one value v ∈ Val , called the value of x, such that 〈x, v〉 ∈ D. Thus,
the set D of data is a finite, partial function from Loc to Val. We denote by dom(D) the
subset of Loc where the partial function D is defined, that is, dom(D) = {x | 〈x, v〉 ∈ D}.
Locations are also called variables.

A transaction is a sequence of (atomic or non-atomic) operations which act on the
database. The atomic operations are the following ones:

input, output, read, write, assignment, commit, and abort.

The input and the assignment operations allow us to assign values to variables. The
output operations allow us to print strings or print values of variables. The read and write
operations behave as follows:

read : Loc → Val read(x) returns the value D(x) of the location x, if any.
read(x) is defined iff x ∈ dom(D).

write : Loc × Val → Void write(x, v) associates the value v to the location x.

Void denotes the empty type and thus, a write operation does not return any value; it only
produces side-effects (in our case, it changes the value of the store). A commit operation
makes permanent the effects of the transaction on the database. An abort operation
cancels the effects of the transaction on the database, that is, the database is left as it
was before the transaction started.

Non-atomic operations are constructed from atomic operations as usual, by using the
semicolon, if-then-else, and the while-do constructs. Thus, for instance, a1; a2 denotes
the operation a1 followed by the operation a2. The begin-end construct is used for
grouping operations.

The following examples show two transactions on a particular database which is a
finite function from a set of account numbers (which are non-negative integers) to a set
of amounts (which are non-negative integers).

Example 1. A deposit transaction. Given an account number acc# and an amount A, the
following transaction deposits the amount A to the account number acc#. The transaction
uses the local variable B.

procedure deposit(acc#, A);
begin B := read(acc#);

write(acc#, B + A);
commit

end
!

Example 2. A transfer transaction. Given in input two account numbers, say from-acc#
and to-acc#, and an amount A, the following transaction transfers the amount A from
the account number from-acc# to the account number to-acc#. The transaction uses the

102

local variable B and has no parameters. The values of the variables from-acc#, to-acc#,
and A are provided via an input operation.

procedure transfer();
begin input(from-acc#, A, to-acc#);

B := read(from-acc#);
if B < A then begin output(‘insufficient funds’); abort end
else begin write(from-acc#, B − A);

B := read(to-acc#);
write(to-acc#, B + A);
output(‘transfer completed’); commit
end

end
!

Now we introduce two more operators, that is, | and +, for constructing non-atomic
operations on databases. The operator | denotes parallelism and the operator + denotes
nondeterminism. The semantics of parallelism is given by the nondeterministic choice
among all possible interleavings of their atomic operations. We explain these notions by
providing the following examples.
Case (1). For atomic operations a1 and a2, we state that a1 | a2 = a1; a2 + a2; a1.
Case (2). For non-atomic operations, say (p1; p2) and (p3; p4), we state that

(p1; p2) | (p3; p4) = (p1; p2; p3; p4) + (p1; p3; p2; p4) + (p1; p3; p4; p2) +
(p3; p1; p2; p4) + (p3; p1; p4; p2) + (p3; p4; p1; p2).

In Case (1) there are two interleavings only: a1; a2 and a2; a1. In Case (2) there are
six interleavings: (p1; p2; p3; p4), (p1; p3; p2; p4), (p1; p3; p4; p2), (p3; p1; p2; p4), (p3; p1; p4; p2),
and (p3; p4; p1; p2).

When two or more transactions are performed in parallel and their atomic operations
are sequentialized according to a particular interleaving, some problems may occur. The
following example shows the occurrence of the so called lost update phenomenon.

Example 3. Two deposit transactions performed in parallel.
Let us assume that in the account number 15 there is the amount of 1000$. If two deposit
transactions T1 and T2 acting on the same account number 15 are done in parallel, we
may have the following undesirable lost update phenomenon. B1 is a local variable of the
first deposit transaction and B2 is a local variable of the second deposit transaction.

time T1 : deposit(15,100$) T2 : deposit(15,200$)

0: B1 := 1000$
1: B2 := 1000$
2: write(15, B2 + 200$)
3: commit
4: write(15, B1 + 100$)
5: commit

In the final state, at time 5, the database for the account number 15 has the amount of
1000$+100$, not the amount of 1000$+100$+200$, as we want to have. !

103

7.2 Serializability Theory

In order to be able to overcome problems like those due to lost updates we may use the
results provided by the so called Serializabilty Theory. Let us begin the study of this
theory by considering the following scenario indicating the way n (≥ 2) transactions are
performed in parallel on a database (see Figure 22 below). The Transaction Manager
receives the atomic operations from these transactions, and then these atomic operations
are ordered in a total order, one after the other, by the Scheduler. In that sense we say
that the atomic operations of the transactions are scheduled by the Scheduler.

transaction-1
...

transaction-n
→ Transaction Manager →

Data Manager:
Scheduler &

Recovery Manager
→ Database

Fig. 22. Handling transactions on a database.

The Recovery Manager ensures that the effects on the database of the committed transac-
tions (that is, those transactions which end with commit) are permanent, while the effects
on the database of the aborted transactions (that is, those transactions which end with
abort) are canceled. In order to restore the state of the database in case of an aborted
transaction, we need to memorize, before executing any transaction t, the initial value of
the variables which are used during that transaction t.

The Serializability Theory which we will study in the following sections, examines
conditions and techniques which ensure that atomic operations of the various transactions
which must be performed on a database are scheduled in a way that bad phenomena, such
as the lost update phenomenon, do not occur.

7.3 An Abstract View of Transactions

In order to present the Serializability Theory we first consider the following abstract view
of transactions.
(i) We replace input operations and assignment operations by write operations using new
locations. For instance, the assignment A := expr is replaced by write(xA, expr), where xA

is a new location associated with A. The variable xA is then considered as a new element
of the domain of the database.
(ii) output operations are discarded.
(iii) We also write c instead of commit, a instead of abort, r(x) instead of read(x), and
w(x) instead of write(x, v). When we write w(x), instead of write(x, v), we abstract away
from the value v. This abstraction does not influence the results of the serializability
theory we present below.

104

Definition 1. An abstract view of a transaction (or a transaction, for short) is a pair
(T, <T) where: (i) T is a finite set of atomic operations, and (ii) <T is an irreflexive,
transitive binary relation on the set T such that the following conditions hold:
(i) T ⊆ {r(x) | x ∈ Loc} ∪ {w(x) | x ∈ Loc} ∪ {a, c} (that is, only the atomic operations
read , write, commit , and abort are considered),
(ii) c ∈ T iff a *∈ T (and, thus, c *∈ T iff a ∈ T) (that is, a transaction is committed iff it
is not aborted),
(iii) ¬∃t ∈ T (a <T t or c <T t) (that is, in a transaction no operation follows a commit
or an abort), and
(iv) ∀x ∈ Loc if {r(x), w(x)} ⊆ T then either r(x) <T w(x) or w(x) <T r(x) (that is, a
read and a write operation on the same location are related by <T).

We will feel free to denote a given transaction (T, <T) by T only. The context will dis-
ambiguate between the two uses of the symbol T . We will also feel free to use the term
‘transaction’ both in the sense of Section 7.1 and in the sense of Definition 1 above.

The binary relation <T on the set T will also be called an order on the set T . For any
two atomic operation t1 and t2 in T , we say that t1 precedes t2 iff t1 <T t2. In Definition 1
we do not insist that <T be the minimal order satisfying Conditions (iii) and (iv) and, in
particular, <T may relate more pairs than those which must be related by Condition (iv).

Example 4. The abstract views of the two transactions T1 and T2 of Example 3 of Sec-
tion 7.1 are the pairs (T1, <T1) and (T2, <T2), respectively, defined as follows:

T1 = {w(xB1), w(x15), c}, <T1 = {〈w(xB1), w(x15)〉, 〈w(x15), c〉, 〈w(xB1), c〉} and
T2 = {w(xB2), w(x15), c}, <T2 = {〈w(xB2), w(x15)〉, 〈w(x15), c〉, 〈w(xB2), c〉}

where the variables xB1 and xB2 stand for the local variables B1 and B2, respectively,
and the variable x15 holds the balance of the account number 15. !

These abstract views (T1, <T1) and (T2, <T2) are depicted in Figure 23 below, where for
any two given atomic operations opi and opj of a transaction T , opi <T opj is denoted
by opi →T opj or simply opi → opj, when T is understood from the context. We omit to
depict arrows which are entailed by transitivity of <T . We adopt the same conventions
also in the subsequent figures.

T1 : w(xB1) −→ w(x15) −→ c T2 : w(xB2) −→ w(x15) −→ c

Fig. 23. The abstract views of the transactions T1 and T2 of Example 3 of Section 7.1.

The relation <T describes the constraints under which the atomic operations of the trans-
action T should be scheduled. By this we mean that the atomic operations of T must be
scheduled as a sequence σ = 〈op1, . . . , opn〉 such that: (i) every atomic operation opi in
T occurs in σ, and (ii) for any two operations opi and opj in σ, if opi <T opj then i < j.
This amounts to say that the scheduler must perform a topological sorting of T using the
relation <T .

105

Obviously, <T is not necessarily a linear order. Indeed, it may be the case that there
exist two atomic operations opi and opj in T such that neither opi <T opj nor opj <T opi

holds. This happens, for instance, in the case of the transaction:

read(x); if p then write(x, 1) else write(y, 2); commit

whose abstract view, depicted in Figure 24, is (T, <T) where:

T = {r(x), w(x), w(y), c} and
<T = {〈r(x), w(x)〉, 〈r(x), w(y)〉, 〈r(x), c〉, 〈w(x), c〉, 〈w(y), c〉}.

CC
CD

6667 CC
CD

6667
T : r(x)

w(x)

w(y)

c

Fig. 24. A transaction T .

In the following Figure 25 we depicted two transactions which are used in the following
Section 7.4.

CC
CD

6667 CC
CD

6667
T1 : w1(x)

r1(x)

w1(y)

c1

CC
CD

6667
T2 :

w2(x)

w2(y)

c2

Fig. 25. The two transactions T1 and T2.

Remark 1. Notice that by Point (i) of Definition 1, we assume that in any given trans-
action and for any location x, there is at most one read operation r(x) and one write
operation w(x) (recall that T is a set, not a multiset). If we want to allow more than one
read operation or more than one write operation, we can do so by distinguishing these
operations using subscripts. For instance, two read operations on the location x will be
denoted by r1(x) and r2(x). Analogously, two write operations on the location x will be
denoted by w1(x) and w2(x). As indicated in [3, page 26], it is possible to modify the
Serializability Theory by allowing more than one read or write operation on the same
location, so that the Serializability Theorem (see Theorem 6 below) continues to hold.

Remark 2. Now we show that is not a restriction to assume that in any given sequence
of atomic operations generated by scheduling a transaction, for any location x, (i) there
is at most one read operation r(x), and (ii) there is at most one write operation w(x).

106

We here present the proof of Property (i) and we leave to the reader the similar proof
of Property (ii). Property (i) is shown by induction on the number of occurrences of the
r(x) operations.

Let us consider a given transaction T and a sequence σ of its atomic operations as it
is generated by the scheduler when the transaction T is executed. Let us assume that σ
has at least two read(x) operations and it is of the following form:

σ1; B := read(x) ; σ2; C := read(x) ; σ3

for some subsequences σ1, σ2, and σ3 and no read(x) operation occurs in σ2. Thus, the
abstract view σ of the sequence σ of the scheduled operations of the given transaction T
is of the form:

σ1 ; r(x) ; w(xB) ; σ2 ; r(x) ; w(xC) ; σ3 (†)

where, for i = 1, 2, 3, σi is the abstract view of the sequence σi of operations, and the
variables xB and xC hold the values of B and C, respectively. Unfortunately, in this
sequence (†) we have at least two r(x) operations.
(Case 1) Let us assume that in the subsequence σ2 there is no write operation on the
variable x. Then we can modify the scheduling of the given transaction T as follows:
(i) we erase the assignment C := read(x), and (ii) we replace C by B in σ3. Since B
and C have the same value, the resulting transaction performs the same changes on the
database. Thus, as desired, the abstract view of the sequence of scheduled operations of
T is of the form:

σ1 ; r(x) ; w(xB) ; σ2 ; σ3[wB/wC]

where σ3[wB/wC] is σ3 with wB, instead of wC. This resulting sequence has one occurrence
of r(x) less than the sequence (†).
(Case 2) Let us suppose that in the subsequence σ2 there is at least one write operation
on the variable x, and let write(x, e), for some expression e, be the last one of these write
operations. Then we can modify the given transaction T as follows: (i) we erase from
σ2 all write operations on x, except the last one, (ii) we replace this last operation by
write(y, e), where y is a new location, and (iii) we replace any subsequent reference to x
by y (in particular, we replace C := read(x) by C := read(y)). The modified transaction
performs the same changes on the database as the original transaction T , modulo the
renaming of x into y.
The abstract view of the sequence of the scheduled operations of the modified transaction
is of the form:

σ1 ; r(x) ; w(xB) ; σ21 ; w(y) ; σ22 ; r(y) ; w(xC) ; σ3[y/x]

where σ21 and σ22 are some subsequences of atomic operations, and σ3[y/x] is σ3 with y, in-
stead of x. This resulting sequence has one occurrence of r(x) less than the sequence (†). !

7.4 Histories and Equivalent Histories

Let us consider a finite set {T1, . . . , Tn} of transactions. For i = 1, . . . , n, every atomic
operation of Ti is given the subscript i. We also assume that all transactions T1, . . . , Tn

are committed, that is, for i = 1, . . . , n, ci ∈ Ti.

107

Definition 2. Let us consider a finite set {T1, . . . , Tn} of transactions. We say that an
operation p is in conflict with an operation q (or p and q are conflicting) iff ∃i, j ∈
{1, . . . , n} (with i and j not necessarily distinct) ∃x ∈ Loc such that

either p is ri(x) and q is wj(x)
or p is wi(x) and q is wj(x).

Definition 3. A history of the finite set {T1, . . . , Tn} of transactions is the pair (H, <H),
where the set H and the irreflexive, transitive order <H satisfy the following conditions:
(i) H =

⋃
i Ti,

(ii) <H ⊇
⋃

i <Ti
,

(iii) for any two conflicting operations p, q ∈ H , we have that either p <H q or q <H p
(but not both, because <H is irreflexive).

We will feel free to denote a history (H, <H) by H only. The context will disambiguate
between the two uses of the symbol H . Notice that in Definition 3 we do not insist that
<H is the minimal order satisfying Conditions (ii) and (iii), that is, <H may relate more
pairs of operations than those which must be related by Condition (iii).

Definition 4. Two histories (H1, <H1
) and (H2, <H2

) of the same set {T1, . . . , Tn} of
transactions are said to be equivalent , written H1 ≈ H2, iff for each pair of conflicting
operations, say p and q, they are resolved in the same way , that is, ∀i, j ∈ {1, . . . , n}
∀p ∈ Ti, q ∈ Tj such that p is in conflict with q, we have that p <H1

q iff p <H2
q.

Obviously, if p and q belong to the same transaction of the set {T1, . . . , Tn}, then it follows
from Definition 3 that for all histories (H1, <H1

) and (H2, <H2
) of the set {T1, . . . , Tn},

p <H1
q iff p <H2

q.
We leave it to the reader to show that ≈ is indeed an equivalence relation, that is, ≈

is reflexive, symmetric, and transitive.

In Figure 26 we show three histories, Ha, Hb, and Hc of the set {T1, T2} of transactions
depicted in Figure 25.

Ha :
CC
CD

CC
CD

6667

6667

w1(x)

r1(x)

w1(y)

c1

<
<
<
<
<E

w2(y) # #w2(x) c2

Hb : # # #

#(((
(((

(((
((Fw1(x) r1(x) w1(y) c1

w2(y) w2(x) c2

Hc : # # #

#

CCCCCG

w1(x) r1(x) w1(y) c1

w2(y) w2(x) c2

Fig. 26. The three histories Ha, Hb, and Hc of the set {T1, T2} of transactions. The trans-
actions T1 and T2 are depicted in Figure 25.

We have that Ha ≈ Hb and Ha *≈ Hc (thus, Hb *≈ Hc).

108

7.5 The Serializability Theorem

Given two transactions T1 and T2, their concatenation, denoted T1 · T2, is the irreflexive,
transitive order which is the union of the following three sets:

- the irreflexive, transitive order relative to the transaction T1,
- the irreflexive, transitive order relative to the transaction T2, and
- {〈a, b〉 | a ∈ T1, b ∈ T2}.

Thus, the order relations within T1 and T2 are preserved and every operation of T1 precedes
every operation of T2.

Definition 5. A history H of the finite set {T1, . . . , Tn} of transactions is said to be
serializable iff there exists a permutation 〈i1, . . . , in〉 of 〈1, . . . , n〉 such that H is equivalent
to Ti1 · . . . · Tin .

Notice that in the above Definition 5 we do not require that there exist two permutations
〈i1, . . . , in〉 and 〈j1, . . . , jn〉 of 〈1, . . . , n〉 so that Ti1 · . . . · Tin is equivalent to Tj1 · . . . · Tjn.

Definition 6. Given a history H of the finite set {T1, . . . , Tn} of transactions, the seri-
alization graph of H , denoted SG(H), is a directed graph such that: (i) the set of nodes
is {T1, . . . , Tn}, and (ii) there is an edge from node Ti to node Tj iff ∃ an operation p of
Ti and an operation q of Tj such that p <H q and p is in conflict with q.

Definition 7. The serialization graph SG(H) of a history H of the finite set {T1, . . . , Tn}
of transactions is said to be acyclic iff there is no i, j ∈ {1, . . . , n}, with i *= j, such that
in SG(H) there is a directed path from Ti to Tj and a directed path from Tj to Ti.

Given the histories of Figure 26, the serialization graph of the histories Ha and Hb is:
T2 −→ T1, while the serialization graph of the history Hc is: T1 −→ T2.

Theorem 6. (The Serializability Theorem) [3] A history H of the finite set {T1, . . . , Tn}
of transactions is serializable iff SG(H) is acyclic.

As an example of application of the above Theorem 6 let us consider the three transactions
of Figure 27 and the histories of Figures 28 and 29. We have that:

(i) Hd ≈ T4 · T5, (ii) He ≈ T5 · T4, and (iii) Hf ≈ Hg ≈ Hh ≈ T6 · T4,
while the histories Hi and Hj are not serializable, because:

SG(Hi) = T4
−→
←− T5 and SG(Hj) = T4

−→
←− T6.

#T4 : r4(x) w4(x) c4

#T5 : r5(x) w5(x) c5

#

/
/
//0

T6 : w6(x) c6

w6(y)

Fig. 27. The three transactions T4, T5, and T6.

109

HHH
HHH

HHH
HHH

HHH
HHI

#

!

Hf : w6(x) r4(x) w4(x) c4 c6

w6(y)

#

!
#

#

#

#

JJ
JJ
JJ
JJ
JJJK

!

Hd : r4(x)

r5(x)He :

w4(x) c4

r5(x) w5(x) c5

w5(x) r4(x) c5 w4(x) c4

r4(x) w4(x) w6(y) c4 c6w6(x)Hg :

w6(x) r4(x) c6 w3(x) c4

w6(y)

Hh :

Hd ≈ T4 · T5

He ≈ T5 · T4

Hf ≈ T6 · T4

Hg ≈ T6 · T4

Hh ≈ T6 · T4

Fig. 28. Some serializable histories of the sets {T4, T5} and {T4, T6} of transactions. The
transactions T4, T5, and T6 are depicted in Figure 27.

The set of all histories of a finite set {T1, . . . , Tn} of transactions is partitioned by the
equivalence relation ≈ into a finite number of equivalence classes. Each equivalence class
contains histories which are : (i) either serializable (and thus, they are associated to a
particular permutation 〈i1, . . . , in〉 of 〈1, . . . , n〉, because they are all equivalent to the
concatenation Ti1 · . . . · Tin) (ii) or not serializable. Obviously, there are at most n! equiv-
alence classes of type (i) and there may be more than one equivalence class of type (ii).

Here is one more example of application of the above Theorem 6. Consider the two
transactions T7 and T8 and the history Hk of Figure 30 on the next page. We have

that history Hk is not serializable because we have that SG(Hk) = T7
−→
←− T8 . Indeed,

the sequence T7 · T8 of transactions may leave a wrong value in the location y and the
sequence T8 · T7 of transactions may leave a wrong value in the location x.

7.6 Locking Protocols

We assume that each location x has a read lock and a write lock. Before performing a
read operation on a location x, the transaction Ti has to obtain the read lock of x. We
also say that Ti has to lock x for reading. The operation of obtaining this lock is denoted
by rl i(x) (rl stands for read lock, and the subscript i denotes the transaction). After
performing the read operation, Ti releases the read lock which it has obtained, and we say

110

#

! *
*
*
**L

#

*
*
**L

r4(x)Hj :

w6(x)

w4(x) c4

c6

w6(y)

#

!
#

#

66
66

668
Hi : r4(x) w4(x)

r5(x) w5(x) c5

c4

Fig. 29. The non-serializable histories Hi and Hj relative to the set of transactions
{T4, T5} and {T4, T6}, respectively. The transactions T4, T5, and T6 are depicted in Fig-
ure 27.

Hk :

CC
CD

6667
T7 :

w7(x)

w7(y)

c7

CC
CD

6667
T8 :

w8(x)

w8(y)

c8

#

B

Fig. 30. The non-serializable history Hk relative to the set of transactions {T7, T8}.

that Ti unlocks x after reading. This operation of releasing the read lock of x is denoted
by ru i(x) (ru stands for read unlock, and the subscript i denotes the transaction). Thus,
instead of performing the read operation ri(x), the transaction Ti performs the sequence
of operations: rl i(x) ; ri(x) ; ru i(x).

Analogously, before performing a write operation on x, the transaction Ti has to
obtain the write lock of x. We also say that Ti has to lock x for writing. The operation
of obtaining this lock is denoted by wl i(x) (wl stands for write lock). After performing
the write operation, Ti releases the write lock which it has obtained, and we say that Ti

unlocks x after writing. This operation of releasing the write lock of x is denoted by wu i(x)
(wu stands for write unlock). Thus, instead of performing the write operation wi(x), the
transaction Ti performs the sequence of operations:
wl i(x) ; wi(x) ; wu i(x).

All operations rl i(x), ri(x), ru i(x), wl i(x), wi(x), and wu i(x) are atomic.

Remark 3. The reader should not confuse the read locks and write locks we have now
presented, with the locks used in Java for controlling the activities of threads. !

In the following Figure 31 we have depicted a diagram showing the acquisition and the
release of locks while a transaction is performed. In that diagram the line goes up when
a lock is obtained and goes down when a lock is released. The line is horizontal when a
lock is neither obtained nor released and time elapses only because a read operation ri(x)
or a write operation wi(x) is performed.

Notice that locks may be released in an order which is not consistent with the order
of acquisition in the sense that, for instance, the sequence of the scheduled operations of
a transaction, say Ti, may be rli(x) ; ri(x) ; wli(y) ; wi(y) ; rui(x) ; wui(y). That sequence
may also be rli(x) ; ri(x) ; wli(y) ; wi(y) ; wui(y) ; rui(x).

Notice also that during a transaction a lock may be obtained after a lock has been
released, and this allows the presence of a ‘valley’ in the diagram of Figure 31 (see the
line between Point (1) and (2)).

111

,,
,
,
,, -- ,

,
,, -

-
-
-
-

-- #

"

(1)
(2)

time

number of locks
obtained

Fig. 31. Number of locks obtained (going up) and released (going down) during a trans-
action.

Now let us introduce the notion which defines when a locking operation is in conflict
with another locking operation of a different transaction.

Definition 8. For any x ∈ Loc and for any two different transactions Ti and Tj, the
locking operation wl i(x) of Ti is in conflict with the locking operation rl j(x) of Tj and
also with the locking operation wl j(x) of Tj.

Thus, a locking operation is in conflict with another locking operation iff (i) they are
relative to the same location, (ii) they belong to two different transactions, and (iii) at
least one of them is an operation to obtain a write lock. We stipulate that:

during the sequence rl i(x) ; ri(x) ; rui(x) and the sequence wl i(x) ; wi(x) ; wu i(x) the
scheduler may schedule other operations of different transactions, but these operations
should not be in conflict with rl i(x) and wl i(x), respectively.

Remark 4. The reasons why the operation ri(x) has been replaced by the sequence of
operations rl i(x) ; ri(x) ; ru i(x) and, analogously, the operation wi(x) has been replaced
by wl i(x) ; wi(x) ; wui(x), are the following ones:
(i) the mutual exclusion requirement for operations that are in conflict, and
(ii) the analogy with Peterson’s algorithm for mutual exclusion.

Indeed, if the operation ri(x) is in conflict with another operation, say wi(x), these
two operations ri(x) and wi(x) have to be scheduled one after the other, so that the
variable x is accessed in a mutually exclusive way. If mutual exclusion is not guaranteed,
the concurrent execution of ri(x) and wi(x) would produce an unpredictable result on the
database. In order to realize mutual exclusion for operations that are in conflict, we act
as in Peterson’s algorithm which executes a so called entry protocol (or trying protocol)
before the critical section and an exit protocol after the critical section. For instance, the
entry protocol for process P1 is (see Section 4.11):

q1 := true; s := 1;
await (¬q2) ∨ (s = 2);

and the exit protocol is:
q1 := false

For the operation ri(x) the entry protocol corresponds to the request rl i(x) of the read
lock and the exit protocol corresponds to the release ru i(x) of the read lock. !

112

Locks can be realized by using test-and-set operations provided by the hardware. The
execution of a test-and-set(x) operation is equivalent to ‘we wait as long as x is true, and
when we find (that is, test) that x is false, we make (that is, set) it true’. After setting x
to true, the execution of test-and-set(x) terminates and we proceed.

We assume that test-and-set(x) operations are atomic, that is, no other operation can
intervene between finding x to be false and setting its value to true. Unfortunately, in
the realization of test-and set operations as we have described it, there is a form of busy
waiting, that is, when a process executes a test-and-set(x) operation, it may perform again
a test of x, even if x was not changed since it was last tested, and these repeated tests of
x may occur an unbounded number of times if x never becomes true.

Locks can be realized by using a test-and-set operations, by taking advantage of the
fact that after the execution of a test-and-set operation on a variable, say x, the value of
x can be made available to all transactions and after reading that value, all transactions
may determine their future operations so to realize restricted accesses to locations as the
accesses allowed by the use of locks.

The reader may find more details on the realization of locks via test-and-set operations
in Section 4.4 and in the relevant literature.

7.7 Two Phase Locking Protocols

A Two Phase Locking protocol (2PL protocol, for short) is a protocol for obtaining locks
which obeys the following two rules.

(R1) When the scheduler receives a request pli(x) to obtain a read lock or a write lock
on location x from the transaction Ti (that is, pli(x) is either rli(x) or wli(x)), the sched-
uler tests whether or not pli(x) is in conflict with any lock already given to any other
transaction. If this is the case, the scheduler stops the transaction Ti, that is, it does not
schedule any other atomic operation of Ti. Otherwise the scheduler gives to the transac-
tion Ti the requested lock and then it may schedule subsequent atomic operations of the
transaction Ti.

(R2) When a transaction has released a (read or write) lock, it cannot subsequently obtain
any more (read or write) locks from the scheduler. !

A 2PL scheduler is a scheduler which adopts a 2PL protocol.
As a result of Rules (R1) and (R2), the sequence of the operations performed by each

transaction according to a 2PL scheduler can be divided into two phases: (i) a growing
phase, during which the transaction obtains locks, and (ii) a shrinking phase, during which
the transaction releases locks.

These two phases give the name to the protocol.
In the following Figure 32 we have depicted a diagram showing the acquisition and

the release of locks while a transaction is performed according to a Two Phase Locking
protocol. Notice that no lock can be obtained after a lock has been released, that is, the
line of the diagram does not go up after it started to go down for the first time. Thus, no
valley is present in the diagram of Figure 32.

We have the following result.

113

"

,,
,
,
,,

,, -
-
--

-
-
-- #

number of locks
obtained

time

Fig. 32. Number of locks obtained (going up) and released (going down) during a trans-
action according to a Two Phase Locking scheduler.

Theorem 7. [3] Any history H which is constructed according to any 2PL protocol is
serializable.

The result of this theorem can be promoted to an iff result. Indeed, a serializable history
which is equivalent to the concatenation T1 · . . . · Tn of transactions, can be constructed
according to a 2PL protocol which, for any i = 1, . . . , n−1, assigns the locks to the
transaction Ti+1 iff all operations of the transaction Ti have been performed.

Note that any history (H, <H) can be constructed by using a protocol, not necessarily a
2PL protocol, which gives the locks to the individual transactions of the history according
to the topological sorting of their atomic operations following the order <H . Obviously,
n (≥2) atomic operations can be done in parallel if : (i) they are not related by <H , and
(ii) n processors are available.

7.8 Strict Two Phase Locking Protocols

In practice, all implementations of 2PL protocols are variants of so called strict 2PL
protocols.

A strict 2PL protocol is a 2PL protocol such that for every transaction T all locks
which are obtained by T are released together, after T performs its commit or abort
operation. More formally, this last condition can be expressed as follows:

if the atomic operations of a transaction T and the atomic operations of obtaining
and releasing (read or write) locks are scheduled according to a sequence σ, and T obtains
and releases (read or write) locks for the locations x1, . . . , xk, then σ is of the form

α ; z ; pu(x1) ; . . .; pu(xk)

where: (i) α is a sequence of the atomic operations of T and the atomic operations for ob-
taining (read or write) locks, (ii) z is either c (commit) or a (abort), (iii) for all j = 1, . . . , k,
pu(xj) is either ru(xj) or wu(xj), that is, the atomic operation for releasing a (read or
write) lock, and (iv) no atomic operations of other transactions are scheduled during the
subsequence pu(x1) ; . . .; pu(xk).

A scheduler which adopts a strict 2PL protocol is called a strict 2PL scheduler.
In the following Figure 33 we have depicted a diagram showing the acquisition and the

release of locks while a transaction is performed according to a strict Two Phase Locking

114

protocol. Notice that after a lock has been released, no lock can be obtained and no read
or write operation can be performed, that is, the line of the diagram cannot go up or stay
horizontal after it started to go down for the first time. Thus, in the diagram of Figure 33
the line goes down from its highest level with a continuous descent without any horizontal
stretch (see the line between Point (1) and (2)).

"

#,,
,
,
,,

,, -
-
-
-
-
--

(1)

(2)

obtained
number of locks

time

Fig. 33. Number of locks obtained (going up) and released (going down) during a trans-
action according to a strict Two Phase Locking scheduler.

7.9 Deadlocks

2PL schedulers and strict 2PL schedulers may determine deadlocks, that is, situations in
which all transaction are stopped, as the following example shows.

Example 5. Let us consider the following two transactions:

T1 : r1(x) −→ w1(y) −→ c1, and
T2 : w2(y) −→ w2(x) −→ c2.

Let us consider the following sequence of operations: rl 1(x) ; r1(x) ; wl2(y) ; w2(y) which
can be generated by a 2PL scheduler or a strict 2PL scheduler. Then, the scheduler cannot
schedule wl2(x) (for the operation w2(x)) because it is in conflict with rl 1(x). Thus, the
transaction T1 is stopped. Neither the scheduler can schedule wl1(y) (for the operation
w1(y)) because it is in conflict with wl2(y). Thus, also the transaction T2 is stopped. Since
both transactions are stopped, the remaining operations of T1 and T2 cannot be scheduled
according to any 2PL scheduler (or any strict 2PL scheduler). !

In order to avoid deadlocks, the scheduler may either (i) abort a transaction which has not
performed any operation for too long (this transaction is called the victim transaction),
or (ii) keep a directed graph, called waits-for graph. The nodes of this graph are the
transactions and for every i and j, with i *= j, there is an edge from transaction Ti to
transaction Tj iff Ti is waiting for Tj to release a lock, that is, Ti requests a lock which is
in conflict with one which Tj has obtained and not released yet. There is a deadlock iff
the waits-for graph has a cycle. To avoid a cycle is sufficient to abort one transaction in
that cycle.

115

7.10 Conservative Two Phase Locking Protocols

It is possible to construct 2PL schedulers which never abort transactions. They are called
conservative 2PL schedulers because they adopt particular 2PL protocols called conser-
vative 2PL protocols. Conservative 2PL schedulers give to any transaction all its locks
before any other operation of that transaction is performed. For these schedulers to work
it is necessary that each transaction tells the scheduler its readset and its writeset : they
are defined as follows.

The readset of a transaction T is the smallest set of locations such that a location x
belongs to it if there exists an execution of T in which the operation read(x) is performed.
Analogously, the writeset of a transaction T is the smallest set of locations such that
a location x belongs to it if there exist a value v and an execution of T in which the
operation write(x, v) is performed.

A conservative 2PL scheduler may delay operations ahead of time, that is, before than
it is really necessary.

In the following Figure 34 we have depicted a diagram showing the acquisition and the
release of locks while a transaction is performed according to a conservative Two Phase
Locking protocol. Notice that first all locks are obtained, then read and write operations
are performed, and finally, all locks are released, that is, the sequence of the operations of
a transaction, say Ti, scheduled according to a conservative 2PL scheduler, is of the form:

(rli(. . .) + wli(. . .))∗ ; (ri(. . .) + wi(. . .))∗ ; (rui(x) + wui(. . .))∗

Thus, in Figure 34 the line first goes up without any horizontal stretch, then having
reached its highest level, it stays horizontal, and finally, it goes down without any other
horizontal stretch.

"

#

-
-
-
-
-,

,
,
,
,

number of locks
obtained

time

Fig. 34. Number of locks obtained (going up) and released (going down) during a trans-
action according to a conservative Two Phase Locking scheduler.

Remark 5. In some applications, given a set of transactions, we do not want the serializ-
ability of the histories of that set, and instead, we want the mutual exclusion of the various
transactions, that is, the various transactions can be performed in any order we like as
long as they access the data base in a mutually exclusive way. The reader may look at
the previous Sections 4.5, 4.7, 4.8, and 4.11, where various techniques for ensuring mutual
exclusion are presented. These techniques are based on constructs such as semaphores,
critical regions, conditional critical regions, and monitors. !

116

8 Appendix: A Distributed Program for Computing Spanning
Trees

In this appendix we present a sequential Java program which implements the distributed
algorithm we have described in Section 4.12 on page 51 for computing a spanning tree
of any given finite, undirected, connected graph represented as an array, called node,
of N (> 1) nodes. That array is defined as follows: Node [] node = new Node [N]. As
indicated in Section 4.12, for n∈{0,. . .,N−1}, each node n of the graph is represented as
a triple of arrays: node[n].pArray, node[n].mArray, and node[n].sArray, respectively.
The triple representing the node n is denoted by 〈P (n), M(n), S(n)〉, when we refer to it
outside the Java program. We assume that the nodes of the given graph are left unmarked.

Our sequential Java program is made out of the two classes DistributedSpanningTree
and ZeroOneGraph, and implements the distributed algorithm consisting of the rewriting
rules ρ1!, ρ2!, and ρ3! listed below. That Java program implements the distributed
algorithm in the sense that it satisfies the following property: for every execution of the
Java program which makes a sequence σ of k (≥0) rule applications in the set ρ1!; (ρ2!+

ρ3!)*, there exists an execution of the distributed algorithm which performs the same
graph transformation by making a partial order π of k rule applications (indeed, some of
these rule applications may be made in a concurrent way in different nodes of the graph)
and π is consistent with the total order denoted by the sequence σ.

Our Java program implements the following rewriting rules which are applied in an
atomic way : when a rule is applied to node n, no rule can be applied in any of the nodes
in P (n) ∪ S(n). The root node is n0. Note that rule ρ3!, instead of referring to the array
E, may equivalently refer to the array M , because we assume that those two arrays are
stored in the same locations.

ρ1!: For each node p∈P (n0), S(p) ⇒ S(p)−{n0} (the root has no father)
〈P (n0), M(n0), S(n0)〉 ⇒ 〈{}, {}, S(n0)〉
For each node s∈S(n0), M(s) ⇒ {n0} (sending ⊗ to each successor of the root)

ρ2!: Consider a node n such that there exists a node i ∈ M(n) and (either S(n)={} or
P (n) ∩ S(n) *={}).
For each node p∈P (n)−{i}, S(p) ⇒ S(p)−{n} (node i becomes father of node n)
〈P (n), M(n), S(n)〉 ⇒ 〈{i}, {}, S(n)〉 (erasing ⊗ arriving at node n)
For each node s∈S(n), M(s) ⇒ M(s) ∪ {n} (sending ⊗ to each successor of node n)

ρ3!: Consider a node n such that S(n)=E(n) (all sons of n have sent # to n)
and there exists a node i such that P (n)={i}. (node i is the father of node n)
E(i) ⇒ E(i) ∪ {n} (sending # from node n to node i)

These rules are exactly those (with the same name) listed on page 56 except that the first
components of the 4-tuples are dropped (and they became triples). Those first components
can be dropped because: (i) they store the names of the nodes, and (ii) for those names
we can use the indexes of the array of nodes that represents the graph.

The algorithm terminates iff all sequences of rule applications that can be generated
by the algorithm terminate, and a sequence σ of rule applications terminates (or the

117

Termination Condition holds for σ) iff a finite (proper or not) prefix of σ leads to a
situation where all sons of the root node n0 have sent an end-token to the root node.

One can show that the Termination Condition holds for a sequence σ of rule applica-
tions if we assume that: (i) the Finite Delay hypothesis holds for σ, and (ii) the following
two Conditions (C1) and (C2) hold.

Finite Delay Hypothesis for the sequence σ of rule applications:
if a (proper or not) prefix σ1 of σ leads to a situation where a rule can fire at a node,
then
(i) either for some non-empty subsequence σ2 of rule applications we have that σ =
σ1; σ2 (informally, if a rule can fire at a node, then there is a rule, maybe a different
one, which actually fires at a node, maybe a different one, within a finite time),
(ii) or there is a (proper or not) prefix of σ for which the Termination Condition holds.

Condition (C1): Rule ρ1! is applied to the root node n0 only once and only at the
beginning of the computation.

Condition (C2): Rule ρ3! is applied to every unmarked node at most once.

Recall that this condition C2 can been enforced by using in rule ρ3! the property: S(n)=
E(n) ∧ ∃ i, P (n)={i} ∧ n *∈ E(i), instead of the property: S(n)=E(n) ∧ ∃ i, P (n)={i}.
Thus, in the Java program we have listed below, before applying ρ3! to the node nRho3
we also make the test: node[iRho3].mArray[nRho3] == 0 (this test checks that n *∈ E(i)
holds).

In our program below we have ensured the Finite Delay hypothesis holds by realizing
a sequence of rule applications which complies with the following metarule A:

apply ρ1! once to the root node; Metarule A
do { if there exists a node where ρ2! can be applied, then apply it once to that node;

if there exists a node where ρ3! can be applied, then apply it once to that node;
} while (not Termination Condition)

One can show that if there are more than two nodes in the given graph, the rules
ρ2! and ρ3! are such that ρ3! cannot be applied to a node unless ρ2! has been already
applied to that node (this is a consequence of the fact that we test that P (n) is a singleton
before applying ρ2! to node n).

The sequence of rule application complying with the above metarule A, simulates a
sequence of rule applications which may occur in practice in a distributed algorithm for
computing a spanning tree of a given graph.

Note that if we perform a sequence of rule applications which complies with the fol-
lowing metarule B, instead of metarule A:

118

apply ρ1! once to the root node; Metarule B
do { if there exists a node where ρ2! can be applied, then apply it once to that node;

do { if there exists a node where ρ3! can be applied, then apply it once
to that node;

} while (there is a node where ρ3! can be applied)
} while (not Termination Condition)

then termination is not guaranteed, because for any integer k, there is a sequence of rule
applications which: (i) complies with metarule B, (ii) it is longer than k, and (iii) at its
end the Termination Condition does not hold.

This negative result follows from the fact that if rule ρ3! can be applied to some
node, then it can be applied to that same node an unbounded number of times (these
applications may be interleaved with applications of rule ρ3! to other nodes).

In our program we use the constructor ZeroOneGraph(N, PerCentPROB) for generating
a random graph with N of nodes and probability PerCentPROB of arcs between nodes. That
random graph is then transformed into one of its spanning trees by using the rules ρ1!,
ρ2!, and ρ3!.

/**
* ==
*
* DISTRIBUTED SPANNING TREE OF AN UNDIRECTED GRAPH
*
* N is the number of nodes of the finite, undirected, connected graph.
* We assume that N > 1. The nodes are: 0, ..., N-1.
* The initial node should be an element of {0, ..., N-1}.
* ----------------------
* Nodes are 3-tuples of arrays of N elements each:
* <pArray, mArray, sArray>.
* The eArray has been stored in the same locations used by the mArray.
* We know when that array is the mArray and when it is the eArray
* by applying the conditions stated on Section 4.12 of [1].
*
* We identify the instructions where the mArray actually holds
* the eArray by the note: // comment: mArray is eArray
* Thus, we can do with 3-tuples of arrays, rather than 4-tuples.
* ----------------------
* Rule \rho1 is applied once only at the beginning of the computation.
* Rule \rho2 can be applied once only at any node because it uses the
* token in the mArray.
* Rule \rho3 can be applied more than once at a node, but it is
* idempotent, i.e., \rho3(\rho3 (node)) = \rho3 (node).
* We could enforce that at every node \rho3 be applied once only
* (see Section 4.12 of [1]).
*
* Termination occurs when end-tokens are sent to the initNode from
* every son-node of the initNode.
* ----------------------
* Use the boolean variable ‘traceon’ to see the trace of the program.
* ----------------------

119

* [1] A. Pettorossi: Elements of Concurrent Programming. 3rd Edition.
* Aracne 2009.
* ==
*/
public class DistributedSpanningTree {

static boolean traceon = false; // true: for tracing the execution
static int N = 0; // to be read from the input: args[0]
static int initNode = 0; // to be read from the input: args[1]

// --
// An object of the class Node is a node of the graph.
//
// The given graph is an array, named ‘node’ (unfortunately!),
// of N (>1) nodes, each of which is an object of the class Node.
// The name ‘node’ comes from the fact that, during the construction of
// the spanning tree, we manipulate the array ‘node’ so that at the end,
// it will denote a spanning tree of the given graph, and in a tree
// we usually identify a node with the subtree below that node.
// The identifier ‘node’ is declared as follows:
// Node [] node = new Node [N];
// Every component of the array ‘node’ has three components, which are
// the arrays: (i) pArray, (ii) mArray, (iii) the sArray.
// -------------------

static class Node {
int [] pArray; // ‘predecessor nodes’ of the node
int [] mArray; // ‘marking nodes’ of the node

// also ‘end nodes’ of the node
int [] sArray; // ‘successor nodes’ of the node

// constructor
public Node (ZeroOneGraph g) {

this.pArray = new int [N];
this.mArray = new int [N];
this.sArray = new int [N];

}
}

// ------------------------- end of class Node --------------------------
// --
// Method for printing the pArray, mArray, and sArray at every node.
// For instance, in order to print them after applying rule \rho3,
// use: nodePrint(node,true,true,true)
// The three true’s refer to the three arrays pArray, mArray, and sArray,
// respectively. Modify ‘true’ to ‘false’ to print the desired arrays.

static void nodePrint(Node[] node, boolean p, boolean m, boolean s) {
for (int i=0; i<N; i++) {

if (p) {System.out.print("predecessors of node "+i+": ");
for (int j=0; j<N; j++)

{ System.out.print(node[i].pArray[j]+" ");};
System.out.print("\n");
};

if (m) {System.out.print("mArray of node "+i+": ");
for (int j=0; j<N; j++)

{ System.out.print(node[i].mArray[j] + " ");};
System.out.print("\n");
};

120

if (s) {System.out.print("successors of node "+i+": ");
for (int j=0; j<N; j++)

{ System.out.print(node[i].sArray[j]+" ");};
System.out.print("\n");
};

System.out.println();
};

}
// --
// Method for printing the spanning tree which is below the given
// node ‘fromnode’

static void treePrint(Node [] node, int fromNode) {
for (int i=0; i<N; i++) {

if (node[fromNode].sArray[i] == 1) {
System.out.println(fromNode + " -- " + i);
treePrint(node, i); }

};
}

// --
// Method for testing emptiness of an array

static boolean emptyArray(int [] array) {
boolean empty = true;
for (int k=0; k<N; k++) {

empty = empty && (array[k] == 0); };
return empty;

}
// --
// Method for computing the intersection of two arrays

static int [] intersection(int [] aArray, int [] bArray) {
int [] abArray = new int [N];
for (int k=0; k<N; k++) {

abArray[k] = aArray[k] * bArray [k]; };
return abArray;

}
// --
// Method for computing the equality of two arrays

static boolean equal(int [] aArray, int [] bArray) {
boolean eq = true;
for (int k=0; k<N; k++) {

eq = eq && (aArray[k] == bArray [k]); };
return eq;

}
// ==
// main method

public static void main(String[] args) {
// ------------------------------- N is the number of Nodes of the graph.
// N should be greater than 1. The nodes are: 0, ..., N-1.

try {N = Integer.parseInt(args[0]);
if (N < 2) { throw new RuntimeException (); };

} catch (Exception e) {
System.out.println("*** Wrong number of nodes!");
System.exit(1);}

121

// ------------------------------- initNode: initial node.
// initNode is the root of the spanning tree. 0 <= initNode <= N-1.

try {initNode = Integer.parseInt(args[1]);
if ((0 > initNode) || (initNode > N-1)) {

throw new RuntimeException ();
};

} catch (Exception e) {System.out.println("*** Wrong initial node!");
System.exit(1);}

// ==
// PerCentPROB: probability of connectivity. 0 < PerCentPROB <= 100.
// If PerCentPROB = k, every node is connected to the other N-1 nodes
// with probability k/100.

final int PerCentPROB = 40;

// ------------
// Generation of a random graph with N nodes.
// Every node has (N-1) x PerCentPROB / 100 successor nodes (in average).
//
// graph[i][j] = 1 iff there is an arc from node i to node j.
// graph[i][j] = 0 iff there is no arc from node i to node j.

ZeroOneGraph g = new ZeroOneGraph(N, PerCentPROB);
g.graphPrint();
System.out.println("Every node is connected to the other nodes " +

"with probability " + PerCentPROB + " %.");
System.out.println("The initial node is: " + initNode + "\n");

// ‘node’ is the graph: it is an array of N objects
// | each of which is of the class Node
// V

Node [] node = new Node [N];

// ------------
// INITIALIZATION OF THE GRAPH ‘node’
// using the graph ‘g’ generated by the ZeroOneGraph constructor

for (int i=0; i<N; i++) { node[i] = new Node(g);
// predecessor nodes

for (int j=0; j<N; j++) { node[i].pArray[j] = g.graph[j][i]; };
// no mark-tokens: all 0’s

for (int j=0; j<N; j++) { node[i].mArray[j] = 0; };
// successor nodes

for (int j=0; j<N; j++) { node[i].sArray[j] = g.graph[i][j]; };
};

// ==
// ====================== applying rule \rho1 to initNode

// ------ for all p in P(n_0), S(p) => S(p)-{n_0}
for (int p=0; p<N; p++) {

if (node[initNode].pArray[p] == 1)
{ node[p].sArray[initNode] = 0; }

};
// ------ P(n_0) = {}
for (int i=0; i<N; i++) { node[initNode].pArray[i] = 0; };

122

// ------ for all s in S(n_0), M(s) => {n_0}
for (int s=0; s<N; s++) {
if (node[initNode].sArray[s] == 1) {node[s].mArray[initNode] = 1;};

};
// ----------- printing after applying rule \rho1:

if (traceon) { System.out.println(
" ---- Applying \\rho1 to node "+ initNode + "\n");
nodePrint(node,true,true,true); }

// ==
boolean termination; // boolean variable to check termination

// --
//

do { // <--- ‘do-while’ for the rules \rho2 and \rho3

// ====================== applying rule \rho2 if there exists a node
// where it can be applied.
// It is the case that Rule \rho2 is applied at every node at most once.
// No extra condition to test is needed.

boolean applyRho2 = false; // true iff rule \rho2 con be applied
// -1 denotes an undefined initial value

int nRho2 = -1; // node n where the rule \rho2 can be applied
int iRho2 = -1; // node i when the rule \fho2 is applied

// -----------------
searchApplyRho2:
for (int n=0; n<N; n++) { // <--- ‘for’ (of rule \rho2)

// S(n) = {} or P(n) \cap S(n) \not = {}
if (emptyArray(node[n].sArray) ||

!(emptyArray(intersection(node[n].sArray,node[n].pArray)))) {
// finding a node i in M(n)

for (int i=0; i<N; i++) {
if (node[n].mArray[i] == 1) {
applyRho2 = true; nRho2 = n; iRho2 = i;
break searchApplyRho2;
};

};
};

}; // <--- end of ‘for’ (of rule \rho2)
// -----------------
if (applyRho2) { // <--- ‘if’ (of rule \rho2)

// ------ for all p in P(n)-{i}, S(p) => S(p)-{n}
for (int p=0; p<N; p++) {

if (node[nRho2].pArray[p] == 1 && p != iRho2)
{ node[p].sArray[nRho2] = 0; }

};

// ------ P(n) = {i}
for (int i=0; i<N; i++) { node[nRho2].pArray[i] = 0; };
node[nRho2].pArray[iRho2] = 1;

// ------ M(n) = {}
for (int i=0; i<N; i++) { node[nRho2].mArray[i] = 0; };

123

// ------ for all s in S(n), M(s) => M(s) U {n}
for (int s=0; s<N; s++) {if (node[nRho2].sArray[s] == 1)

{ node[s].mArray[nRho2] = 1; }
};

// ----------- printing after applying rule \rho2:
if (traceon) { System.out.println(

" ---- Applying \\rho2 to node "+ nRho2 +"\n");
nodePrint(node,true,true,true); }

}; // <--- end of ‘if’ (of rule \rho2)

// ====================== applying rule \rho3 if there exists a node
// where it can be applied.
//
// Since rule \rho3 can fire infinitely many times at a node if it can
// fire once, in order to ensure termination, we apply rule \rho3
// exactly once to every node where it can be applied by testing the
// extra Condition (***): n \not \in E(i) (see below).

boolean applyRho3; // true iff rule \rho3 con be applied
// -1 denotes an undefined initial value

int nRho3 = -1; // node n where rule \rho3 can be applied
int iRho3 = -1; // node i for rule \rho3

// -----------------
searchApplyRho3:
for (int n=0; n<N; n++) { // <--- ‘for’ (of rule \rho3)

// comment: mArray is eArray
// S(n) = E(n)

applyRho3 = equal(node[n].sArray, node[n].mArray);
// ------ testing card == 1. One predecessor only for node nRho3:
// \exists i. P(n) = {i}
int card = 0;
if (applyRho3) { nRho3 = n;

for (int j=0; j<N; j++) {
if (node[nRho3].pArray[j]==1) {card++; iRho3=j;}

};
};
applyRho3 = (applyRho3 && card==1 && node[iRho3].mArray[nRho3]==0);

// The condition: node[iRho3].mArray[nRho3] == 0 (***)
// avoids more than one application of the rule \rho3 at the
// same node. It is Condition (C2) in [1, Section 4.12]:
// n \not \in E(i)

// -----------------
if (applyRho3) { // <--- ‘if’ (of rule \rho3)

node[iRho3].mArray[nRho3] = 1; // E(i) => E(i) U {n}

// ----------- printing after applying rule \rho3:
if (traceon) { System.out.println(

" ---- Applying \\rho3 to node "+ nRho3 +"\n");
nodePrint(node,true,true,true); };

break searchApplyRho3;
}; // <--- end of ‘if’ (of rule \rho3)
}; // <--- end of ‘for’ (of rule \rho3)

124

// ====================== checking termination S(n_0) == E(n_0)
// comment: mArray is eArray

termination = equal(node[initNode].sArray, node[initNode].mArray);

} while (!termination);// <--- end of do-while for \rho2 and \rho3

// ==
// Printing the spanning tree:

boolean emptyTree = true;
for (int i=0; i<N; i++)

{ emptyTree = emptyTree && (node[initNode].sArray[i] == 0); };
if (emptyTree)

{ System.out.print("The spanning tree starting from " +
"node " + initNode + " is node "+ initNode +" only.\n");}

else { System.out.print("The arcs of a spanning tree, starting " +
"from node " + initNode + "\nand reaching "+
"all the reachable nodes, are: \n");

treePrint(node, initNode); };
} // <--- end of main

} // <--- DistributedSpanningTree class

/**
* input:
* --
* javac DistributedSpanningTree.java
* java DistributedSpanningTree 5 0
*
* output: (with traceon == false)
* ---------------------------------
* The random undirected graph has 5 node(s) (from node 0 to node 4).
* The symmetric adjacency matrix is:
* 0 : 0 0 0 1 1
* 1 : 0 0 0 1 0
* 2 : 0 0 0 0 1
* 3 : 1 1 0 0 0
* 4 : 1 0 1 0 0
*
* Every node is connected to the other nodes with probability 40 %.
* The initial node is: 0
*
* The arcs of a spanning tree, starting from node 0
* and reaching all the reachable nodes, are:
* 0 -- 3
* 3 -- 1
* 0 -- 4
* 4 -- 2
* --
* --
* javac DistributedSpanningTree.java
* java DistributedSpanningTree 4 0
*
* output: (with traceon == true)
* ---------------------------------
* The random undirected graph has 4 node(s) (from node 0 to node 3).
* The symmetric adjacency matrix is:

125

* 0 : 0 0 1 1
* 1 : 0 0 0 1
* 2 : 1 0 0 0
* 3 : 1 1 0 0
*
* Every node is connected to the other nodes with probability 40 %.
* The initial node is: 0
*
* ---- Applying \rho1 to node 0
*
* predecessors of node 0: 0 0 0 0
* mArray of node 0: 0 0 0 0
* successors of node 0: 0 0 1 1
*
* predecessors of node 1: 0 0 0 1
* mArray of node 1: 0 0 0 0
* successors of node 1: 0 0 0 1
*
* predecessors of node 2: 1 0 0 0
* mArray of node 2: 1 0 0 0
* successors of node 2: 0 0 0 0
*
* predecessors of node 3: 1 1 0 0
* mArray of node 3: 1 0 0 0
* successors of node 3: 0 1 0 0
*
* ---- Applying \rho2 to node 2
*
* predecessors of node 0: 0 0 0 0
* mArray of node 0: 0 0 0 0
* successors of node 0: 0 0 1 1
*
* predecessors of node 1: 0 0 0 1
* mArray of node 1: 0 0 0 0
* successors of node 1: 0 0 0 1
*
* predecessors of node 2: 1 0 0 0
* mArray of node 2: 0 0 0 0
* successors of node 2: 0 0 0 0
*
* predecessors of node 3: 1 1 0 0
* mArray of node 3: 1 0 0 0
* successors of node 3: 0 1 0 0
*
* ---- Applying \rho3 to node 2
*
* predecessors of node 0: 0 0 0 0
* mArray of node 0: 0 0 1 0
* successors of node 0: 0 0 1 1
*
* predecessors of node 1: 0 0 0 1
* mArray of node 1: 0 0 0 0
* successors of node 1: 0 0 0 1
*
* predecessors of node 2: 1 0 0 0
* mArray of node 2: 0 0 0 0

126

* successors of node 2: 0 0 0 0
*
* predecessors of node 3: 1 1 0 0
* mArray of node 3: 1 0 0 0
* successors of node 3: 0 1 0 0
*
* ---- Applying \rho2 to node 3
*
* predecessors of node 0: 0 0 0 0
* mArray of node 0: 0 0 1 0
* successors of node 0: 0 0 1 1
*
* predecessors of node 1: 0 0 0 1
* mArray of node 1: 0 0 0 1
* successors of node 1: 0 0 0 0
*
* predecessors of node 2: 1 0 0 0
* mArray of node 2: 0 0 0 0
* successors of node 2: 0 0 0 0
*
* predecessors of node 3: 1 0 0 0
* mArray of node 3: 0 0 0 0
* successors of node 3: 0 1 0 0
*
* ---- Applying \rho2 to node 1
*
* predecessors of node 0: 0 0 0 0
* mArray of node 0: 0 0 1 0
* successors of node 0: 0 0 1 1
*
* predecessors of node 1: 0 0 0 1
* mArray of node 1: 0 0 0 0
* successors of node 1: 0 0 0 0
*
* predecessors of node 2: 1 0 0 0
* mArray of node 2: 0 0 0 0
* successors of node 2: 0 0 0 0
*
* predecessors of node 3: 1 0 0 0
* mArray of node 3: 0 0 0 0
* successors of node 3: 0 1 0 0
*
* ---- Applying \rho3 to node 1
*
* predecessors of node 0: 0 0 0 0
* mArray of node 0: 0 0 1 0
* successors of node 0: 0 0 1 1
*
* predecessors of node 1: 0 0 0 1
* mArray of node 1: 0 0 0 0
* successors of node 1: 0 0 0 0
*
* predecessors of node 2: 1 0 0 0
* mArray of node 2: 0 0 0 0
* successors of node 2: 0 0 0 0
*

127

* predecessors of node 3: 1 0 0 0
* mArray of node 3: 0 1 0 0
* successors of node 3: 0 1 0 0
*
* ---- Applying \rho3 to node 3
*
* predecessors of node 0: 0 0 0 0
* mArray of node 0: 0 0 1 1
* successors of node 0: 0 0 1 1
*
* predecessors of node 1: 0 0 0 1
* mArray of node 1: 0 0 0 0
* successors of node 1: 0 0 0 0
*
* predecessors of node 2: 1 0 0 0
* mArray of node 2: 0 0 0 0
* successors of node 2: 0 0 0 0
*
* predecessors of node 3: 1 0 0 0
* mArray of node 3: 0 1 0 0
* successors of node 3: 0 1 0 0
*
* The arcs of a spanning tree, starting from node 0
* and reaching all the reachable nodes, are:
* 0 -- 2
* 0 -- 3
* 3 -- 1
* --
*/

/**
* ==
* The ZeroOneGraph class
*
* This class ZeroOneGraph defines a undirected graph with N (> 0) nodes.
* ==
*/
import java.util.Random;

public class ZeroOneGraph {
final int N; // N = number of nodes of the graph. N > 0.
static int [][] graph; // an N x N array of 0’s and 1’s.

// --------------------- beginning of constructor -----------------------
public ZeroOneGraph(int N, int PerCentPROB) {
/** Generation of a random, undirected graph with N (> 0) nodes.
* The random variable randomConnect controls the connectivity:
* node i is connected with node j, for i != j, with percent
* probability PerCentPROB: 0 <= PerCentPROB <= 100
*/
this.N = N;
this.graph = new int [N][N];
Random randomConnect = new Random(); // random graph connectivity

// graph[i][j] = 1 iff there is an arc from node i to node j
// graph[i][j] = 0 iff there is no arc from node i to node j

128

for(int i=0;i<N;i++) {
for(int j=i+1;j<N;j++) {

if (randomConnect.nextInt(100) < PerCentPROB)
{ graph[i][j] = 1; graph[j][i] = 1; } // symmetric graph

else { graph[i][j] = 0; graph[j][i] = 0; };// symmetric graph
}

}
}

// --------------------- end of constructor -----------------------------

// --------------------- printing the graph -----------------------------
public synchronized void graphPrint () {

System.out.println("The random undirected graph has "+N+" node(s) "+
"(from node 0 to node " + (N-1) + ").\n" +
"The symmetric adjacency matrix is:");

for(int i=0;i<N;i++) {
System.out.print(i + " : ");
for(int j=0;j<N;j++) {

System.out.print(graph[i][j] + " ");
}; System.out.println();

}; System.out.println();
}

}
// --

Index

abort operation, 101, 104
abstract view of a transaction, 104
action, 85
Alternating Bit protocol, 96
ancestor node, 9
arithmetic expressions:
- operational semantics, 3
atomic sequence of statements, 44
atomicity, 44
atomicity of operations, 17
atomicity of sequences of statements, 17
atomicity of statements, 17, 43

Bakery protocol, 42
bisimilarity, 86
bisimulation congruence, 86
bisimulation equivalence, 86
boolean expressions:
- operational semantics, 3
bounded buffer, 34
busy waiting, 18, 28, 33

CCS calculus: pure calculus, 85
CCS calculus: value passing calculus, 94
CCS context, 87
CCS term, 85
circular buffer, 20, 34
command for semaphores: signal(s), 17
command for semaphores: wait(s), 17
command: multiple fork-join, 8
command: single fork-join, 7
command: await, 42
command: await
- in Peterson’s algorithm, 42, 48
command: cobegin-coend, 9
command: do-od, 5
command: if-fi, 5
command: synchronized, 70
command: try-catch, 66
command: notifyAll()
- for resuming threads, 70

command: notify()
- for resuming a thread, 70
command: sleep(n)
- for suspending a thread, 69, 76
command: wait()
- for stopping a thread, 70
command: join()
- for joining threads, 66
command: start()
- for running a thread, 64
commit operation, 101, 104
ConcurQueueTester.class, 83
condition queue, 70, 71
condition variable, 32
conditional critical region, 28
conflicting operations, 107
consumer, 24
consumer process, 20
control flow, 8
control flow multigraph, 8
cooperation: bad, 38
cooperation: good, 38
critical region, 26
critical regions in Java, 77
critical section, 19, 42, 45

database, 101
datum, 101
deadlock, 24, 114
deadlock in critical regions, 27
deadlock in the distributed computation of
spanning trees, 53
deadlock:
- absence in Peterson’s algorithm, 45, 47, 70,
90
descendant node, 9
detecting termination: Topor’s rules, 59
deterministic commands:
- operational semantics, 4
deterministic computations, 3

130

dining philosophers problem, 36

end-token #, 51
entry procedures, 32
entry protocol, 111
Euclid’s algorithm, 4
exit protocol, 111
Expansion Theorem
- for ≈ in pure CCS, 88
Expansion Theorem
- for ≈ in value-passing CCS, 96
Expansion Theorem
- for = in pure CCS, 89

failure in Peterson’s algorithm, 44
Fair Finite Delay hypothesis, 53, 62
fairness assumption, 100
Finite Delay hypothesis, 54, 117
first-in-first-out policy, 39
five philosophers problem, 36

get operation, 23, 24
guarded commands, 5
guarded commands:
- operational semantics, 6

history, 107
history: equivalence , 107
history: serializable, 108, 113

identifier, 85
instruction: new, 64
interface: EntryExitProtocol, 67
interface: Monitor
(for the forks of the five philosophers), 80
interleaving, 88

Java interface, 65

label, 85
Law (or Theorem) of Expansion
- for ≈ in pure CCS, 88
Law (or Theorem) of Expansion
- for ≈ in value-passing CCS, 96
Law (or Theorem) of Expansion
- for = in pure CCS, 89
laws for τ , 87, 88, 96

laws for monoid, 87, 88, 96
laws for renaming, 87, 89
laws for restriction, 87, 89
linearization of an execution of a distributed
algorithm, 52
location, 101
lock for Java synchronization, 70
lock for reading, 109
lock for writing, 110
lock-free synchronization, 63
locking operation: conflict, 111
locking protocol, 109
locking protocol:
- strict two phase, 113
locking protocol:
- strict two phase scheduler, 113
locking protocol: two phase, 112
locking protocol: two phase,
- growing phase, 112
locking protocol: two phase,
- shrinking phase, 112
lost update problem, 102

mark-token ⊗, 51
matrix multiplication, 11
monitor, 31
monitor: condition, 31
monitor: Java concept, 70
monitor: release procedure, 31
monitor: take procedure, 31
multiple inheritance, 65
mutex queue, 70, 71
mutual exclusion, 115
mutual exclusion for critical sections:
- Java realization using binary semaphores,
77
mutual exclusion:
- in Peterson’s algorithm, 42, 45, 47, 70, 90

name, 85
non-critical section, 42, 45
nondeterministic commands:
- operational semantics, 5
nondeterministic computations, 5
nondeterministic Euclid’s algorithm, 6

131

obtaining a lock, 109
operation in conflict with another, 107
order on a transaction, 104
overtaking:
- bounded in Peterson’s algorithm, 45, 48,
70, 92
overtaking:
- bounded of degree k in Peterson’s algo-
rithm, 45

Peterson’s algorithm for n processes, 49
Peterson’s algorithm for 3 processes, 50
Peterson’s algorithm: n processes, 49
Peterson’s algorithm: two processes, 42, 48
prefix sums, 12
prefix sums:
- time × processors complexity, 17
prefix sums: improved rules, 15
prefix sums: rules, 14
prefix sums: tree of processors, 13
private semaphores, 22
procedures, 32
process, 64, 85
process call, 7
process declaration , 7
process failure:
- in Peterson’s algorithm, 44
process starvation:
- in Peterson’s algorithm, 44
process: dynamic, 7
process: finite, 88
process: operational semantics, 85
process: stable, 88
process: static, 7
producer process, 20
program: BinarySemaphore, 77
program: BoudedBufferMonitor, 73
program: BoundedBuffer, 78
program: BoundedBufferMonitorTester, 75
program: ConcurQueueMonitorTester, 83
program: Consumer, 75
program: Counter, 65
program: CountingSemaphore, 76
program: Fibonacci, 66
program: ForkMonitor, 80

program: ForkMonitorTester, 81
program: MerryChristmas, 64
program: PetersonProtocolTester
- for testing Mutual Exclusion, 69
program: PetersonTwoProcesses, 68
program: PhilosopherThread, 81
program: Producer, 75
program: ProtocolThread, 68
program: QueueMonitor, 82
program: QueueUser, 83
program: RunnableCounter, 65
put operation, 22

QueueMonitor.class, 83
QueueMonitor$1.class, 83
QueueMonitor$Element.class, 83
QueueUser.class, 83

read operation, 104
readset, 115
receive operation, 21
recovery manager, 103
recurrence relations: Fibonacci, 10
releasing a lock, 109
repeat wave, 59
repeats •, 58
run():
- overriding it for constructing a thread, 64
Runnable:
- implementing it for constructing a thread,
65

scheduler, 103
scheduler: locking protocol
- conservative two phase, 115
scheduler: locking protocol
- two phase, 112
semaphore, 17
semaphore: P (s) operation, 17
semaphore: V (s) operation, 17
semaphore: binary, 77
semaphore: boolean, 18
semaphore: counting, 17, 18, 76
semaphore: mutual exclusion, 19
semaphore: parametrized wait operation, 35
semaphore: realized by critical regions, 29

132

semaphore: room, 39
semaphore: signal(s) operation, 17
semaphore: wait(s) operation, 17
send operation, 21
serializability theorem, 108
Serializability Theory, 103
serialization graph, 108
serialization graph: acyclic, 108
spanning tree, 51
starvation, 18, 20, 22, 37
starvation in Peterson’s algorithm, 44
starvation:
- absence in Peterson’s algorithm, 45, 47
state of a thread:
- Enabled, 71
state of a thread:
- Locking the object o, 70
state of a thread:
- Waiting for object o, 70

Termination Condition for distributed com-
putation of spanning trees, 53
termination detection, 58
termination detection algorithm:
- complexity, 62

test-and-set operation, 19
thread, 64
Thread:
- extending it for constructing a thread, 64
token wave, 59
token, black #, 59
token, white %, 59
tokens, 58
transaction, 101, 104
transaction concatenation, 108
transaction manager, 103
trying protocol, 111

unlock after reading, 110
unlock after writing, 110

value, 101
victim transaction, 114

wait-for graph, 114
wait-free synchronization, 63
waiting section, 45
write operation, 104
writeset, 115

133

References

1. P. Ancilotti and M. Boari. Principles and Techniques of Concurrent Programming.
UTET Libreria, 1987. (In Italian).

2. M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice Hall,
1990.

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

4. P. Brinch-Hansen. Structured multiprogramming. CACM, 15(7), 1973.
5. P. Brinch-Hansen. The programming language Concurrent Pascal. IEEE Transactions

on Software Engineering, SE-1(2), 1975.
6. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-

based Verification Tool for Finite-state Systems. In Proceedings of the Workshop on
Automated Verification Methods for Finite-state Systems, Lecture Notes in Computer
Science 407. Springer-Verlag, 1989.

7. M. Conway. A multiprocessor system design. In Proceedings AFIPS Fall Joint Com-
puter Conference, volume 14. Spartan Books, Las Vegas, 1963.

8. E.W. Dijkstra. The structure of the THE multiprogramming system. CACM, 8(5),
1968.

9. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewod Cliffs, N.J.,
1976.

10. Vijay K. Garg. Concurrent and Distributed Computing in Java. Wiley & Sons, 2004.
11. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Specification Language.

Addison-Wesley, Second edition, 2000.
12. C.A.R. Hoare. Towards a theory of parallel programming. In C.A.R. Hoare and

Perrot, editors, Operating Systems Techniques, pages 61–71. Academic Press, New
York, 1972.

13. C.A.R. Hoare. Monitors: An operating system structuring concept. CACM,
17(10):549–557, October 1974.

14. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453–455, 1974.

15. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, 1995.

16. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
17. Department of Defense. Reference Manual for the Ada Programming Language. USA,

Department of Defense, January 1983.
18. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing

Letters, 12(3):115–116, 1981.
19. P. Sestoft. Java Precisely. The MIT Press, 2002.
20. R. W. Topor. Termination detection for distributed computations. Information Pro-

cessing Letters, 18(1):33–36, 1984.
21. D. Walker. Analysing mutual exclusion algorithms using CCS. Technical Report

ECS-LFCS-88-45, LFCS Edinburgh University, Edinburgh (Scotland), 1988.
22. G. Winskel. The Formal Semantics of Programming Languages: An Introduction. The

MIT Press, Cambridge, Massachusetts, 1993.

134

23. N. Wirth. Modula: a programming language for modular multiprogramming. Software
Practice and Experience, 7(1), 1977.

24. N. Wirth. Programming in Modula-2. Springer Verlag, 1982.

