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Pain-free resting-state functional brain connectivity
predicts individual pain sensitivity
Tamas Spisak1*, Balint Kincses2, Frederik Schlitt1, Matthias Zunhammer 1, Tobias Schmidt-Wilcke3,4,

Zsigmond T. Kincses2 & Ulrike Bingel1

Individual differences in pain perception are of interest in basic and clinical research as

altered pain sensitivity is both a characteristic and a risk factor for many pain conditions. It is,

however, unclear how individual sensitivity to pain is reflected in the pain-free resting-state

brain activity and functional connectivity. Here, we identify and validate a network pattern in

the pain-free resting-state functional brain connectome that is predictive of interindividual

differences in pain sensitivity. Our predictive network signature allows assessing the indivi-

dual sensitivity to pain without applying any painful stimulation, as might be valuable in

patients where reliable behavioural pain reports cannot be obtained. Additionally, as a direct,

non-invasive readout of the supraspinal neural contribution to pain sensitivity, it may have

implications for translational research and the development and assessment of analgesic

treatment strategies.
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Pain is a subjective, unpleasant sensory and emotional
experience1 that is highly variable across individuals2,3.
Individual differences in pain perception are of key interest

in clinical practice as altered pain sensitivity is both a char-
acteristic and risk factor for many pain conditions3–5. In the past
decades, brain imaging has revealed the richness and complexity
of brain activity underlying both the acute pain experience6 and
pain sensitivity7,8. Still, the central nervous mechanisms deter-
mining individual differences in pain perception are poorly
understood, partly because past neuroimaging research has
mainly focussed on the momentary (acute or chronic) pain
experience. The common practice of using pain-free episodes
merely as a baseline reference makes studies inherently blind to
components of brain activity that are not time-locked to painful
events but still central to pain processing and perception.

Brain activity in the resting-state (i.e. in absence of any task or
stimulation) is known to mirror some, if not all, task-induced
activity patterns9. For instance, the well-known large-scale
resting-state networks10 (RSNs) strongly resemble patterns of
related tasks11. Moreover, resting-state activity can predict
behavioural performance, perceptual decisions and related neural
activity12,13. Given the tight link between resting-state and task-
induced brain activity, it is highly plausible that activity and
functional connectivity during pain-free resting-state conditions
reflect the individual’s sensitivity to pain. Following the RSN-
related terminology, we refer to this type of neural activity as the
resting-state network of pain sensitivity.

This proposed pain-related resting-state network might have
been captured by studies reporting that brain activity and con-
nectivity directly preceding pain is associated with the subsequent
pain experience14–21. Several characteristics of the resting-state
fMRI signal in pain-free state are also known to be associated
with the neural response to nociception and the resultant pain
experience22–24, its effect on cognitive performance25 and its
changes due to prior pain experience26. However, due to the small
sample sizes, highly varying methodology (e.g. regarding the
correction of physiological and motion artefacts) and the lack of
validation in these previous studies the predictive power and
clinical relevance of this kind of resting-state brain activity
remains unclear to date27.

Mapping the resting-state network of pain sensitivity and
exploiting its capacity to predict various aspects of pain proces-
sing would substantially advance the field—both from a basic
research and translational perspective. First, contrasting it with
experimental pain responses would extend our understanding of
how the subjective experience of pain emerges from brain activity.
Second, investigating how the hypothesised resting-state pain
sensitivity network is embedded into the broader resting-state
brain activity could extend our knowledge about the complex
functional architecture of the resting brain.

Finally, and most importantly, a robust, generalizable and
rigorously validated prediction of pain sensitivity—based on the
resting-state network of pain sensitivity—could lay the founda-
tions for a non-invasive neuromarker of an individual’s sensitivity
to pain. Such a resting brain network-based biomarker could
contribute to the development of a future pain biomarker com-
posite signature27 that could aid the assessment of an individual’s
risk of developing pain, and the objective characterization of pain
conditions and analgesic treatment effects in experimental and
clinical pain research.

Here, we investigate the capacity of pain-free resting-state
functional brain connectivity to predict individual pain sensitivity
(defined as a composite measure of heat, cold and mechanical
pain thresholds) in a sample of a total of N= 116 young healthy
participants. We first perform a whole-brain search for specific
features of the pain-free resting-state connectome, which are

predictive for individual pain sensitivity in a sub-study used only
for the training and internal validation of the predictive model.
Then, we perform a prospective validation of the approach in
terms of predictive performance, generalisation and potential
confounders in two independent sub-studies acquired at different
scanning sites (external validation). Finally, we perform a reverse-
mapping of the predictive model to identify the key nodes of the
hypothesised network, hereinafter referred to as the signature of
the Resting-state Pain sensitivity Network (abbreviated as RPN-
signature).

Results
Functional connectivity-based prediction and multicentre
validation. Resting-state functional MRI data were obtained from
a total of N= 116 healthy volunteers over three separate sub-
studies, performed in three different imaging centres. Neuro-
marker development was based on intrinsic whole-brain func-
tional brain connectivity, the degree to which resting-state brain
activity in distinct neural regions is correlated over time (in the
absence of any explicit task). Functional connectivity was assessed
between M= 122 functionally defined regions (Fig. 1). Heat, cold
and mechanical pain thresholds acquired according to the well-
established quantitative sensory testing (QST) protocol28 were
aggregated into a composite pain-sensitivity score, as previously
reported8, to obtain a general estimate of pain sensitivity (see
Supplementary Note 1 for rationale). Whole-brain resting-state
functional connectivity data of study 1 (N1= 35, after exclusions)
was used as the input feature-space (P= 7503 features per par-
ticipant) to predict individual pain sensitivity scores, leading to a
typical large P—small N setting.

According to these conditions, we constructed a machine-
learning pipeline, consisting of feature-normalisation, feature-
selection and fitting an elastic net regression model.

Model training consisted of fitting the pipeline and optimising
its hyperparameters in a leave-one-participant-out cross-
validation framework to improve generalisation to new data.

In Study 1, QST-based pain sensitivity values ranged from
−1.45 to 1.52 with a robust range (range between the 5th and
95th percentiles) of 2.57 (arbitrary units).

In the internal validation (i.e. performance on left-out
participant data) the model predicted pain sensitivity with a
mean squared error of MSE1= 0.32 (pMSE,1 < 0.0001, Explained
variance Expl. Var.1= 39%, Pearson’s r1= 0.63, pr,1 < 0.0001,
Fig. 2b). Diagnostics of the model fit (learning-curve analysis,
Fig. 2a) suggested that the approach reduced overfitting and that
sample size was sufficient for an acceptable generalisation. The
machine-learning pipeline with the optimal hyperparameters was
finally fitted to the data of all participants in Study 1 and saved for
further use. The model trained in Study 1 is henceforth referred
to as the signature of the Resting-state Pain-sensitivity Network
(or short, RPN signature).

As pre-registered on the 7 March 2018 (http://osf.io/buqt7),
external validation studies (Studies 2 and 3) were performed in
different imaging centres with different MRI scanners (from three
different vendors) and with different research staff. The multi-
centre design, together with a reasonable variability in imaging
sequences introduced an inherent heterogeneity, ensuring that
test samples are maximally independent and provide a realistic
estimate of prediction accuracy and generalisability.

In Studies 2 and 3 (N2= 37 and N3= 19, after exclusions),
QST-based pain sensitivity values ranged from −1.82 to 1.57 and
from −1.2 to 0.55, with a robust range of 2.3 and 1.43,
respectively. External validation (Fig. 2c, d) revealed a consider-
able generalisability of the predictive model: the mean squared
prediction error was MSE2= 0.54 and MSE3= 0.17, respectively

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13785-z

2 NATURE COMMUNICATIONS |          (2020) 11:187 | https://doi.org/10.1038/s41467-019-13785-z | www.nature.com/naturecommunications

http://osf.io/buqt7
www.nature.com/naturecommunications


(pMSE,2= 0.02, pMSE,3= 0.03, Expl. Var.2= 18%, Expl. Var.3=
17%, Pearson’s r2= 0.43 and r3= 0.47, pr,2= 0.004 and pr,3=
0.02). Summary statistics of pain sensitivity, in-scanner motion
and demographic data are reported in Supplementary Table 1,
correlations of CPT, HPT and MPT with each other and the
predicted score are reported on Supplementary Note 1, Supple-
mentary Fig. 6.

Potential confounds and specificity to pain sensitivity. To
ensure that the RPN-signature captures the pain-related neural
processing in the pain-free resting state, the potential contribu-
tion of two types of confounds has to be ruled out: (i) imaging
artefacts (e.g. head motion artefacts) and (ii) demographic or
behavioural variables correlated with individual pain sensitivity
(e.g. age and sex are known to be slightly correlated with QST
thresholds28).

Table 1 lists the investigated (pre-registered) confounder
variables and their correlations to the predicted pain sensitivity
score (together with the corresponding p-value) in all three
studies. The pain sensitivity score predicted by the RPN-signature
was not significantly associated with any of the confounder
variables (p > 0.05 for all variables). Effect size was, however,
considerable for sex (Study 2: R2= 0.08, p= 0.09), number of
days from the first day of menses (Study 1: R2= 0.26, p= 0.11,
Study 2: R2= 0.11, p= 0.17, Study 3: R2= 0.33, p= 0.08), time
difference between the MRI and QST measurements (Study 2: R2

= 0.1, p= 0.06) and with Glutamate/Glutamine levels in pain-
processing regions (measured by MR spectroscopy in Study 1: R2

= 0.09, p= 0.08). Summary statistics of confounder variables are
reported in Supplementary Table 1.

Supplementary Note 1 confirms a considerable robustness of
the prediction to the choice of pain threshold measures included

in the composite score (part Q3) and suggests that the prediction
does not introduce any bias towards/against the investigated
sensory modalities (part Q4). Supplementary Note 2 suggests that
the RPN-signature displays a remarkable robustness to potential
parcellation-related issues (e.g. susceptibility artefacts, drop-out
effects, noise or suboptimal parcellation).

The predictive resting-state network of the pain sensitivity.
With the applied machine-learning pipeline, non-zero regression
coefficients naturally delineate the predictive sub-network. Each
coefficient can be interpreted as the relative importance of the
connectivity in the prediction. Positive (negative) coefficients
translate to stronger interregional functional connectivity pre-
dicted higher (lower) sensitivity to pain.

The RPN-signature model, trained in Study 1, retained 21 non-
zero links out of the total number of 7503 functional connections.
The predictive connections are listed in Table 2 and the predictive
network is depicted on the chord plot of Fig. 3b.

Almost half of the variance in the predicted pain sensitivity
score is explained by the four strongest connections. The most
important positive predictive connections are found between: (i)
the posterior putamen (pPut) and a region including parts of the
parietal operculum and the posterior superior temporal gyrus
(PO/pSTG); (ii) the frontal poles (FP) and the cerebellar lobule V;
and (iii) the right anterior crus II of the cerebellum and the lateral
precentral gyrus (lPrCG, primary motor cortex). The only
negative predictor among the top four connections was a
connection between the supplementary motor cortex and the
posterior part of cerebellar lobule VI. Several other interregional
connections and, additionally, the global grey-matter signal was
also found contribute to the predicted pain sensitivity.
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Fig. 1 Calculating functional brain connectivity from resting-state fMRI measurements. Raw brain images of N= 116 participants, in total, underwent
automated artefact removal, involving despiking, nuisance regression, bandpass filtering and censoring of motion-contaminated time-frames. The effects of
these procedures on the BOLD signal are exemplified on the carpet-plots (a, x: time, y: voxel, colour: intensity). Subsequently, a multi-stage, high-precision
brain atlas individualisation was performed to obtain regional grey-matter signals for M= 122 functionally defined brain regions (b). Partial correlation
between all possible region pairs was computed to asses functional connectivity and ordered based on large-scale modularity to form individual
connectivity matrices. Partial correlations of all regions with the global grey-matter signal was retained to account for, but not completely discard the effect
of the global signal, a component of brain activity often regarded as a confound but also related to e.g. vigilance83. c Subject-level connectivity matrices
(depicted by the group-mean connectivity matrix) from Study 1 served as an input for machine-learning-based prediction of behavioural pain sensitivity.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13785-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:187 | https://doi.org/10.1038/s41467-019-13785-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


To simplify the overview of the spatial pattern of regions
involved in the RPN-signature, we calculated the node-wise sums
of predictive weights and multiplied it with the study-specific
regional probability-maps. The resulting node-wise predictive
strength map is displayed on Fig. 3a.

Discussion
Here we report the RPN-signature, an objective, brain-based
measure of pain sensitivity, based on functional connectivity
acquired during pain-free resting-state. The applied prospective
validation procedure establishes solid foundations for promising
basic research and translational applications. The RPN-signature
is to be applied together with a fixed resting-state fMRI analysis
pipeline (https://spisakt.github.io/RPN-signature) and provides
the opportunity for out-of-the-box resting-state fMRI-based,
non-invasive characterisation of pain sensitivity.

This work addresses an important gap in basic research by
providing strong evidence for the association of pain-free resting-
state functional brain connectivity with neural processing of
painful stimuli and the corollary pain experience. The identified
functional network pattern provides novel insights into this—
commonly unaccounted—component of resting-state brain
activity and substantially advances our understanding of the
neural mechanisms underlying an individual’s pain sensitivity.
We used a pre-registered, multicentre design and deployed a
substantial sample size to perform a rigorous prospective vali-
dation of our predictive model.

Therefore, the RPN-signature may serve as an objective neu-
romarker of interindividual differences and alterations in pain
sensitivity3–5.

It is important to distinguish our study of the pain-free resting-
state from other predictive efforts in pain research, like patient-
control classification studies29 (but also pain decoding30), which
examine brain activity in experimental or chronic pain condi-
tions, i.e. in the presence of painful experience. Note, that in
studies of chronic pain, the terminology “resting-state” usually
refers to the lack of explicit experimental pain stimuli in the data
acquisition paradigm, but not to the lack of ongoing spontaneous
pain experience.

In contrast, the RPN-signature is based on brain activity
measured in the absence of any ongoing painful experience
(which we refer to as pain-free resting-state). Therefore, it
introduces a conceptually new modality for future efforts of
building a composite pain biomarker27.

The RPN-signature predicts a considerable amount of the
variance in individual pain sensitivity (39% with internal vali-
dation and 18–19% with external validation, Fig. 2) which,
according to Cohen’s recommendations, can be considered as
being in the medium-to-large range. The mean squared error
(MSE) of the prediction was 0.54 and 0.17 in the external vali-
dation studies (and 0.32 with internal validation). Interpreting the
magnitude of the error in comparison to the min-max-range
(3.39) and the inter-quartile-range (1.04) of the observed pain
sensitivity values strongly suggests that the predictive power of
the RPN-signature is clinically relevant in the context of chronic
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pain31 and renders the RPN signature deployable in numerous
applications. Here, we discuss three aspects of evaluating the
relevance of the achieved predictive performance.

First, the prediction accuracy we report is similar to those in
previous resting-state fMRI studies of other target variables (see
e.g. refs. 32–35). However, the majority of previously used fMRI-
based predictive models were only internally validated (i.e. the
same dataset was used for model training and validation) whereas
our validation is based on two independently acquired samples at
different scanning sites.

Second, our study is based on a large sample size (N= 116) and
the external validation featured larger heterogeneity regarding
methodology, infrastructure, research personnel and a 1–5-day
delay between the QST and the MRI measurements (which were
at the same day in the training dataset, see Supplementary Table 1
for further details). Our study thus overcomes recent concerns
about common methodological pitfalls of neuroimaging based
predictors36. While prediction accuracy estimates could likely be
higher with a stricter standardisation of the research protocols,
the above reported estimates are expected to robustly generalise
to a wider variety of resting-state fMRI datasets.

Third, we believe that relying solely on the QST-based pre-
dictive accuracy might lead to underestimating the utility of the
RPN-signature. While Quantitative Sensory Testing is the gold
standard approach to assess pain sensitivity, it is a measure of
subjective experience, shaped by peripheral, spinal and suprasp-
inal processes convolved with perceptual and behavioural error
components. The RPN-signature, on the other hand captures
signal of supraspinal neural origin only. Due to this difference,
prediction accuracy estimates based on the multifaceted QST-
based observations should serve only as a lower bound when
judging the utility of the RPN-signature as a proxy for measuring
the supraspinal neural component of the interindividual varia-
bility of pain sensitivity.

Neither the investigated imaging artefacts nor the observed
demographic or behavioural variables were significantly corre-
lated with the predicted pain sensitivity values. In sum, our
analysis strongly suggests that the predictive power of the RPN-
signature is (i) based on signal of neural origin, (ii) is specific to
pain sensitivity and (iii) is not driven by the general sensitivity to
somatosensory stimuli or pain-related psychological variables
such as anxiety, depression or sleep quality.

QST pain thresholds are known to differ between sexes and in
different phases of the menstrual cycle. Their moderate (but
statistically not significant) correlations with the predicted pain
sensitivity score suggest that the RPN-signature partially captures
the neural correlates of these effects. The weak (R2= 0.09, p=
0.08) correlation with Glutamate/Glutamine levels in pain-
processing regions suggest that the RPN-signature also captures
the previously reported8 neurotransmitter-level-dependence of
individual pain sensitivity. The pain sensitivity scores, predicted
by the RPN-signature seem to be also slightly associated to the
delay (days) between the MRI and QST measurements, which
suggests that pain sensitivity and its resting-state neural correlates
are subject to dynamic changes within the scale of days.

As HPT, CPT and MPT are mediated by partially different
sensory pathways24,28,37, it is interesting to evaluate how the
composite score of pain sensitivity, as predicted by the RPN-
signature, relates to the single pain thresholds (pain modalities).
The observed moderate internal consistency and the specific
correlation structure across the distinct pain thresholds have
experiment-specific and neurobiological interpretations (see
Supplementary Note 1 for a detailed discussion). Further, our
Supplementary Note 1 corroborated previous results38 showing
that a shared component of pain processing does shape pain
thresholds in all three investigated pain modalities. We found that
this modality-independent component is captured by both the
RPN-score and the composite pain sensitivity score used as

Table 2 Predictive connections of the RPN signature.

Predictive connections between brain regions Weight

Region RSN idx region RSN idx

PO/pSTG VAN+ SN+ BG+ Thal 119 pPut VAN+ SN+ BG+ Thal 25 0.270
FP FPN 75 5 CER 48 0.245
pCVI CER 9 SMC VAN+ SN+ BG+ Thal 28 −0.200
R aCrus2 CER 62 lPrCG SMN 93 0.150
dPrCG SMN 67 pmVN VN 51 −0.102
pdlVN VN 43 mVN VN 40 0.095
L IPL DMN 114 mean GM mean GM – −0.086
vCaud VAN+ SN+ BG+ Thal 2 plVN VN 39 0.085
Acc MLN 78 pvmVN VN 107 −0.073
CF MLN 79 vlPrCG SMN 110 −0.062
5 CER 48 pdlVN VN 43 −0.059
pThal/Hb VAN+ SN+ BG+ Thal 36 plVN VN 39 0.058
dCVI CER 44 lOTG FPN 117 −0.057
dCiX CER 11 L vMFG FPN 105 −0.056
R IPS FPN 20 plVN VN 39 −0.054
avIns VAN+ SN+ BG+ Thal 12 admVN VN 19 −0.044
R aMFG FPN 58 lPoCG VAN+ SN+ BG+ Thal 102 0.043
CrusI CER 84 dPoCG VAN+ SN+ BG+ Thal 116 −0.017
pgACC DMN 115 mSTG VAN+ SN+ BG+ Thal 88 0.009
Precun DMN 103 LOG MLN 109 −0.003
vThal VAN+ SN+ BG+ Thal 36 FEF VAN+ SN+ BG+ Thal 113 −0.001

Non-zero regression coefficients naturally delineate the predictive sub-network. Regions and corresponding large-scale resting-state network (RSN) modules are to be interpreted as in the MIST atlas
(see Methods, original atlas-index is given). Predictive connections are ordered by their absolute predictive weights. Connectivity strengths associated with higher and lower sensitivity to pain are
highlighted in red and blue, respectively. For bootstrapping-based 95% confidence intervals and the p-values with conditional coverage, see Supplementary Table 4
CER cerebellum, Roman numerals cerebellar lobes, GM grey matter, VAN ventral attention network, SN salience network, BG basal ganglia, Thal thalamus, Hb habenula, MLN mesolimbic network, FPN
frontoparietal network, SMN somatomotor network, DMN default mode network, VN visual network, Ins insula, PO parietal operculum, SII secondary somatosensory cortex, STG superior temporal gyrus,
FEF frontal eye-field, PrCG precentral gyrus, PoCG postcentral gyrus, SMC supplementary motor cortex, Put putamen, Caud caudate nucleus, Acc nucleus accumbens, LOG lateral orbital gyrus, CF collateral
fissure, OTG occipitotemporal gyrus, MFG middle frontal gyrus, IPS intraparietal sulcus, pgACC perigenual anterior cingulate cortex, PrC precuneus cortex. L left, R right, a anterior, p posterior, v ventral, d
dorsal, l lateral, m medial
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prediction target. As expected from these results, the RPN-score
was found to be relatively robust to the choice of pain threshold
measures to construct the composite score and was significantly
associated to the single thresholds. Finally, the RPN-score does
not introduce bias toward/against any of involved sensory mod-
alities and it is robust to the quality of the regional timeseries
(Supplementary Note 2). These properties render the RPN-
signature as a promising predictive tool for the concise, non-
invasive characterization of an individual’s sensitivity to pain.

The identified predictive connectivity network is relatively
sparse (a predictive node has on average 1.2 links), which might
be a consequence of the L1-regularisation used in the applied
machine-learning pipeline. Therefore, our approach likely only
captured the tip of the iceberg and the reported predictive sig-
nature should be considered as a sparse representation of the

underlying true connectivity patterns. Due to the inherent
variability in the feature-selection procedure other equivalent
sparse-signatures might exist. However, our external validation
procedure confirmed the predictive validity of the reported pat-
tern and allows for the interpretation of the single connections.

The key nodes of the RPN-signature, such as the PO/SII, pPut,
SI, dlPFC, habenula (Hb), pgACC and aIns (Fig. 3), have com-
monly been associated with pain6 and corresponding networks
were found to be the most predictive to individual pain thresh-
olds24. However, other brain areas often associated with noci-
ception and pain, such as the posterior insula, are not directly
represented in the predictive pattern, which might be a con-
sequence of sparse modelling. Moreover, other regions not
traditionally associated with pain processing contribute to the
RPN-signature.

Predictive weight:
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Fig. 3 The resting-state pain sensitivity network signature. a The predictive network of the RPN-signature. Widths of ribbons are proportional to the
predictive weights of the functional connections. Network-nodes are color-coded and displayed in 3D-views. Note that, the utilised brain atlas is based on
an entirely data-driven functional parcellation and is, therefore, not fully bilateral. Where laterality (L: left, R: right) is not explicitly specified, the atlas did
not distinguish the region from its contralateral homolog. b Regional predictive strength map of the RPN-signature. Colour-bar depicts region-wise
predictive strength (sum of the weights of all connections for the region, multiplied by the study-specific regional probability map). Regions with an
absolute predictive strength greater than 0.1 are annotated.
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According to current concepts, the multifaceted experience of
pain results from the integration of nociception and the
cognitive-emotional state of the individual39. Within such fra-
mework, our predictive connectivity pattern might reflect the
interaction of pain-related regions with brain properties that
determine the personality and cognitive and emotional and
memory experiences of a given subject.

For instance, the sub-regions of the PO40 (and the dpIns41)
have been discussed to be specific to nociception and pain-related
percepts and the involvement of the pPut in pain-related affective
sensorimotor processes is well known42. Therefore, our obser-
vation that stronger resting-state co-activation of the pPut and SII
is associated with higher sensitivity to pain might imply that the
sensory aspects of salient (and possibly nociceptive) inputs have
an elevated weight in this integrative process in individuals with
high pain sensitivity.

Similarly, the predictive power of the resting-state connectivity
of prefrontal areas to the SI and sensorimotor parts of the cere-
bellum (lobules I–V) with pain sensitivity may reflect the known
role of the prefrontal cortex in integrating cognitive-emotional
states into pain perception23,43. In line with this view, neuro-
modulation of the dlPFC was found to introduce decreased pain-
related activity in sensory-motor areas43 and the resting-state
synchronisation of the prefrontal cortex and the somatosensory
cortex has been reported to predict changes in pain sensitivity26

and individual differences in pain thresholds24.
The predictive capacity of the resting-state synchronisation

between the cerebellum and sensory-motor cortical areas (PrCG,
PoCG, SMC) is also remarkable and highlights the cerebellum as
a promising novel target for related research.

Several connections, exerting small-to-moderate influence on
the prediction, involve the occipital lobe. Some of these predictive
connections could be interpreted as secondary to pain perception
(analogously to the well-known deactivations of visual areas
during noxious stimulation) or, alternatively, might be related to
the somewhat underreported effect of visual context on pain
experience44.

In sum, our findings are in line with the notion45 that there is
no brain area that is selectively and exclusively associated with
pain sensitivity and the individual variability in pain sensitivity is
most probably emerges from the connectivity of multiple brain
areas, which integrate an individual’s sensory, cognitive and
emotional state and thereby determine the overall sensitivity
to pain.

While only a few papers have previously highlighted the rela-
tionship between resting-state activity and acute pain22–26,46,47,
several studies have focussed on pain anticipation12,15–17 i.e. on a
pain-free state directly preceding a painful stimulus. In summary,
results from these studies suggest that the functional state and
connectivity profile of the anterior insula, periaqueductal grey,
anterior cingulum, cerebellum and areas of the frontoparietal
network appear to reflect the individuals’ momentary sensitivity
to potentially painful stimuli. However, from these studies it is
unclear to what degree pain sensitivity is modulated by trait-like
(anxiety, pain catastrophising) or by state-like (preceding emo-
tional appraisal, attentional or pain-specific mental states) char-
acteristics48. In contrast to the short periods used in anticipatory
studies, our study is based on a ten-minute-long resting-state
period and predicts pain sensitivity measured several days later.
Thus, our results strongly support the presence of a trait-like
neural signature of pain sensitivity. However, the observed
association with time between measurements and menstrual cycle
also provides evidence for temporal dynamics.

While the validation and testing of the proposed predictive
signature is highly reliable in terms of generalizability, here we
note that the applied brain atlas, while providing full-brain

coverage and a generalizable functional parcellation, still intro-
duces a-priori constrains in laterality and precise localisation of
brain regions (e.g. it does not contain the PAG and other brain-
stem areas). Moreover, even though the RPN-signature is not
correlated with non-painful somatosensory detection thresholds,
it should be noted that we did not investigate other sensory
modalities such as vision or hearing.

The identified predictive network signature has important
implications from a basic research and clinical perspective and
paves the way for future translational research. Investigating how
the resting-state pain sensitivity network is embedded into the
general resting-state brain activity could extend our knowledge
about the complex functional architecture of the resting brain and
foster our understanding of the mechanisms by which the sub-
jective experience of pain emerges from neural function.

While heightened pain sensitivity is a characteristic for many
pain conditions3–5, patterns of brain activity and connectivity are
fundamentally distinct in experimentally evoked, acute and
chronic pain49. A future, iterative research approach involving
clinical populations promises to further improve the predictive
capabilities and generalisability of the RPN-signature and may
allow for assessing pain sensitivity even if reliable behavioural
pain reports cannot be obtained.

In sum, the RPN-signature identified here has the potential to
become a novel, non-invasive neuromarker for the supraspinal
neural contribution to pain sensitivity, which is of interest in
clinical pain states and especially in translational research and
development of analgesic treatment strategies, where uncoupling
peripheral and central mechanisms is often of crucial interest.
Moreover, the RPN-signature might serve as a novel, resting
network-based building block in a future pain biomarker com-
posite signature27.

Methods
General considerations. The study design was established with careful con-
sideration of recent recommendations, requirements and standards for neuroi-
maging biomarkers50 (neuromarkers) and motivated by the following thoughts.

Maximise predictive performance. We employed a standardized preprocessing
pipeline to ensure optimal sensitivity of the neuromarker, as sufficient effect size is
a basic requirement of any clinical utility50. We used high-precision image align-
ment, incorporating individual anatomy when extracting fMRI timeseries data.
Moreover, we adopted recent recommendations and protocols51 regarding artefact
reduction and optimised our workflow to meet the special needs of connectome-
based analysis. We used our in-house developed, open-source python software
library Pipelines Utilising a Modular Inventory (PUMI, https://github.com/spisakt/
PUMI), which is based on nipype52, a community-based Python project providing
a uniform interface to existing neuroimaging software and, in part, re-used code
from the C-PAC53 and the niworkflows54 open-source projects. A predictive
modelling (machine learning) approach was utilised to exploit the rich data pro-
vided by resting-state functional brain networks and, potentially, take advantage of
fMRI hyperacuity55.

Assessing predictive power under realistic conditions. We used a pre-regis-
tered, external validation strategy, that strictly separated model training and per-
formance assessment. For model training, we exclusively used data from Study 1.
We conducted two independent sub-studies (Studies 2 and 3) in different research
centres, with different equipment and different research staff for validation. We
used a liberal alignment of research settings, allowing for a reasonable hetero-
geneity in procedures, equipment, imaging sequences, language of participant-
researcher communication across study-centres, introducing a reasonable hetero-
geneity in the validation procedure to ensure generalizability.

Ensure that prediction is driven by neural signal and is specific to pain sen-
sitivity. To ensure that the proposed marker of pain sensitivity is indeed driven by
neural signals associated with pain sensitivity, we evaluated the correlation of the
predicted score with various pre-defined (and pre-registered) confounder and
validator variables.

Ensure accessibility of results. We applied a comprehensive pre-registration and
made the source code of the method open-source and freely available for the
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community. Moreover, we provide a platform-independent, easy to use docker
container, which provides the opportunity to use our predictive model as a research
product50, to obtain out-of-the box pain sensitivity predictions form any appro-
priate imaging datasets.

Participants. A total of N= 116 healthy, young volunteers were involved in three
sub-studies. Age and sex of the participants is reported in Supplementary Table 1.
Study 1 involved N1= 39 participants (the same sample as in ref. 8). It was per-
formed at the Ruhr University Bochum (Germany) by MZ and TSW and used as
the training sample for the machine-learning-based prediction of pain sensitivity
and additionally, served as a basis for the internal validation of the prediction.
Studies 2 and 3 (N2= 48, N3= 29) were performed at the University Hospital
Essen (Germany) by FS and TS and at the University of Szeged (Hungary) by BK
and TK, respectively, and served as samples for external validation. Inclusion
criteria and exclusion criteria were largely identical in all three centres and are
listed in Table 3. Recruitment and reimbursement policies varied across centres;
participants received 20 €/h in Studies 1 and 2 and no reimbursement in Study 3.

Metal implant, unremovable piercing, peacemaker, tattoo in head/neck position,
pregnancy or known claustrophobia were considered as contraindication for MR
measurement. Participants were required to abstain from consuming caffeine two
hours before experiments (except in Study 3) and from consuming alcohol on the
day of testing and the previous day.

The study was conducted in accordance with the Declaration of Helsinki,
complies with all relevant ethical regulations for work with human participants and
was approved by the local or national ethics committees (Register Numbers: 4974-
14, 18-8020-BO and 057617/2015/OTIG at the Ruhr University Bochum,

University Hospital Essen and ETT TUKEB Hungary, respectively.) All
participants gave written informed consent before testing.

Imaging and quantitative sensory testing (QST) were performed on the same
day in Study 1 and in average 2–3 days apart in Studies 2 and 3 (see Supplementary
Table 1 for details). MRI measurement always preceded the QST session.

Measures—functional MRI. High-resolution anatomical and open-eyed resting-
state fMRI measurements were acquired from all participants. Scanning parameters
(including equipment) varied across centres and are listed in Table 4. During
measurements, participants were instructed to lie still and relaxed, without falling
asleep, and avoid any movement. Foam padding, and in Studies 1 and 2, pneumatic
pillows were used to restrict head movements. All anatomical MRI measurements
were screened for incidental findings.

Measures—QST. Heat (HPT), cold (CPT) and mechanical (MPT) pain thresholds
were acquired according to the QST protocol28. Warmth (WDT), cold (CDT) and
in Study 2 and Study 3, mechanical (MDT) detection thresholds were obtained as
additional control measures. All sensory measurements were obtained from the
palmar left forearm, proximal to the wrist crest. Within the QST framework,
thermal thresholds are determined using a method of limits. To this end, increasing
and decreasing temperatures were applied to the skin with an MSA thermal sti-
mulator (Somedic, Hörby, Sweden) in Study 1 and Pathway thermal stimulators
(Medoc Ltd., Ramat Yishai, Israel) in Studies 2 and 3. In all studies, ATS thermodes
were used on a skin surface of 30 × 30mm, with a baseline temperature of 32 °C.
Participants were instructed to indicate the onset of pain by button press. For all
thermal thresholds 6, rather than 3 (as in the original protocol)28, stimulus repe-
titions were performed to reduce between-subject variance. Furthermore, the first
measurement was discarded from analysis as a test stimulus. HPT and CPT were
calculated as the arithmetic means of the five remaining threshold temperatures.
MPTs and MDTs were determined using a staircase method. Five increasing and
five decreasing trains of pinprick (MRC Systems, Heidelberg, Germany) stimuli
were applied to the palmar left forearm in an alternating fashion, whereas the
participant was instructed to categorize the stimuli as noxious, or non-noxious.
Mechanical detection threshold was assessed analogously with von Frey filament
stimulations. MPT and MDT were computed as the log-transformed geometric
mean force determined in five ascending and descending staircase-thresholding-
runs.

Additional measures. Age, sex, self-reported height, weight and, for female par-
ticipants, the date of the first day of the last menses and the use of contraceptives,
was recorded prior to all measurements. Additionally, self-reported weekly alcohol
consumption and level of education (primary school, secondary school, university)
was recorder for Studies 1 and 2. Before the QST, participants filled out the Pain
Sensitivity Questionnaire (PSQ)56, the Pain Catastrophizing Scale (PCS)57, the
State-Trait Anxiety Inventory (STAI)58, the short German version of the Depres-
sion Scale (ADS-K, Center for Epidemiologic Studies)59 and, additionally in Studies
2 and 3, the Pittsburgh Sleep Quality Index (PSQI)60 and the perceived stress
questionnaire (PSQ20)61. In Studies 2 and 3, blood pressure was measured both
before the MRI and the QST measurements. Moreover, for Sample 1, T50 values
were available from a parallel experiment performed on the day before fMRI
testing. T50 represents the temperature (in °C) necessary to induce a heat-pain
rating of 50 (on a scale ranging from 0, no pain to 100 unbearable pain). T50 values
were obtained from a non-linear (second-order polynomial) interpolation of rat-
ings obtained in response to 15 tonic heat-pain stimuli (duration: 16 s) between
42.5 °C and 48 °C, presented in pseudo-randomized grid-search fashion.

Calculation of pain sensitivity. The target variable for the prediction was a single
composite measure of individual pain sensitivity summarizing HPT, CPT and MPT
as defined in ref. 8.

In Study 1, HPT, CPT and MPT were Z-transformed (mean centred and
standardized) and HPT, as well as MPT were inverted (multiplied by −1), so that
higher Z-values denoted higher pain sensitivity. Then, the arithmetic mean of the
Z-transformed variables was computed for each participant and defined as pain-
sensitivity score. In Studies 2 and 3, the same procedure was applied, except that Z-
transformation was based on the population-mean and standard deviation of Study

Table 3 Inclusion and exclusion criteria during the recruitment process.

Inclusion criteria Exclusion criteria

No chronic disease Acute or chronic neurological endocrine, or psychiatric conditions
Age between 18 and 40 (target: 25) Acute infections
Right-handedness Contraindication for MRI measurement
Non-smoking Regular medication intake (except contraceptive)
Equal gender distribution targeted Recent use of psychotropic or analgesic substances

Participation in any medication-associated study in the last 6 months
Wounds, scars or any other skin conditions (e.g. neurodermitis) which could affect QST measurements on the forearm
and the hands

Table 4 MRI scanner and sequence parameters for each
centre.

Study 1 Study 2 Study 3

General
Scanner Philips

Achieva X 3 T
Siemens
Magnetom
Skyra 3 T

GE Discovery
MR750w 3 T

Head coil 32-channel 32-channel 20-channel
Anatomical scan

Weighting T1 T1 T1
Sequence MPRAGE MPRAGE 3D IR-FSPGR
TR 8500ms 2300ms 5.3 ms
TE 3.9 ms 2.07 ms 2.1 ms
Resolution 1 × 1 × 1 mm3 1 × 1 × 1 mm3 1 × 1 × 1 mm3

FOV 256 × 256 ×
220mm3

256 × 256 × 192
mm3

256 × 256 × 172

Resting state fMRI
Weighting T2* T2* T2*
Sequence GE EPI GE EPI GE EPI
TR 2500ms 2520ms 2500ms
TE 35ms 35ms 27ms
Flip angle 90 90 81
Phase
ENC. DIR

COL A>>P A>>P

FOV 240 × 240 ×
132

230 × 230 × 132 96 × 96 × 44

Num. of slices 40 38 44
Slice thickness 3mm 3mm 3mm
GAP 0.3 mm 0.48mm 0mm
Slice order Interleaved Interleaved Interleaved
In-plane res. 3 × 3mm2 2.45 × 2.45mm2 3 × 3mm2

Acceleration SENSE 3× GRAPPA 2× ASSET 2×
Fat suppress SPIR Fat.sat. Fat. Sat
Num. of vols 200 290 240
Dummy Scans 5 5 0
Scanning time 8min 37 sec 12min 11 sec 10min
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1, to ensure that the same scale was used across studies. Extreme QST values were
defined using the normative 95% percentiles reported in ref. 28; participants
showing extreme HPT, CPT or MPT values in at least two of the three modalities
were excluded. This screening resulted in excluding 0, 3 and 2 participants in
Samples 1, 2 and 3, respectively (Supplementary Table 2).

fMRI preprocessing. As fMRI-based functional connectivity is susceptible to in-
scanner motion artefacts62,63, appropriate preprocessing and signal cleaning is key
to successful connectivity-based prediction. Resting-state functional MRI data were
preprocessed identically in all three studies. The applied, nipype-based workflow is
depicted on Supplementary Fig. 1. It utilised third-party neuroimaging software,
code adapted from the software tools C-PAC53 and niworkflows54, and in-house
python routines.

Brain extraction from both the anatomical and the structural images, as well, as
tissue-segmentation from the anatomical images was performed with FSL bet and
fast64. Anatomical images were linearly and non-linearly co-registered to the 1mm-
resolution MNI152 standard brain template brain with ANTs65 (see https://gist.
github.com/spisakt/0caa7ec4bc18d3ed736d3a4e49da7415 for source code).

Functional images were co-registered to the anatomical images with the
boundary-based registration technique of FSL flirt. All resulting transformations
were saved for further use. The preprocessing of functional images happened in the
native image space, without resampling. Realignment-based motion-correction was
performed with FSL mcflirt. The resulting six head motion estimates (3 rotations, 3
translations), their squared versions, their derivates and the squared derivates
(known as the Friston-24-expansion66) was calculated and saved for nuisance
correction. Additionally, head motion was summarised as framewise displacement
(FD) timeseries, according to Power’s method63, to be used in data censoring and
exclusion. After motion-correction, outliers (e.g. motion spikes) in timeseries data
were attenuated using AFNI despike67. The union of the eroded white-matter maps
and ventricle masks were transformed to the native functional space and used for
extracting noise-signal for anatomical CompCor correction68.

In a nuisance regression step, 6 CompCor parameters (the 6 first principal
components of the noise-region timeseries), the Friston-24 motion parameters and
the linear trend were removed from the timeseries data with a general linear model.
On the residual data, temporal bandpass filtering was performed with AFNI’s
3DBandpass to retain the 0.008–0.08 Hz frequency band. The prior use of AFNI’s
despike is expected to attenuate aliasing of residual motion artefacts into the
neighbouring time-frames during bandpass filtering69. To further attenuate the
impact of motion artefacts, potentially motion-contaminated time-frames, defined
by a conservative FD > 0.15 mm threshold, were dropped from the data (known as
scrubbing the data)70. Participants were excluded from further analysis if the mean
FD exceeded 0.15 mm, or when more then 30% of frames were scrubbed. This
resulted in exclusion of 4, 8 and 7 participants in Samples 1, 2 and 3, respectively
(Supplementary Table 2). Quality-control (registration-check, carpet-plots, see e.g.
Supplementary Figs. 2–4) was performed throughout the workflow.

Functional connectivity analysis. The 122-parcel version of the MIST71 multi-
resolution functional brain atlas and grey-matter masks obtained from the ana-
tomical image were transformed to the native functional space. This atlas (con-
structed with by the BASC method, i.e. bootstrap analysis of stable clusters) was
recently shown to perform well in connectivity-based predictive modelling72.
Native-space atlas regions were masked with the grey-matter masks that were
obtained from the anatomical image and transformed to functional space pre-
viously. With this atlas-individualization technique, the final regional signal will
originate—with a high probability—from grey-matter voxels for each subject
(which we carefully checked manually for all subjects), while with the conventional
method, a variable ratio of grey- and white-matter voxels are included for every
subject. Therefore, inputting information from the tissue-segmentation process is
expected to decrease subject-to-subject variability (see Supplementary Fig. 5 for
examples). Voxel-timeseries were averaged over these individualised MIST regions
and, together with the mean grey-matter signal, retained for graph-based con-
nectivity analysis.

Regional timeseries were ordered into large-scale functional modules (defined
by the 7-parcel MIST atlas) for visualization purposes (Fig. 1). Partial correlation
was computed across all pairs of regions (and global grey matter), as implemented
in the nilearn73 python module. Partial, rather than simple correlations were used
to rule out indirect connectivity74. Our graph-modelling approach ensured that the
global grey-matter signal is handled as a confound during computing the partial
correlation coefficients but, at the same time, also considered it as a signal of
interest, as it may represent vigilance related processes75. Partial correlation
coefficients were organised to 123 by 123 (122 regions+ global grey-matter signal)
symmetric connectivity matrices. The upper triangle of these matrices was used as
the feature space for machine-learning-based predictive modelling.

Predictive model training and validation. Whole-brain resting-state functional
connectivity data of study 1 (N1= 35, after all exclusions, as in ref. 8, Supple-
mentary Table 2) was used as the input feature-space (P= 7503 features per
participant) to predict individual pain sensitivity scores, leading to a large P—small
N setting.

We constructed a machine-learning pipeline (https://github.com/spisakt/RPN-
signature/blob/master/PAINTeR/model.py) in scikit-learn76, consisting of robust
feature scaling (removes the median and scales with data quantiles), pre-selection of
features77, selecting the K best features with strongest relationships to the target
variable and an Elastic Net regression model78 (a linear model with combined L1 and
L2-norms as regulariser). The use of elastic net was a decision drawn prior to the
analysis. Our main motivation to choose elastic net was that it allows to optimize
sparsity (L1 vs. L2 regularization) as a hyperparameter, so that we did not have to
make any a-priory assumptions about the sparsity of the discriminative ground truth
(see ref. 79 for rationale). To summarise, free hyperparameters of the machine-
learning pipeline were the number of pre-selected features (K), the ratio of the L1/L2-
regularization and the weight (alpha) of regularisation. Hyperparameters were
optimised with a grid-search procedure and negative mean squared error as cost
function. Values for K ranged from 10 to 200 with increments of 5, and included [0.1,
0.5, 0.7, 0.9, 0.95, 0.99, 0.999] for the L1/L2 ratio [0.001, 0.005, 0.01, 0.05, 0.1, 0.5] for
alpha. Hyperparameter optimisation was performed in a leave-one-participant-out
cross-validation (internal validation phase). Cross-validation incorporated the
complete machine-learning pipeline to avoid introducing dependencies between the
training and test samples. Note that fMRI preprocessing was independent between
subjects, thus not included in the cross-validation. Optimal hyperparameters were
found to be K= 25, L1/L2-ratio= 0.999 and alpha= 0.005.

External validation was performed by applying the RPN-signature on the fMRI
data of Studies 2 and 3 (N2= 37, N3= 19, after exclusions, Supplementary Table 2),
simply by applying the feature transformation (scaling) obtained on Sample 1 and
then calculating the dot product between individual connectivity matrices and the
non-zero feature weights obtained in Sample 1. The resulting predictions were
compared with the observed QST-based pain sensitivity scores by calculating mean
absolute error (MAE), mean squared error (MSE) and explained variance.
Permutation-based p-values were obtained for all three measures, using the
mlxtend python package. Moreover, bootstrapping with conditional coverage80 was
used to provide p-values for predictive connectivity weights to aid interpretation.
We constructed 10000 bootstrap samples (with replacement), with a size equal to
the original sample, consisting of paired brain and outcome data. The predictive
model with the optimal hyperparameters was fitted to each sample. Uncorrected P-
values were calculated for each selected connection based on the proportion of
weights below or above zero, as in e.g. ref. 30. Note that the interpretation of these
p-values and confidence intervals (Supplementary Table 4) remains limited as they
are conditioned to the feature-selection procedure.

Confounder analysis. To explore potential confounding variables, the predicted pain
sensitivity-scores (or cross-validated predictions in case of Sample 1) were contrasted
to mean and median FD, the percentage of scrubbed volumes, systolic and diastolic
blood pressure before both the MRI and QST measurement (as blood pressure was
earlier reported81 to be associated with sensitivity to mechanical pain), the time delay
between MRI and QST testing (to test for temporal stability of the prediction), age,
sex, BMI, number of days since the first day of the last menses, alcohol consumption
(units/week), level of education, state and trait anxiety (STAI), score of depressive
symptoms (ADS-K), self-reported pain sensitivity (PSQ) and pain catastrophising
(PCS), perceived stress (PSQ20), quality of sleep (PSQI), and non-noxious QST
detection thresholds (CDT, WDT and MDT, where available). Moreover, in Study 1
predictions were compared to T50-values and MR spectroscopy-based GABA and
Glutamate/Glutamine levels in pain-processing brain regions (see ref. 8 for details).
Associations were tested with permutation-based linear models.

Visualization of the predictive network. The predictive interregional connections
highlighted by the non-zero regression coefficients of the RPN-signature were
displayed as a ribbon plot using the R-package circlize (Fig. 3). Corresponding
individualised brain region masks were transformed back to standard space to
create a study-specific regional probability map (reflecting co-registration accuracy
and individual variability in morphology). Probability maps were multiplied by the
sum of corresponding regression coefficients to create a regional predictive strength
map, which was then visualised with FSLeyes and MRIcroGL.

(https://www.mccauslandcenter.sc.edu/mricrogl) (Fig. 3). The analysis of large-
scale resting-state network-involvement (as defined by the MIST71 brain atlas) was
performed by summarising and Z-transforming the voxel values across the seven
regions-of-interest. Polar plot was made with the R-package ggplot2.

Software availability. The RPN-signature scores can be computed based on
structural and resting-state functional datasets by the software tool with the same
name. The RPN-signature software tool consists of the described MRI processing
pipeline and the functional connectome-based predictive model. It is available as
source code at https://github.com/spisakt/RPN-signature. As the software follows
the Brain Imaging Data Structure (BIDS)82 and the BIDS-App specification, it
provides a standard command line interface and relies on Docker-technology. The
docker image is deposited on Docker Hub: (https://cloud.docker.com/repository/
docker/tspisak/rpn-signature) and does not depend on any software outside the
container image. This, together with the fully transparent continuous integration-
based development and automated tagging and versioning, enhances software
availability and supports reproducibility of RPN-signature results.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Processed data (regional timeseries) and source code are deposited at https://github.com/
spisakt/RPN-signature. The source data underlying Fig. 2 are provided at the same
website and as a Source Data file. Raw imaging data is available at openneuro.org
(ds001900).
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