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Brief Papers

Quasi-Lagrangian Neural Network for Convex
Quadratic Optimization

Giovanni Costantini, Renzo Perfetti, and Massimiliano Todisco

Abstract—A new neural network for convex quadratic optimization is
presented in this brief. The proposed network can handle both equality
and inequality constraints, as well as bound constraints on the optimiza-
tion variables. It is based on the Lagrangian approach, but exploits a par-
tial dual method in order to keep the number of variables at minimum. The
dynamic evolution is globally convergent and the steady-state solutions sat-
isfy the necessary and sufficient conditions of optimality. The circuit imple-
mentation is simpler with respect to existing solutions for the same class of
problems. The validity of the proposed approach is verified through some
simulation examples.

Index Terms—Analog circuits, Lagrangian networks, mathematical pro-
gramming, quadratic optimization, recurrent neural networks.

I. INTRODUCTION

The idea of using analogue circuits to solve mathematical program-
ming problems can be traced back to the works of Pyne [1] and Dennis
[2]. A canonical nonlinear programming circuit was proposed by Chua
and Lin [3], later extended by Wilson [4]. Kennedy and Chua [5] re-
cast the canonical circuit in a neural network framework and prove the
stability. All the networks in [3]–[5] are based on the penalty func-
tion method, which gives exact solutions only if the penalty param-
eter tends to infinity, a condition impossible to meet in practice. To
avoid the penalty functions, Zhang and Constantinides [6] proposed
a Lagrangian approach to solve quadratic programming (QP) prob-
lems with equality constraints. The method can be extended to prob-
lems including both equality and inequality constraints converting in-
equalities into equalities by introducing slack variables. Also bound
constraints on the variables, often arising in practical problems, can
be treated in the same way at the expense of a huge number of vari-
ables. To overcome the penalty method, handling both equality and in-
equality constraints as well as bounds on the variables, a primal-dual
approach [7] and a gradient-based neural network [8] have been pro-
posed. Recently, Xia and Feng [9] proposed a one-layer neural net-
work for convex QP, based on the projection method. To the best of our
knowledge, the scheme in [9] represents the simplest available neural
network for real-time quadratic optimization.

In this brief, which extends a previous work on the solution of the
optimization problem arising in the context of support vector machine
learning [10], we propose a new neural network solver for general QP
problems. It is inspired by the Lagrangian approach of Zhang and Con-
stantinides but exploits a partial dual method to keep the number of
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variables at minimum, and the idea of Bouzerdoum and Pattison [11]
to implement the bounds both on optimization variables and Lagrange
multipliers. The proposed network does not require slack variables, or
transformation of inequality constraints into equality constraints. The
circuit implementation is simpler than existing solutions; in particular,
it requires the same number of connections but less components with
respect to the network in [9].

The rest of this brief is organized as follows. In Section II, the op-
timization problem is formulated. In Section III, the proposed neural
network is introduced and illustrated. In Section IV, convergence and
stability are proved. Section V illustrates the circuit implementation.
Section VI presents some simulation examples. Finally, some com-
ments conclude this brief.

II. OPTIMIZATION PROBLEM

We consider the following QP problem:

���
�

���� �
�

�
�
�
��	 �

�
� (1a)

subject to

��� � �� (1b)

�� � � �� (1c)

	 � � �
 (1d)

where � � ���� is a symmetric and positive-definite matrix, � �

����,� � ����, �, �, 
, 	 � ��; � � ��, and � � ��. Constraints
(1b–d) can be recast as follows:

����� � 
� � � �� � � � � � (2)

����� � 
� � � �� � � � � � (3)

�� �	� � 
�� � � �� � � � � � (4)

being

����� �

�

���

���	� � 
�� � � �� � � � � � (5)

����� �

�

���

���	� � ��� � � �� � � � � �� (6)

III. PROPOSED NEURAL NETWORK

The basic idea in Lagrangian duality is to take the constraints in
(1) into account by augmenting the objective function with a weighted
sum of the constraint functions [11]. To limit the complexity of the
resulting neural network, we follow a partial dual approach defining
the following Lagrangian function:

���� ���� ���� � ���� 	

�

���

������� 	

�

���

������� (7)
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Fig. 1. Piecewise linear function � and � .

where �� is the Lagrange multiplier associated with the �th inequality
constraint, satisfying

�� � � � � (8)

and �� is the Lagrange multiplier associated with the �th equality con-
straint. Note that constraints (4) are not included in (7), avoiding ��
additional dual variables. The solution of problem (1) corresponds to
the saddle point of the Lagrangian function (7), which must be maxi-
mized with respect to���, ��� and minimized with respect to �. Following
[6], a gradient dynamical system can be used such that, along a trajec-
tory, function (7) is increasing with each �� and �� and decreasing with
each ��. To ensure that constraints (4) and (8) are satisfied, avoiding the
drawbacks of the penalty approach, we extend the method suggested in
[7] to take into account bound constraints. To this end, we introduce the
state variables �� � �, � � �� � � � � �, and �� � �, � � �� � � � � 	, being

�� ������� �


�� �� � 
�

��� 
� � �� � ��

�� ���� ��

(9)

�� ������� �
�� �� � �

�� �� � �

(10)

The piecewise linear functions �� and ��, depicted in Fig. 1, guar-
antee the fulfillment of constraints (4) and (8).

The proposed dynamical system is described by the following state
equations:

� 	�� � �
��

���

 ����� � ���

� �

�

���

����� � �� �

�

���

����� �

�

���

����� 
 ����� � ���

(11a)

� 	�� �
��

���

 ����� � ���

� ����� 
 ����� � ��� (11b)

� 	�� �
��

���
� ����� (11c)

where ��, �� � �, and � � � is a time scaling factor. Equations (11)
represent a gradient dynamical system seeking for the saddle point of
the Lagrangian, with the additional terms ��������� and ���������,
which guarantee the existence of a finite equilibrium point, as it will be
shown in Section IV.

Equation (11) can be realized by the recurrent neural network shown
in Fig. 2. It is composed of �
�
 	 integrators, � limiters realizing
function (9), and 	 limiters with transfer function (10).

The equilibrium conditions of system (11) are

��

���
������ � ���� � � �� � � � � � (12)

����� � � ����� � ���� � � �� � � � � 	 (13)

Fig. 2. Scheme of the proposed neural network.

����� � �� � � �� � � � ��
 (14)

Concerning (12), we have three cases


� ��� � ��
��

���
� � (15a)

�� � 
�
��

���
� � (15b)

�� ���
��

���
� �
 (15c)

Moreover, taking into account the form of ���
�, (13) corresponds
to the following conditions:

����� � �� � � �� � � � � 	 (16a)

�� � �� � � �� � � � � 	 (16b)

������� � �� � � �� � � � � 	
 (16c)

It is easy to verify that (14)–(16) represent the Karush–Kuhn–Tucker
(KKT) conditions of problem (1) [7], [11]. Hence, because the opti-
mization problem is convex, each equilibrium point of system (11) cor-
responds to an optimal (global) solution of (1).

IV. CONVERGENCE ANALYSIS

A dynamical system is said to be globally convergent if every trajec-
tory converges to the unique equilibrium point. We will prove that the
proposed neural network is globally convergent under the hypothesis
that the Hessian matrix � is positive definite.

Theorem: If� is positive definite, the dynamical system described
by (11) is globally convergent.

Proof: By hypothesis, the necessary and sufficient KKT condi-
tions (14)–(16) have a unique solution (��, ����, ����). The equilibrium
points satisfy the KKT conditions. Hence, each equilibrium point has
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��� � ����. We will prove that there is only one equilibrium point (��,��,
����) mapped by ����� and ����� onto (��, ����, ����). If ��� � ���� ���,
the equilibrium points share the �th component 	� that is imposed by
(15b) or (15c). For �� 
 �� 
 ��, the activation function ����� is
invertible, i.e., 	� � ��� ; hence, the equilibrium points share also the
components 	� in the linear range. If ��� � �, the equilibrium points
share the �th component �� that is imposed by (13). For �� � �, the
activation function ����� is invertible, i.e., �� � ��� ; hence, the equi-
librium points share also the components�� in the linear range. Hence,
the equilibrium point of system (11) is unique.

Now, we prove that every trajectory converges to the equilibrium
point (��, ��, ����).

Let

��� ��� � ��� � ���	��� �� �	
�

� � (17a)

��� ��� � ��� � ������� �� ��
�

� � (17b)

��� ��� � ��� (17c)

	�� � 	� � 	�� (17d)

��� ��� � ��� � (17e)

From the definition of ����� and �����, it follows:

� �
�� � ���
	� � 	��

� �� � � �� � � � � 
 (18a)

� �
�� � ���
�� � ���

� �� � � �� � � � � �� (18b)

Substitution of (17) in (11) gives (we assume � � � for simplicity)

�	�� � �

�

���

����
�

� �

�

���

������ �

�

���

������ 	 �� ��� � 	�� (19a)

���� �

�

���

����
�

� 	 �� ��� � ��� (19b)

���� �

�

���

����
�

� � (19c)

Consider the following candidate Liapunov function:

� ����� ���� �

�

���

�

�

�������� 	

�

���

�

�

�������� 	
�




�

���

���� � (20)

This kind of function has already been used in the stability analysis
of some neural network models for optimization [12]. � is nonnegative
as a consequence of (18). Taking the time derivative and using (19), we
have

�� ����� ���� �

�

���

��

�	��
�	�� 	

�

���
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���� 	

�
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�

� �
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���
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�

�	�� �����
�

� 	
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���

���

�

���

����
�

�

� �

�

���
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���

����
�

���� 	

�

���

���
�

� ��� � 	��

	

�

���

���
�

� ��� � ��� � (21)

From the positive definiteness of � and from (18), it follows �� �

�. � is radially unbounded with respect to ����, hence ������ must be
bounded. Moreover, � is radially unbounded with respect to ��� � �,
hence ������ must be bounded. Taking into account the boundedness of
���, ���, and �, it is

�

���

����� 	 �� 	

�

���

����� 	

�

���

����� �� 
� (22)

for every �. From (11a) and the positivity of ��, we have �	� 
 � for
	� � ��	����, �	� � � for 	� 
 �������. Hence, ���� is bounded,
and in the same way, we can prove that ���� is bounded.

Because the trajectory is bounded and � is a global Liapunov func-
tion, from LaSalle’s invariance principle [13], it follows that each tra-
jectory will converge to the largest invariant subset of the set �, where
�� � �. From (21), we see that �� � � if and only if, ��, ��� � �, and
��� � � or ��� � ���. Assuming ��� � � ��, we have ���� � � from (19c)
and ���� � ����

�

������ from (19b). When ��� � ���, it is ���� � ���� � �.
Hence, ���
�, ���
�, ������ constant as ���, and (11a) and (11b)
can be rewritten as follows:

�	� � � ��	� 	 ���
�

��� � � ���� 	 ���
�

where functions ���
� and ���
� have a finite limit as �� �.
Because ��, �� � �, using well-known properties of differential

equations, we have

������ 	���� ���������

������ ����� � ���������

All the limits being finite, they must correspond to the unique equi-
librium point of system (11). Hence, we conclude that every trajectory
converges to (��, ��, ����).

Remark: The solution is guaranteed to be unique if the Hessian
� is positive definite. If � is positive semidefinite (p.s.d.), multiple
solutions exist and the theorem is not applicable. However, computer
simulations showed a convergent behavior even in this case: the net-
work converges to one of the, possibly infinite, solutions depending on
the initial conditions (see Example 2 in Section VI). Computer simula-
tions showed also that the property of global convergence is structurally
stable. It was verified in presence of random errors on the connection
matrices with weight relative error up to 5% (the results are not in-
cluded due to lack of space).

V. CIRCUIT IMPLEMENTATION

The network in Fig. 2 is similar to the scheme proposed in [9]
with two main differences: 1) the saturation nonlinearities are moved
from the input to the output of the integrators; 2) there is a different
self-feedback loop around the integrators, corresponding to the terms
����� � 	�� and ����� � ���. These modifications allow a simpler
circuit realization, because both saturation and self-feedback can be
implicitly obtained by the operational amplifier used to implement
the integrator.

For sake of clarity, let us consider �th (11a) corresponding to the
scheme in Fig. 3(a); it can be realized by the inverting integrator shown
in Fig. 3(b). The projection operator ����� is implicitly obtained by the
saturation of the op-amp, assuming bipolar voltage supply. The satu-
ration values �	 and �
 can be different, respectively, from �� and
��. In this case, the voltages ��� are scaled versions of the QP variables
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Fig. 3. (a) Scheme corresponding to the �th state equation (11a); (b) its circuit
implementation.

��. The connections are realized with ��� ����� � if ��� � � ���� � ��

through a resistance ������� �, where �� is a normalization resistance.
An inverting amplifier provides the voltage ���� . The remaining con-
nections are obtained in the same way. Voltages ��� and ��� correspond,
respectively, to the variables �� and 	� . Voltage ��� corresponds to the
constant 
�.

Applying Kirchhoff’s current law at the inverting input of the
op-amp and taking into account that this input is not a virtual ground
at saturation, we obtain the following equation:

���� ��� � �

�

���

����
�
� ���� �

	

���

��� 
���




���

��� ������ ��
�
� � ���

(23)

where

�� � � �

�

���

���� ��

	

���

�
��� �




���

������ (24)

It is ��� � �� if �� � �� � �� ; ��� � � if �� � ��; ��� � ��
if �� � �� . Equation (23) is equivalent to (11a) with � � ����. It is
worth noting that the last term in (23), due to the nonzero differential
input voltage of the op-amp at saturation, provides the corrective term
����� � ��� in (11a) without extra circuitry. Equation (11b) can be
realized by a similar circuit with the difference that the lower saturation
voltage of the op-amp is zero and positive saturation must be avoided;
in this case, it is

�� � � �

�

���

�
�� �� (25)

Equation (11c) can be realized by a simple linear integrator.
With respect to the network in [9], the proposed circuit requires the

same number of connections and the same number of integrators, but
avoids the � � � piecewise-linear activation functions and the � � �

summers.

Fig. 4. Transient behavior of the network from zero initial conditions for Ex-
ample 1.

VI. SIMULATION EXAMPLES

Example 1: Consider the following QP problem [9]:

Minimize ���� � ��� � ��� � ��	��� � ����� � �� � 
�

� ��� � ���

subject to �� � �� � �� � �

� �� � �� � �� � ���


��� � ��� � ��� � �

��� � 
�� � 
�� � �

�� � �� � ��� � �

� � �� � 
��� � � �� �� �� (26)

It can be shown that problem (26) has a unique optimal solution
�� � �
�� ��
 
�
��.

Problem (26) can be recast in a matrix form as follows:

� � �� � ��� � � �
�� 
�� 
����

� �

� � �

� � �

� � �

� �

�


��

��

� �

� �� �

�� � �

� �� �

� �

�

���


�

� �
� �
 


� � �
	 �

�

�
� (27)

The corresponding neural network has been simulated by numerical
integration of (11), using Euler’s method. Expressions (24) and (25)
have been used for �� and ��, even if these values do not influence the
steady-state solution, as proved in Section V. In Fig. 4, the transient
behavior of the network is shown, starting from zero initial conditions
(all the state variables are zero in � � �). The time constant is � � 1
ms. Convergence to the correct solution is observed within 5 ms.

To verify the global convergence, the network was simulated starting
from different initial conditions. The network always converged to the
correct solution, regardless of whether the initial point is inside or

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 16, 2008 at 11:22 from IEEE Xplore.  Restrictions apply.



1808 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 10, OCTOBER 2008

Fig. 5. Transient behavior for Example 1 with starting points (a) ���� �
�� � �� and (b) ���� � ��� � � � �� .

outside the feasible region. In particular, in Fig. 5, the transient be-
havior is shown for the starting points ���� � �� � ��� and ���� �
��� � � � ���. The remaining state variables were initially zero.

Finally, to investigate the effect of finite precision, a Monte
Carlo simulation was performed by adding to the connection
weights a random error with uniform distribution. Assuming a
maximum relative error of 1%, we obtained the following mean
values of the variables after 1000 runs (in parenthesis the stan-
dard deviation): �� � 	�

	
 ��������, �� � ������ �����
��,
�� � ��


� �����
��.

Example 2 [8]:

Minimize ���� � �
�

� � �
�

�

subject to �� � ��

This problem has infinitely many optimal solutions �� � ��� � ��
�

with �� � �, corresponding to the optimal value of the objective func-
tion ����� � �, so the theorem does not apply. Notwithstanding, the
network converges to an optimal solution for arbitrary initial condi-
tions. For example, from ���� � �	 	 	��, the network converges to
�	 � ���, and from ���� � ��	 � 	 � 	��, the evolution converges to
�� � ���. The corresponding transient behavior is shown in Fig. 6.

Example 3: In this example, we verified the behavior of the cir-
cuit implementation described in Section V through a simulation with
PSpice. To this end, we considered the following problem:

Minimize ���� �
	

�
�
�

� � �
�

�

subject to �� � �� � 
 � �

� � �� � 	� � � �� � 
�

Fig. 6. Transient behavior for Example 2.

In matrix notation

� � �� ��� � � �	 
��

� �
	 �

� 	
� �

�

�

� � ��	 � 	� � � ��
�

	 �� 
 � �� (28)

The optimal solution is �� � 	 and �� � 
. Even if it is trivial, this
example shows the effects of physical devices and finite accuracy of
connection resistors. Moreover, it exhibits the two different steady-state
behaviors since �� saturates while �� does not. The network was re-
alized using 1% tolerance resistors and TL082 op-amps; the normal-
ization resistance and capacitance were �� � 1 k� and �� � 1 �F.
The circuit requires four op-amps: two integrators for the variables, one
integrator for the inequality constraint, and one inverting amplifier to
realize the �� term in (11a). Saturation at zero is obtained by using a
voltage supply �� � �0.678 V. Op-amp integrators for the optimiza-
tion variables have positive saturation levels 3 and 12 V, respectively
(voltage supplies �� � 3.678 V and �� � 12.678 V). As a conse-
quence, the output voltages 	�� and 	�� correspond, respectively, to 
��
and 
��. Hence, the constant input �4, corresponding to 
�, must be
scaled accordingly (�12 V). The capacitors were initially uncharged.
An example of transient behavior is depicted in Fig. 7. The final values
of the variables are 	�� �� 3 V and 	�� �� 9 V, corresponding to the exact
solution.

VII. CONCLUSION

In this brief, a novel neural model for the real-time solution of convex
quadratic optimization problems has been presented. It is obtained by
exploiting a partial dual Lagrangian approach to avoid slack variables.
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Fig. 7. PSpice simulation concerning Example 3.

Moreover, some operations (limitation and self-feedback) can be em-
bedded in the op-amp integrators. The resulting circuit implementation
requires less components with respect to existing neural networks for
the same class of problems. The global convergence to a unique equi-
librium point has been proven using a Liapunov function approach. The
simulation results confirm the robust behavior of the proposed network
and the accuracy of steady-state solutions, also in physical realizations
with real-life devices.
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Global -Synchronization of Linearly Coupled Unbounded
Time-Varying Delayed Neural Networks With

Unbounded Delayed Coupling

Tianping Chen, Wei Wu, and Wenjuan Zhou

Abstract—In this brief, we study the global synchronization of linearly
coupled neural networks with delayed couplings, where the intrinsic
systems are recurrently connected neural networks with unbounded
time-varying delays, and the couplings include instant couplings and
unbounded delayed couplings. The concept of -synchronization is
introduced. Some sufficient conditions are derived for the global -syn-
chronization for the underlined coupled systems.

Index Terms—Linearly coupled recurrently connected neural networks,
unbounded time-varying delay, global -synchronization, moore-penrose
inverse.

I. INTRODUCTION

Complex networks have been widely investigated in science, en-
gineering, and nature for decades due to its applications in chemical
reactions, biological systems study, secure communications, etc. Typ-
ical examples of complex networks include the Internet, World Wide
Web (WWW), food webs, cellular and metabolic networks, etc. (e.g.,
see [1]–[8]). Stability, bifurcation, and chaos synchronization are also
studied by many researchers.

Linearly coupled neural networks provide a large class of models that
can be used to describe coupled systems with continuous time and state
values, as well as discrete spatial states in many research fields. The
dynamical behavior of a coupled network is governed by the following
two mechanisms: the intrinsic nonlinear dynamics of the neural network
at each node and the diffusion due to the spatial coupling among nodes.
They have been investigated as theoretical models of spatio–temporal
phenomena sof complex networks (for example, see [9]).

Because chaos synchronization in an array of linearly coupled dy-
namical systems was investigated by Pecora in [1], many results on
local and global synchronization in various coupled systems have been
obtained (for details, see comprehensive paper [8]). In [10], Lu and
Chen gave criteria for local and global synchronization of linearly cou-
pled dynamical systems. In [11], Wu and Chen discussed synchroniza-
tion of coupled neural networks with time-varying coupling configura-
tion. However, it is inevitable that time-delays occur due to the finite
speeds of transmission and spreading as well as traffic congestions.
Therefore, the study of delayed-coupling systems is quite important.
There are also several papers investigating the coupled systems with a
delay [12]–[18]. However, the delays are always constant and bounded.

Recurrently connected neural network with delays can be written as

������

��
� �������� �

�

���

������������

�

�

���

�
�

������������������������	 
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