
An Efficient Generalization
of Battiti-Shanno’s Quasi-Newton Algorithm

for Learning in MLP-Networks

Carmine Di Fiore, Stefano Fanelli, and Paolo Zellini

Department of Mathematics, University of Rome “Tor Vergata”, Rome, Italy
fanelli@mat.uniroma2.it

Abstract. This paper presents a novel Quasi-Newton method for the
minimization of the error function of a feed-forward neural network. The
method is a generalization of Battiti’s well known OSS algorithm. The
aim of the proposed approach is to achieve a significant improvement
both in terms of computational effort and in the capability of evaluating
the global minimum of the error function. The technique described in
this work is founded on the innovative concept of “convex algorithm”
in order to avoid possible entrapments into local minima. Convergence
results as well numerical experiences are presented.

1 Introduction

It is well known that, in order to determine the global minimum of the error
function of a MLP-network, it is necessary to superimpose global optimization
techniques in the computational scheme of a backpropagation algorithm. An
approach of this type was utilized in [7] to derive a preliminary version of a
“pseudo–backpropagation” method and in [8] to refine the global algorithm in-
troduced in [7] thereby dealing with high-dimensional problems more efficiently.

The latter approach is founded on a new definition, involving both the
mathematical properties of the error function and the behaviour of the learn-
ing algorithm. The corresponding hypotheses, called “non–suspiciousness con-
ditions” (NSC), represent a sort of generalization of the concept of convexity.
Roughly speaking, a “non–suspect” minimization problem is characterized by
the fact that, under general regularity assumptions on the error function, a
“suitable” pseudo-backpropagation algorithm is able to compute the optimal
solution, avoiding unfair entrapments into local minima.

In [7] we proved that under the NSC and with a proper choice of the step-
sizes the optimal algorithm can be obtained by a classical gradient descent-type
scheme.

The present paper has several aims. Firstly, we present a generalization of
OSS algorithm [2]. Secondly, we show that second order methods of Quasi-
Newton(QN)-type can be implemented in the frame of the NSC theory. Thirdly,
we prove that the novel algorithm, named Generalized Battiti (GB), can be
successfully applied to large networks.

N.R. Pal et al. (Eds.): ICONIP 2004, LNCS 3316, pp. 483–488, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

484 Carmine Di Fiore, Stefano Fanelli, and Paolo Zellini

A fundamental contribution towards the implementation of efficient QN-
methods to MLP-networks is based on the utilization of generalized BFGS-type
algorithms, named LQN , involving a suitable family of matrix algebras L (see
[5],[6]). The main advantage of these methods is based upon the fact that they
have an O(nlogn) complexity per step and that they require O(n) memory allo-
cations, where n is the number of network connections. Moreover, LQN methods
are competitive with the most recent L-BFGS algorithms ([13],[14]), since they
perform a sort of optimal second order information compression in the array of
the eigenvalues of the best approximation to the Hessian matrix.

In this paper we show that a simplified variant of LQN methods can be easily
applied in the learning process of an MLP-network. The latter variant represents
a significant improvement of Battiti’s algorithm and is preferable to the L-BFGS
methods utilizing a comparable amount of memory.

2 Generalized BFGS-Type Algorithms

Let us consider the optimisation problem:

min
w∈�n

E(w) (1)

where E(w) is the error function of an MLP -network.
Let us suppose that (1) has a solution w∗ (global minimum) and let Emin

denote the corresponding value of the function E.
Denote by ∇E(w) and by ∇2E(w) the gradient vector and the Hessian

matrix of E in w, respectively. The matrix Bk+1, replacing ∇2E(wk+1) in the
BFGS method, is a rank-2 perturbation of the previous positive definite Hessian
approximation Bk, defined in terms of the two current difference vectors sk =
wk+1 − wk and yk = ∇E(wk+1) −∇E(wk) by the following formula:

Bk+1 = ϕ(Bk, sk,yk) = Bk +
1

yT
k sk

ykyT
k − 1

sT
k Bksk

BksksT
k Bk. (2)

The method introduced by Battiti [2], named OSS, has O(n) complexity per
step, being a simple memory-less modification of equation (2), in which the
identity matrix I is used, instead of Bk, to compute the new approximation Bk+1.
In [2] it is shown that OSS can be extremely competitive with the original BFGS
method to perform optimal learning in a large MLP-network. Unfortunately,
by the very nature of the memory-less approach, the amount of second order
information contained in OSS is considerably reduced in comparison with the
standard BFGS method.

The main problem connected to the calculation of the Hessian approximation
Bk+1 is, in fact, to minimize the computational complexity per iteration, by
maintaining a QN rate of convergence.

In [9] we introduced a generalized iterative scheme, named LQN , where the
matrix Bk+1 is defined by utilizing a suitable matrix B̃k instead of Bk (BFGS)
or I (OSS):

Bk+1 = ϕ(B̃k, sk,yk) (3)

An Efficient Generalization of Battiti-Shanno’s Quasi-Newton Algorithm 485

We point out that in the LQN methods B̃k is in general a structured dense
matrix. The method considered in [13] is instead obtained from (3) by setting :

B̃k =
‖yk‖2

yT
k sk

I (4)

Notice that (4) is the simplest L-BFGS algorithm (i.e. L-BFGS for m = 1 [1]).
We study here other possible choices in the family of matrices:

B̃k = αkI (5)

It is interesting to observe (see [10] for the rigorous proof) that the choice of
αk given in (4) is associated to the minimum value of the condition number of
Bk+1 = ϕ(αkI, sk,yk). In [13],[14] the latter choice was only justified by weaker
arguments based on experimental observations.

In this paper, we have implemented in particular the following values of αk:

α∗
k =

(
1 − 1

n

)
α∗

k−1 +
1
n

‖yk−1‖2

yT
k−1sk−1

(6)




α∗∗
k = α∗∗

k−1 + 1
n−1

(‖yk−1‖2

sT
k−1yk−1

− vT
k vk

sT
k
vk

)
;

vk = α∗∗
k−1

(
sk − sT

k−1sk

‖sk−1‖2 sk−1

)
+ yT

k−1sk

sT
k−1yk−1

yk−1

(7)

The formula (6) can be derived by minimizing ‖αkI − ϕ(α∗
k−1I, sk−1,yk−1)‖F ,

being ‖ · ‖F the Frobenius norm. We underline that the resulting matrix α∗
kI is

the best least squares fit LBk
of Bk in the space L = {zI : z ∈ C} (see [9]),

i.e. (6) gives rise to a LQN method. The formula (7) is obtained by solving the
minimum problem:

min
αk

‖ϕ(αkI, sk,yk) − ϕ(ϕ(α∗∗
k−1I, sk−1,yk−1), sk,yk)‖F ,

or, in other words, by minimizing the distance between Bk+1 and the matrix
defining the search direction in the L-BFGS algorithm, for m=2. In Section 4,we
shall compare the performances of the algorithms based on the use of (5)-(6)
and (5)-(7) with the original OSS and (4).

3 Theoretical Results

The following assumptions, named “non–suspiciousness conditions” were origi-
nally introduced in [3], [12] and redefined in a more suitable form in [7].

Definition 1. The non-suspiciousness conditions hold if ∃λk:
1. ∀εa ∈ �+, ∃εs ∈ �+: ‖∇E(wk)‖ > εs during the optimization algorithm,

apart from k: E(wk) − Emin < εa;
2. λk‖∇E(wk)‖2 ≤ εa;
3. E ∈ C2 and ∃H > 0 : ‖∇2E(w)‖ ≤ H.
The following convergence result was proved in [12](see also [4]):

486 Carmine Di Fiore, Stefano Fanelli, and Paolo Zellini

Theorem 1. Let the non-suspiciousness conditions hold for problem (1). Then,
∀εa ∈ �+, ∃k∗∗ : ∀k > k∗∗:

E(wk) − Emin < εa, (8)

by using the gradient descent-type scheme: wk+1 = wk − λk∇E(wk).
Let E.S.W. be the following λ-subset of the classical Strong Wolfe conditions

{
E(wk + λdk) ≤ E(wk) + c1λ∇E(wk)′dk,
c3|∇E(wk)′dk| ≤ |∇E(wk + λdk)′dk| ≤ c2|∇E(wk)′dk| (9)

being λ > 0 and 0 < c1 ≤ c3 < c2 < 1 proper constants. E.S.W. is not empty
whenever dk is a descent direction (see [10],[14]). It can be proved (see again
[10]) the fundamental:

Theorem 2. Let the condition 1. of Definition 1. hold for problem (1). More-
over, assume that E ∈ C2 and ∃m, M > 0 :

‖yk‖
‖sk‖ ≥ m ;

‖yk‖2

yT
k sk

≤ M (10)

Then, ∀εa ∈ �+, ∃k∗∗ : ∀k > k∗∗:

E(wk) − Emin < εa, (11)

by using the QN-type scheme:
{

wk+1 = wk − λkB−1
k ∇E(wk)

Bk = ϕ(B̃k−1, sk−1,yk−1)
(12)

Theorem 2 shows that QN-type methods can be implemented in the frame
of the NSC theory. It is important to emphasize that the scalars λk, evaluated
by (9) in connection with (10), perform a sort of experimental translation of
the condition 1. of Definition 1. (see once again [10]). Observe that, if E
were a convex function, the second inequality in (10) would be satisfied ([9]).
Furthermore, the first inequality implies that ‖∇2E(ξk)‖ ≥ m, being ξk = wk +
t(wk+1 − wk), 0 < t < 1. This fact justifies the following:

Definition 2. A QN-method satisfying the conditions (10) is called a convex
algorithm(see [10] for more details).

4 Experimental Results

In this section we study the local convergence properties of the algorithms de-
scribed in section 2. In particular, it is shown that the novel values of αk given
in (6),(7) are the most competitive. Some well known non-analytical tasks taken
from UCI Repository of machine learning databases (IRIS and Ionosphere [11])
are selected as benchmarks. We consider the training of i-h-o networks where i,
h and o are the number of input, hidden and output nodes, respectively.

An Efficient Generalization of Battiti-Shanno’s Quasi-Newton Algorithm 487

Since thresholds are associated with hidden and outer nodes, the total num-
ber of connections (weights) is n = ih+ho+h+o. In the learning process of IRIS
and Ionosphere n= 315, 1408, respectively (for more details see [5]). CPU-time
is referred to a Pentium 4-M, 2 GHz with a machine precision of .1 × 10−18.

LN, GB1, GB2 indicate the algorithms utilizing the values of αk given in (4),
(6) and (7), respectively. In all the algorithms we implement the same line-search
technique, i.e. the classical efficient Armijo-Goldstein (A.G.) conditions ([7],[8]).

Define pk = ‖yk‖2

yT
k
sk

w0 ∈ �n, d0 = −∇E(w0)
For k = 0, 1, . . . :


wk+1 = wk + λkdk, λk ∈ A.G.
sk = wk+1 − wk, yk = ∇E(wk+1) −∇E(wk)
define αk :
OSS : αk = 1
LN : αk = pk

GB1 : if(k = 0){αk = 1 or αk = pk}else{
αk =

(
1 − 1

n

)
αk−1 + 1

n
‖yk−1‖2

yT
k−1sk−1

;

}
GB2 : if(k = 0){αk = 1 or αk = pk}else{

vk = αk−1

(
sk − sT

k−1sk

‖sk−1‖2 sk−1

)
+ yT

k−1sk

sT
k−1yk−1

yk−1;

αk = αk−1 + 1
n−1

(
‖yk−1‖2

sT
k−1yk−1

− vT
k vk

sT
k
vk

)
;

}
Bk+1 = ϕ(αkI, sk,yk)
dk+1 = −B−1

k+1∇E(wk+1)

The following table reports the number of iterations (the seconds) required
by the algorithms to obtain E(wk) < 10−1, where E is the error function of the
corresponding MLP. Experiments are related to different initial weights of IRIS
and Ionosphere networks. Notice that GB1 and GB2 are often more efficient
than LN. OSS in some cases performs less iterations, but it is always dominated
in terms of CPU time . The latter experimental result depends upon the fact
that, in order to evaluate λk ∈ A.G., OSS requires more computational effort.
The general LQN , using dense and structured matrices L (L=Hartley algebra,
see [9]), outperforms all the other algorithms.

5 Conclusions

All GB-algorithms examined in Table 1 require 6n memory allocations (see [14]
for L-BFGS m = 1). Moreover, the computational complexity per step is cn,
being c a very small constant. Further experimental results have shown that the
use of L-BFGS methods, for m = 2 or m = 3, does not reduce the number of
iterations. Since minimizing the error function of a neural network is a nonlinear
least squares problem, one could use the well known Levenberg-Marquardt(LM)

488 Carmine Di Fiore, Stefano Fanelli, and Paolo Zellini

Table 1. k (seconds): f(xk) < 10−1.

Algorithms iris1 iris2 iono1 iono2 iono3

OSS 49528 (1037) 42248 (863) 3375 (277) 2894 (236) 2977 (245)

LN 41291 (361) 40608 (358) 4054 (165) 5156 (212) 5171 (215)

GB1, α0 = 1 24891 (207) 34433(286) 4415 (174) 3976 (157) 4159 (164)

GB2, α0 = 1 20086 (166) 17057 (142) 3821 (152) 4519 (178) 3794 (149)

General LQN 12390 (112) 15437 (140) 993 (49) 873 (43) 1007 (48)

method. Unfortunately, LM needs at least O(n2) memory allocations and its
implementation requires the utilization of more expensive procedures than GB
algorithms (i.e. Givens and Householder for QR factorizations). As a matter of
fact, the original algorithm OSS turns out to be much more efficient than LM
for large scale problems (see [15]).

References

1. M.Al Baali, Improved Hessian approximations for the limited memory BFGS
method, Numer. Algorithms, Vol. 22, pp.99–112, 1999.

2. R. Battiti, First- and second-order methods for learning: between steepest descent
and Newton’s method, Neural Computation, Vol. 4, pp. 141–166, 1992.

3. M. Bianchini, S. Fanelli, M.Gori, M.Protasi, Non-suspiciousness: a generalisation
of convexity in the frame of foundations of Numerical Analysis and Learning,
IJCNN’98, Vol.II, Anchorage, pp. 1619–1623, 1998.

4. M.Bianchini, S.Fanelli, M.Gori, Optimal algorithms for well-conditioned nonlinear
systems of equations, IEEE Transactions on Computers, Vol. 50, pp. 689-698, 2001.

5. A.Bortoletti, C.Di Fiore, S.Fanelli, P.Zellini, A new class of quasi-newtonian meth-
ods for optimal learning in MLP-networks, IEEE Transactions on Neural Networks,
Vol. 14, pp. 263–273, 2003.

6. C.Di Fiore, S.Fanelli, P.Zellini, Matrix algebras in quasi-newtonian algorithms
for optimal learning in multi-layer perceptrons, ICONIP Workshop and Expo,
Dunedin, pp. 27–32, 1999.

7. C.Di Fiore, S.Fanelli, P.Zellini, Optimisation strategies for nonconvex functions
and applications to neural networks, ICONIP 2001, Vol. 1, Shanghai, pp. 453–458,
2001.

8. C. Di Fiore, S.Fanelli, P.Zellini, Computational experiences of a novel algorithm for
optimal learning in MLP-networks, ICONIP 2002, Vol. 1, Singapore, pp. 317–321,
2002.

9. C. Di Fiore, S. Fanelli, F. Lepore, P. Zellini, Matrix algebras in Quasi-Newton
methods for unconstrained optimization, Numerische Mathematik, Vol. 94, pp.
479–500, 2003.

10. C. Di Fiore, S.Fanelli, P.Zellini, Convex algorithms for optimal learning in MLP-
networks, in preparation

11. R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley, 1973.
12. P. Frasconi, S. Fanelli, M. Gori, M. Protasi, Suspiciousness of loading problems,

IEEE Int. Conf. on Neural Networks, Vol. 2, Houston, pp. 1240–1245, 1997.
13. D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale opti-

mization, Math. Programming, Vol. 45, pp.503–528, 1989.
14. J. Nocedal, S.J. Wright, Numerical Optimization. New York: Springer-Verlag, 1999
15. http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/backpr14.html

	1 Introduction
	2 Generalized BFGS-Type Algorithms
	3 Theoretical Results
	4 Experimental Results
	5 Conclusions
	References

