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Abstract

Background: Functional Magnetic Resonance Imaging (fMRI) enables non-invasive examination of both the structure
and the function of the human brain. The prevalence of high spatial-resolution (sub-millimeter) fMRI has triggered
new research on the intra-cortex, such as cortical columns and cortical layers. At present, echo-planar imaging (EPI) is
used exclusively to acquire fMRI data; however, susceptibility artifacts are unavoidable. These distortions are especially
severe in high spatial-resolution images and can lead to misrepresentation of brain function in fMRI experiments.

New method: This paper presents a new method for correcting susceptibility artifacts by combining a T1-weighted
(T1w) image and inverse phase-encoding (PE) based registration. The latter uses two EPI images acquired using identical
sequences but with inverse-PE directions. In the proposed method, the T1w image is used to regularize the registration,
and to select the regularization parameters automatically. The motivation is that the T1w image is considered to reflect
the anatomical structure of the brain.

Results: Our proposed method is evaluated on two sub-millimeter EPI-fMRI datasets, acquired using 3T and 7T
scanners. Experiments show that the proposed method provides improved corrections that are well-aligned to the T1w

image.

Comparison with existing methods: The proposed method provides more robust and sharper corrections and runs
faster compared with two other state-of-the-art inverse-PE based correction methods, i.e. HySCO and TOPUP.

Conclusions: The proposed correction method used the T1w image as a reference in the inverse-PE registration. Results
show its promising performance. Our proposed method is timely, as sub-millimeter fMRI has become increasingly
popular.

Keywords: Susceptibility artifact, echo-planar imaging, sub-millimeter fMRI, inverse phase-encoding, T1w guided
regularization.

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) indirectly
estimates the changes in cortical activity, typically by mea-
suring the Blood Oxygenation-Level Dependent (BOLD)
signal (Ogawa et al., 1990). Functional MRI allows re-
searchers and medical practitioners to non-invasively ex-
amine not only the structure but also the function of the
human brain, and hence, fMRI has become widely used
in clinical and research settings. At present, fMRI images
are mostly acquired using the EPI technique because of
its fast temporal imaging capability. For example, EPI

∗Corresponding author
Email addresses: stmd795@uowmail.edu.au (S. T. M. Duong),

mschira@uow.edu.au (M. M. Schira)

takes 1 to 3 seconds to scan a volume compared to about
5 minutes for most other MRI techniques. This capability
enables EPI to record rapid changes in brain activity.

Despite its speed, EPI is prone to distortions due to
local field inhomogeneities, which are caused by the differ-
ence in magnetic susceptibility of various imaged tissues
(e.g., fat versus blood) (Ludeke et al., 1985; McRobbie
et al., 2003). The field inhomogeneities affect the spatial
encoding of the signal. Consequently, they degrade the
acquired images by geometrical deformations (stretching
and compressing) and intensity modulations (Chang and
Fitzpatrick, 1992). These distortions are known as suscep-
tibility artifacts (SAs). The SAs are more severe at high
field strengths (Ogawa et al., 1990; Polimeni et al., 2018)
and in rapid imaging techniques such as EPI (Schmitt,
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2015; Ludeke et al., 1985). These artifacts can be easily
seen in the interface regions, particularly between the cere-
bral cortex and non-brain areas (McRobbie et al., 2003).
In practice, SAs are most noticeable along the PE direc-
tion. Pertinently, they appear reversed in two EPI images
acquired using identical sequences but with inverse PE di-
rections1 (Jezzard and Balaban, 1995; Hutton et al., 2002;
Holland et al., 2010).

The SAs disrupt the geometric correspondence between
functional and anatomical data. This disruption subse-
quently leads to misplacements of detected activation pat-
terns in fMRI studies. Currently, correcting SAs in fMRI
is often avoided for two main reasons. First, fMRI data
have a spatial resolution of 1mm3 or greater, where SAs
are generally not severe enough to cause a significant prob-
lem. However, the impact of the SAs is much more sig-
nificant in high spatial resolution (sub-millimeter) fMRI,
which has become widely used. Second, existing SA cor-
rection methods tend to blur the corrected images (Poli-
meni et al., 2018), which contradicts the goal of acquiring
a higher spatial image resolution.

This paper aims to correct SAs in EPI-fMRI images, es-
pecially those with sub-millimeter resolutions. We propose
to integrate a T1w structural image into a state-of-the-
art susceptibility artifact correction (SAC) scheme, known
as hyper-elastic susceptibility artifact correction (HySCO)
(Ruthotto et al., 2012). The motivation is that the T1w im-
age captures relatively well the shape and size of the tissue.
It is widely considered a gold standard representation of a
subject’s brain anatomy (Howarth et al., 2006). The T1w

image can capture the high contrast between white-matter
and gray-matter tissue (Polimeni et al., 2018). There-
fore, it is routinely acquired for every subject participat-
ing in fMRI studies, and it is readily available. We call
the proposed method T1w guided Inverse phase encoding
Susceptibility Artifact Correction, or TISAC.

The research contributions of this paper can be high-
lighted as follows. First, a new T1w-based regularization
term is introduced to the HySCO objective function to im-
prove the quality of the corrected image with respect to
the brain structure captured by the T1w image. Second,
the regularization parameters of the registration problem
are selected automatically through a Bayesian optimiza-
tion framework with a Gaussian process prior. Note that
choosing the best regularization parameters is a critical
step in solving the SAC optimization problem. Further-
more, we evaluate the performance of the proposed method
and compare it with existing SAC methods using two high-
resolution EPI-fMRI datasets: one with an isotropic reso-
lution of 1× 1× 1 mm3 acquired by a 3 Tesla (T) scanner,
and the other with a resolution of 0.833 × 0.833 × 0.810
mm3 acquired by a 7T scanner.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work and the general math-

1In fMRI, the phase encoding direction is also known as the po-
larity of phase-encoding gradient or the blip.

ematical framework of the inverse-PE based correction
method. Section 3 introduces our proposed method. Sec-
tion 4 presents experiments and analysis of the proposed
method and the related methods. Finally, Section 5 sum-
marizes our work.

2. Related work

In this section, an overview of the existing SAC methods
is presented in Subsection 2.1. The inverse-PE SAC for-
mation is then described in Subsection 2.2. Finally, the
HySCO method is discussed in Subsection 2.3.

2.1. Susceptibility artifact correction methods

Several SAC methods have been proposed for multiple
types of MRI, such as structural MRI, diffusion-weighted
MRI (DWI), and fMRI. In general, they can be divided
into four categories: (i) fieldmap based; (ii) point spread
function (PSF) based; (iii) image registration based; and
(iv) inverse phase-encoding (PE) based methods. Table 1
summarizes the SAC methods discussed below.

Fieldmap based SAC methods estimate phase disper-
sions caused by the field inhomogeneity. The estimated
phase dispersion over the entire scanned view is called
the fieldmap. An early approach derives the fieldmap
from two complex MRI images acquired by different val-
ues of echo time (TE) (Hutton et al., 2002). Another ap-
proach requires modified MRI sequences to produce the
fieldmap quickly (Wan et al., 1997; Chen and Wyrwicz,
1999; Techavipoo et al., 2008). After the fieldmap is esti-
mated, the corrected images can be obtained by unwarping
distorted images (Jezzard and Balaban, 1995; Reber et al.,
1998), or rewinding the additional accumulated phase in
k-space (Kadah and Hu, 1997), thereby obtaining the cor-
rected image. There have been multiple approaches to
estimate the fieldmap. The main limitation of unwarp-
ing in the image space is the lack of intensity correction.
Rewinding in k-space allows both geometric and intensity
corrections but typically requires customized sequences.

Point spread function based SAC methods consider an
acquired image as a convolution between the “true” im-
age with a PSF. By estimating the PSF of the system,
the undistorted image can be reconstructed. A PSF es-
timation technique based on constant time imaging was
first introduced by Robson et al. (1997) for correcting EPI
distortions and quantifying the MRI degradation. Subse-
quently, the PSF estimation was adopted to correct EPI
distortions by Munger et al. (2000); Zeng and Constable
(2002). A further optimized PSF estimation was proposed
by integrating parallel imaging into the acquisition to cor-
rect distortions faster and more reliably, even at high field
strengths (Zaitsev et al., 2004). PSF-based SAC meth-
ods can correct both geometric distortions and intensity
modulations; however, they require the MRI scanner to
support configurable MRI sequences.

Image registration based SAC methods map the dis-
torted EPI images to a reference image using a non-rigid
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Table 1: Representative methods for correcting SAs (Seq. mod. = pulse sequence modified).

Category Seq.
mod.

Authors Year Datatype Description

Fieldmap

No

Jezzard and
Balaban

1995 EPI Use the fieldmap derived from complex images acquired by different TEs to
unwarp the distorted images.

Reber et al. 1998 EPI Smooth the displacement derived by the method in Jezzard and Balaban
(1995) using a 2D Gaussian kernel to increase the signal-to-noise ratio.

Hutton et al. 2002 fMRI Derive the fieldmap from EPI images acquired with different TEs.

Yes

Kadah and Hu 1997 EPI Use the fieldmap to rewind the additional accumulated phase in k-space
(called SPHERE).

Wan et al. 1997 EPI Calculate the fieldmap using a set of reference scans generated by turning off
the PE gradient of the EPI pulse sequence.

Chen and
Wyrwicz

1999 EPI Incorporate a set of fieldmaps by the multi-channel modulation algorithm to
obtain corrected images.

Techavipoo
et al.

2008 EPI Derive the fieldmap from EPI images with modified k-space trajectories.

Point
spread
function

Yes

Robson et al. 1997 EPI Measure the PSF by an EPI sequence with added PE gradients, constant
time but variable magnitude.

Munger et al. 2000 EPI Unwarp the distorted image given the measured PSF by a conjugate gradient
algorithm.

Zeng and
Constable

2002 EPI Correct both the intensity and geometric distortions in EPI images by mea-
sured PSF as in Robson et al. (1997).

Zaitsev et al. 2004 EPI Measure the PSF by integrating a parallel imaging technique into the acqui-
sition.

Image
registration

No

Kybic et al. 2000 EPI Register distorted EPI images by modelling the displacement with splines
and using the SSD similarity measure.

Studholme
et al.

2000 fMRI Register EPI images using a multimodality non-rigid registration algorithm
with log-intensity measure.

Wu et al. 2006 fMRI Register distorted images based on Thirion's demons.

Wu et al. 2008 EPI Register distorted EPI images to a T2w using mutual information.

Inverse-
PE

No

Chang and
Fitzpatrick

1992 Structural
MRIs

Introduce the theoretical justification of the correction using inverse phase-
encoded images; correct each 1D image along the PE direction independently
by finding pairs of corresponding points in the given two images.

Andersson
et al.

2003 DWI Model the displacement as a function of discrete cosine basis functions (called
TOPUP).

Holland et al. 2010 fMRI Model the inverse-PE SAC as a diffusion registration problem.

Ruthotto
et al.

2012 DWI Introduce an additional non-linear regularizer into the diffusion regularized
problem (called HySCO).

Irfanoglu et al. 2015 DWI Incorporate a T2w image into the inverse-PE registration.

model. These methods usually estimate displacements in
the image volume so that the unwarped image is morpho-
logically matched to the reference image. These meth-
ods have several variants, based on the similarity mea-
sure between the EPI and reference images, e.g. the sum
of squared differences (SSD) (Kybic et al., 2000), log-
intensity metric (Studholme et al., 2000), and mutual in-
formation (Wu et al., 2006, 2008). An advantage of this
approach is that it does not require additional scans as
the fieldmap-based methods do. However, methods in this
class typically lack intensity distortion corrections and de-
pend strongly on the constraints and parameters of the
registration algorithms.

Inverse phase-encoding based SAC methods utilize two
inverse-PE images to estimate the displacement field over
the image domain. The corrected images are obtained
by unwarping the distorted images by the estimated dis-
placement field. Chang and Fitzpatrick (1992) initially
introduced the theoretical justification of correcting the
SAs using inverse-PE structural images. They then pro-
posed a “cumulative line-integral” method to find the cor-
responding points, which are used to determine the dis-
placement in two corresponding lines along the PE direc-
tion of the given inverse-PE images. Bowtell et al. (1994)
implemented the original inverse-PE method for 2D EPI.
The corrections of the method proposed by Chang and
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Fitzpatrick (1992) are not smooth since the method esti-
mates the displacement in each line along the PE direction
independently, without considering surrounding lines. To
estimate the displacement field, Andersson et al. (2003)
proposed an alternative approach by considering the dis-
placement at a pixel as a function of discrete cosine basis
functions to construct an objective function; this method
is called TOPUP and is integrated into the FSL pack-
age2. Holland et al. (2010) integrated the inverse-PE
approach into a registration framework to correct SAs.
Ruthotto et al. (2012, 2013) combined the registration
framework and a constraint inspired by the hyper-elastic
image registration to achieve more realistic corrections;
this method is called HySCO, and its implementation is
included in the SPM12 toolbox3. Another approach com-
bines an independent image, specifically a T2w image, into
the inverse-PE registration to regularize corrections (Ir-
fanoglu et al., 2015). Inverse-PE based SAC methods can
correct both geometric and intensity distortion. They out-
perform fieldmap and image registration based methods
in terms of geometrical correction fidelity, as shown in
(Hong et al., 2015). The inverse-PE based approach is
the most common SAC method, e.g. being used to correct
the fMRI data in the biggest MRI neuroimaging dataset
- the Human Connectome Project (HCP) (Essen et al.,
2012). However, compared to other SAC approaches, reg-
istering corrected images from two inverse-PE images re-
quires many constraints, such as the smoothness of the
displacement field and the alignment of the correction to
the structural image. The inverse-PE methods may pro-
duce less meaningful and blurred corrections if unsuitable
constraints are used.

In summary, the existing methods have been designed
mostly for DWI images but rarely for fMRI. These meth-
ods either require a long scanning time or correct only spa-
tial distortions. Furthermore, they are often inadequate at
correcting SAs in high-resolution fMRI, where the distor-
tions are more severe than in low-resolution images.

2.2. Distortion model in the presence of the field inhomo-
geneity

Let E be the 3D ideal image, and I be an acquired (dis-
torted) image. As shown in (Chang and Fitzpatrick, 1992;
Studholme et al., 2000; Holland et al., 2010), the distor-
tion in the presence of field inhomogeneity B in the image
domain is modeled as

E = I(T) |JT|, (1)

where T is the non-rigid transformation operator of coordi-
nates from image E to image I, and JT is the Jacobian ma-
trix of the transformation T. As shown in (Holland et al.,
2010; Ruthotto et al., 2012), the transformation T at any
3D point p in E can be written as T: p 7→ p + B(p) v,

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
3http://www.diffusiontools.com/documentation/hysco.html

where v denotes the known distortion direction (i.e. the
PE direction). In practice, the applied PE gradient is con-
sidered to be along the first dimension, hence v = (1, 0, 0).
Let ∂v(B(p)) denote the directional derivative of field B
at point p along the direction v. The Jacobian matrix of
the transformation T at point p is

JT(p) =
∂(p +B(p)v)

∂p
=

1 + ∂v(B(p)) 0 0
0 1 0
0 0 1

 . (2)

The distortion model in Eq. (1) can be rewritten as

E(p) = I(p +B(p)v)
[
1 + ∂v(B(p))

]
. (3)

Here, the term
[
1 + ∂v(B(p))

]
denotes the intensity mod-

ulation. The term p + B(p)v denotes the geometric dis-
placement of the acquired image. In other words, point p
in ideal image E is shifted to point p +B(p)v in acquired
image I. Since B causes the voxel shifting in the acquired
image, B is called the displacement field, and p+B(p)v is
known as the deformation at point p. Fig. 1 illustrates the
distortions caused by the displacement field. The ideal im-
age in Fig. 1(a) under the displacement field in Fig. 1(b) is
distorted, as shown in Fig. 1(c). It is worth noting that we
work with 3D images; however, for simplicity, 2D images
are presented throughout this paper.

(a) Ideal slice (b) Displacement field (c) Distorted slice

Figure 1: A 2D illustration of the susceptibility-induced distortions.
The displacement field is along the PE (horizontal) direction and is
expressed in terms of the number of voxels shifted.

Let I1 and I2 be two images of a subject in the same
brain region, acquired using an identical sequence but with
opposite blips. Let B be the field inhomogeneity, and v be
the PE direction for image I1. The field inhomogeneity and
the PE direction for image I2 are B and −v, respectively.
By applying the model in Eq. (3), the corrected images E1

and E2 can be described asE1(p) = I1(p +B(p)v) [1 + ∂v(B(p))],

E2(p) = I2(p−B(p)v) [1− ∂v(B(p))].
(4)

For notational simplicity, hereinafter Xp will refer to the
intensity of image X at location p.

2.3. Hyper-elastic susceptibility artifact correction

Recall that the inverse-PE approach estimates the dis-
placement field B based on two images I1 and I2 acquired
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using an identical sequence but with opposite blips. Field
B is estimated such that two corrected images E1 and E2

are as similar as possible. The estimated B is then used to
unwarp the distorted images I1 and I2 based on Eq. (4).

The hyper-elastic susceptibility artifact correction
method proposed by Ruthotto et al. (Ruthotto et al.,
2012) uses the inverse-PE approach to correct SAs. To
estimate B, Ruthotto et al. minimized the SSD-based dis-
similarity between unwarped images E1 and E2 (Holland
et al., 2010; Ruthotto et al., 2012):

D(I1, I2, B) = D(E1, E2) =
1

2

∫
Ω

(E1p − E2p)2 dp. (5)

Finding B by minimizing the distance function
D(I1, I2, B) is categorized as an ill-posed problem (Holland
et al., 2010; Ruthotto et al., 2012). Thus, prior knowledge
about the smoothness of the displacement field and invert-
ibility of the geometrical transformation was used to regu-
larizeB (Ruthotto et al., 2012). To enforce the smoothness
of the displacement field, a Tikhonov (L2) regularizer Sdiff

was integrated into the objective function (Holland et al.,
2010):

Sdiff(B) =

∫
Ω

‖ ∇Bp ‖2 dp. (6)

To satisfy the invertibility of the transformation, the Ja-
cobian matrix of the geometric transformation in Eq. (4)
must be invertible. In other words, Jacobian determi-
nants must be positive for all p ∈ Ω. Chang and Fitz-
patrick (1992) demonstrated that this constraint could be
expressed as −1 6 ∂v(Bp) 6 1, for all p ∈ Ω.

Ruthotto et al. (2012), inspired by the control of vol-
umetric change in hyper-elasticity (Burger et al., 2013),
introduced an additional non-linear term Shyper to the ob-
jective function:

Shyper(B) =

∫
Ω

φ(∂v(Bp)) dp, with φ(z) =
z4

1− z2
. (7)

Collectively, Ruthotto et al. (2012) proposed the objective
function:

J(B) =D(I1, I2, B) + αSdiff(B) + βShyper(B),

s.t. | ∂v(Bp) |6 1.
(8)

The positive and user-defined regularization parameters α
and β represent the trade-off between the smoothness and
the elasticity of the displacement field B.

The HySCO method estimates B by minimizing the ob-
jective function J(B) in Eq. (8), then generates the out-
put (corrected) images using Eq. (4). HySCO can provide
output images with high similarity; however, these images
are blurry, and they may not align well with the actual
brain structure. For example, Fig. 2(a) shows the esti-
mated deformation grid4 by HySCO, and Fig. 2(b) shows

4The deformation grid is the sum of the regular grid and the
displacement field.

(a) Estimated deformation grid (b) HySCO correction

Figure 2: An example of HySCO results with additional artifacts
(red arrows) on the top of the brain.

the output image. The output image contains blur trails
(e.g. areas denoted by the red arrows), which are caused
by over-deformation in the estimated field B. This over-
deformation could be reduced by imposing an independent
constraint related to the brain structure.

3. T1w-guided inverse-PE SAC

The T1w structural image, acquired using MPRAGE se-
quence (Mugler III and Brookeman, 1990) or MP2RAGE
(Marques et al., 2010) sequence, is widely considered to
reflect the anatomical structure of the brain, especially in
the fMRI study (Howarth et al., 2006). In this paper, we
propose to incorporate the T1w image to guide the suscep-
tibility artifact correction of high spatial resolution EPI-
fMRI images. In the proposed approach, the T1w image is
used for two purposes: (i) introducing an additional reg-
ularization term for the new objective function, and (ii)
selecting the three regularization parameters of the objec-
tive function.

3.1. TISAC registration

The inverse-PE correction problem integrated with a T1w

structural image can be formulated as finding the displace-
ment field B such that the corrected (unwarped) images
E1 and E2 satisfy two criteria: (i) be as similar to each
other as possible, and (ii) align well with the structural
information provided by the T1w image. Ruthotto et al.
(2012) proposed the objective function in Eq. (8), which
satisfies the first criterion. We introduce a T1w-guided reg-
ularization term to address the second criterion. More pre-
cisely, the regularization term measures the dissimilarity
between the multi-modal images, i.e. T1w and EPI-fMRI.
Conceptually, minimizing the proposed objective function
is equivalent to minimizing the dissimilarity between the
corrected EPI-fMRI images and the dissimilarity between
corrected images and the T1w image. This subsection is
designed to provide an accessible mathematical description
of the proposed method.

The proposed regularization term is based on the nor-
malized gradient field, which has been proven to be well-
suited for the multi-modal registration problem (Haber
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and Modersitzki, 2007). The NGF measure, at any point
in an image, reveals the intensity change and its direction.
Let ∇Xp be the gradient at point p of image X, and ε be
a user-defined parameter. As shown in (Haber and Mod-
ersitzki, 2007), the NGF measure at point p is defined as

∇̃Xp =
∇Xp√

‖∇Xp‖2 + ε2
. (9)

The difference between two images X and Y can be
measured using the angles formed by NGF vectors at all
points in the image domain. Accordingly, the NGF-based
distance between two images X and Y is defined as

DNGF(X,Y ) =
1

2

∫
Ω

1− 〈∇̃Xp, ∇̃Yp〉2 dp, (10)

where 〈·, ·〉 denotes the dot-product operator. The value
of DNGF(X,Y ) is positive. The smaller the value of
DNGF(X,Y ) is, the more similar are the two images.

Let A denote the T1w image. We introduce the T1w-
guided regularization term as the sum of the NGF-based
distances of image A to each unwarped image of I1 and I2
under the displacement field B

DA(I1, I2, B,A) = DNGF(A,E1) +DNGF(A,E2)

=
1

2

∫
Ω

[
1− 〈∇̃Ap, ∇̃E1p〉2

]
+[

1− 〈∇̃Ap, ∇̃E2p〉2
]
dp.

(11)

To summarize, we introduce a new objective function:

J(B) =D(I1, I2, B) + αSdiff(B) + βShyper(B)+

γDA(I1, I2, B,A)

s.t. | ∂v(Bp) |6 1 for all p ∈ Ω.

(12)

The displacement field is found by minimizing J(B) in
Eq. (12). The positive and user-defined regularization pa-
rameters α, β, and γ represent the trade-off between the
similarity of the corrected images, the smoothness of B,
the elasticity of the displacement, and the similarity to
the T1w image of corrected images.

In this paper, the Gauss-Newton method is used for min-
imization. This method starts with an initial guess of B,
e.g. B(0) ≡ 0. The next estimate of B is computed itera-
tively as

B(k+1) = B(k) − λ(k)G(k) (H(k))−1, λ(k) > 0, (13)

where superscript k is the iteration number, λ(k) is the
learning rate, and G(k) and H(k) are the approximate gra-
dient and Hessian of the objective function J , respectively.

A small learning rate leads to slow convergence, while a
large one may lead to invalid B(k+1). Therefore, to select a
suitable learning rate, we find the maximum λ(k) that pro-
duces B(k+1) meeting the constraint in (12) (Nocedal and
Wright, 1999). This is done by applying the backtracking
line search (Armijo, 1966).

Initial 

Blmin

Est.

Blmin

Initial 

Blmin+1

Initial 

Blmax

Estimated

Blmax

...

Level

lmin

Level

lmax

Interpolate Optimizer

Optimizer

Optimizer

...

Figure 3: The block diagram of the coarse-to-fine optimization
scheme. The displacement field is estimated at each level of data
representation.

To avoid local minima and to accelerate the convergence,
the Gauss-Newton method is integrated with the coarse-
to-fine approach (see Fig. 3). This approach first repre-
sents images with multiple resolution levels. The image
representation at a coarser level is obtained simply by av-
eraging over adjacent cells. Next, the displacement field
in the coarsest level is estimated by minimizing the objec-
tive function in (12) using the image representation at this
level. The estimated displacement field at the coarser level
is interpolated. The interpolated result is considered the
initial guess for the optimizer at a finer level. The process
of interpolation and estimation is repeated until the dis-
placement field at the finest level is obtained. Finally, the
corrected images are obtained by unwarping the distorted
images with the estimated field B, as shown in Eq. (4).
This coarse-to-fine optimization approach is summarized
in Algorithm 1.

3.2. Optimization of hyper-parameters

In the inverse-PE SAC, the choice of the regularization
parameters (hyper-parameters) is crucial. Here, we pro-
pose a method to select the most suitable regularization
parameters for the SAC problem. The proposed hyper-
parameters optimization method is based on the Bayesian
optimization (BO) with a Gaussian process (GP) prior.

The hyper-parameter optimization is performed by min-
imizing an error function f(x) of the given SAC method
over a dataset D, where x is a vector of hyper-parameters.
The error function here is defined by the sum of the dis-
similarity measure M between the T1w image and the cor-
rected fMRI images for the dataset D. In this study, the
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Algorithm 1 Coarse-to-fine Gauss-Newton for SAC

Input: I1, I2: inverse-PE EPI-fMRI images,
A: T1w image corresponding to fMRI images,
lmin, lmax: min, max level of data representation.

Output: Corrected images E1 and E2.
1: Derive the multilevel image representation;
2: Blmin−1 ← 0;
3: for l = lmin : lmax do
4: Interpolate B

(0)
l from Bl−1: B

(0)
l ← inter (Bl−1);

5: k ← 0;
6: Compute the objective function as in Eq. (12):

[J,G(k), H(k)]← obj fnct (I1, I2, B
(k)
l , A, l);

7: while not converged do
8: Compute the new B via backtracking line search:

B
(k+1)
l ← backtrack search (B

(k)
l , G(k), H(k));

9: Increment k: k ← k + 1;
10: Compute the objective function as in Eq. (12):

[J,G(k), H(k)]← obj fnct (I1, I2, B
(k)
l , A, l);

11: end while
12: Bl ← B

(k)
l ;

13: end for
14: Unwarp I1 and I2 using Eq. (4)

E1 ← unwarp (I1, Blmax
);

E2 ← unwarp (I2, Blmax
);

MIND-based measure is used (refer to Appendix A for
a description of the MIND measure). The mathematical
equation of the loss function is:

f(x) = L(Sx, D)

=
1

|D|
∑

I1i,I2i;Ai∈D
M(Sx(I1i, I2i), Ai)

=
1

|D|
∑

I1i,I2i,Ai∈D
M(ESx1i , Ai) +M(ESx2i , Ai),

(14)

where Sx(I1i, I2i) represents the corrected images ESx1i and

ESx2i for the inputs I1i and I2i, by applying the SAC
method S with hyper-parameters x. We select the hyper-
parameters which give minimum error function. In other
words, finding the hyper-parameters is to minimize the
error function Eq. (14). Since the error function of the
hyper-parameters is computationally expensive, and its
distribution is unknown, the hyper-parameter optimiza-
tion problem is challenging.

BO is a powerful technique for finding extrema of an
objective function that has no closed-form expression or
is computationally intensive to evaluate (Brochu et al.,
2010; Bergstra et al., 2011; Snoek et al., 2012). The BO
algorithm uses previous observations, which are pairs of
{x, f(x)}, to determine what is the next optimal point for
sampling the error function.

To be specific, the BO algorithm first computes the pos-
terior expectation of what the function f looks like based
on its previous observations. This step is done by first con-
sidering that the distribution of f(x) is a normal likelihood

with noise. The error function f then can be considered
a Gaussian process, which is specified by the mean µ and
covariance σ of a normal distribution over possible values
of f(x). The means and covariances allow us to update
our belief of what the function f looks like. They can be
obtained by fitting the GP to a given set of observations
H =

{(
x1, f(x1)

)
,
(
x2, f(x2)

)
, . . . ,

(
xn, f(xn)

)}
.

Next, a new point is selected to sample the function f so
that it provides a higher value of f or is in the unexplored
region. As shown in Bergstra et al. (2011), the point can be
found by maximizing the expected improvement function,
which is defined as

Ψ(x) =

{ [
µ(x)− f(x∗)

]
Φ(z) + σ(x)φ(z) if σ(x) > 0

0 if σ(x) = 0
.

(15)
where x∗ is the current optimal hyper-parameter point,
µ(x) and σ(x) are the estimated mean and variance of

function f at x in the previous step, z = µ(x)−f(x∗)
σ(x) , Φ(z) is

the cumulative distribution, and φ(z) is probability density
function of the standard normal distribution.

Algorithm 2 Hyper-parameters optimization algorithm.

Input: D: dataset.
Output: x∗: optimal hyper-parameters.

1: H ← ∅;
2: while not converged do
3: Fit GP on the observation set: {µ,σ} ← GP(H);
4: Choose the next point for sampling:

x̂← argmax
x

Ψ(x |µ,σ);

5: Compute the error function at x̂: f(x̂)← L(Sx̂,D);

6: Update the observation set: H ← H∪ (x̂, f(x̂));
7: Increment k: k ← k + 1;
8: end while
9: x∗ ← argmin

x∈H
f(x)

The new point obtained by maximizing the expected im-
provement function Ψ(x) is admitted to the observation
set. The procedure of fitting GP and finding the sam-
pling point is repeated until the convergence criterion is
met. Algorithm 2 shows the Bayesian optimization for
automatically selecting the hyper-parameters.

4. Experiments and results

This section presents the experiments and analysis of the
proposed method. Subsection 4.1 describes data acqui-
sition and preprocessing, and Subsection 4.2 presents the
evaluation measures. Subsection 4.3 shows the experimen-
tal methods, and Subsection 4.4 presents an analysis of the
proposed method. Subsection 4.5 shows the comparison of
SAC methods, finally Subsection 4.6 discusses the experi-
mental results.
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Table 2: A summary of the datasets used in the experiments.

Datasets No. subjs. Gender dist. Age avg. Volume size Resolution (mm3) Acquisition sequence Field strength

3T 3 1 female, 2 males 23.67 192 × 144 × 36 1 × 1 × 1 2D single-shot GRE-EPI 3T

7T 3 3 males 35.33 192 × 192 × 48 0.833 × 0.833 × 0.810 3D GRE-EPI (WIP1080) 7T

4.1. Data acquisition and preprocessing

Two EPI-fMRI datasets of the occipital cortex were used
to evaluate the performance of SAC methods. The first
dataset had three subjects and was acquired using a 3T
scanner with an isotropic resolution of 1 × 1 × 1 mm3.
The second dataset had three subjects and was acquired
using a 7T scanner with a resolution of 0.833 × 0.833 ×
0.810 mm3. A brief summary of these datasets is presented
in Table 2. The datasets were acquired with the written
informed consent from all participating subjects, in accor-
dance to the Human Ethics Committees requirements at
the University of Queensland, and the Australian National
Health and Medical Research Council’s guidelines.

The 3T dataset from three healthy subjects was ac-
quired using a Siemens 3T MAGNETOM PRISMA with
a 64-channel head coil and a 2D single-shot gradient-echo
(GRE) EPI sequence. Ascending and interleaved coro-
nal slices were acquired with a repetition time (TR) of
3000 milliseconds (ms), which is also the volume repeti-
tion time, TE of 30 ms, a flip angle of 90 degrees, and an
image size of 192 × 144 × 36. The field of view (FOV)
was 144 mm × 192 mm.

The 7T dataset from three healthy subjects was ac-
quired using a Siemens 7T MAGNETOM whole-body re-
search scanner with a 32-channel head coil (Nova Med-
ical, Wilmington, US) and a 3D EPI sequence WIP1080
(Poser et al., 2010) (Poser et al., 2010). The sequence used
a blipped CAIPIRINHA (Breuer et al., 2006; Setsompop
et al., 2011), implementation (Poser et al., 2013) with the
following parameters: TE of 30 ms, TR of 83 ms, volume
repetition of 1992 ms, flip angle of 17 degrees, echo spac-
ing of 1 ms, FOV of 160 mm × 160 mm, matrix size of
192 × 192 × 48. The image acquisition was accelerated
by a factor of 2 in-plane and by a factor of 2 in the slice-
encoding direction with a CAIPI-shift of 1. This results in
a total acceleration factor of 4. The image reconstruction
was done by using the GRAPPA pipeline (Griswold et al.,
2002), as provided by the vendor.

Figure 4 shows the three different orientation views
(coronal, sagittal, and axial) of 7T inverse-PE EPI im-
ages (pink) overlaying on the T1w image (green). The fig-
ure demonstrates that the misalignment of EPI to the T1w

image occurs mainly in one spatial direction (left-to-right).

Functional MRI data were acquired while subjects were
presented with retinotopic mapping stimuli. In the 3T
dataset, stimuli consisted of drifting bars, expanding rings,
rotating bowties, and flashing full-field (see Fig. 5). Each
subject took part in two scanning sessions; in each session,
subjects viewed visual stimuli while scanning using either

L R PA

S

I

P

A

(a) Forward PE EPI image

L R PA

S

I

P

A

(b) Inverse PE EPI image

Figure 4: Distorted EPI slices overlaying on a T1w image with three
different orientation views. The blue lines (cross-hairs) indicate the
intersection point of the three views. See the electronic color images.

left-to-right (LR) or right-to-left (RL) blips, such that each
blip accounted for half the scans. This resulted in pairs
of scans with reversed patterns of distortions in the PE
direction. In the 7T dataset, only the rotating bowtie
stimulus was used. In each subject, two scans (with 183
or 187 volumes each) were collected with LR blip, and two
short 20 s measurements with ten repeated EPI volumes
were collected with the inverse blip, one at the beginning
of the experimental runs and one at the end.

(a) BAR (b) BOWTIE (c) RING (d) FULLFIELD

Figure 5: Examples of visual stimuli presented to the subjects during
scanning.

For each subject in the 3T dataset, a T1w image of
the entire-brain was acquired using the 3D GRE-MRI se-
quence, with cubic voxels of 0.75 mm edge length. The
T1w image was then upsampled into an image with a res-
olution of 0.5× 0.5× 0.5 mm3. For each subject in the 7T
dataset, a whole-brain anatomical image was collected us-
ing an MP2RAGE sequence WIP900b17a (Marques et al.,
2010), with a resolution of 0.500 × 0.533 × 0.533 mm3.

In the first preprocessing step, all fMRI images were
motion-corrected using tools in SPM12 (Penny et al.,
2006). The 3T dataset was also slice scan time corrected.
Hereinafter, the data without motion and slice scan time
corrections are referred to as original data; and the pre-
processed images without SAC are referred to as uncor-
rected data. A T1w alignment image of each subject was
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created by aligning the T1w image to an average of two
oppositely-distorted images of the subject, through SPM’s
co-registration procedure (Collignon et al., 1995).

4.2. Performance measures

We quantitatively evaluate the corrected images in three
aspects: geometric correction, blurriness, and the suitabil-
ity for BOLD analysis. The various performance measures
are described in this subsection.

Structural similarity measures are used to evaluate
how well the corrected fMRI image matches the brain
structural given by the T1w image. Here, we used the mu-
tual information (MI) to compute the similarity between
the fMRI images and the T1w image (Wells et al., 1996).
A smaller value of MI indicates less similarity between the
functional and structural T1w images.

The percentage of activated voxel evaluates both
the geometric accuracy and the suitability for subsequent
BOLD analysis. The reason is that the BOLD response
is localized in gray matter and to a certain degree in the
cerebrospinal fluid (CSF) more for 3T and less for 7T data,
but not in white matter. Distortions of fMRI images result
in some significantly modulated voxels being mislocated in
white matter of the T1w image. Here, we employ corre-
lation analysis, a common and robust method for analyz-
ing phase-encoded retinotopic mapping data. This analy-
sis provides a phase-map5 of the BOLD responses (Engel
et al., 1997; Schira et al., 2009). Fig. 6 shows an exam-
ple of a phase-map obtained by correlation analysis of an
uncorrected fMRI scan. Voxels with supra-threshold re-
sponse are marked in color, where the color depicts the
phase (delay) of the response, not the strength of the ac-
tivation. In the given example, there are many activated
voxels located in white matter, indicating that they are
displaced by distortions.

In this paper, we introduce a measure using the percent-
age of activated voxels in gray matter and white matter to
evaluate the geometric correction in the corrected images.
The reasons of measuring the percentage of activated vox-
els in white matter are: (i) white matter is surrounded by
gray matter; (ii) there is a large number of activated voxels
aligned to white matter; and (iii) it is easy to obtain an
accurate and reliable segmentation of white matter from
the T1w image. The percentage of activated voxels in CSF
is not considered as it is not diagnostic for geometric ac-
curacy. A higher percentage of activated voxels in gray
matter and a lower percentage of activated voxels in white
matter indicates a better alignment of the fMRI images to
the T1w image.

5The term phase-map refers to the use in phase-encoded retino-
topic mapping, which is provided by an FFT-based analysis pro-
cedure of BOLD time courses. It is different from “phase” in the
phase-encoding direction derived from k-space in MRI acquisition.

Figure 6: An example of a phase-map in the coronal plane. The
red line marks the outer boundary of white matter. Note that the
color coding represents the position in the visual field (see the color
wheel), not the strength of responses, as typical in phase-encoded
retinotopic mapping.

Blurriness measure is used to evaluate how blurry the
image is. Introducing blur to high spatial resolution fMRI
data is typically undesirable (Polimeni et al., 2018; Huber
et al., 2018), as it negates the often considerable effort to
achieve high spatial resolution. To measure blurriness, we
extended the measure proposed by Crete et al. (2007) for
2D images, to work for 3D images. This measure reflects
the intensity variation of an image with respect to that of
the low-pass filtered image.

The normalized intensity variation of image I in the ith

direction is defined as

Vi(I) =

∑
p∈Ω

max
{

0, ∂i(Ip)− ∂i(Ip ⊗ hi)
}

∑
p∈Ω

∂i(Ip)
, (16)

where hi is a low-pass filter, and ∂i(Ip) is the partial
derivative at point p in the ith direction. The blurriness
measure for a 3D image I is the sum of the normalized
intensity in three directions

Mb(I) =
1

3

∑
i=1,2,3

[1− Vi(I)], (17)

An image with a higher value of Mb is more blurred than
the one with a lower value. Fig. 7 shows an example of the
blurriness measure.

(a) Org., Mb = 0.36 (b) σ = 1, Mb = 0.55 (c) σ = 5, Mb = 0.71

Figure 7: Blurriness measurements of an original 3D T1w image and
two blurred images, which are produced by two Gaussian smoothing
filters with different standard deviations σ.

Suitability for BOLD analysis measures undesired
changes in the BOLD responses. For this, we estimate the
cumulative distribution function (CDF) of the phase-map
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values in every slice. The suitability for BOLD analysis
is defined as the difference between the CDFs of corrected
and uncorrected data. It is measured by the normalized
cross-correlation (NCC) function. The range of NCC is in
[0, 1]. A small value of NCC indicates a significant change
of the BOLD responses between the corrected fMRI im-
ages and uncorrected images and vice versa.

4.3. Experimental methods

Scans of inverse blips were first paired together. A mean
image over time of each scan was then generated. The
mean images of each scan pair were processed by the SAC
methods to estimate the displacement field. The estimated
displacement field was then used to unwarp all volumes in
the scan pair. TISAC and HySCO use the same framework
implemented in MATLAB to unwarp the distorted images,
while TOPUP uses another framework implemented in C.
However, these unwarping frameworks are all based on the
cubic spline interpolation.

We evaluated the sub-components of TISAC, which are
T1w-based registration (TR), and Bayesian optimization
(BO). The tested configurations include: (i) TR only; and
(ii) TR with BO (i.e. the complete TISAC). For the con-
figuration of TR only, the regularization parameters were
selected as α = 30, β = 50, and γ = 75000.

We further compared the proposed TISAC method with
two state-of-the-art SAC methods: HySCO (from the
SPM12 toolbox version r7219) and TOPUP (from the FSL
package version 5.0.9). For each pair of inverse-PE scans,
the displacement field was estimated using two mean im-
ages of these scans and then used to unwarp the distorted
images from these scans. The regularization parameters
of TISAC were selected automatically by applying the BO
technique, while these parameters in HySCO were set as
α = 50 and β = 10 as suggested in Ruthotto et al. (2012).
The regularization parameters of TOPUP were selected
as indicated in the preprocessing pipeline for the HCP
(Glasser et al., 2013).

We also assessed the time complexity of three SAC
methods by recording their execution time with inputs as
pairs of mean images. All timing results were collected
on a Linux workstation with an Intel Xeon Processor E3-
128V2 3.6 GHz and 32 GB RAM.

We evaluated the statistical significance of the measures
using two-sample t-tests with the Bonferroni correction.
This approach is simple and robust against false positives.
The one-way analysis of variance (ANOVA) was used to
test the differences in blurriness, MI measure, and per-
centage of activated voxels among SAC methods. All the
tests (two-sample t-tests and ANOVAs) were implemented
using MATLAB. The t-test produces a p-value, which is
used to evaluate the statistical significance of the test (de-
fault significance level is .05). A smaller p-value indicates
stronger evidence against the null hypothesis (H0). A p-
value less than .05 means the null hypothesis is rejected
at a confidence level of 95%. A p-value greater than 0.05
indicates weak evidence against the null hypothesis.

4.4. Analysis of the proposed method

We investigated whether the BO technique improves the
T1w-based registration scheme. Table 3 shows the simi-
larity measures and execution time of the two TISAC set-
tings. It appears that all tested configurations provided
corrected images with comparable quality, i.e. similarity
to the T1w structural image. However, using the BO tech-
nique led to a faster run time than when it was not used.

Table 3: Similarity measures and execution times (in seconds)
of TISAC configurations: with and without using the BO tech-
nique. Methods using BO do not include time for estimating the
hyper-parameters.

Measures TR (mean ± std) TR + BO (mean ± std)

MIND 0.28 ± 0.02 0.27 ± 0.02

Execution time 25.60 ± 9.33 19.71 ± 8.36

4.5. Comparisons with other SAC methods

First, we investigated the time complexity of the proposed
method. Table 4 shows the processing time comparison of
three SAC methods: TISAC, TOPUP, and HySCO. The
results indicate that the proposed TISAC is significantly
faster than TOPUP and HySCO (p-values < .05). TISAC
is approximate 24.8 times faster than TOPUP, and 1.4
times faster than HySCO.

Table 4: Comparison with other SAC methods in terms of execution
time (seconds).

Datasets
TOPUP

mean ± std, p-value
HySCO

mean ± std, p-value
TISAC

mean ± std

3T 399.87 ± 6.52, .000 21.19 ± 5.38, .000 14.88 ± 1.78

7T 741.33 ± 6.04, .000 43.88 ± 12.03, .032 32.58 ± 3.80

The t-test H0: tTISAC ≥ tother. The p-values are Bonferroni corrected.

Second, we visually assessed the quality of corrected im-
ages generated by the three SAC methods. Fig. 8 shows
the uncorrected and the corresponding corrected images of
these SAC methods for two subjects, one in the 3T dataset
(top row) and the other in the 7T dataset (bottom row).
The corresponding T1w images are presented in the right-
most column. The figure shows that all tested SAC meth-
ods decreased SA distortions noticeably. In both datasets,
the TISAC method produced sharp images with clearly
visible tissue interfaces, especially near the brain-air in-
terface. In comparison, TOPUP produced low contrast
images, and HySCO produced images with artifacts in the
brain-air interface (see cyan arrows).

Third, we analyzed the level of blurriness that each SAC
method produces. Fig. 9 shows the cumulative distribu-
tion of the blurriness measurements of the two datasets
for five cases: uncorrected, TOPUP, HySCO, TISAC, and
Gaussian filtering of the uncorrected data with a standard
deviation of σ = 0.3. Note that the SA-uncorrected data
were obtained by applying the motion correction (MOCO)
to the original data. The SAC methods were applied after
the MOCO. We observed that the TISAC produced cor-
rected data with the least blur among three SAC methods.
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Uncorr. LR blip Uncorr. RL blip TOPUP correction HySCO correction TISAC correction T1w

Figure 8: Uncorrected images and their corrected versions created using three SAC methods and corresponding T1w images. Top row: images
of a subject in the 3T dataset. Bottom row: images of a subject in the 7T dataset. The arrows point to the artifacts produced by HySCO.
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Figure 9: Cumulative distributions (CDs) of the blurriness mea-
surements of the two datasets for five cases: uncorrected, TOPUP,
HySCO, TISAC, and Gaussian filtering of the uncorrected data.

Compared to HySCO, TISAC added significantly less blur
on both datasets (p-value = .000, see Table 5). Com-
pared to TOPUP, TISAC added significantly less blur on
the 3T dataset (p-value = .000), and slightly less blur on
the 7T dataset (p-value = .078). All three SAC meth-
ods added blur into the uncorrected data. This obser-
vation was confirmed by an one-way ANOVA for each
dataset (3T dataset: F3,24956 = 2889.36, p-value = .000;
7T dataset: F3,6664 = 129.59, p-value = .000).

Table 5: Comparison with other SAC methods in terms of the blur-
riness introduced.

Datasets
TOPUP

mean ± std, p-value
HySCO

mean ± std, p-value
TISAC

mean ± std

3T 0.271 ± 0.006, .000 0.277 ± 0.008, .000 0.269 ± 0.006

7T 0.232 ± 0.012, .078 0.236 ± 0.014, .000 0.231 ± 0.011

The t-test H0: bTISAC ≥ bother. The p-values are Bonferroni corrected.

The proposed TISAC added a similar amount of blur to
the MOCO corrected data as did a Gaussian filter with
a standard deviation of σ = 0.3. From a related experi-
ment, we observed that motion correction added a similar
amount of blur to the original data as did a Gaussian filter
with a standard deviation of σ = 0.35. Therefore, using

the standard deviations of the Gaussian filter as references,
we can conclude that TISAC adds less blur to the MOCO
corrected images than what motion correction adds to the
original images.

Fourth, we computed the structural similarity measures
for more quantitative evaluation. Fig. 10 shows box-plots
of MI coefficients of the two datasets. For the 3T dataset,
the MI coefficients shows a small change between corrected
and uncorrected images. An one-way ANOVA showed a
significant main effect (F3,49284 = 5.19, p-value = .001).
However, the post-hoc tests revealed that the MI coeffi-
cients for TOPUP are significantly larger than all others.
The post-hoc tests also showed no difference between the
uncorrected, HySCO, and TISAC. For the 7T dataset, all
three SAC methods improved the MI coefficients (one-way
ANOVA: F3,11397 = 3.08, p-value = .026), and there was
no significance difference between SAC methods (one-way
ANOVA: F2,4998 = 1.68, p-value = .187).

Uncorr. TOPUP HySCO AISAC
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(a) 3T dataset (b) 7T dataset

Figure 10: Box-plots of the MI coefficients between structural T1w

and fMRI images.

Fifth, we tested if TISAC improves the accuracy of geo-
metric correction via the BOLD localization in gray mat-
ter and white matter. Note that, a high PAV score is
desirable in gray matter, whereas a low PAV score is de-
sirable in white matter. Fig. 11 shows phase-maps of un-
corrected and three SAC corrected data of a subject in
the 7T dataset, with the coronal and axial views. More
phase-map examples comparing SAC methods are shown
in Figs. A.14 and A.15. Visual inspection reveals that ge-
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Uncorr. data TOPUP correction HySCO correction TISAC correction

Figure 11: Phase-maps projected onto the T1w image of uncorrected and corrected data in the 7T data of Subject 1. Top row: phase-maps
in the coronal view. Bottom row: phase-maps in the axial view. The arrows point to the areas with large distortions. See the electronic color
images.

ometric distortions are smaller in the 3T datasets than
in the 7T datasets, where uncorrected 7T data exhibit
a clear misalignment between activated voxels and gray
matter. The maximum misalignment is 5 pixels (equiva-
lent to about 4.16 mm, see the arrows on the phase-maps
of uncorrected data in Fig. 11). Also, visual inspection
suggests that TISAC correction produces better alignment
than HySCO, and slightly better alignment than TOPUP.
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Figure 12: Mean percentage of activated voxels in gray matter and
white matter. The error bar shows the corresponding standard de-
viation of the percentage.

To quantify this, we calculated the percentage of acti-
vated voxels (PAV). Fig. 12 shows the PAV measures in
gray matter and white matter of the 3T and 7T datasets.
For the 3T dataset, the SAC methods did not improve the
PAV in gray matter (one-way ANOVA: F2,4998 = 0.84, p-
value = .473). They also did not decrease the PAV in white
matter (one-way ANOVA: F2,4998 = 0.77, p-value = .511).
For the 7T dataset, the PAV measures show a strong im-
provement for TISAC corrected (see Fig. 12), i.e. the PAV
measure in GM of TISAC (mean = 61.22, std = 1.30) is
greater than the PAV measure in GM of HySCO (mean =
56.63, std = 1.87), TOPUP (mean = 57.23, std = 1.12),
and uncorrected data (mean = 54.66, std = 5.34). How-
ever, as there is only a small number of samples, we did
not perform a statistical test.

Finally, we evaluated the suitability for BOLD anal-
ysis. Table 6 shows the comparison of the normalized
cross-correlation between estimated CDFs of the phase

values before and after applying SACs. In practice, it
is desirable that SAC methods maintain the BOLD re-
sponses. The results indicate that the BOLD responses of
all three correction methods are not different from those
of uncorrected data (one-way ANOVA for 3T dataset:
F2,969 = 1.03, p-value = .358; one-way ANOVA for 7T
dataset: F2,78 = 0.34, p-value = .710).

Table 6: Change of the BOLD responses after SACs over scans.

Datasets
TOPUP

mean ± std, p-value
HySCO

mean ± std, p-value
TISAC

mean ± std

3T 0.971 ± 0.089, .188 0.964 ± 0.078, .739 0.962 ± 0.089

7T 0.998 ± 0.009, .525 0.999 ± 0.004, .968 0.999 ± 0.004

The t-test H0: cTISAC = cother.

4.6. Discussion

The experimental results indicate that SAC methods can
correct geometric distortions in EPIs, even when these dis-
tortions are severe as in the 7T dataset. HySCO produces
corrected images with ghost artifacts around the brain
boundary. TOPUP produces images with good distortion
corrections and no ghost artifacts, but it introduces blur
and affects the BOLD responses. Judged by visual in-
spection and the performance measures, TISAC produces
output images with better alignment to the structural im-
age, compared to TOPUP and HySCO, especially for the
dataset with severe geometric distortions.

For high spatial-resolution fMRI, the blurring effects on
post-processing are of great concern. We found that all
the SAC methods add blur into the corrected images, but
the proposed TISAC method adds the least amount. Fur-
thermore, the blur that SAC methods add to the motion-
corrected data is much less than the blur that the motion
correction step adds to the original data. Evaluation of the
structural similarity indicates that the mutual information
measure is able to reflect obvious improvements between
uncorrected and corrected images.
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5. Conclusion

This paper introduced a novel method, called TISAC,
for correcting susceptibility artifacts in high spatial res-
olution EPI-fMRI images. The proposed method uses a
pair of inverse-PE EPI-fMRI images and a T1w image.
The symmetric registration principle is adopted to com-
bine the inverse-PE images and to produce a corrected
image that aligns well with the T1w image. The T1w im-
age is used to regularize the registration, and to select the
hyper-parameters via Bayesian optimization.

The performances of TISAC and two other SAC meth-
ods were evaluated using two high spatial-resolution EPI-
fMRI datasets. The experimental results show that TISAC
outperforms the existing methods in terms of accuracy and
robustness, particularly in sub-millimeter images obtained
by the high field scanner. The proposed method produces
sharper corrected images with better geometric correction.
It is effective in preserving the structure of the T1w im-
age in regions of significant SA distortions. Furthermore,
the proposed method requires less computational resources
than TOPUP and HySCO methods. The corrected images
produced by TISAC provide better results in subsequent
fMRI analysis, while still keeping the BOLD responses as
found in the uncorrected images.
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Appendix A. Multi-modal similarity measure

Modality independent neighborhood descriptor (MIND) is
a multi-dimensional descriptor, which was proposed for
computing the dissimilarity measure in multi-modal de-
formable image registration (Heinrich et al., 2012). This
descriptor is independent of the modality, contrast, and
noise level of images since it captures the self-similarity of
the image patches around a voxel.

The multi-dimensional descriptor sMIND of a voxel x
within the search space R (centered at x) is a vector with
the length as the number of elements in R. The MIND
value of a voxel of x in an image I at a single entry ri ∈ R
is defined as

sMIND(I,x, ri) =
1

n
exp
(
−dl(I,x, ri)

v(I,x)

)
, (A.1)

where n is a constant to normalize the maximum value as
1. Here, dl(I,x1,x2) =

∑
p∈P Gσ(x1 + p)(I(x1 + p) −

I(x2 + p))2 is the patch-based dissimilarity, P denotes
neighborhood indexes of a patch size of (2l+1). The term
Gσ denotes the image obtained by applying a Gaussian
filter (having the same kernel size as the patch) on the
difference image between image I and its shifted version
from x1 to x2. The term v(I,x) is the mean patch-based
dissimilarity of voxel x in image I with its six neighbors.

The MIND-based dissimilarity of images A and B is
defined as the sum of MIND difference at every voxel in
the image domain Ω:

DMIND(A,B) =
1

|Ω|
∑
x∈Ω

DMIND(A,B,x), (A.2)

where

DMIND(A,B,x) =
1

|R|
∑
ri∈R

|sMIND(A,x, ri)−sMIND(B,x, ri)|.

(A.3)
A large value of the DMIND indicates the more structural
dissimilarity between the two images A and B.

Fig. A.13 shows examples of MIND difference maps for
different scenarios. The first is the MIND map between
T1w images of two different subjects, see Fig. A.13 (d).
The second is the MIND map between the T1w image and
the EPI image of the same subject, see Fig. A.13 (e). It
can be seen that the MIND-based dissimilarity measure
between different subjects (T1w to T1w) is larger than the
MIND-based dissimilarity measure between different im-
age modalities of the same subject (T1w to EPI).

(a) T1w of Sbj. 1

(b) T1w of Sbj. 2 (c) EPI of Sbj. 1

(d) Map of (a) and (b)(e) Map of (a) and (c)

Figure A.13: An example of MIND difference maps between T1w
and other MRI types: (a) T1w image of Subject 1; (b) T1w image
of Subject 2; (c) EPI image of Subject 1; (d) MIND map of (a) and
(b) with MIND score D = 0.42; (e) MIND map of (a) and (c) with
MIND score D = 0.24. A blue color denotes a small difference, a red
color denotes a large difference. See the electronic color image.
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Uncorr. data TOPUP correction HySCO correction TISAC correction

Figure A.14: Phase-maps projected onto the T1w image of uncorrected and corrected data in the 3T data of Subject 2. Top row: phase-maps
in the coronal view. Bottom row: phase-maps in the axial view. See the electronic color images.

Uncorr. data TOPUP correction HySCO correction TISAC correction

Figure A.15: Phase-maps projected onto the T1w image of uncorrected and corrected data in the 7T data of Subject 3. Top row: phase-maps
in the coronal view. Bottom row: phase-maps in the axial view. See the electronic color images.

Appendix B. Supplementary figures

Figures A.14 and A.15
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