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Abstract In this paper, we study, evaluate and develop the use 
of regularization methods to solve the location problem in 
multilateration systems using Mode-S signals. The Tikhonov 
method has been implemented as a first application to solve the 
classical system of hyperbolic equations in multilateration 
systems. Some simulations are obtained and the results are 
compared with those obtained by the well established Taylor 
linearization and with the Cramér-Rao Lower Bound analysis. 
Significant improvements are found for the application of 
Tikhonov method.
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I. INTRODUCTION

Nowadays, Mode-S Multilateration systems are a feasible 
option to be used in the Air Traffic Control (ATC) 
technological infrastructures, so much so that the European 
Organization for the Safety or Air Navigation 
(EUROCONTROL) published in its report 

[1] that these systems will be 
one of three pillars of the ground based surveillance 
infrastructure for 2020. These systems exploit the SSR Mode-S
(and Mode A/C) signals in order to calculate the position of 
aircrafts and vehicles in the coverage area. They perform the 
localization by solving a system of hyperbolic equations based 
on TDOA technique; the pertaining algorithms run at real time 
in a CPS (Central Processor System) [2].

In some scenarios, it is common to find a typical problem 
for the system of hyperbolic equations to be solved; i.e., the 
coefficient matrix has a very large condition number [3]. This 
problem is defined in the literature as an ill-conditioned 
problem and the consequence of this is that, when the system 
of equation is solved, the solution is not correct or it has a big 
error regarding to the exact solution. The mathematical 
interpretation of this problem goes back to the three conditions 
of Jacques Hadamard [4], namely, the solution exists, the 
solution is unique and the solution depends continuously on the 
data. If at least one of these conditions is not satisfied the 
problem becomes ill-conditioned. On the other hand, the 
effects of this problem in the multilateration systems accuracy 
have been highlighted in [5-6].

Some ill-conditioned problems can be also found in other 
fields as image processing [7], electromagnetic scattering [8] or 
geophysics [9]. In these fields, this problem has been solved by 
applying a group of methods called regularization methods. 
These methods basically convert the ill-conditioned problem in 
a well-
conditions are satisfied. In this paper, the authors study and 
apply one of these methods to solve the ill-conditioned 
problem in multilateration systems.

It is important to emphasize that no specific reference in the 
literature has been found on this topic, with the remarkable 
exception of that published in [10], which is an application for 
passive location system with angle of arrival measurements.

II. LOCATION PROBLEM IN MODE-S MULTILATERATION

In Mode-S multilateration (MLAT) systems, a number of 
ground stations (at least three for 2D or four for 3D) are placed 
in some strategic locations around the airport or the area to be 
covered. The system uses the Mode-S transmission and 
asynchronous transponder (Mode-S) replies as well as the 
responses to interrogations elicited by the MLAT system. 
Then, the signal is sent to a CPS (Central Processing Station) 
where the transponder position is calculated. This calculation is 
based on the Time Difference of Arrival (TDOA) principle, 
where the intersections of multiples hyperbolas (or 
hyperboloids), which have been created with the relative time 
differences, are computed. Each of these hyperbolas follows 
the expression shown in (1).

where c is the velocity of light, (x,y,z) the unknown target 
position (aircraft position) and (xi,yi,zi) is the known position of 
the ith station (i=1 denotes the reference station). Linearizing 
(1) by Taylor series expansion [11-12] is the most accepted 
strategy to solve an inverse problem with the hyperbolic 
equations, in order to estimate the target position. In the current 
literature, the solution of this inverse problem has been 
presented as an iterative procedure in the sense of the Least-
Squares (LS) [11-12]. Denoting the unknown target position as 

and comprising the system measurements (for a 
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number of ground stations) in a vector 
, the final formulation of that method 

can be summarized as follows,

where ; is the Jacobian matrix of 
the hyperbolic equations (1), is the starting point 
required for this method, and 
is a vector comprising the TDOA (see (1)) 
quantities evaluated at the partial solution . Finally, 
because this method is based on an iterative procedure, K is the 
number of refinement iterations.

The solution provided by (2) is the minimum residual norm 
solution and the matrices product is known as the 
pseudoinverse matrix [3]. For some scenarios, due to the 
system geometry, to the measurements noise and to the starting 
point quality, this inverse problem is ill-conditioned and 
therefore, the solution obtained by (2) is not correct or diverges 
with very large errors. The numerical reason is because the 

conditions [3-4].

On the other hand, one feasible option to avoid the above 
problem is to use a horizontal projected version of the Taylor-
series expansion method and solve it with the pseudoinverse 
matrix. This option, although the corresponding coefficient 
matrix is initially well-conditioned, has the disadvantage that it 
adds a spatial bias due to the projection from 3D to 2D in the 
coefficient matrix but not in the measurements. As it will be 
shown in the results, this option normally is more useful for 
surface movements surveillance.

In this paper, we use the Tikhonov regularization [13] 
method to solve the iterative procedure of Taylor-series 
expansion and to avoid those errors due to the ill-conditioned 
problem.

III. SOLUTION OF LOCATION PROBLEM IN MODE-S
MULTILATERATION BY TIKHONOV REGULARIZATION

This method was originally and independently derived by 
Phillips [14] and Tikhonov [13] and it has been used to solve 
the ill-conditioned problems in an important number of 
applications in engineering and science. The main idea of this 
method is to incorporate a priori information about the size and 
smoothness of the final solution. This a priori information is in 
the form of semi-norm. Generally, Tikhonov regularization 
leads to minimize a function that takes the following form,

where is the exact coefficient matrix for the inverse problem, 
is called regularization parameter and is called 

regularization matrix. The regularization parameter controls 
the importance given to the regularization term .

Using the Tikhonov regularization concept, the likelihood 
function [12] for the Mode-S location problem can be 
expressed as follows,

where is the covariance matrix of the TDOA 
measurements noise and det denotes the determinant operator. 
The maximum likelihood solution of (4) is that which 
minimizes the following function,

Solving (5) by Taylor-series expansion, the estimation for 
the unknown target position in the Tikhonov sense takes the 
following form,

where is known in the literature as the regularized inverse 
matrix of Tikhonov [13] and it is defined as follows,

It is worth to say that, due to the fact that the covariance 
matrix , for real applications, is often not known because 
it depends on the true target position, in practice it is common 
remove it from (7), assuming an identity matrix.

The choice of regularization parameter and regularization 
matrix is the most critical aspect to make a correct use of the 
procedure described above. Firstly, the choice of the 
regularization matrix is directly connected with the statistics of 
the target position vector . If the components of are 
assumed to be non-random and uncorrelated, a standard choice 
of the regularization matrix is , where is a 
identity matrix.

On the other hand, the choice of the regularization 
parameter value is not as straightforward as the choice of 
regularization matrix. In the literature there exist a considerable 
number of methods and procedures to calculate/estimate an 
approximated regularization parameter value. These methods 
provide good results for a variety of applications (e.g. image 
processing, biologic computer, remote sensing, electromagnetic 
scattering, etc.) and they are basically based on the solution of 
an optimization problem, i.e., find a parameter that satisfies 
some equalities [15] or find a parameter that minimizes some 
special functions [16-18]. However, it is worth to say that, due 
to nature of these methods, they introduce a significant 
computational load and therefore the computation time can be 
not acceptable for real time location in Mode-S Multilateration.

In this work, we evaluate the problem for several 
regularization parameters values (no more than three) and then 
we choose as true solution the one which corresponds with the 
minimum residual error. This option is feasible for this 
application because the typical size of the coefficients matrices 
(Jacobian matrix) is normally smaller than .

In general, the residual error for an inverse problem is 
given by,
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Figure 1. Linate airport system layout. Figure 2. Horizontal accuracy for Linate airport. Each point in the 
abscissa corresponds to a point in the simulated path.

Remembering that for Taylor-series expansion method, the 
matrix is an approximation of an exact coefficient matrix, 
then (8) could not be a correct value for the residual error 
regarding to the true target position . Therefore, in this work, 
we propose to calculate the residual error by replacing the 
regularized solution in the non-linear TDOA function (1), 
instead in the matrix , as follows,

where the vector is given by,

IV. RESULTS

Preliminary results are shown to validate the improvement 
of the system accuracy and its convergence by applying the 
Tikhonov method in the iterative procedure of Taylor-series 
expansion. Two scenarios have been simulated; the first one is 
the operating system of Linate Airport (Milan, Italy) and the 
second one is a multilateration system which is well described 
and studied by Cramér-Rao Lower Bound -CRLB- analysis in 
[6].

For each scenario, the horizontal (2D) R.M.S error 
(obtained via Monte-Carlo simulation with 100 trials), the 
theoretical accuracy provided by the CRLB [6], the bias of the
estimator and the spatial convergence are calculated.

A. Linate Airport System
The Linate airport system is composed of eight ground 

stations. For this scenario we have simulated a path of surface
movement around the airport. The system layout and simulated 

path are shown in Fig. 1.

For this scenario, the starting point for the Taylor-series 
expansion method has been assumed to be a fixed point over 
the airport and it is shown as the star in Fig. 1. For this scenario 
it has been found that using only one regularization parameter 
value ( ) is enough to obtain satisfactory results.

Fig. 2 shows the horizontal R.M.S error for the horizontal 
projection of Taylor-series expansion method and the non-
projected (3D) version solved by the pseudoinverse matrix. It 
also shows the non-projected (full version) Taylor-series 
expansion method solved by Tikhonov regularization and the 
corresponding CRLB analysis.

Initially, the CRLB analysis predicts a good accuracy over 
the entire path, presenting only a few peaks around the points 
40 and 50, where the horizontal accuracy is slightly larger than 
7 meters. However, for the non-projected Taylor (circles), it 
can be seen how the ill-conditioned problem avoids the 
convergence of the method solved by the pseudoinverse 
matrix, i.e., the R.M.S error tends to infinity in the most of the 
points. On the other hand, the horizontal projected version 
obtains acceptable accuracy levels but the effect of the spatial 
bias is present, for this scenario, in most of the points (more for 
those points within the 30 and 120). Finally, it is evident how 
the solution obtained by applying Tikhonov regularization 
improves both the ill-conditioned problem, which is directly
related with the system accuracy and convergence and the 
spatial bias added for the projected version.

Fig. 3 shows the bias of the estimator for the projected 
version of Taylor as solved by the pseudoinverse and that one 
corresponding to the full version of Taylor as solved by the 
Tikhonov regularization. In this figure it can be noted the 
improvement, regarding to the spatial bias of the horizontal 
projection of Taylor-series method, added by using the 
Tikhonov regularization. This aspect is very important when 
using tracking algorithms (which are present in all the Air 
Traffic Control -ATC- systems) because they can improve the 
R.M.S error of the location algorithm but not the bias. In this 
way, it is clear to see how Tikhonov method also helps to the 
tracking algorithms to reach more accurate tracks.
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Figure 3. Horizontal bias of the estimator for Linate airport. Each point 
in the abscissa corresponds to a point in the simulated path.

Figure 4. Spatial convergence for one trial.

Figure 5. Layout of the MLAT system for a takeoff line. Figure 6. Horizontal accuracy over the takeoff line.

Finally, Fig. 4 shows the spatial convergence for a specific 
Monte-Carlo trial. In this figure it can be observed how the 
solution by Tikhonov regularization allows the Taylor-series 
expansion to ensure the convergence to the true point.

B. MLAT System for a Takeoff Line
This system is composed for four stations and it is well 

analyzed in [6]. The layout of the simulated scenario is shown 
in Fig. 5.

For this scenario, the starting point for the Taylor-series 
expansion method has been obtained by means of the closed 
form algorithm described in [19]. This algorithm is based on 
spherical intersections and it does not need a starting point but, 
as it is shown in the results, it is also affected for the ill-
conditioning of the problem due to the system geometry. The 
horizontal coordinates of the starting point (x,y) are taken from 
the closed form algorithm and the vertical coordinate (z) is 
simulated as the barometric altitude, i.e., with a bias of 40m 
regarding to the real target height. Also for this scenario it has 
been found that only using one regularization parameter value 
( ) is enough to obtain satisfactory results.

The amount of ill-conditioning of this scenario is 
significantly greater than that of the first scenario. It is because 
the number of stations here (four) is much smaller than the first 
one (eight). This effect can be noted in the CRLB analysis 
shown in Fig. 6 since the theoretical accuracy diverges for 
points within 0 and 5 km and for those around 20 km. On the 
other hand, due to the fact that for this scenario, the target 
height is increasing with the distance, the vertical separation of 
this with the plane of the ground stations considerably affect 
the accuracy provided by the horizontal projection of Taylor-
series method (crosses) and the spatial bias added by this is 
considerably large for points beyond 15 km.

Due to the ill-conditioning, it can be observed that, for this 
scenario, the accuracy levels provided by the full version of 
Taylor, using the pseudoinverse matrix, diverges far from the 
theoretical accuracy values (CRLB) for points within 0-5 km 
and 15-20 km. In contrast, the closed form algorithm presents a 
more stable accuracy but it is also affected by system geometry 
(Dilution of Precision -DOP-). Finally, it is evident the 
significant improvement, of the system accuracy, obtained by 
applying Tikhonov regularization. The accuracy for this option 
is stable for the whole of takeoff line and it is not larger than 25 
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Figure 7. Horizontal bias of the estimator over the takeoff line. Figure 8. Spatial convergence for one trial over the takeoff line.

meters. It is worth to say that this solution is below the CRLB 
values because also the CRLB is affected by the ill-
conditioning of the problem, specifically that part due to the 
system geometry.

Fig. 7 shows the bias estimator for the solutions obtained 
by the closed form algorithm and by the full version of Taylor-
series using both pseudoinverse matrix and Tikhonov 
regularization. Firstly, it can be noted that for a few points 
close to 10 km and 15 km, the bias of the solution obtained by 
pseudoinverse is smaller (nor more than 1 m) than that of 
Tikhonov method. It can be explained because in the case of 
well-conditioned problems the pseudoinverse matrix is the 
solution with minimum norm [3] and in contrast Tikhonov 
always adds certain amount of bias [13]. The important aspect 
is that, if the correct regularization parameter value is chosen, 
this amount of bias can be neglected regarding to the rest of the 
options to improve the problem (i.e., the horizontal projection 
of Taylor-series method). Moreover, due to the ill-conditioned 
problem, for the rest of the points, the bias added by 
pseudoinverse matrix solution is infinity and for most of the 
points the bias added by the closed form algorithm has been 
found greater than that of Tikhonov regularization.

Finally, Fig. 8 shows the spatial convergence for a specific 
Monte-Carlo trial; in this figure it can be noted how the 
regularization of the location problem ensures the convergence 
also for this scenario.

V. CONCLUSIONS

The implementation of Tikhonov regularization to solve the 
inverse problem of Taylor-series expansion, for location in 
Multilateration systems, has been described and evaluated. The 
theoretical aspects of the method with a practical strategy to 
calculate the regularization parameter have been described.

For the scenarios simulated here, significant improvements, 
for the system accuracy and convergence, have been found 
with the implementation of Tikhonov regularization. For both 
scenarios, it was found that the regularization of the location 
problem significantly mitigates the ill-conditioning due to the 
system geometry, i.e., those points where the CRLB analysis 
predicts poor accuracy levels; to the measurements noise, i.e., 

those points where the CRLB predicts good accuracy levels but 
the solution obtained by the pseudoinverse matrix diverges; 
and also due to the quality of the starting point for Taylor-
series expansion method.

For both scenarios it was found that a regularization 
parameter value of was enough to obtain satisfactory
results but, it is worth to say that in the situations where the 
problem is better conditioned, it is necessary to use, at least, 
one or two more values smaller than , i.e., the smaller 
the amount of ill-conditioning the smaller should be .

The regularization of the location problem is more useful 
for those situations where the vertical separation between the 
ground stations and the target is quite small or for those 
situations with a small number of stations.
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