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Abstract

Mechanical ventilation is a widely used breathing support for patients in
intensive care. Its effects on the respiratory and cardiovascular systems are
complex and difficult to predict. This work first presents a minimal mathemat-
ical model representing the mechanics of both systems and their interaction,
in terms of flows, pressures and volumes. The aim of this model is to get in-
sight on the two systems status when mechanical ventilation settings, such as
positive end-expiratory pressure, are changing. The parameters of the model
represent cardiac elastances and vessel compliances and resistances. As a sec-
ond step, these parameters are estimated from 16 experimental datasets. The
data come from three pig experiments reproducing intensive care conditions,
where a large range of positive end-expiratory pressures was imposed by the
mechanical ventilator. The data used for parameter estimation is limited to
information available in the intensive care unit, such as stroke volume, central
venous pressure and systemic arterial pressure. The model is able to satisfacto-
rily reproduce this experimental data, with mean relative errors ranging from 1
to 26 %. The model also reproduces the dynamics of the cardio-vascular and res-
piratory systems, and their interaction. By looking at the estimated parameter
values, one can quantitatively track how the two coupled systems mechanically
react to changes in external conditions imposed by the ventilator. This work
thus allows real-time, model-based management of ventilator settings.
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1. Introduction

In the intensive care unit (ICU), many patients are mechanically ventilated
[1]. The positive end-expiratory pressure (PEEP) imposed by the ventilator
is an important setting of mechanical ventilation, as it ensures that the lungs
remain inflated at end-expiration [2], maintaining recruitment. However, an
excessive PEEP can damage the lungs [2]. In addition, mechanical ventilation
also affects the cardiovascular system (CVS) in many ways. These effects are
complex and difficult to predict [2, 3].

Mathematical models are powerful tools to gain understanding of a systems
inner working and to make predictions about its behaviour in different condi-
tions. For a model to be a reliable tool, the unknown quantities it involves,
called parameters, have to be estimated from the available experimental data.
In the case of the CVS and respiratory systems, the parameters involved in-
clude cardiac elastance and vessel compliances and resistances [3–5]. Thus, by
fitting a cardio-pulmonary model with patient data, the effects of mechanical
ventilation on the structures of the CVS could become quantifiable, allowing
real-time, model-based management of ventilator settings. Such work has never
been performed.

To the best of the authors knowledge, only two studies have modelled the
respiratory system and the CVS, and their interaction [6, 7]. However, param-
eter estimation was not performed in these two studies, meaning that these
models were only qualitatively validated [8], and are not ready to be used as
monitoring or prediction tools.

On the other hand, several models have previously been proposed to sepa-
rately represent the CVS [3–5, 9–34]and the respiratory system [35–41]. Most
of these models are lumped-parameter models, where the CVS or respiratory
system is modelled as an interconnection of compartments, described with sim-
ple equations involving flows, pressures and volumes. Parameter estimation
has been performed in many of these CVS [3–5, 9–18, 27–30] and respiratory
system models [36, 37, 40], sometimes leading to structural and practical non-
identifiability issues [4, 8, 13, 15, 37, 40, 42, 43]. Non-identifiability issues occur
mainly when the number of parameters to estimate is too large with respect to
the amount of data available, which is of particular concern in the ICU, where
data is scarce [9].

This work first introduces a new, minimal cardio-respiratory model, formu-
lated by merging an existing CVS model and a respiratory system model. The
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two separate models were both previously proven to be identifiable from ICU
data, thus greatly reducing potential non-identifiability problems. With the
aim of cardio-pulmonary monitoring in the ICU, the parameters of the cardio-
respiratory model are then estimated using clinical hemodynamic data from
porcine experiments reproducing ICU conditions, with a large range of ventila-
tor settings. This work thus presents a first attempt at parameter estimation
on a cardio-respiratory model using ICU data.

2. Materials and methods

The cardio-pulmonary coupling model presented in this work is an assembly
of two models: a respiratory system model and a CVS model (Fig. 1). The
respiratory system model is a single compartment model (Fig. 1, left). The
CVS model is a three-chamber model of the systemic circulation (Fig. 1, right).
They are linked by thoracic pressure, Pth.

2.1. Cardiovascular system model

The three-chamber CVS model (Fig. 1) is a minimal model including the
aorta (ao), one vena cava (vc) and left ventricle (lv) [13, 14]. This model was
proven to be structurally [15] and practically [13] identifiable. Model chambers
are joined by flow resistances representing the left ventricular valves and the
systemic circulation.

The arterial and venous compartments are represented using purely passive
chambers, where the pressure, Pi, is proportional to the volume, Vi:

Pi(t) = Ei (Vi(t)− VU,i), i = ao, vc (1)

where the parameters Ei and VU,i are the elastance and the unstressed blood
volume of the chamber i. The stressed blood volume is defined:

VS,i(t) = Vi(t)− VU,i. (2)

Stressed volume, VS,i(t), of chamber i corresponds to the amount of blood in
the chamber that contributes to pressure changes. The pressure-volume rela-
tionships in the vena cava and aorta become, respectively:

Pvc(t) = Evc VS,vc(t) + Pth(t) and Pao(t) = Eao VS,ao(t). (3)

where the presence (or absence) of intra-thoracic pressure, Pth(t) is discussed
in Section 2.3.

Similarly to [16], left ventricular pressure Plv(t) is the sum of a free wall
ventricular pressure Plv,f (t) and the intrathoracic pressure Pth(t) acting on the
ventricle:

Plv(t) = Plv,f (t) + Pth(t). (4)
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Figure 1: Electrical representation of the model. Left: simple lung model. Right: 3-chamber
CVS model. Thoracic pressure, Pth, links the models.

The active nature of the left ventricle is described using a time-varying pressure-
volume relationship, defined [16]:

Plv,f (t) = elv(t)Elv,es(Vlv(t)− Vlv,d) + (1− elv(t))Elv,ed(Vlv(t)− Vlv,u), (5)

where Elv,es and Elv,ed are respectively the end-systolic and end-diastolic elas-
tances of the left ventricle. Equation 5 assumes linear end-systolic (ESPVR) [16–
18, 44] and end-diastolic [34] pressure-volume relationships.

The time-varying parameter elv(t) in Equation 5 represents the normalised
time-varying elastance of the left ventricle [4, 16]:

elv(t) = exp

{
−W

[
(t mod T )− T

2

]2}
, (6)

where W dictates the width of the Gaussian function, mod denotes the modulo
operator, and T is the cardiac period. This driver function model is the simplest
possible (cfr. Fig. 5), involving only two parameters, while others typically
require more [11, 20–25].

The model chambers are linked by flow resistances representing the mitral
valve (mit), the aortic valve (aov) and the systemic capillaries (sys). The
systemic circulation flow, Qsys(t), is described using Poiseuille’s equation:

Qsys(t) =
Pao(t)− Pvc(t)

Rsys
. (7)

There is flow through a cardiac valve only if the pressure difference across the
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valve is positive:

Qmit(t) =

{
Pvc(t)−Plv(t)

Rmit
if Pvc(t) > Plv(t)

0 otherwise
(8)

Qaov(t) =

{
Plv(t)−Pao(t)

Raov
if Plv(t) > Pao(t)

0 otherwise
(9)

Finally, the continuity equation gives the rate of volume change inside the com-
partments as a function of the inflows and outflows:

dVlv

dt
= Qmit(t)−Qaov(t) (10)

dVS,ao

dt
= Qaov(t)−Qsys(t) (11)

dVS,vc

dt
= Qsys(t)−Qmit(t). (12)

Summing these three equations gives:

dVlv

dt
+

dVS,ao

dt
+

dVS,vc

dt
= 0. (13)

Equation 13 implies the sum of chamber volumes is a constant for this closed-
loop system, and is the total amount of blood in the system. The value of this
volume is called total stressed blood volume (SBV ) [26].

2.2. Respiratory system model

The respiratory model must also be minimal to ensure identifiability and
computational speed. Many respiratory system models exist [38, 45, 46], in-
cluding complex, three-dimensional finite element models [39, 47], as well as
simpler lumped parameter models [38, 45, 48]. This research considers a clin-
ically validated linear single compartment model [38, 45] (Fig. 1), previously
shown to be a globally accurate minimal model of fundamental respiratory me-
chanics [38] and structurally and practically identifiable [36, 38, 40].

Airway air flow, Qaw(t), is expressed using Poiseuille flow between the ven-
tilator and the lung compartment, yielding [38]:

Qaw(t) =
Paw(t)− Plung(t)

Raw
, (14)

where Paw(t) is the ventilator input pressure, Plung(t) is the pressure inside the
lungs, and Raw is the airway resistance. A linear relationship links Plung(t)
and the volume of air inside the lungs, Vlung(t), via the total respiratory system
elastance, Ers:

Plung(t) = ErsVlung(t). (15)
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This lung model has been extensively validated against clinical data and cap-
tures all fundamental mechanics [37, 38, 41, 48]. An expression of the lung
volume can be integrated from the airflow Qaw(t) entering the lungs, as:

Vlung(t) =

∫
Qaw(t) dt +

PEEP

Ers
, (16)

where the integration constant PEEP
Ers

can be found from Equation 15 at end-
expiration, when the lung pressure is equal to PEEP and the periodic part of
the integral cancels. This constant corresponds to the functional residual ca-
pacity of the lung.

By defining a periodic volume VC(t) =
∫
Qaw(t) dt and by inserting Equa-

tions 15 and 16 in Equation 14, yields an expression for Paw(t):

Paw(t) = RawQaw(t) + ErsVC(t) + PEEP. (17)

2.3. Cardio-pulmonary coupling model

Cardio-pulmonary coupling is made through intra-thoracic pressure, which
is assumed spatially homogeneous in this work. The overall simplified model as-
sumes the ventricular and venous compartments are submitted to intra-thoracic
pressure, as reflected in Equations 3 and 4. The arterial compartment is not
subjected to Pth, as the part of the circulation it represents is not subjected
to thoracic pressure in reality. Different versions of these hypotheses have been
made for previous cardio-pulmonary models [27, 28]. The hypotheses used in
this work are discussed in Appendix A.

The coupling is created using Pth(t), computed from the respiratory model
[38], for the pressure over the total thorax volume. The chest wall elastance
Ewall links intra-thoracic pressure and lung volume, yielding:

Pth(t) = EwallVlung(t). (18)

The respiratory system elastance is assumed to be mainly composed of the lungs
and the chest wall, as two homogeneous compliances in series [49], as represented
on the left of Figure 1, yielding:

Ers = Elung + Ewall (19)

Ultimately, Pth(t) can be derived by substituting Equations 16 and 19 into
Equation 18, yielding (cfr. Fig. 8):

Pth(t) = EwallVC(t) + PEEP
Ewall

Ers
(20)

In summary, the cardio-pulmonary coupling model has 15 equations: Equa-
tions 3 to 12, Equations 14 to 16, and Equation 18; and 16 parameters. The
model parameters are summarised in Table 2. The model has 3 state variables:
Vlv(t), Vao(t) and Vvc(t). The initial condition for each of these variables were
SBV/3.
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2.4. Data

The experimental data used in this study come from 3 porcine experiments
performed in the haemodynamics laboratory of the University of Liège [4]. These
experiments were approved by the Ethics Committee of the Medical Faculty
of the University of Liège. These experiments analysed the haemodynamic
impact of vascular filling by successive fluid administration [4]. Importantly, the
experiments were performed with the chest closed to ensure thoracic pressure
and cardiopulmonary interactions were not modified.

The pigs weighed 27.3, 24.5 and 20 kg. They were anaesthetised. They were
administered a muscle relaxant (Nimbex, GlaxoSmithKline AG, Switzerland)
and mechanically ventilated through a tracheostomy while in supine position.
The ventilator parameters (GE Engström CareStation, General Electric Health-
care, USA) were:

• Tidal volume of approximately 10 ml/kg,

• Frequency of 20 breaths per minute,

• Initial PEEP 5 cmH2O (0 cmH2O for pig 3).

Micromanometer-tipped catheters (Transonic, NY) provided invasive real-time
recording of (cfr. Fig. 6):

• Left ventricular pressure, Plv,m(t),

• Left ventricular volume Vlv,m(t),

• Aortic pressure, Pao,m(t).

A PiCCO monitor (Pulsion AG, Germany) was also used, its arterial and ve-
nous catheters located in the femoral artery and vena cava. After the required
calibration step, the PiCCO displayed:

• Maximal and minimal vena cava pressure, Pvc,max and Pvc,min

• Cardiac output, CO

The mechanical ventilator, in turn, recorded:

• Airway pressure, Paw,m(t),

• Airway flow, Qaw,m(t).

Finally, a Fogarty balloon catheter was inserted in the inferior vena cava.
After all sensors were correctly positioned, PEEP was increased by steps of

5 cmH2O, up to 25 cmH2O. After each change in PEEP, once steady state
was reached, the ventilator was turned off and the Fogarty balloon catheter was
inflated to reduce ventricular preload - a preload reduction experiment. Two
preload reduction experiments were performed at each PEEP level (cfr Fig. 4).

The signals were recorded at 250 Hz and filtered and split into heartbeats af-
ter the experiments. Figure 2 shows the time series of measured airway pressure
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during the whole experiment for pig number 1. The timespans between each
PEEP change and the following preload reduction experiment were considered
to be physiologically representative of the pigs baseline hemodynamics under
mechanical ventilation.

Figure 2: Time series of the airway pressure signal Paw(t) in [cmH2O] for pig 1. The PEEP
changes can be observed by the offset changes in airway pressure. At each each PEEP level,
two preload reduction experiments can be observed, when the pressure drops for approximately
20 seconds.

2.5. Output vector

Because of the asynchrony and complex interactions between respiratory
and CVS signals, the number of heartbeats over one respiratory period is never
the same. Therefore, only median values computed over several cardiac and
respiratory periods were included in the output vector. This de-coupling of
hemodynamics and pulmonary mechanics yields an overall global behavior.

The model presented here is voluntarily oversimplified. Therefore, it was ex-
pected the shape of modelled CVS signals would differ from measured signals.
Let X(t) and Xm(t) be the modelled time series of a signal and its corre-
sponding measured time series, respectively. Since the shape of a given signal
directly influences its mean value over a heartbeat, comparing the mean values
of X(t) over a heart beat to the mean values of Xm(t) over the same heart beat
to fit the model to the measurement would result in an inherent error. Median
values of signals were thus used instead of means.

Let Xmax,i and Xmin,i be the maximal and minimal values of the signal
X(t) over the heartbeat i spanning the time period Ti:

Xmax,i = maxt∈Ti [X(t)] and Xmin,i = mint∈Ti [X(t)] (21)
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The offset, X, of the signal X(t) over N = 20 cardiac periods was computed
as the average of the medians of Xmax,i and Xmin,i over N heartbeats:

X =
mediani=1,...,N (Xmax,i) + mediani=1,...,N (Xmin,i)

2
(22)

The 20 cardiac periods were always chosen as the last 20 beats of the baseline
dataset, for every PEEP level (cf. Figure 2) both in the modelled and measured
signals. The mediani=1,...,N () function was chosen over the mean to minimize
the influence of potential outlier values from the sensor measurements.

Similarly, the range, ∆X, of X(t) over N cardiac periods was defined:

∆X = mediani=1,...,N (Xmax,i)−mediani=1,...,N (Xmin,i) (23)

Due to the respiratory oscillations in the signal X(t), Xmax,i is not constant
between heartbeats. Let Xmax,j

max and Xmin,j
max be the maximal and minimal values

of Xmax,i during the jth respiratory period, spanning several cardiac periods.
The range of the respiratory oscillations in the signal X(t), written ∆Xmax, can
thus be calculated:

∆Xmax = medianj

(
Xmax,j

max

)
−medianj

(
Xmin,j

max

)
(24)

The calculation of ∆Xmax is exemplified on Figure 3 for X(t) = Pao,m(t).
Let y(p) be the output vector calculated from the modelled signals resulting

from one simulation of the model using the parameter values in p. The com-
ponents of y(p), as well as the measurements included in the reference output
vector, yref are shown in Table 1. This table summarizes from which signals
the components of these vectors are calculated. Detailed explanations on the
choice of the model signals to compute y(p) are given in Appendix A.

The seventh component of the output vector quantifies the respiratory effects
on the aortic pressure waveform. This component is the range of the respira-
tory oscillations in the aortic pressure signal, written ∆Pao,m,max, calculated
using Equation 24 and exemplified on Figure 3. No information related to left
ventricular pressure, Plv(t), was included in the output and reference vectors.

2.6. Error vector

A relative error vector, e, between simulated and reference values is defined:

ei =
yrefi − yi(p)

yrefi

for i = 1, ..., 7 (25)

2.7. Parameter estimation

2.7.1. Introduction

The model parameters were adjusted to minimise the error between sim-
ulated and measured signals. First, nominal values had to be assigned to all
model parameters. As a second step, a selected subset of the parameters was
iteratively adjusted to further decrease the error. This two-step process was
performed for all available datasets, covering all pigs at all PEEP levels.
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Figure 3: Measured time series of the aortic pressure signal Pao,m(t) (blue line) on pig 1 at
PEEP 10cmH2O. The black asterisk and circle symbols respectively represent the maximal
and minimal aortic pressures of each cardiac period (Pao,m,max,i and Pao,m,min,i). The
yellow dotted lines show the medians of these values, used to compute ∆Pao,m (cfr. Eq. 23).
The black circled and red circled asterisks are respectively the maximal and minimal peaks in
the respiratory oscillations of Pao,m,max,i. The green dotted lines show the medians of these
values, used to compute ∆Pao,m,max (cfr. Eq. 24). The red dotted line shows the aortic
pressure signal offset Pao,m.

i Model out-
put

yi(p) yrefi Calculated from

1 Pao(t)+Pth(t) P ao P ao,m Pao,m(t)

2 Pao(t)+Pth(t) ∆Pao ∆Pao,m Pao,m(t)

3 Pvc(t)−Pth(t) P vc P vc,m P vc,m =
Pvc,max + Pvc,min

2
4 Pvc(t)−Pth(t) ∆Pvc ∆Pvc,m ∆Pvc,m = Pvc,max − Pvc,min

5 Vlv(t) V lv V lv,m Vlv,m(t)

6 Vlv(t) ∆Vlv ∆Vlv,m Vlv,m(t)

7 Pao(t)+Pth(t) ∆Pao,max ∆Pao,m,max Pao,m(t)

Table 1: Components of the vectors y(p) and yref . For each simulation of the model for a
given set of parameters p, the signals of the second column are used to compute the compo-
nents of y(p) (third column) which are compared to yref (fourth column) whose components
are calculated from the measured signals of the fifth column.

2.7.2. Nominal parameter values

Several methods can be used to compute the nominal values of the param-
eters, p0 [4]. The methods used here are based on models or specific reasoning
with respect to the CVS model dynamics. The following eight steps calculate
or estimate from data all 16 parameters.
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Step 1 Venous and aortic chamber elastances, Evc and Eao (Parameters #
1-2)

The nominal values of the aortic and venous chamber elastances are [4, 26]:

Eao,0 =
∆Pao,m

CO · T
and Evc,0 =

∆Pvc,m

CO · T
. (26)

Where CO is the cardiac output and the product CO · T corresponds to an
average stroke volume over the solicitation period. The pressure ranges ∆Pao,m

and ∆Pvc,m are known from the measured signals.

Step 2 Ventricular parameters, Elv,es, Elv,ed, Vlv,d and Vlv,u (Parameters #
3-6)

The preload reduction experiments performed at each PEEP level allowed es-
timation of the ventricle-related parameters Elv,es, Vlv,d, Elv,ed and Vlv,u. To
obtain the values of the parameters Elv,es and Vlv,d, the iterative method of
Kass et al. [50] was implemented. This method performs a linear regression of
the points of end-systole, as shown in Figure 4. The method was adapted for
the points of end-diastole, thus providing values for Elv,ed and Vlv,u, as also
shown in Figure 4.

Step 3 Driver function parameter W (Parameter # 7)

During the preload reduction experiments, the ventilator is turned off and the in-
trathoracic pressure, Pth becomes negligible compared to the cardiac pressures.
Therefore, during the preload reduction experiments, the pressure-volume rela-
tionship in the left ventricle is approximated:

Plv(t) ≈ Plv,f (t) (27)

= elv(t)Elv,es(Vlv(t)− Vlv,d) + (1− elv(t))Elv,ed(Vlv(t)− Vlv,u) (28)

Since Plv,m(t) and Vlv,m(t) are measured, and Elv,es, Vlv,d, Elv,ed and Vlv,u were
computed at Step 2, Equation 27 can be used with the measured signals, to
compute the experimental driver function elv,m(t):

elv,m(t) =
Plv,m(t)− Elv,ed (Vlv,m(t)− Vlv,u)

Elv,es (Vlv,m(t)− Vlv,d)− Elv,ed (Vlv,m(t)− Vlv,u)
(29)

An example of such an experimental driver function is shown in Figure 5. The
parameter W of the driver function could then be computed by fitting Equa-
tion 6 on the obtained experimental curve, as exemplified in Figure 5. This
fitting step was performed using non-linear least squares.

Step 4 Cardiac period, T (Parameter # 8)

The cardiac period, T , was taken as the average of the cardiac periods of the
N = 20 heartbeats representing the baseline datasets.
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Step 5 Circulatory resistance Rsys (Parameter # 9)

Let 〈X〉 be the average value of the signal X(t) over N = 20 cardiac periods.
The nominal value of Rsys is defined [4, 26]:

Rsys,0 =
〈Pao,m〉 − 〈Pvc,m〉

CO
. (30)

Step 6 Valve resistances Rmit and Raov (Parameters # 10-11)

The values of the valve resistances were set as follows:

Rmit = 0.001 mmHg · s/ml and Raov = 0.04 mmHg · s/ml [29] (31)

The mitral valve resistance was chosen to be low as the measured venous pres-
sures were quite low, which could hamper the opening of the mitral valve in the
model equations (cf. Equation 8).

Step 7 Total stressed blood volume, SBV (Parameter # 12)

The value of total stressed blood volume, SBV , was calculated as the sum
of average stressed blood volumes inside the chambers (cfr Equation 13) over
N = 20 heartbeats. By writing 〈X(t)〉 the average over N = 20 heartbeats of a
signal X(t), SBV can be estimated as follows:

SBV = 〈VS,lv〉+ 〈VS,ao〉+ 〈VS,vc〉 (32)

For the venous and arterial chambers, average volumes were estimated from the
offset pressures over N = 20 heartbeats (cfr Equation 22), accounting for the
elastances. Putting Equation 2 into 1 and solving for stressed blood volumes
and neglecting intrathoracic pressure, estimates of 〈VS,ao〉 and 〈VS,vc〉 are found:

〈VS,ao〉 =
P ao,m

Eao,0
and 〈VS,vc〉 =

P vc,m

Evc,0
(33)

For the ventricle chamber, the average volume over N = 20 heartbeats was
estimated as follows (neglecting intrathoracic pressure):

〈VS,lv〉 ≈ 〈elv,m〉
(
V lv,m − Vlv,d

)
+ (1− 〈elv,m〉)

(
V lv,m − Vlv,u

)
(34)

Equation 32 can be written:

SBV ≈ 〈elv,m〉
(
V lv,m − Vlv,d

)
+ (1− 〈elv,m〉)

(
V lv,m − Vlv,u

)
+

P ao,m

Eao,0
+

P vc,m

Evc,0
(35)

The value of SBV can thus be estimated from the available measurements and
previously computed parameters: Eao,0 and Evc,0 were computed at Step 1,
and Vlv,d and Vlv,u were computed at Step 2.

12



Step 8 Ventilation parameters Raw, Ers, PEEP , and Ewall (Parameters #
13-16)

From the ventilator signals, Qaw,m(t) and Paw,m(t), one can use a linear regres-
sion of the respiratory system model (Equation 17) to compute the values of
the airway flow resistance, Raw, and the respiratory system elastance, Ers, as
previously described [37, 38, 41]. The nominal value of Ewall was taken as Ers

and the PEEP was read from the ventilator.

Figure 4: Typical pressure-volume loops during a preload reduction experiment for pig 2 at
PEEP 10 cmH2O. All collected left ventricular pressure-volume loops had a similar shape to
the one presented here, and are shown in Appendix B. The markers show the end-systolic
(top left of the loops) and end-diastolic points (bottom-right) and their linear regressions.

Figure 5: Measured (dotted line) and modelled (plain line) driver functions, using a Gaussian
curve. The experimental signal comes from pig 2 data at PEEP 10 cmH2O.
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2.7.3. Iterative estimation of a parameter subset

After nominal parameter estimations (Steps 1-8), a subset, p′, of p was
further optimised:

p′ = {Eao, Evc, Rsys, Ewall, Elv,ed} . (36)

The criteria for including the parameters in p′ were based on previous sensi-
tivity analyses [13] and observations from model simulations. In particular, the
three-chamber model is not very sensitive to both valve resistances [13], as large
changes in value do not imply large changes in the outputs. Therefore, the
values of these resistances were kept fixed. In addition, it was often observed
that measured vena cava pressure was lower than measured minimum left ven-
tricular pressure. While this situation is physiologically possible, in the model,
it blocks ventricular filling and causes difficulty in parameter estimation. The
end-diastolic elastance, Elv,ed, directly influences minimum ventricular pressure:
if it decreases, so does the minimum pressure, for a given volume. Therefore,
including Elv,ed in p gives the iterative process a means to directly control the
minimum ventricular pressure, and can thus compensate for impaired ventricu-
lar filling in the model.

The parameters in p′ were iteratively adjusted to match model outputs to
measured data. The parameter estimation routine was started using a rapid,
proportional-gain algorithm described in [15, 17]. The resulting parameters were
then finely tuned using the non-linear simplex algorithm [51]. The cost function
to be minimised was the 1-norm of the error vector, ||e||1.

2.7.4. Summary

Table 2 summarizes the model parameters and the methods used to esti-
mate their values. The overall iterative parameter estimation procedure can be
summarised in the following steps:

A. Computation of nominal parameter values from the available measurements
(Steps 1-8).

B. Model simulation using the current parameter values and computation of
the output vector y(p).

C. Computation of the error vector, e, as the relative difference between y(p)
and the reference values, yref .

D. Adjust the parameters in p′ using the proportional and simplex methods
and repeat steps B to D.

E. Output the optimal, pig-specific parameter values, popt.

3. Results

3.1. Quality of the parameter fitting
Table 3 shows the minimum average absolute error, ||e||1/7, for each PEEP

level and each pig. Appendix C presents the corresponding values of all the
components of e. Appendix D and Appendix E respectively contain the refer-
ence values of all the datasets considered in this study and the model parameter
estimations on those datasets.
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# Parameter Method Measurements Iteratively
to obtain / parameters adjusted
nominal used to obtain
value nominal value

1 Evc (mmHg/ml) Equation 26 ∆Pvc,m, CO Yes
2 Eao (mmHg/ml) Equation 26 ∆Pao,m, CO Yes
3 Elv,es (mmHg/ml) Kass et al. [52] Plv,m, Vlv,m No
4 Elv,ed (mmHg/ml) Kass et al. [52] Plv,m, Vlv,m Yes
5 Vlv,d (ml) Kass et al. [52] Plv,m, Vlv,m No
6 Vlv,u (ml) Kass et al. [52] Plv,m, Vlv,m No
7 W (s−2) Linear Plv,m, Vlv,m, No

regression of Elv,ed, Vlv,u,
Equation 6, Elv,es, Vlv,d

with
Equation 29

8 T (s) Average Plv,m, Vlv,m No
9 Rsys (mmHg s/ml) Equation 30 P̄ao,m, P̄vc,m, Yes

CO
10 Rmit (mmHg s/ml) 0.001 - No
11 Raov (mmHg s/ml) 0.04 - No
12 SBV (ml) Equation 35 elv,m, Vlv,m, No

Vlv,d, Vlv,u,
Pao,m, Eao,
Pvc,m, Evc

13 Raw (mmHg s/ml) Linear Paw,m, Qaw,m, No
regression of PEEP
Equation 17

14 Ers (mmHg/ml) Linear Paw,m, Qaw,m, No
regression of PEEP
Equation 17

15 PEEP (cmH2O) From the - No
ventilators

16 Ewall (mmHg/ml) Equal to Ers Ers Yes

Table 2: List of model parameters and methods used to determine their values.

3.2. Model dynamics

Figure 6 shows simulated pressures and volumes using the estimated param-
eter values listed in Table 4. In particular, the bottom right panel of Figure 6
shows the corresponding left ventricular pressure-volume loop.

3.3. Reaction to changes in parameters

The model reaction to specific changes in parameters was also analysed.
More specifically, the following parameter changes were implemented:
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Pigs PEEP 0 PEEP 5 PEEP 10 PEEP 15 PEEP 20 PEEP 25
Pig 1 / 5.4% 1.21% 2.28% 8.88% 13.98%
Pig 2 / 0.66% 2.3% 9.76% 19.07% 15.76%
Pig 3 5.3% 13.92% 17.16% 13.54% 25.75% 18.23%

Table 3: Average absolute value error ||e||1/7 after iterative parameter estimation on the
different datasets. No data was recorded on pigs 1 and 2 at PEEP 0 cmH2O

Figure 6: Model output, simulated with the values listed in Table 4. The green and red areas
highlight the aortic and mitral valve openings (respectively). A) Modelled chamber pressures
driving the opening and closure of the valves. B) Modelled ventricular pressure Plv(t) (blue
line) and measured ventricular pressure (dotted line). C) Modelled signal Pao(t)+Pth(t) (blue
line) used for parameter estimation, compared to the measured aortic pressure (dotted line).
D) Modelled signal Pvc(t)−Pth(t) (blue line) used for parameter estimation, compared to the
PiCCO reference value for Pvc,max and Pvc,min (dotted lines) and P vc (dash-dotted line). E)
Modelled volumes (plain lines) and measured ventricular volume (dotted line). F) Ventricular
PV loops (blue line). The circle represents the (V lv , P lv) reference point computed from the
measured ventricular signals as explained in Section 2.5. The dash-dotted lines represent the
measured pressure and volume ranges, computed as explained in Section 2.5.

• An increase of systemic vascular resistance from 0.7 mmHg.s/ml to 1 mmHg.s/ml.

• An increase of aortic elastance from 1.17 to 1.3 mmHg/ml.

The effect of these two changes on simulated aortic pressure is shown in Figure 7.

3.4. Influence of the respiration

Figure 8 shows measured airway pressure, Paw,m(t), and simulated thoracic
pressure, Pth(t). It also emphasises the variations of ventricular pressure caused
by mechanical ventilation, both in the model and in the data.
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Haemodynamic and respiratory parameters Value Units
Elastances Elv,es 2.147 mmHg/ml

Elv,ed 0.053 mmHg/ml
Eao 1.170 mmHg/ml
Evc 0.224 mmHg/ml

Respiratory system Ewall 0.011 mmHg/ml
Ers 0.021 mmHg/ml
PEEP 7.356 mmHg

Resistances Rsys 0.699 mmHg · s/ml
Raov 0.04 mmHg · s/ml
Rmit 0.001 mmHg · s/ml

Driver function W 59.970 s−2

S 0.442 s
Theart 0.491 s

ESPVR & EDPVR Vlv,d −9.244 ”ml”
Vlv,u 41.532 ml

Table 4: Example of estimated parameter values for pig 1 at PEEP 10 cmH2O.

Figure 7: Effect of the variation of Rsys (left) and Eao (right) on the simulated aortic pressure.

Modelled intrathoracic pressure Pth(t), is computed from the measured air-
way pressure Paw,m(t) using Equation 20. The horizontal dash-dotted lines in
Figure 8 A respectively show the values of Pth(t) (blue line) and Paw,m(t) (or-
ange line) at end-expiration, being equal to PEEP ∗ Ers/Ewall and PEEP ,
respectively, as dictated by Equations 16 and 17.

4. Discussion

4.1. Model dynamics

The four phases of the cardiac cycle can be distinguished on the fitted model
pressure-volume loop of Figure 6 (bottom right panel). This loop can be under-
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Figure 8: Influence of mechanical ventilation on the cardiovascular signals, both in the model
and in the data for pig 1 at PEEP 10 cmH2O. A Simulated intrathoracic pressure, Pth(t)
(blue line) and measured airway pressure, Paw,m(t) (orange line). The dash-dotted lines
show the values of these two signals at end-expiration. B Simulated (blue dotted line) and
measured (orange dotted line) ventricular pressures, Plv(t) and Plv,m(t). B-Top: The yellow
linked asterisk and purple linked circle markers show the end-systole points of Plv(t) and
Plv,m(t), respectively. B-Bottom: The yellow linked asterisk and purple linked circle markers
show the end-diastole points of Plv(t) and Plv,m(t), respectively. The vertical dotted green
lines highlight two breathing periods.

stood by comparing the left and top right panels of Figure 6.
This description of the cardiac cycles generated by the model matches all

expectations and shows that the model, despite its simplicity, captures the fun-
damental CVS dynamics [53].

4.2. Influence of respiration

A full and consistent validation of the model requires the model behaves
physiologically over several heartbeats and breathing cycles. Figure 8B clearly
shows the influence of the respiratory wave (intrathoracic pressure) on the simu-
lated ventricular pressure, in a similar pattern as observed on the data. Indeed,
ventricular pressure is clearly modulated by the respiratory wave. The heart-
beats at the end of expiration (respectively inspiration) involve lower (respec-
tively higher) ventricular pressures. This phenomenon is highlighted in Figure
8B on the ventricular pressure maxima and minima mainly because the mag-
nitude of the respiration-induced changes in ventricular pressure is relatively
small compared to ventricular pressure itself.

Both in the data and the model, the expected mechanical influence of intra-
thoracic pressure on ventricular volume was observed. Volumes at end-filling
are lower at the end of inspiration because intra-thoracic pressure is higher,
which decreases ventricular filling. This behaviour was observed in the data and
reflected by the model. However, other external complex factors can influence
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volumetric changes in the ventricle, which are not captured by the simplified
dynamics of this model. Therefore, the influence of the intra-thoracic pressure
on the ventricular volume in the model was expected not to be as exact to
physiological reality as the respiratory influence on the ventricular pressure.

4.3. Parameter estimation process

As shown in Table 3, the model outputs were fitted on reference data with
relatively small fitting errors. The mean fitting error roughly increases with
PEEP, for each pig. Consequently, at low PEEP, the model can represent the
complexity of the measured haemodynamic signals, even if it involves very strong
assumptions. In contrast, the model is reaching its limits at higher PEEP values,
which might induce other strong biophysical events [54] altering the cardiopul-
monary interactions in such a way the model defined is no longer relevant. Such
high PEEP levels (25 cmH2O) are typically not used in critically ill patients [55].

Finally, the ranges of the average absolute error values (cf. Table 3) are still
relatively low, considering the strong assumptions. These errors are comparable
to the fitting errors obtained during the parameter estimation of much more
complex CVS models using a partly common output vector [3, 29]. This results
clearly shows there is no loss of fitting quality for these signals using simpler
models.

As shown in Table 4, Figure 4 and Table E.7, negative values were obtained
for the parameter Vlv,d on several PEEP levels for the three pigs. These results
show the linear ESPVR model commonly adopted in the literature may not be
exact or most relevant. Therefore, this parameter cannot be interpreted as a
physical volume. Negative values compensate inaccuracy of the commonly used
linear ESPVR model and should not be given a physical interpretation. This
observation has been made by several other researchers [4, 52, 56].

4.4. Effect of PEEP on the haemodynamic parameters

The estimation of pig-specific parameter values for the model enables relating
PEEP levels to these parameters. Thus, observation of haemodynamic effects
of PEEP changes becomes possible. Figure 9 shows the estimated values of
Rsys and Evc as a function of the PEEP level. The systemic resistance seems
to decrease with the PEEP level. However, the very low values of Rsys at
high PEEP levels may also reflect the difficulties of the parameter estimation
process at high PEEP, as shown in Table 3. The decrease of Rsys for increasing
PEEP also shows that too high PEEP levels may block circulation through the
systemic capillaries and confirms previous model-based results [30].

The right panel of Figure 9 shows the estimated value of vena cava elastance,
Evc, as approximately constant over PEEP, which was also observed for aortic
elastance, Eao, as shown in Appendix E. Such behaviours can be expected,
since elastances indicate the deformability of a vessel, and are thus mechanical
properties. The linear model used for the aortic and venous chambers was thus
appropriate.
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Figure 9: Estimated values of Rsys (left) and Evc(right) on every PEEP level of the three
pigs.

4.5. Reaction to changes in parameters

Physiologically, an increase in systemic vascular resistance means blood cir-
culates less easily from the aorta to systemic capillaries, increasing aortic pres-
sure [16]. As shown in Figure 7 (left), the model reproduces this behaviour. An
increase in aortic elastance makes the aorta more rigid, so, for a given aortic
blood volume, the aorta will generate larger pressures. Figure 7 (right) confirms
the model also reproduces this behaviour.

4.6. Limitations

4.6.1. Differences between porcine and human physiology

In this work, parameter estimation was performed using porcine data. There
are differences between porcine and human physiology. However, the features
used in this work to model the cardiovascular and respiratory systems are com-
mon to both species. Indeed, both the human [6] and porcine [3] hearts can be
modelled as a single elastic chamber. The same is true for the aorta and the
vena cava. Similarly, the respiratory systems of both species have often been
modelled using a single linear elastic compartment [6].

A related limitation of this work is the animals were not critically ill. Even
if not critically ill, the three pigs exhibited large variability and the model
was successfully fit. Further, the three-chamber CVS model used in this work
has also successfully been applied to data of pigs in septic shock [14]. These
observations indicate the cardio-pulmonary model presented will also fit various
situations of pathological human physiology.

4.6.2. Simple model

The biggest limitation of the three-chamber CVS model presented in this
work is the difficulty to interpret it in terms of cardio-vascular physiology due
to its significant abstraction. The CVS in reality consists of two parallel circuits,
the systemic and pulmonary circulations, which are traditionally accounted for

20



in CVS models [3, 9–12]. In this work, the pulmonary circulation is not repre-
sented in the model. This approach assumes the pulmonary circulation behaves
as a simple flow resistor, as in other works [14, 31–33]. The three-chamber model
is thus not suited for studies investigating the pulmonary circulation. However,
it is well suited for this type of study of global haemodynamics.

Equally, this three-chamber CVS model is the simplest possible. It thus
has the lowest possible number of parameters enhancing identifiability with
typical ICU data. Hence, this smaller model maximizes identifiability of global
haemodynamics, necessitating increased simplicity and abstraction.

4.7. Availability of the reference measurements from ICU data

The output vector used in this study contains seven indices, which can be
readily derived in a standard ICU environment:

• Mean left ventricular volume, 〈Vlv,m〉, is not directly available in an ICU
setting. However, it can be approximated from available ICU data, such
as global end-diastolic volume and SV [13].

• SV , in turn, can clinically be obtained using thermodiluton or echocar-
diography [34].

• Systemic arterial pressure, Pao,m(t), can be obtained in the ICU using an
arterial line. This continuous measurements allows the computation of
P ao,m, ∆Pao,m, and ∆Pao,max,m, as described in Section 2.5.

• Similarly, central venous pressure, Pvc,m(t), is usually provided by a cen-
tral venous line. Its offset, P vc,m, and range, ∆Pvc,m, can then be derived
exactly as for P ao,m and ∆Pao,m.

The parameter estimation procedure presented in this work can thus be applied
using data available in the ICU.

In this work, additional data were used, such as ventricular pressures and
volumes during a preload reduction manoeuvre, to get as precise nominal pa-
rameter values as possible. Such data is usually not available in an ICU. Con-
sequently, for a clinical application, other methods must be used for estimating
initial parameter values. For instance, one may use population-based values, or
the values presented in this work. Other methods for obtaining initial parameter
values for the CVS model have also been presented [13].

5. Conclusions

A new minimal model of the CVS was coupled to a simple model of the
respiratory system, through the intrathoracic pressure. The full model was able
to capture the combined dynamics of these two physiological systems. Addi-
tionally, the model was validated against experimental data. By fitting the
model outputs on physiological signals, subject-specific parameter values could
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be estimated. The influence of PEEP on hemodynamic parameters could be es-
tablished. For instance, this study demonstrated that the systemic resistance of
the CVS decreases for increasing PEEP, while the vena cava elastance remains
constant.

Due to its simple nature and mathematical expression, the model designed
in this study allows observing the effect of ventilatory settings on hemodynamic
parameters. This work allowed better quantification of the interactions between
the respiratory and the cardiovascular systems. Therefore, it opens many re-
search opportunities in its implementation at the patients bedside and in the
optimisation of ventilation parameters by taking into account and predicting
ventilation impacts on the CVS.
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Appendix A. Choice of signals used for model fitting

The components of the model output vector y(p) were the following (calcu-
lated over N = 20 simulated cardiac periods):

• P ao and ∆Pao, computed on the model output Pao(t)+Pth(t). The model
was built with the aortic chamber out of the thoracic cavity. However, the
aortic catheter measurement was performed in the proximal aorta, which
is located inside the thoracic cavity. Therefore, it was chosen that the
modelled output Pao(t) + Pth(t) should be compared to the measured
signal Pao,m(t) for the parameter estimation.

• P vc and ∆Pvc, computed on the model output Pvc(t)− Pth(t). A similar
difference between the model compartments and the measurement loca-
tion was observed for the venous pressure, but the other way around. In
the model, the venous compartment was considered inside the thoracic
cavity, while the measurement was performed in the superior vena cava,
which does not experience thoracic pressure. Therefore, the model output
Pvc(t)−Pth(t) was compared to the measured Pvc,max and Pvc,min of the
PiCCO for the parameter estimation.

• V lv and ∆Vlv, computed on Vlv(t) from the simulation.

• ∆Pao,max computed as explained above from the model output Pao(t) +
Pth(t).
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Appendix B. Left ventricle Pressure-Volume loops

Figure B.10 compares the pressure-volume loops of the left ventricles during
the preload reduction experiments performed on all datasets (all three pigs, at
every PEEP level).

Figure B.10: Measured left ventricular pressure-volume loops for all datasets (all three pigs,
at every PEEP level) during the first preload reduction experiment performed at each PEEP
level. The volumes are shown in ml and the pressures in mmHg.
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Appendix C. Relative fitting errors

Table C.5 shows the fitting errors obtained after iterative parameter estima-
tion for all the datasets (every pig, at every PEEP level). The columns are the
components of the error vector e (cf. Equation 25), calculated with the optimal
parameter values and the reference values (cf. Table 1 and Appendix D), the
rows represent the several datasets of this study.

e1 e2 e3 e4 e5 e6 e7
Pig 1
PEEP 5 0.0076 0.0285 -0.1841 0.0433 -0.0128 -0.1015 0.0001
PEEP 10 -0.0027 0.0007 -0.0055 -0.0006 0.0424 -0.0325 -0.0006
PEEP 15 -0.0001 -0.0012 -0.0068 -0.0035 0.1373 0.0105 -0.0003
PEEP 20 -0.0991 0.0022 -0.0064 0.0497 0.0113 -0.4529 0.0002
PEEP 25 -0.1044 0.5642 -0.0117 0.0034 -0.0011 -0.2941 0.0000

Pig 2
PEEP 5 -0.0004 -0.0023 -0.0006 0.0050 -0.0345 -0.0022 0.0011
PEEP 10 -0.0029 0.0214 -0.0003 0.0059 -0.0058 -0.1223 -0.0021
PEEP 15 -0.0046 -0.0026 0.0030 -0.0003 0.1400 -0.5292 0.0035
PEEP 20 -0.8455 0.0002 -0.0373 0.0346 0.2617 -0.1470 0.0082
PEEP 25 -0.4681 0.0011 -0.0016 0.0012 0.1846 -0.1465 0.2998

Pig 3
PEEP 0 0.0052 0.0010 -0.1951 0.0028 -0.0734 -0.0933 0.0004
PEEP 5 -0.0028 0.0229 -0.0926 0.0205 -0.1912 -0.6373 -0.0074
PEEP 10 -0.0041 0.0066 -0.0019 0.0129 -0.2173 -0.9550 -0.0034
PEEP 15 -0.0007 0.0057 -0.0072 0.0965 -0.0082 -0.8261 -0.0035
PEEP 20 -0.5682 0.1419 0.2080 0.0200 -0.0223 -0.8401 -0.0024
PEEP 25 -0.0133 0.1031 0.0279 0.0184 0.0292 -1.0228 0.0615

Table C.5: Relative error vectors e obtained on the pigs after iterative estimation of the
parameters on the different datasets. PEEP levels are given in cmH2O
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Appendix D. Reference values

Table D.6 shows all the reference values of the reference vector yref , for all
the datasets (every pig, at every PEEP level).

Output PEEP PEEP PEEP PEEP PEEP PEEP
0 5 10 15 20 25

P ao,m Pig 1 N/A 98.666 88.436 74.743 71.44 67.763
mmHg Pig 2 N/A 147.942 151.646 144.478 124.278 87.624

Pig 3 128.009 122.679 114.898 96.671 81.481 89.529

∆Pao,m Pig 1 N/A 35.804 37.083 36.124 35.272 33.034
mmHg Pig 2 N/A 46.261 45.515 37.308 32.298 22.997

Pig 3 41.998 43.916 43.703 38.16 27.821 26.222

P vc,m Pig 1 N/A 11 12.5 14 15.5 17
mmHg Pig 2 N/A 11 13.5 16 17 19.5

Pig 3 11.833 11.5 12 14.5 15 18

∆Pvc,m Pig 1 N/A 10 9 10 11 12
mmHg Pig 2 N/A 10 9 8 6 7

Pig 3 3.667 5 4 5 6 6

V lv,m Pig 1 N/A 68.342 63.133 51.354 45.06 40.552
ml Pig 2 N/A 73.179 72.483 68.475 60.305 42.656

Pig 3 49.556 49.1 47.229 41.637 33.077 28.89

∆Vlv,m Pig 1 N/A 44.285 45.719 48.606 43.96 39.801
ml Pig 2 N/A 42.35 39.07 36.473 35.053 28.616

Pig 3 25.098 23.708 20.378 22.205 18.756 16.863

∆Pao,m,max Pig 1 N/A 4.689 4.902 4.476 3.73 5.861
mmHg Pig 2 N/A 6.396 6.236 9.007 6.289 6.369

Pig 3 3.091 4.69 4.69 7.462 8.208 12.045

Table D.6: Reference values composing the vector yref calculated on all the different datasets,
for every pig at every PEEP level. PEEP levels are given in cmH2O.
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Appendix E. Parameter estimations results

Table E.7 shows all estimated parameter values, resulting from the direct
and iterative estimations (cf. Section 2.7) for all the datasets (every pig, at
every PEEP level).

Parameter PEEP PEEP PEEP PEEP PEEP PEEP
0 5 10 15 20 25

Elv,es Pig 1 N/A 2.261 2.147 4.366 6.227 9.98
mmHg/ml Pig 2 N/A 2.118 2.262 2.074 2.289 2.952

Pig 3 2.809 3.15 2.788 3.248 4.683 7.079
Elv,ed Pig 1 N/A 0.001 0.053 0.174 0.114 0.14
mmHg/ml Pig 2 N/A 0.16 0.145 0.121 0.171 0.241

Pig 3 0.001 0.003 0.085 0.185 0.137 0.228
Eao Pig 1 N/A 1.025 1.17 1.187 13.206 3.374
mmHg/ml Pig 2 N/A 1.403 1.324 0.896 1.07 1.003

Pig 3 2.117 1.559 1.517 1.387 1.004 3.9
Evc Pig 1 N/A 0.226 0.224 0.274 0.166 0.25
mmHg/ml Pig 2 N/A 0.301 0.258 0.189 0.204 0.313

Pig 3 0.143 0.138 0.112 0.139 0.232 0.181
Ewall Pig 1 N/A 0.011 0.011 0.012 0.007 0.014
mmHg/ml Pig 2 N/A 0.017 0.018 0.024 0.015 0.011

Pig 3 0.005 0.013 0.013 0.02 0.024 0.025
Ers Pig 1 N/A 0.029 0.02 0.01 0.004 0.009
mmHg/ml Pig 2 N/A 0.025 0.018 0.01 0.003 0.005

Pig 3 0.057 0.038 0.023 0.012 0.008 0.014
Rsys Pig 1 N/A 0.769 0.699 0.391 0.05 0.009
mmHg · s/ml Pig 2 N/A 2.716 2.357 1.166 1.184 0.607

Pig 3 2.603 1.806 1.689 0.784 0.553 0.083
Raov Pig 1 N/A 0.04 0.04 0.04 0.04 0.04
mmHg · s/ml Pig 2 N/A 0.04 0.04 0.04 0.04 0.04

Pig 3 0.04 0.04 0.04 0.04 0.04 0.04
Rmit Pig 1 N/A 0.001 0.001 0.001 0.001 0.001
mmHg · s/ml Pig 2 N/A 0.001 0.001 0.001 0.001 0.001

Pig 3 0.001 0.001 0.001 0.001 0.001 0.001
W Pig 1 N/A 62.433 59.97 75.546 96.239 116.312
s−2 Pig 2 N/A 34.58 35.009 35.481 38.897 51.168

Pig 3 30.068 31.264 30.926 42.49 62.23 82.361
Theart Pig 1 N/A 0.465 0.491 0.549 0.566 0.57
s Pig 2 N/A 0.884 0.847 0.867 0.958 0.789

Pig 3 0.627 0.653 0.712 0.74 0.677 0.618
Vlv,d Pig 1 N/A -4.468 -9.244 5.576 9.136 12.515
”ml” Pig 2 N/A -24.224 -19.493 -22.453 -12.306 -0.544

Pig 3 -13.32 -5.612 -8.074 -1.767 5.678 7.783
Vlv,u Pig 1 N/A 44.052 41.532 21.574 -12.168 -13.208
ml Pig 2 N/A 61.046 35.982 -9.532 -23.111 -16.171

Pig 3 44.263 32.081 17.175 -0.773 -12.736 -18.377

Table E.7: Estimated model parameters on all the different datasets, for every pig at every
PEEP level. PEEP levels are given in cmH2O.
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