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EXPONENTIAL FACTORIZATIONS OF HOLOMORPHIC

MAPS

FRANK KUTZSCHEBAUCH AND LUCA STUDER

Abstract. We show that any element of the special linear group SL2(R)
is a product of two exponentials if the ring R is either the ring of holomor-
phic functions on an open Riemann surface or the disc algebra. This is
sharp: one exponential factor is not enough since the exponential map
corresponding to SL2(C) is not surjective. Our result extends to the
linear group GL2(R).

1. introduction

For a Stein space X, a complex Lie group G and its exponential map
exp : g → G we say that a holomorphic map f : X → G is a product of k
exponentials if there are holomorphic maps f1, . . . , fk : X → g such that

f = exp(f1) · · · exp(fk).
It is easy to see that any map f which is a product of exponentials (for some
sufficiently large k) is null-homotopic. In the case where G is the special lin-
ear group SLn(C) the converse follows from [6] as explained in [1]. However,
it turns out to be a difficult problem to determine the minimal number k of
needed factors in dependence of the dimensions of X and SLn(C). We solve
this problem for dimX = 1 and n = 2.

Theorem 1. Any holomorphic map from an open Riemann surface to the

special linear group SL2(C) is a product of two exponentials.

Theorem 1 improves a result of Doubtsov and Kutzschebauch, who showed
the same result with three instead of two factors in the conclusion, see
Proposition 3 in [1]. Stated differently, Theorem 1 says that every element
of SL2(O(X)) can be written as a product of two exponentials, where O(X)
denotes the ring of holomorphic functions on a given open Riemann surface
X. Our second result is of similar flavor, but the ring O(X) is replaced
by the disc algebra A. By definition, the disc algebra A is the C-Banach
algebra of continuous functions on the closed disc {z ∈ C : |z| ≤ 1} which
are holomorphic on the interior, equipped with the supremum norm.

Theorem 2. For the disc algebra A, any element of SL2(A) is a product of

two exponentials.
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2 FRANK KUTZSCHEBAUCH AND LUCA STUDER

Recall that the exponential map exp : sl2(C) → SL2(C) is not surjective.
In this sense Theorem 1 and 2 are sharp. It is worth mentioning that SL2(C)
is simply connected implying that holomorphic maps from open Riemann
surfaces to SL2(C) and elements of SL2(A) are null-homotopic. This is
the reason that the map in question being null-homotopic is a redundant
assumption in Theorem 1 and 2. As corollaries of Theorem 1 and 2 we get
the analogous results if the special linear group is replaced by the linear
group with the corresponding entries.

Corollary 1. Any null-homotopic holomorphic map from an open Riemann

surface to the linear group GL2(C) is a product of two exponentials.

Proof. Let X be an open Riemann surface and M2(C) the complex 2 × 2-
matrices. If a given holomorphic map A : X → GL2(C) is null-homotopic,
then detA : X → C

∗ is null-homotopic as well. Therefore detA has a
holomorphic logarithm log : X → C, satisfying elog = detA. In particular,
if D : X → M2(C) is the diagonal matrix with diagonal entries log /2,
exp(−D)A has values in SL2(C). By Theorem 1 there are holomorphic
B,C : X → M2(C) such that

A = eDe−DA = eDeBeC = eD+BeC ,

where we used in the last equality that D commutes with all other matrices.
This finishes the proof. �

Unlike in Theorem 1, in Corollary 1 the assumption that f is null-homotopic
is not redundant. For instance,

A(z) =

(

z 0
0 z

)

, z ∈ C
∗

is not null-homotopic since otherwise detA : C∗ → C
∗, z 7→ z2 would be

null-homotopic as well.

Corollary 2. For the disc algebra A, any element of GL2(A) is a product

of two exponentials.

Proof. This follows from Theorem 2 in the same way as Corollary 1 follows
from Theorem 1. Here, we need in addition that any unit in A has a loga-
rithm, which follows from the fact that the disc (and thereby the domain of
the elements of A) is contractible. In particular, the map in question being
null-homotopic is again a redundant assumption. �

Corollary 2 improves a result of Mortini and Rupp, who showed the same
with four instead of two factors in the conclusion, see Theorem 7.1 in [8].
Also Corollary 1 and 2 are sharp in the sense that one exponential factor is
not enough. An example is the matrix

A(z) =

(

1 1
0 e4πiz

)

, z ∈ ∆.

One can show that the second entry of any lift of z 7→ A(z), |z| < 1/2
via the exponential map tends to infinity if z → 1/2. For details see [8],
Example 6.4.

We would like to thank Sebastian Baader for helpful comments on a draft
of this text.
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2. Proof of Theorem 1

An important ingredient in the proof is an Oka principle due to Forstnerič,
which follows essentially from Theorem 2.1 in [2]. The version, which we use
in this text is the below stated Theorem 3. It is used to show Proposition 1,
which is the main ingredient in the proof of Theorem 1. Throughout this
section X denotes an open Riemann surface.

Proposition 1. Let A : X → SL2(C) be holomorphic and assume that

A(x) has distinct eigenvalues for some x ∈ X. Then A = BC for suitable

holomorphic B,C : X → SL2(C), both of which have vanishing trace.

Note that the conclusion of Proposition 1 is equivalent to finding a holo-
morphic B : X → SL2(C) such that B and AB have vanishing trace, simply
since taking the inverse of a 2×2-matrix with trace zero has again trace zero.
Expressed differently, Proposition 1 is proved if we can show the existence
of a global section of the bundle

Z := {(x,B) ∈ X × SL2(C) : tr(B) = tr(A(x)B) = 0}
over X. If a, b, c, d denote the coefficients of A, and u,w, v,−u denote the
coefficients of B, we can express Z more explicitly as

{(x, u, v, w) ∈ X × C
3 : (a(x)− d(x))u+ b(x)v + c(x)w = 0, u2 + vw = −1}.

More concretely, Proposition 1 is proved if we manage the prove the fol-
lowing reformulation.

Proposition 2. Let A : X → SL2(C) be holomorphic and assume that A(x)
has distinct eigenvalues for some x ∈ X. Then the restriction h of the

projection X × C
3 → X to Z has a holomorphic section.

For an open subset U ⊂ X, Z|U denotes the restriction of the bundle
h : Z → X to h−1(U). We start the proof of Proposition 2 with the following
simple

Lemma 1. For every x ∈ X there is a neighborhood U of x and a holomor-

phic section F : U → Z|U of Z|U .

Proof. After passing to a local chart we may assume that X is the unit disc
∆ := {z ∈ C : |z| < 1} and x = 0. Finding a local holomorphic section in a
neighborhood of 0 is equivalent to finding a neighborhood 0 ∈ U ⊂ ∆ and
holomorphic maps u, v, w : U → C, which satisfy

(a− d)u+ bv + cw = 0, u2 + vw = −1.(1)

Local holomorphic solutions to (1) exist if and only if there are local holo-
morphic solutions to the less restrictive problem

(a− d)u+ bv + cw = 0, u2 + vw ∈ O∗
0.(2)

The reason is that if u, v, w are local solutions in a neighborhood of the
origin to (2), we can rescale these solutions with a local holomorphic square
root of u2 + vw, or more precisely, by defining new solutions by iu

r
, iv
r
, iw

r

for some r : U → C
∗ satisfying r2 = u2 + vw defined on a sufficiently small

neighborhood U of the origin. To find solutions to (2) we distinguish three
cases. Let n(f) ∈ Z≥0 denote the vanishing order of a holomorphic function
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f : ∆ → C at the origin. The first case is n(a − d) ≥ n(b). Then −a−d

b

is holomorphic in a neighborhood of 0 and u = 1, v = −a−d

b
and w = 0

is a solution to (2). The second case n(a − d) ≥ n(c) we find similarly
a solution u = 1, v = 0 and w = −a−d

c
to (2). The remaining case is

n(a − d) < min(n(b), n(c)), which implies n(a − d) < n(b + c) and hence
− b+c

a−d
is holomorphic in a neighborhood of the origin and vanishes at the

origin. Then u = − b+c

a−d
, v = 1, w = 1 solves (2). This finishes the proof. �

Let D denote the discriminant of A, that is D := (a+d)2−4. By isomor-

phic fiber bundles we mean isomorphic as complex analytic fiber bundles.

Lemma 2. Let U ⊂ X \({D = 0}∪{c = 0}) be an open neighborhood where

D : U → C has a holomorphic square root
√
D, and set f := d−a+

√
D

2c . Then
Z|U is isomorphic to U × C

∗, and an isomorphism is given by

φ : Z|U → U ×C
∗, φ(x, u, v, w) = (x, u+ f(x)v).

Proof. First we do the necessary computations at the level of a single fiber.
For this, we think of the coefficients a, b, c, d of A as elements of C. We want
to determine all u, v, w ∈ C such that

(a− d)u+ bv + cw = 0, −u2 − vw = 1.

Since c 6= 0, we can solve for w and get equivalently

−1 = u2 + vw

= u2 + v (d−a)u−bv

c

= u2 + d−a

c
uv − b

c
v2

=
(

u+ d−a

2c v
)2

−
(

(d−a)2

4c2
+ b

c

)

v2.

Furthermore we have

(d− a)2

4c2
+

b

c
=

(d+ a)2 − 4ad

4c2
+

4bc

4c2
=

(d+ a)2 − 4(ad− bc)

4c2
=

D

4c2
.

Fix a square root
√
D of D and note that

ũ = u+ d−a+
√
D

2c v, ṽ = u+ d−a−
√
D

2c v

defines a linear coordinate change of C2, which translates the above equation
to

−1 =
(

u+ d−a

2c v
)2

− D

4c2
v2

=
(

u+ d−a

2c v
)2

−
(√

D

2c v
)2

=
(

u+ d−a+
√
D

2c v
)(

u+ d−a−
√
D

2c v
)

= ũṽ.

This shows that the fiber is given by {(ũ, ṽ) ∈ C
2 : ũṽ = −1} = C

∗ and that

(u, v, w) → u+ d−a+
√
D

2c v is an isomorphism of the fiber onto C
∗. Moreover,

our computations yield a trivialization of Z|U , which is defined similarly, or
more precisely, as in the assumption of the Lemma. This is the case since
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our computations work out just the same way if we have a holomorphic
dependence on x ∈ U . �

Lemma 3. Over X \ {D = 0}, h : Z → X is a fiber bundle with fiber C
∗.

Proof. At points x ∈ X \ {D = 0} with c(x) 6= 0, choose a neighborhood
U ⊂ X of x such that c|U does not vanish, and such that D has a square
root on U . Then a trivialization of Z|U is given by Lemma 2. In the case
c(x) = 0, let us reduce the problem to the case c(x) 6= 0 with the following
observation. Our bundle is given by

Z = {(x,B) ∈ X × SL2(C) : tr(B) = tr(A(x)B) = 0}.
Define for P ∈ SL2(C) a bundle

ZP = {(x, PBP−1) ∈ X × SL2(C) : tr(B) = tr(A(x)B) = 0}.
Clearly Z and ZP are isomorphic over X. Since conjugation with a matrix
does not change the trace, we obtain with the substitution C = PBP−1

ZP = {(x,C) ∈ X × SL2(C) : tr(P
−1CP ) = tr(A(x)P−1CP ) = 0}

= {(x,C) ∈ X × SL2(C) : tr(C) = tr(PA(x)P−1C) = 0}.
Note that if the third entry c of A equals 0 at x, then, since D(x) 6= 0
and hence A(x) 6= ±id, there is P ∈ SL2(C) such that the third entry of
PA(x)P−1 does not vanish. Using that Z and ZP are isomorphic and that
we can solve the problem for ZP close to x, the statement follows. �

To finish the proof of Propostion 2 we need the following special case of
Theorem 6.14.6, p. 310 in [3].

Theorem 3. Let h : Z → X be a holomorphic map of a reduced complex

space Z onto a reduced Stein space X. Let X ′ ⊂ X be a complex analytic

subvariety and let Z ′ := h−1(X ′) and assume that the restriction h : Z \
Z ′ → X \ X ′ is an elliptic submersion. Moreover, let f : X → Z be a

continuous section of h which is holomorphic in a neighborhood of X ′. Then
f is homotopic through continuous sections of h which are holomorphic in

a fixed small neighborhood of X ′ to a holomorphic section of h.

A consequence of this is the following

Proposition 3. Let h : Z → X be a holomorphic map from a reduced

complex space onto an open Riemann surface. Moreover, assume that there

is a discrete set X ′ ⊂ X such that for Z ′ = h−1(X ′), the restriction h :
Z \ Z ′ → X \X ′ is a fiber bundle with fiber C

∗ and assume that there is a

local holomorphic section in a neighborhood of every point of X ′. Then h
has a global holomorphic section f : X → Z.

Proof. First we show the existence of a continuous section which is holomor-
phic in a neighborhood U of X ′. By assumption there is a local holomorphic
section f : U → Z of h defined on a neighborhood U of X ′. By possibly
shrinking U we may assume that every connected component of U contains
exactly one point of X ′ and is homeomorphic to a disc, and that f extends
continuously to U . X \ X ′ is an open Riemann surface and thus defor-
mation retracts onto a 1-dimensional CW-complex K, see e.g. [4]. After
possibly modifying a fixed deformation retract r of X \ X ′ onto K by a
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conjugation with a suitable homeomorphism of X \X ′ we can assume that
∂U ⊂ K. Since the fiber C

∗ of Z is connected we can extend f |∂U to a

section f̃ : K → Z|K. Since K is a deformation retract of X \ X ′ and

h : Z \Z ′ → X \X ′ is a fiber bundle, the section f̃ extends to a continuous
section F : X \X ′ → Z \ Z ′, see e.g. Theorem 7.1, p. 21 in [5]. Since f and
F |X \U agree on ∂U , these two sections define a continuous section X → Z
which agrees with the holomorphic section f on the neighborhood U of X ′.
The existence of a global holomorphic section follows now from the above
Oka principle due to Forstnerič, see Theorem 3. This finishes the proof. �

Proof of Proposition 2. Let h : Z → X be the bundle over X from Proposi-
tion 2. With Lemma 1 we proved that there are local sections of h at every
point x ∈ X, in particular also at points of the discrete set X ′ = {D = 0}.
Moreover, with Lemma 3 we showed that h is a locally trivial C∗-bundle over
X \ {D = 0}. It follows now from Proposition 3 that there is a holomorphic
section of h. This finishes the proof. �

Lemma 4. Let X be an open Riemann surface and let A : X → SL2(C)
be holomorphic with vanishing trace. Then A = eB for some holomorphic

B : X → M2(C) with vanishing trace.

Proof. The characteristic polynomial of A equals T 2 + 1. In particular ±i
are the eigenvalues (at every point x ∈ X). There are line bundles E(i)
and E(−i) over X, whose non-vanishing sections correspond to holomorphic
eigenvectors of i and −i respectively. Explicitly, we have

E(i) := {(x, z) ∈ X × C
2 : A(x)z = iz},

E(−i) := {(x, z) ∈ X × C
2 : A(x)z = −iz}.

Since every line bundle over an open Riemann surface is trivial, we have
E(i) ∼= X × C ∼= E(−i) as complex analytic line bundles. This implies that
there are two holomorphic eigenvectors v : X → E(i), w : X → E(−i) with
v(x) 6= 0 6= w(x) for all x ∈ X. In particular

P : X → M2(C), P (x) := (v(x) w(x))

takes values in GL2(C) since v(x) and w(x) are eigenvectors of A(x) to the
distinct eigenvalues ±i. This implies that A is holomorphically diagonalis-
able with

A = PDP−1, D :=

(

i 0
0 −i

)

.

For the diagonal matrix D̃ with entries ± iπ

2 we have eD̃ = D. We get for

B := PD̃P−1 the equality

A = PDP−1 = PeD̃P−1 = ePD̃P−1

= eB ,

as desired. Note that B has vanishing trace since D̃ has vanishing trace.
This finishes the proof. �

Proof of Theorem 1. Let X be an open Riemann surface and let A : X →
SL2(C) be a holomorphic map. If the characteristic polynomial of A equals
(T − 1)2, then, since (A− id)2 = χA(A) = 0 by Cayley-Hamilton, we have

exp(A− id) = id+ (A− id) = A.
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Moreover, the trace of A is equal to minus the second coefficient of the
characteristic polynomial, which implies in our case that tr(A− id) = 0, as
desired. This shows that A can be written as a single exponential factor. If
the characteristic polynomial is (T +1)2, then the characteristic polynomial
of −A is (T − 1)2 and since −id is equal to the exponential of the diagonal
matrix with diagonal entries πi and −πi, A is a product of at most two
exponentials with vanishing trace. Otherwise there is x ∈ X such that
A(x) has distinct eigenvalues. In that case it follows from Proposition 1
that A = BC for holomorphic B,C : X → SL2(C) with vanishing trace. In
particular, the characteristic polynomials of B and C are both (T − i)(T + i).
Since B and C have a logarithm by Lemma 4, we are done. �

3. Proof of Theorem 2

The proof depends essentially on three ingredients. The first ingredient
is that the Bass stable rank of the disc algebra A equals 1. This is needed
to reduce the problem to matrices with an invertible first entry. The second
and third ingredient are the simple facts that the elements of A are bounded,
and that exp : A → A is onto to units of A. In the following ∆ ⊂ C denotes
the closed unit disc centered at the origin. We use the following notation.
If f : ∆ → C is a function, then |f | : ∆ → R denotes the absolute value
z 7→ |f(z)|. In particular, the symbol |f | should not be confused with the
sup-norm on A, which is not used explicitly in the proof. Moreover, for
f, g : ∆ → R we write f > g if f(z) > g(z) for all z ∈ ∆. The proof depends
on the following elementary lemma.

Lemma 5. Let f ∈ A be such that |f | > 2. Then the polynomial T 2−fT+1
has roots λ, λ−1 ∈ A such that |λ| > 1.

Proof. First note that our assumption implies that the discriminant f2 − 4
does not vanish. Therefore f2 − 4 has a square root in A, which implies
that there are roots λ, λ−1 ∈ A of T 2 − fT + 1. We have to show that one
of |λ| and |λ−1| is strictly larger than 1. Note that if T 2 − zT + 1, z ∈ C

has a root r ∈ C with |r| = 1, then we get |z| = |r2 + 1|/|r| = |r2 + 1| ≤ 2.
Expressed differently, if |z| > 2, then T 2 − zT + 1 has no root on the unit
circle. This implies that λ and λ−1 avoid the unit circle, and moreover – by
continuity of λ and λ−1 – that exactly one of the two is strictly bigger than
1 in absolute value. �

Proof of Theorem 2. Let

A =

(

a b
c d

)

∈ SL2(A).

It is well-known that the Bass stable rank of A equals 1, see [7]. By definition
of the Bass stable rank this means that for any pair f, g ∈ A with fA+gA =
A, there is h ∈ A such that f + hg is a unit in A. In particular, since
ad − bc = 1, there is h ∈ A such that a + hc = 1. Consequently the first
entry of

(

1 h
0 1

)(

a b
c d

)(

1 −h
0 1

)

=

(

a+ hc ∗
∗ ∗

)
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is a unit. Since conjugation with matrices in GL2(A) does not change the
number of needed exponential factors to represent a given matrix, this shows
that it suffices to consider the case where the first entry a of A is a unit. For
such A, the strategy is as follows: for δ > 0 set

B :=

(

δ 0
0 1/δ

)(

a b
c d

)

=

(

δa δb
c/δ d/δ

)

∈ SL2(A).

If we find δ such that B = B(δ) has a logarithm, then – since A is the product
of the diagonal matrix with entries 1/δ, 0, 0, δ and B – we know that A is a
product of two exponentials. Our claim is that B has a logarithm for any
sufficiently large δ > 0. To see this, let δ ≥ 1 be an upper bound of the
(bounded) function

β =
3 + |d|
|a| .

From the fact that δ ≥ 1 is an upper bound of β it follows that

| tr(B)| = |δa + d/δ| ≥ δ|a| − |d|
δ

≥ (3 + |d|) − |d| > 2.

By Lemma 5 we know that the characteristic polynomial χB = T 2−tr(B)T+
1 has roots λ, λ−1 ∈ A with |λ| > 1. Since λ is a unit in A, the matrixD with
diagonal entries λ and λ−1 has a logarithm given by the diagonal matrix with
diagonal entries log(λ) ∈ A and − log(λ) ∈ A for some fixed logarithm of λ.
Moreover, since conjugation with an element in GL2(A) does not change the
number of needed exponential factors, it suffices to find P ∈ GL2(A) with

B = PDP−1.

Our claim is that

P =

(

d/δ − λ −δb
−c/δ δa− λ−1

)

∈ M2(A)

does the job. To show this it suffices to show that the columns v resp.w of
P = (v w) satisfy (B−λid)v = (B−λ−1id)w = 0 and that |detB| ≥ 1. For
the first part we get

(B − λid)v =

(

δa− λ δb
c/δ d/δ − λ

)(

d/δ − λ
−c/δ

)

=

(

χB(λ)
0

)

= 0,

and similarly

(B − λ−1id)w =

(

δa− λ−1 δb
c/δ d/δ − λ−1

)(

−δb
δa− λ−1

)

=

(

0
χB(λ

−1)

)

= 0.

For the second part, we get with ad− bc = 1

detP = −δλa− δ−1λ−1d+ 2.

It follows from |λ| > 1 that

|detP | ≥ δ|λ||a| − δ−1|λ−1||d| − 2 ≥ δ|a| − δ−1|d| − 2.

Furthermore, the fact that δ ≥ 1 bounds β = (3+ |d|)/|a| from above yields

δ|a| − δ−1|d| − 2 ≥ (3 + |d|)− |d| − 2 = 1,

which shows that |detP | ≥ 1. This finishes the proof. �
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