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Abstract
The locomotion and design ofmicroswimmers are topical issues of current fundamental and applied
research. In addition to numerous living and artificial activemicroswimmers, a passivemicro-
swimmerwas identified only recently: a soft,Λ-shaped, non-buoyant particle propagates in a shaken
liquid of zero-mean velocity (Jo et al 2016 Phys. Rev.E 94 063116).We show that this novel passive
locomotionmechanismworks for realistic non-buoyant, asymmetric Janusmicrocapsules as well.
According to our analytical approximation, this locomotion requires a symmetry breaking caused by
different Stokes drags of soft particles during the two half periods of the oscillatory liquidmotion. It is
the intrinsic anisotropy of Janus capsules andΛ-shaped particles that break this symmetry for
sinusoidal liquidmotion. Further, we show that this passive locomotionmechanism alsoworks for the
wider class of symmetric soft particles, e.g. capsules, by breaking the symmetry via an appropriate
liquid shaking. The swimming direction can be uniquely selected by a suitable choice of the liquid
motion.Numerical studies, including lattice Boltzmann simulations, also show that this locomotion
can outweigh gravity, i.e. non-buoyant particlesmay be either elevated in shaken liquids or
concentrated at the bottomof a container. This novel propulsionmechanism is relevant tomany
applications, including the sorting of soft particles like healthy andmalignant (cancer) cells, which
servesmedical purposes, or the use of non-buoyant soft particles as directedmicroswimmers.

1. Introduction

Biologicalmicroswimmers and their artificial counterparts attract a great deal of attention in research both for
their fundamental relevance and their potential applications in a variety of physical, biological, chemical or
biomedical applications (see e.g. [1–5]). Several studies focus on the dynamics of soft particles inmicroflows,
such as capsules and red blood cells [6–10]. Their exploration and understanding inspires, among others, passive
microswimmers that are indirectly driven by a time-dependent liquidmotion. An example is a recently
identified inertia-driven, passivemicroswimmer: a non-buoyant asymmetric softmicroparticle in oscillatory
liquidmotion of zeromean displacementwas studied in [11, 12]. Here we showhow this inertia-driven
locomotionmechanism can be generalized to themuchwider class of homogeneous, soft particles, such as
capsules, by engineering an appropriate time-dependent liquidmotion.

Mechanisms that underly the propulsion ofmicroswimmers include the propulsion via chemical reactions
on the anisotropic surface of Janus particles, bymagnetic fields or acoustic fields (see e.g. [4]). Common
propulsionmechanisms ofmicroorganisms at lowReynolds number are periodicmotions offlagella, cilia or the
deformation of the body shape (amoeboidmotion) [2, 3, 5, 13–16]. To achieve a net displacement at these length
scales themechanismhas to be non-reciprocal to break Purcell’s scallop theorem [2, 17].

The non-reciprocalmotion of biological swimmers inspired also passive artificialmicroswimmers recently.
One example is a soft Janus capsule in a temporally periodic linear shearflow at lowReynolds number, whereby
the intrinsically asymmetric Janus particle is propelled perpendicular to the streamlines [18]. This type of passive
swimming and the theoreticalmodel of a brake controlled triangle [19] are similar to cross-streammigration of
droplets and soft particles in stationary lowReynolds number Poiseuilleflows [20–24]. Other recent studies
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identified thefinite inertia of soft particles in oscillatory homogeneous liquidmotion as a crucial property for
passive swimming [11, 12]. The non-reciprocal body shape and therefore the different Stokes drag in both half
periods of the periodic liquidmotion is the driving force of these novel locomotionmechanism. Thefirst inertia
driven particle locomotion at lowReynolds numberwas demonstrated for a soft, asymmetric,Λ-shaped particle
in a shaken liquid [11]. This was extended to an internally structured capsule with an inhomogeneousmass
distribution in a gravitation field [12].

In this workwe show that the inertia induced passive swimming of realistic and experimentally available soft
particles in oscillatory liquidmotion can outweigh gravitation.We show this at first for an Janus capsule with an
asymmetric elasticity (see e.g. [25]).We explain that an intrinsic particle asymmetry is not required for passive
swimming andwe demonstrate that the inertia driven particle propulsionworks also for themuchwider class of
homogeneous and symmetric soft particles, such as soft capsules. This is achieved by appropriately engineering
the time-dependence of shaking the liquid. The time-dependence of the shaking determines also the direction of
passive swimming. Thismotion is distinct fromparticle locomotion in oscillatory flows atfiniteRe, where
propulsion is related to streaming flows and afluid jet in thewake of the swimmer [26].

Thework is organized as follows: in section 2we describe themodeling and simulation of the particles
sketched infigure 1.We show in section 3 by an approximate analytical approach, that the locomotion of non-
buoyant soft particles in a periodically oscillating fluidmotion requires the symmetry breaking caused by
different particle deformations and Stokes drags during the two half-periods of the shaking of the liquid. The
analytical results are confirmed in section 4 by numerical simulations of the bead-springmodels and capsules
shown infigure 1.We study an asymmetric bead-spring tetrahedron in a sinusoidal liquidmotion and a
symmetric semiflexible bead-spring ring in a non-symmetric periodic liquidmotion for a wide parameter range.
The results of these simulations are complemented and verified by lattice Boltzmann simulations of realistic soft
asymmetric Janus capsules and symmetric capsules. For instance, we provide parameter rangeswhere the
passive locomotionmechanism outweighs gravitation. Discussions of the results and the conclusions are given
in section 5.

2.Model and approach

The dynamics of four deformable particles in a shaken liquid is investigated by taking into account particle
inertia.We use two asymmetric particles, namely a bead-spring tetrahedron composed of four beads, and a
Janus capsule, as sketched infigures 1(a) and (b), respectively. As examples of common symmetric particles we

Figure 1. Sketch of four different particles with amass density different from that of the surrounding liquid. The liquid shakenwith
the velocityu0(t)=u0(t)ey causes an inertia-driven particle locomotion. The actuation is indicated by themotion of the particle’s
center ofmass rc(t)=yc(t) ey. Part (a) shows an asymmetric bead-spring tetrahedron and part (b) an asymmetric Janus capsule with
different stiffness of each half (soft part yellow). Both asymmetric particles are considered in a sinusoidal velocity of the liquidwith
periodT, as indicated by the upper blue curves in (a) and (b).We observe for both particles a netmotion along the direction of shaking
against gravitation, as described by the black curves in (a) and (b). The ring in (c) and the symmetric capsule in (d) are shaken by non-
symmetric velocities as indicated by the blue curves in part (c) and (d). Also the ring and the symmetric capsule show a net progress
against gravity as indicated by the black curves in (c) and (d). Parameters are given in sections 2 and 4.
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choose a bead-spring ring, as shown infigure 1(c), and a symmetric capsule, as shown infigure 1(d). The
positions and themotion of the beads of the ring are restricted to the (x, y)plane.

The shaking velocity of the liquid is given by

t u t e U t t eu sin cos 2 , 1y y0 0 w e w= = +( ) ( ) ˆ [ ( ) ( )] ˆ ( )

with the frequencyω=2π/T and a vanishingmean velocity tu 00á ñ =( ) . For ε=0 the velocity is sinusoidal
and antisymmetric with respect to a shift t→t+T/2, i.e. t t Tu u 20 0= - +( ) ( ). For 0e ¹ this symmetry is
broken and the velocity of the liquid is non-symmetric as indicated by the blue curves infigures 1(c) and (d).

In section 2.1we describe themodeling of the bead-springmodels and the capsules. In section 2.2, we
present the equations ofmotion of the bead springmodels, theMaxey andRiley equations [27] for several beads.
They take the particle inertia into account and are extended by the hydrodynamic particle-particle interaction
via the dynamical Oseen-tensor. The lattice-Boltzmann-method (LBM) for the particle simulations is explained
in section 2.3.

2.1.Modeling the bead-springmodels and the capsules
The beads of the bead-springmodels have themassmi. Theirmass density ρimay be different from themass
density of thefluid, f ir r¹ .With the gravitational force along the negative y direction, this leads to the
buoyancy force

FF e , 2g i g i y, ,= - ( )

which acts on a particle immersed in the liquidwith

F gV g m m . 3g i i i f i f, r r= - = -( ) ( ) ( )

The tetrahedron infigure 1(a) consists ofN=4 beads at positions ri. The beads have the same radius a, but
may have differentmasses. They are connected by springs with the stiffness k. The center ofmass is given by

m
mr r

1
. 4c

i i
i i i

å å= ( )

Each bead experiences a force that is composed of the buoyancy force Fg and forces imposed by springs,

F e VF 5i
P

g i y i, spring= - - ˆ ( )( )

with the spring potential

V k br r 6
i j i

N

i jspring
,

2å= - -
¹

(∣ ∣ ) ( )

and the undistorted spring length b.
Also for the bead-springmodel shown infigure 1(c) (withN=8 beads) the neighboring beads are

connected byHookean springs. In addition to equation (5) a bending potential with the stiffnessκ is taken into
account

V
2

ln 1 cos , 7
i

N

ibend
1

åk b= - +
=

( ) ( )

whereRi=ri−ri+1 is the bond vector between the next-neighbor beads i and i 1+ and the angleβi is defined
via e ecos i R Ri i1

b = - · with the bond unit vectors Re RR j jj
= . This bending potential causes a circular ring

shape in equilibrium.
The capsules aremodeled by discretizing their surfacewithN=642, which is done iteratively as described

inmore detail in [28].We assume that the surface is thin and has a constant surface shear elasticmodulusGs. In
this case the relation between the deformation and the forces is given by the neo-Hookean law described by the
potentialVNH (for details we refer to [29, 30]). Furthermore a bending potentialVb is assumed [31, 32], which is
given by

V
2

, 8b
c

i j
i j

,
,

2åk
b» ( )

whereκc denotes the bending stiffness andβi, j is the angle between the normal vectors of neighboring triangles.
For Janus capsules the stiffness is different in both halves of the capsule, as indicated infigure 1(c).We use a

penalty force to keep the capsule’s volume t( ) close to the reference volume 0 during the simulations. Its
potentialVv is given by
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V
k

t 9v
v

0
0

2


 = -( ( ) ) ( )

with the rigidity kv [32]. The complete potential related to the forces acting on the capsule is given by

V V V Vr . 10b vNH= + +( ) ( )

2.2.Maxey andRiley equations, including the dynamicOseen-tensor
The dynamics of beads having a different density than the surrounding fluid is described by the equations for the
particle velocities vi according toMaxey andRiley in [27]. Theflowfield of the compressible fluid,u(r, t),
includes besides the imposed liquid velocity u0(t) from equation (1) also the perturbations caused by the particle
dynamics. Its dynamical equation is

t
p

u
g u, 11fr r h

¶
¶

= -  + D ( )

u 0. 12 =· ( )

The particle dynamics enters the fluid dynamical equation (11) via the no-slip boundary conditions foru(r, t) at
the particle surfaces. The dynamical equation for the velocity of the ith particle is given by

m
t

m
v

g A
d

d
d , 13i

i
i is= + ∮ ( )

with the stress tensorσ of the liquid, the particlemass m Vi ir= and the particle’s inertia mi t

vd

d
i . The particle

interia is often neglected, but it is crucial for the actuation described in this work at appropriate shaking
frequencies (see section 3). This particle inertia is relevant at small and large values of the Reynolds number. The
Reynolds number influences theflow and enters the integral over the stress tensor in equation (13). To calculate
the integral in equation (13), a small Reynolds number Re awfr h= is assumedwith w Uv ui i= - <∣ ∣ . In
this case the advective terms in theNavier–Stokes equation can be neglected.However, we keep the time-
derivative ut¶ due to the high Strouhal number. The calculation of the integral over the stress tensor is given in
[27] and leads to the following forces on the bead: a bead experiences besides Fi

P( ) the inertial force

m
t

F
ud

d
14i f i

i0
,= ( )( )

caused by the liquid acceleration at the position ri of the beadwith the fluidmassmf,i=ρf V in a volumeV of a
particle. Note that the liquid velocity includes the externally imposed homogeneous liquidmotion tu0( )
described in equation (1) and theflowperturbations caused by themotion of all other particles with respect to
the liquid. Furthermore, the force Fi

1( ) created by the difference between the particle velocity vi and the liquid
velocityuimust be considered. This is composed of three contributions, the addedmass, the Stokes drag and the
Basset force,

m
t

a
t

F v u v u
v u1

2

d

d
6 d , 15i f i i i b i i

t i i1
,

2

0

d

dòz ph t
t t

pn t
= - - - - -

-

-
t( ) ( )

[ ( ) ( )]

( )
( )( )

with the Stokes drag coefficient ζb=6πηa. Alltogether we obtain the dynamical equation for the velocity of the
ith bead

m
t

v
F F F

d

d
. 16i

i
i i i

P0 1= + + ( )( ) ( ) ( )

Theflowdisturbances at ri caused by all the other beads are determined via the dynamicOseen tensor [33],
which is theGreens function of the time-dependent linear Stokes equation. This provides the flow at the ith bead

t t t tu u H F
1

d . 17i
f j i

t

i j j0
0

,
1òår

= - ¢ ¢ ¢
¹

( ) ( ) · ( ) ( )( )

For the explicit expression of tHi j, ¢( )we refer to appendix A.
Equation (15) is solved numerically for the bead-spring tetrahedron as shown infigure 1(a) and for the bead-

spring ring shown infigure 1(c) by using a Runge–Kutta-scheme of fourth order. The dimensionless parameters
given below are used for simulations of equation (16) for the bead-spring tetrahedron and the bead-spring ring.
These parameters can be converted to SI units if the dimensionless time ismultiplied by the factor s 1 mst = , the
length by s 50 ml m= andmass by s 5.2 10 kgm

13= ´ - . This leads to the density and viscosity of water
( 1000 kg m , 1 mPaswater

3
waterr h= =- ) and the correct gravitational acceleration g 10 m s 2» - .

The parameters used in simulations of the bead-spring tetrahedron are: number of beadsN=4, bead radius
a=0.1, equilibrium spring length b=0.25, spring stiffness k=15 000,mass density ρi=3600 of a bead,
mass density of the fluid ρf=240,fluid viscosity η=100.0, amplitude of the shaking velocityU=10.0 in

4
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equation (1), asymmetry parameter ε=0, shaking periodT=0.4, gravitational acceleration g=0.21 and time
step dt=2.5×10−4 in numerical integrations of equation (16).

The parameters used in simulations of the semiflexible bead-spring ring are: number of beadsN=8, bead
radius a=0.1, equilibrium spring length b=0.5, spring stiffness k=2000, bending stiffnessκ=500,mass
density ρi=3600 of a bead,mass density of the liquid ρf=240, viscosity of the liquid η=100, amplitude
U=20 of the shaking velocity in equation (1), asymmetry parameter ε=0.8, shaking periodT=0.4,
gravitational acceleration g=0.21 and time step td 2.5 10 4= ´ - in numerical integrations of equation (16).

Theflow amplitudeU in equation (1) enters the Reynolds number Re Uafr h= which ranges in our

simulations from0 to 4.8. The Strouhal number St a TU= ( ) ranging from0.013 to¥. Due to the high range
of the Strouhal number the time-derivative in theNavier–Stokes equation is kept. The advective terms in the
Navier–Stokes equation is negelcted in order to show that for the locomotion of deformable particles in shaken
liquids does not require the nonlinearity of theNavier–Stokes equation. To verify this approximation the results
obtained by this neglection are comparedwith simulations of the LBM,which solves the full Navier–Stokes
equation including the advective term.

2.3. The LBM
Weuse the LBM to simulate the full Navier–Stokes equation including the dynamics of the particles.We utilize
the commonD3Q19 LBM to simulate the distribution f (x, t) of thefluid elements on a 3D grid of positions

x y zx , ,i = ( ) along the discrete directions ci (i=0,K, 19) [34]. The lattice constants areΔx=1 for spatial and
Δt=1 for temporal discretization. The evolution of the distribution function is governed by the discrete
Boltzmann equation

f t t t f t Cx c x, , , 18i ii+ D + D = +( ) ( ) ( )

where  defines the collision operator.Walls are incorporated by the standard bounce back scheme (bb) [35, 36]
by adding the contribution w2 i c

c ui w

s
2 r= · for wall links to equation (18) [36, 37], whereuw is thewall velocity.

Theweighting factorwi and the speed-of sound cs are constants for the chosen set of velocity directions [34].

2.3.1. Tetrahedron dynamics
For the simulations of the tetrahedron, the Bhatnagar–Gross–Krook collision operator

f t f tx x
1

, , 19i i
eq 

t
= - - +[ ( ) ( )] ( )

is extend by theGuo force-coupling F t w c F1 i c c i
ec u c u1

2
i

s

i

s
2 4= D - +

t
-⎡

⎣⎢
⎤
⎦⎥( ) ·( ) ( · ) ( ) for external volume forces F(e)

[38]. f eq is an expansion of theMaxwell–Boltzmann distribution and τ is the relaxation parameter. The
macroscopic density andmomentum are obtained from the first twomoments via fi ir = å and

fu c Fi i i
t e

2
r = å + D ( ), respectively. The viscosity of thefluid is given by c t 1 2s

2n t= D -( ). The hard
spheres are implemented asmovingwalls according to [35], with an additional lubrication-correction for
squeezingmotion of near particles, as discussed in [39]. This simulations are used to compare theOseen
simulations and the LBM simulations (see also appendix B).

2.3.2. Capsule dynamics
For the simulations of capsules, an adapted LBM-scheme of themulti-relaxation time LBM for a spatially
dependent density is used [40]. The time evolution of themean density t f tx u, i i0

1

2
r r= å +  D( ) , the local

density ρ(x, t) and its gradient∇ρ is used as input for the collision operator

S f t f t F t S F tx x x x, , ,
1

2
, . 20il l l i il l

eq = - - + -[ ( ) ( )] ( ) ( ) ( )

For the collisionmatrix S and its corresponding transformationmatrix we use the set given in [41]. The
correction term F t t c wx F,i c s i i

e
i

c u 2i

s
2 r= D  G - + G-( ) · [ ( ) ]( ) ( ) accounts for the density inhomogeneity

and external forces, with w 1i i c c c

e u c u u

2 2
i

s

i

s s
2

2

4

2

2G = + + -⎡
⎣⎢

⎤
⎦⎥· ( · ) ∣ ∣ [40]. The fluid velocity is linked to the density ρ

via the secondmoment f tu c Fi i i
e1

2
r = å + D( ) . The equilibriumdistribution has the form f tx,

l
eq =( )

wl
u

c c c

c c u u
0 2 2

l

s

l

s s
2

2

4

2

2r r+ + -
⎡
⎣⎢

⎤
⎦⎥( )( · ) ( · ) ∣ ∣ . The capsulemesh is coupled to the LBM-grid via the immersed-

boundarymethod using the four-point stencil [42]. The calculation of the field for the density ρ(x, t) used in
[40] is replaced by tracking nodes inside the capsule and setting ρ(x, t) as ρcapsule inside and ρfluid outside of the
membrane and updating the capsule surface via themembrane-forces.
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2.3.3. Oscillating flow
Todrive the oscillating flow, an external (volume-)force U t tF ecos 2 sin 2e

yflow r w w e w= -[ ( ) ( )] ˆ( ) is applied to
the LBM.To screen hydrodynamic self-interaction, we use bbwalls in x and z-directionwith velocity
uw(t)=u(t) to ensureDirichlet boundary conditions of the flow.

2.3.4. Parameters and unit-conversion
The used LBMparameters can be obtained from the SI parameters via the conversion values for length
s 7.57 10 mL

7= ´ - , mass s 4.348 10 kgM
16= ´ - and time s 4.54 10 sT

8= ´ - . All LBM simulations are
performedwith a viscosity 1 mPaswaterh h= = , gravitational acceleration g 9.81 m s 2= - , fluid density

1000 kg mwater
3r r= = - and k 2.78 10 kg s mv

5 2 1= ´ - - . The amplitude of the liquid’s velocity is
U 0.5 m s 1= - and the period isT 90 sm= if not given otherwise. The cubic simulation box has a length of
1.14×10−4 m.

3. Inertia driven actuation: approximate analytical results

Soft particles are periodically deformed in shaken liquids, which causes a time-dependent viscous drag
coefficient of the particle. How this deformability drives passive swimming of a particle in a shaken liquid is
determined by an approximate analytical approach.

We discuss here a particle with a drag coefficient ζtot. This already simplifies the dynamical equation (16).We
further neglect the Basset force and the addedmass in equation (15) but take the force F(0) and the dominant
viscous drag contribution to F(1) into account. In this case we obtain the approximate dynamical equation for the
velocity of a stiff particle

M
t

t
t t M

t

t

v
u v

ud

d

d

d
, 21ftot 0

0z= - +
( ) [ ( ) ( )] ( ) ( )

with the particlemassM, the displaced fluidmassMf and the constant Stokes drag coefficient ζtot. To justify the
validity of this approximations we compare themwith the full numerical results in the next section.

For a sinusoidal liquidmotionu0(t) as described by equation (1)with ε=0 the solution of equation (21) is
t v t ev y=( ) ( ) ˆ with

v t C A te sin , 22tM
tot w f= + +-z

( ) ( ) ( )

whereby

A U
M

M
U

M

M

1

1
23

f f
2 2

tot
2

2 2
tot
2

tot
2

tot
2

w z

w z

w z
w z

=
+

+
=

+

+

( )
( )

( )

is the amplitude of the particle oscillation and the phase shift relative to the time-dependent liquidmotion is
given by

M M

MM
arctan . 24

f

f

tot

2
tot
2

f
z w

w z
= -

-

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )

The exponential contribution to equation (22) includes the relaxation time v
M

tot
t =

z
that the particle needs to

adjust its velocity v to the velocity of the liquid u0.We approximate this time scale by

M m m4

4
25v

b btot

t
z z z

= » = ( )

for the bead springmodels and for the capsule by

M R2

9
26v

tot

2

t
z

r
h

= = ( )

with

R V R M V6 ,
4

3
, . 27tot

3z ph p r= = = ( )

Wediscuss in the following the caseM�Mf (but alsoM<Mf is possible). For a high friction or slow
frequency, i.e. 1M

tot
w

z
 , the particle velocity adjusts rather quickly to the liquidmotion. Thismeans the particle

quickly adapts to themotion of the liquid, i.e. A U and 0f  (see equations (23) and (24)) and the particle’s
inertia is negligible in this case.

In the range 1M

tot
w

z
⪆ the particle’s inertia becomes important and it cannot follow the liquid velocity, which

results inA<U,f<0. This lag behind of the particle can be used to achieve a non-vanishingmean velocity: if
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the shape of the deformable particle and therefore the drag is different in each half cycle of the shaking, as
indicated infigure 2(b), the delay of the particle with respect to thefluid is different in each half cycle. This
differencemayfinally lead to a netmotion of the particle with respect to the fluid. Since the liquid does notmove
in themean, this relative netmotion results in an absolute particle actuation.

In order to gain further analytical insight, we consider an asymmetric, i.e. anisotropic, deformable particle as
illustrated infigure 2(b).We assume afixed shape and therefore a fixed Stokes drag during each half period as
described by

t
t

t T

at 0 ,

at ,
28

T

Ttot

1 2

2 2

z
z

z
=

< <

< <

⎧
⎨⎪
⎩⎪

( ) ( )

and continued analogously in the following periods. These two different constant values of the Stokes drag just
mimic the essence of the different time-dependent shapes and Stokes drags of the particles sketched infigure 1.
Numerical results of the full equations, i.e. that include the deformations of the particles, are given in the next
section.

For a sinusoidal liquid velocity the particle velocities in both half periods are
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wherebyAi andfi are calculated as given in equations (23) and (24) butwith the according value of ζtot(t). Due to
the periodic liquidmotion, the boundary conditions for the particle velocities are
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Figure 2.Weconsider a particle ofmassM different from the surrounding liquid ofmassMf for the identical volume.We assume a
sinusoidal fluid velocity u0(t) given by equation (1) for ε=0, see also solid lines in (c) and (d). If the shape and the Stokes drag of the
particle is constant in time, the particle velocity is also a sinusoidal, but has a smaller amplitude and followswith a small phase shift
(dashed line infigure (c)). For a different shape and a Stokes drag in both half periods, i.e. 1 2z z¹ , the particle velocity is also different,
as indicated by the dashed line infigure (d). This leads to a differentmean velocity of the particle in each half cycle. Therefore, the
actuation step is different in each half cyclewhich results in a net particle actuation. Parameters:U=1,T=1,Mf=1,M=2.
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with the abbreviation
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Themean velocity of the particle is then given by
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The equations (33) and (34) give the requirements of particle actuation, i.e. for a non-vanishingmean velocity vn
and its direction. It is easy to see thatΓ determines the actuation direction (see also appendix C). Furthermore, to
achieve amean velocity the factorΓmust not be zero. Thismeans firstly that themass density of the particle and
the surrounding fluidmust differ, i.e. M Mf¹ . In addition the drag coefficients in both half cycles have to be
different, i.e. 1 2z z¹ . This is further illustrated infigure 2.

For an equalmass density of the particle and the liquid,M=Mf, the particle follows thefluidmotion
instantaneously and themean velocity vanishes. For M Mf¹ but identical drag coefficients in both half periods,
as infigure 2(a), thefluid velocity u0 and the particle velocity v(t) are both sinusoidal as indicated infigure 2(c).
Both velocities have a different amplitude and there is a relative phase shift, but there is again no net progress of
the particle.

If the shape and drag coefficients of the anisotropic particle infigure 2(b) are different in both half cycles of
the shaking, i.e. 1 2z z¹ , then one has a non-symmetric velocity v(t) of the particle as shown infigure 2(d). This
asymmetry of v(t) causes a net progress of the particle per cycle.

The net progress of a deformable particle depends strongly on the relaxation time τv. For a small frequency,
i.e. τvω=1, one obtains only a small actuation because the particle follows the liquid’smotion nearly
instantaneously, i.e. tv u0»( ) . Thismeans v 0n  for 0w  which follows alsowith equation (34).

The direction is determined byΓ via equation (33) (U>0). Thismeans the actuation direction is
determined by this half periodwith the higher drag coefficient, i.e. by ζ1 or ζ2. It is also important whether the
particle has a higher or lower density than the surrounding fluid: ForMf<M the particle lags behind theflow
andwith a lighter particleMf<M the opposite is the case. Hence the requirements of the particle actuation can
be already concluded from equation (34). Note, the particle inertia is crucial and thefluidReynolds number
causes onlymodification of the particle actuation, because the Stokes friction in equation (21) is already
important at a lowReynolds number.

A time-dependence of the drag coefficient can be achievedwith a soft particle in a shaken fluid. The
difference in the drag coefficient in both half periods, i.e. t t T 2z z¹ +( ) ( ), (as sketched infigure 2(b)) can be
achievedwith an asymmetric particle in a sinusoidal shakenfluid. In case of a symmetric soft particle a different
shape and therefore a different drag coefficient of the particle in each half cycle can be achieved by a non-
symmetric periodicfluid velocity u0(t)with 0e ¹ in equation (1). This is further exemplified in the next section.

To compare the approximation in this section for v and the results from simulations in the next section,
gravitymust be taken into account. Gravity leads approximately to the additional contribution

v
g M M M M

2
35s

f f

1 2z z
=

-
+

-⎛
⎝⎜

⎞
⎠⎟ ( )

to themean actuation velocity in equation (34).

4.Numerical results

In this section, we explore numerically the inertia driven dynamics and locomotion of four soft particles in a
shaken liquid, which are sketched in figure 1. The selected numerical simulations are guided by the results of the
previous section i.e. particle locomotion is expected in parameter rangeswith differentmass densities of the
particles and the liquid and the Stokes drag of a particle is is unequal during each half of a shaking periodT. Such
a time-dependent Stokes drag can be realized by asymmetric particles but alsowith symmetric ones.

Firstly, the dynamics of the asymmetric particles is investigated for the sinusoidal shaking velocityu0 in
equation (1)with ε=0.We show simulations of the bead-spring tetrahedron in section 4.1 and compare the
results with amore realistic Janus capsule in section 4.2. The intrinsic anisotropic of both particles causes
different deformations and Stokes drags during each half period of the sinusoidal velocity u0.
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Secondly, symmetric particles are investigated. To achieve different deformations and Stokes drags during
the twohalves of the shaking period for these particles as well, we utilize a non-symmetric shaking velocity in
equation (1)with 0e ¹ .We discuss the dynamics of a symmetric bead-spring ring and show that a symmetric
capsule behaves similar to the ring in section 4.4.

All particles are soft particles with a differentmass density than the liquid. They are deformed in shaken
liquids, which is taken into account in the numerical simulations. Hence, besides the velocity relaxation time τv
(see equations (25) and (26)) considered in section 3, also the shape relaxation time τk and especially the ratio
T/τk are important. The shape relaxation time is given by the time the particles needs to relax to their
equilibrium shape after a deformation. To determine the order of the relaxation-time scale, we use as an estimate
for the bead springmodels

m

k
36kt » ( )

with the spring constant k, see equation (6), and the beadmassm and for the capsules

V

G
37k

capsulet
r

» ( )

with the capsule volumeV and the surface shear elasticmodulusG.

4.1. Actuation of a tetrahedron in a sinusoidally shaken liquid
We investigate atfirst themotion of asymmetric particles in a sinusoidally shakenfluid.We beginwith the
simple bead-spring tetrahedron. Two orientations of the bead-spring tetrahedron in a vertically shakenfluid are
investigated, onewith a corner upward (), see figure 3(a), and onewith a corner downward (). These
positions are stable against a rotational perturbation. Figure 3(a) shows the-tetrahedron at four deformations
during one periodT of a sinusoidally shaken liquid.

The center ofmass of the tetrahedron, yc(t), follows via the viscous drag the oscillatorymotion of the shaken
liquid.Moreover, yc(t) exhibits besides an oscillatorymotion also amean net propulsion as indicated in
figure 1(a). The resultingmean velocity vn of the center ofmass, which is studied in the following, is determined
byfitting a straight line to yc(t) over a sufficient number of periods after a transient phase. The parameters for the
numerical studies are given in section 2.2.We give themean velocity vn and the amplitudeU of the shaking
velocity in units of the sedimentation velocity (absolute value) denoted by vs,r, whereby the index r indicates the
ratio of the density of the tetrahedron and the fluid, ρ/ρf=r. The sedimentation velocities v 8.9 10s,5

3= ´ -

and v 3.1 10s,15
2= ´ - (absolute values) are determinedwithout a shaking of the liquid (pure sedimentation).

Infigure 3(b)we show themean velocity vn of the tetrahedra in the gravitational field as function of the
amplitudeU. For the-tetrahedron for two ratios ρ/ρf=5,15 and for the-tetrahedron for ρ/ρf=15. The
sedimentation velocity vs,r and vn increase with the density ratio ρ/ρf. For-tetrahedra themean velocity vn
becomes positive for ρ/ρf=15 beyondU/vs,15 160 and for ρ/ρf=5 beyondU/vs,15 210. In both ranges
the locomotion of a tetrahedron outweighs the downward oriented gravitation and heavy particles can be

Figure 3. (a) Shows four snapshots of a deformable, upward oriented tetrahedron () during one periodT in a sinusoidally shaken
fluid. In (b) themean propulsion velocity vn of the tetrahedron is given for two ratios between themass density of the beads and of the
fluid, i.e. for 5, 15fr r = . vn is given in units of the related sedimentation velocities vs,r, respectively. The-tetrahedron outweighs
gravity for ρ/ ρf=15 in the rangeU/vs,15 160 and rises in the shaken liquid. For 5fr r = the-tetrahedron rises in the range
U/vs,15 210. The sedimentation velocity of the-tetrahedron is enhanced by liquid shaking as indicated by the dashed–dotted line.
Parameters: see section 2.2.
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elevated. Therefore, for smallermass differences between soft particles and the liquid this locomotion
mechanismbecomes less effective and a higher velocity amplitudeU is required to outweigh gravitation. A
downward orientated shaken heavy tetrahedron ()will sediment faster thanwithout shaking. Furthermore, a
buoyant particle with ρ/ρf=1 follows the oscillatory liquidmotion and itsmean velocity vn vanishes in
agreementwith the reasoning given in the previous section. The inertial actuation is also found for tetrahedra
lighter than the liquid, i.e. ρ/ρf<1.Note that the dependence on the initial condition can be avoided by an
asymmetricmass distribution of the beads, because this leads to a reorientation of the tetrahedron. For example
with one bead lighter than the other three beads, the lighter beadwill point upwards after a certain time. The
inertia driven actuation of such a tetrahedron is discussed in appendix B.

Themean velocity vn depends also on ratio between the shaking periodT and the bead-spring relaxation
time τk (see equation (36)). This dependence is shown infigure 4(d) for a-tetrahedron. This figure shows in
part (b) also the time-dependence of the drag coefficient of the tetrahedron, ζtot(t) (see appendix A), which is
caused by the time-dependent deformation. Thus, in addition the deformation amplitude Ā of the bottom
triangle of the tetrahedronwith area

A t A
T

t Asin
2

, 380
p

= - Q +⎜ ⎟⎛
⎝

⎞
⎠( ) ¯ ( )

is given infigure 4(c). Also the phase shiftΘ of the deformation and theflow is shown. The areaA(t) is
determined by afit to the data.

IfT is considerably smaller than the relaxation time τk, the deformation of the tetrahedron cannot follow the
liquid oscillation and remains small, as indicated for the deformation amplitude Ā infigure 4(c). Consistently,
the drag coefficient ζtot is nearly constant as indicated forT/τk=0.4 in figure 4(b). In this case particles just
sediment in a shaken liquid. For largerT the tetrahedron becomes deformed during liquid shaking and the drag
coefficient ζtot(t) shows similar as u0(t) a sinusoidal time-dependence as indicated forT/τk=3.6 infigure 4(b).
However, for such short shaking periods the tetrahedron deformation can still not follow the liquid oscillation
and totz is nearly in antiphase to u0(t) as indicated by infigure 4(b) and infigure 4(c). Due to this phase shift for
T/τk=3.6 the Stokes drag infigure 4(b) is larger during the downward liquidmotionwith u0(t)<0 than
during its upwardmotion. Therefore, the inertia induced locomotion is downward oriented forT/τk=3.6 as
also indicated infigure 4(d) for thewhole rangeT/τk 5.7. ForT/τk=9 beyond themaximumof vn/vs in 4(d)
the deformation of the tetrahedron follows u0(t)more closely with a smaller phase differenceΘ and the drag is
slightly larger during the upwardmotion, see figure 4(b). In this case and in the rangeT/τk 5.7 the locomotion
mechanismpoints into the opposite direction to the gravitation and can even outweigh gravitation for
U v 32s  , i.e. vn/vs becomes positive. vn/vs remains positive up to aboutT/τk∼27 and beyond this ratio the
tetrahedron sinks again due to gravitation. This shows that the time-dependence of the Stokes drag coefficient
causes of the non-zeromean particle velocity. Note thatmean actuation in induced in the limit of a lowReynolds
numberwhere advective terms of theNavier–Stokes equation can be neglected.

Besides the shape relaxation time also the velocity relaxation time τv (see equation (25)) plays a role as stated
in section 3.We have chosen similar values of τv≈0.07 and τk≈0.03. The periodT is in the range 1T/τv
6, so that the particle’s inertia is significant.

Figure 4. (a) Shows the shaking velocity u t0( ) with ε=0 in equation (1) in units of the sedimentation velocity vs of an upward
oriented tetrahedron ()with ρ/ρf=15. The deformation of a tetrahedron, see figure 3(a), is accompanied by a time-dependent
Stokes drag ζtot as shown in (b) (in units of ζb=6πηa) for three different ratiosT/τk. (c) Shows the time-dependent deviation Ā from
themean areaA0 of the lower triangle of a-tetrahedron, as defined in equation (38), as well as the phase shiftΘ/π between the
velocity u0(t) and the deformation. In (d) the dependence of themean velocity vn/vs is given as a function ofT/τk for the velocity
amplitudeU/vs; 32. The dashed line is obtained by equation (34)with ζ1,2. Parameters: k=30 000 and those given in section 2.2.
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One can also use the approximatemean velocity in equation (34) by selecting the drag coefficient ζtot from
simulations of the tetrahedron.We use themaximal drag during each half period for ζ1,2. The resulting
dependence of vn/vs is indicated in figure 4(d). This result confirms that the approximate approach presented in
section 3 covers the essential inertia driven locomotionmechanism considered in this work.

Infigure 5 thedependenceof vn/vson the ratioT/τk is shown for different values of the spring constant kof the
tetrahedron.The extrema and the zeroof vn/vs are located at similar values ofT/τk.Moreover, themagnitudesof
theminima andmaximaof vn/vsdiffer only slightly for different values ofk. This emphasis again the importance
of the ratio between shakingperiod and theparticle’s relaxation time kt .

4.2. Actuation of a Janus capsule in a sinusoidally shaken liquid
With a Janus capsule that is composed of two parts of different elasticity we consider in this section a realistic soft
anisotropic particle. The four snapshots shown in 6(a) highlight the different deformations during a sinusoidal
shaking cycleT.We investigate two orientations of the asymmetric Janus particle in the shaken liquid: onewith
the soft half on top as infigure 6(a) (upward oriented Janus capsule), or with the soft part at the bottom ().
These orientations are stable against a rotational perturbation.

The capsule simulations are performedwith the LBMand, besides the parameters given in section 2.3, the
following values are used: radius of the capsule R 10 mm= , G2 , 3.95 10 kg sJanus fluid

0 3 2r r= = ´ - -( ) and

3.77 10 kg m sc
0 13 2 2k = ´ - -( ) . For the elastic properties of the second half of the capsule we set c

var 0k ak=( ) ( )

and G Gvar 0a=( ) ( ) with an elasticity ratio 0.1a = . This results in the two ratiosT/τk≈2 andT/τv≈2 (see
equations (26) and (37), determinedwithG(0)), which ensure that the Janus capsule is deformed during the
shaking of the liquid and that the inertia of the capsule is significant.

Figure 5.Themean locomotion velocity vn of the-tetrahedron, seefigure 3(a), is given as a function ofT/τk for three different values
of the spring stiffness k in equation (6)with ρ/ρf=15. Theminima of the curve occur at similar values ofT/τk≈2 and themaxima at
T/τk≈3 despite different values of k.

Figure 6. (a) Shows four snapshots of a deformable, with the soft side upward oriented Janus capsule () during a periodT in a shaken
fluidwith the elasticity ratioα=0.1. Figure (b) shows the sinusoidal shaking velocity u0(t)/vs in units of the sedimentation velocity vs
of the Janus capsule. The lower part in (b) shows the Stokes drag ζtot(t) in units of the Stokes drag ζ0=6πηR of the undeformed
capsule for the elasticity ratioα=0.1 (solid line) and the symmetric capsulewithα=1 (dashed line).
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For Janus capsulesneither thedeformationnor the Stokesdrag ζtot has a symmetry, i.e. t t T 2tot totz z¹ +( ) ( ),
as indicted forα=0.1by the snapshots infigure6(a) and infigure6(c), respectively.Therefore the time-dependence
of yc(t) for a Janus capsule infigure 1(b)displays the inertia induced locomotion (seefigure1(b)). This is not the
case for the symmetric capsulewithα=1.0: the Stokesdrag ζtot(t) given infigure 6(c)has the symmetryζtot(t)=
ζtot(t+T/2).Consequently, the symmetric capsule just sinks in a sinusoidally shakenfluid in thepresenceof
gravitation.

Themean velocity of the Janus capsule vn/vs is shown infigure 7 as function of the velocity amplitudeU. The
sedimentation velocity of the Janus capsule is enhanced by the oscillatory fluidmotion as shown by the lower
curve in 7(a). For a velocity amplitudeU v500 s (with v 0.15 mm ss

1» - ) the locomotion of the capsule
outweighs gravitation andmoves upward, i.e. vn>0. This is indicated by the dashed curve in 7(a). As for the
tetrahedron the locomotion increases with the difference between themass density of the capsule and the liquid.
This alsomeans, the critical amplitudeU to outweigh gravitation is reduced by increasing the ratio

capsule liquidr r . Themean locomotion velocity vn/vs for an upward oriented Janus capsule in a gravitational field

is also shown as function of the elasticity ratioα in figure 7(b). This graph shows that the inertia induced
locomotion increases with increasing elastic asymmetry (i.e. decreasingα) and outweighs in the rangeα0.8
gravitation for the given parameters. The symmetric capsulewithα=1.0 just sinks in themean.

Infigure 7(a) the Reynolds numberRe in LBMsimulations is finite with 0�Re3 and an inertia induced
capsule locomotion is found at small and intermediate values of the Reynolds number (and also beyond this
values). The qualitative behavior of this capsule locomotion is similar as for the tetrahedron in the limit of
vanishing Reynolds number. The reason is that the locomotion of the particles is driven by the inertia of the
particles and the time dependence of the Stokes drag during shaking. Both properties are already included in the
model of the bead-spring tetrahedron.

4.3. Bead-spring ring in a non-symmetrically shaken liquid
In this and the following section, we explore the conditions for which also common symmetric softmicro-
particles behave in shaken liquids as passivemicroswimmers.We beginwith a symmetric bead-spring ring as
sketched infigure 1. The parameters used in simulations are given in section 2.2 and the velocities are given in
units of the sedimentation velocity vs=0.031 (determinedwithout shaking of the liquid).

Figure 8(a) shows four snapshots of a bead-spring ring during one periodT of a non-symmetric shaking
velocity u0(t) given by equation (1) and as shown infigure 8(b) for ε=1. For a sinusoidally shaken liquidwith
ε=0 and u t u t T 20 0= - +( ) ( ) the drag coefficient ζtot(t) (see appendix A) is the same in both half periods
with ζtot(t)=ζtot(t+T/2), as indicated in figure 8(c). In this case the ring exhibits no net actuation and sinks in
the gravitational field. For a non-symmetric periodic shaking velocity with 0e ¹ and u t u t T 20 0¹ - +( ) ( )
the drag coefficient of the ring is different in both half periods as shown for ε=1 in 8(c). This leads to the passive
swimming as shown infigure 1(c).

Figure 9 shows themean velocity vn of the bead-spring ring as a function of ε. For ε0.05 the upward
directed, inertia induced actuation is sufficiently strong to outweigh gravitation and vn becomes positive. For
ε<0 liquid shaking enhances the sedimentation velocity. Thus the sign of ε determines the direction of the
inertia induced actuation of the semiflexible ring.

Figure 7.Themean actuation velocity vn of a Janus capsule is given as a function of the shaking-velocity amplitudeU in equation (1)
with the soft side either upwards () or downwards (). In the-case the capsule locomotion outweighs gravitation ifU500vs and
vn becomes positive. In the-case the shaking of the liquid enhances the sinking velocity. (b) Shows vn/vs for the-capsule as
function of the elasticity ratioα. Atα=1 the particle sinks. By enhancing the asymmetry (decreasingα) the capsule locomotion
outweighs gravitation forα 0.8.
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Themean velocity vn is given as function of the amplitudeU of the shaking velocity infigure 10.Without
shaking atU=0 the ring sinks.With increasing values ofU and ε=1 the sinking velocity slows down until it
turns over to an upwardmotion at larger valuesU225vs.

Figure 8. (a) Shows four snapshots of the bead-spring ring during one periodT of the liquid velocity as shown by the solid line in
(b) and as given by equation (1) for ε=1. In this case the drag coefficient ζtot(t) (in units of ζb=6πηa) is different in both half periods
as shown by the solid line in (c), i.e. t T t2tot totz z+ ¹( ) ( ). This causes afinitemean actuation velocity vn. For ε=0 the shaking is
sinusoidal, see dashed line in (b), the drag coefficient is the same in both half periods of the shaking, i.e. ζtot(t)=ζtot(t+T/2), and
vn=0.

Figure 9.Themean actuation velocity vn varies linearlywith themodulation parameter ε of the shaking velocity in equation (1). For
sufficiently positive values ε 0.05 the liquid shaking outweighs gravitation and vn becomes positive. For sinusoidal shakingwith
ε=0 the particle sinks due to gravity and at negative values of ε the inertial actuation leads to an enhanced sedimentation velocity.

Figure 10. (a) Shows themean propulsion velocity vn as a function of the shaking amplitudeU. For positive ε the actuation is upward
directed and for ε=1 it outweighs gravitation in the rangeU225vs, i.e. vn becomes positive. (b) Shows themean velocity of the
ring as a function of the ratioT/τk for two different values of the spring stiffness k. At small values ofT/τk the ring cannot follow the
liquidmotion, it is not deformed and just sinking. At intermediate valuesT/τk themean velocity becomes positive for both values of k
with amaximum in the rangeT/τk≈5. For longer shaking periods the ring sinks again.
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Themean velocity vn depends also on the ratio between the shaking period and the relaxation timeT/τk as
shown infigure 10(b) for two values of the spring stiffness k. At small values ofT/τk0.4 the ring sinks because
the shaking period is too small to cause sufficient deformations and differences between the Stokes drags during
the twohalf periods. For longer periodsT and intermediate values ofT/τk the acceleration induced shape and
Stokes drag changes of the ring become sufficiently strong to outweigh gravitation. For both spring constants k
themean velocity becomes positive in awide range and reaches itsmaximumat a value ofT/τk≈5 due to the
large deformation, as indicated infigure 10(b). At higher values ofT/τk the deformation becomes smaller and
therefore the ring sinks again due to gravitation. The values of the shape relaxation time τk≈0.08 (see
equation (36)) and the velocity relaxation time τv≈0.07 (see equation (25)) are comparable, so thatT/τv is in a
rangewhere the particle’s inertia is important.

4.4. Actuation of a symmetric capsule in a non-symmetrically shaken liquid
In the previous sectionwe demonstrated that a symmetric, semiflexible bead-spring ring is actuated in a liquid
that is non-symmetrically shakenwith u t u t T 20 0¹ - +( ) ( ). This is also the case for a realistic symmetric
capsule as we show by LBM simulations in this section. Besides the parameters given in section 2.3, the following
ones are used: R 10 m, 2 2000 kg mcapsule fluid

3m r r= = = - , k G2.78 10 kg s m , 7.89v
5 2 1= ´ = ´- -

10 kg s , 14 2 e = -- - and 1.51 10 kg m sc
14 2 2k = ´ - - . The shaking periodT is chosen so, that the capsule’s

inertia is significant and the capsule is sufficiently deformed:T/τv≈2 andT/τk≈0.9 (see equations (26)
and (37)).

Infigure 11(a) the shapeof the capsule is shownduringoneperiodTof thenon-symmetric shaking velocitywith
u t T u t20 0+ ¹( ) ( ). For a sinusoidal shaking as displayed infigure 11(b), i.e. ε=0 and u t u t T 20 0= - +( ) ( ),
the capsule’s drag coefficient ζtot(t) (see appendixA) shown infigure11(c) is the sameduringbothhalf periods of the
shakingwith ζtot(t)=ζtot(t+T/2). In this case there is nomean actuation and the capsule just sediments due to
gravity. If the liquid is shakennon-symmetricallywith 0e ¹ thedrag coefficient differs in bothhalf periods, i.e.

t t T 2tot totz z¹ +( ) ( ). In this case the capsule is actuatedby liquid shaking.
Figure 12(a) shows how themean velocity vn of the capsule depends on the asymmetry parameter ε of the

shaking velocity. At sufficient negative values of ε−0.01 the upward oriented actuation overcomes gravity
andwefind a positivemean velocity vn. Positive values of ε enhance the sedimentation. Thus the direction of the
mean capsule actuation can be controlled via the asymmetry parameter ε of the shaking velocity. Note that the
mean velocity induced by the shaking also depends on the periodT.

Besides the asymmetryε also a sufficiently high amplitudeUof the shakingvelocity is required toovercome
gravity. Figure 12(b)displays themeanvelocity vn as a functionof the amplitudeU: at lowvalues ofU the capsule sinks
due to thegravity. For the chosenparameters onefindswithU=0 the sedimentationvelocity v 0.19 mm ss

1= - .
ForU450vs themeanvelocity vn inducedby liquid shaking is stronger than sedimentation and the capsulemoves
upwards for ε=−1.0.TheReynoldsnumberused infigure 12(b) is 0<Re2.Hence, the inertia inducedactuation
effect is foundat small aswell as at intermediate values ofRe. Thequalitative results are comparable to those found for
the ring in theprevious section in the limit of a vanishingReynoldsnumber, compare e.g.figures 10(a) and12(b). The

Figure 11. (a)Shows the capsule’s shape at different times in a shaken liquidwith anon-symmetric liquid velocity, i.e. u t T 20 + ¹( )
u t0( ), as shownby the solid line in (b) and as givenby equation (1) for 1.0e = - . In (c) the drag coefficient ζtot(t)of the capsule is shown in
units of ζ0=6πηR. In a sinusoidally shaken liquid, see dashed line in (b), ζtot(t) is identical in bothhalf periods. For anon-symmetrically
shaken liquid also ζtot(t) is non-symmetric, see solid line and ε=−1, aswell as the capsule shapes in (a).
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reason is that the requirements of theparticle locomotionare the inertia of theparticle and the time-dependent Stokes
drag,which is both included in themodel of thebead-spring ring.

5. Summary and conclusions

We investigated a new kind ofmicroswimmers, so-called passive swimmers. Thesemicroswimmers are soft
particles with amass density different from the liquid, which are driven by an oscillating backgroundflowor a
shaking of the liquid.

Previous studies focused on the propulsion of intrinsically asymmetric soft particles in sinusoidal liquid
motion [11, 12].With our extension to soft bead-spring tetrahedrons and to asymmetric, soft Janus capsules, we
show that the inertia driven propulsionmechanism can even outweigh gravity.Moreover, we show that this
novel inertia driven passive swimmingmechanismworks for thewider class of symmetric soft particles, such as
capsules.

By a semi-analyticalmodel calculationwe cover the essential properties of the inertia driven propulsion
mechanism in liquids shaken periodically with the velocityu0(t+T)=u0(t). It shows the following
requirements: first, themass densities of the particles and the liquidmust be different. Secondly, the Stokes drag
during both periods of the shakingwith different directionsmust differ (e.g. due to a deformation). Thirdly, the
shaking periodT has to be chosen in the order ofmagnitude of the relaxation time that the particles needs to
adjust to the liquid velocity. The essential difference in the drag coefficient during both half periods is achieved
by the asymmetry of the particle.

We suggest that this asymmetry can also be achieved by a non-symmetric shaking velocity with

u t T u t20 0+ ¹( ) ( ), as given for instance by equation (1), instead of the intrinsic particle asymmetry. Such a
non-symmetric liquid shaking leads to a non-reciprocal particle deformation and Stokes drag.

This qualitative reasoning and the analytical considerations are verified and supported by simulations.We
use symmetric and asymmetric bead springmodels and complementary lattice Boltzmann simulations of
realistic soft symmetric capsules and asymmetric Janus capsules. Asymmetric particles in a sinusoidally shaken
fluid have two stable orientations and they exhibit therefore two directions of passive swimming, depending on
the initial orientation. In contrast, for thewider class of symmetric particles in non-symmetrically shaken liquids
the propulsion direction is determined by the shaking. Therefore the swimming direction can be selected by the
engineered time-dependence of liquid shaking.

To provide examples of achievable propulsion velocities for symmetric and asymmetric Janus capsules we
chose a realistic capsule size of about 10 μmand a stiffness of 8 10 N m4 1´ - - , which fits the values of common
capsules [25, 43, 44]. A highermass density for capsules than for the liquid can be achieved if salt is dissolved in
the liquid inside the capsule [45], wherebywaterwith dissolved salt can reach densities up to three times higher
than purewater (without salt). Herewe chose themass density ratio ρcaps/ρliquid=2.0 and the shaking
frequency 10 kHz (see e.g. [46–48]) of the order of the inverse of velocity relaxation time of about 44 μs. For this
choice of parameters and amaximal amplitude 0.5 m s−1 of the liquid velocity one obtains for a symmetric

Figure 12. (a) Shows themean-propulsion velocity vn of a homogeneous capsule as a function of the asymmetry parameter ε of the
shaking velocity in equation (1). For a sinusoidal shakingwith ε=0 the capsule sinks. At sufficiently negative values ε<0 the capsule
moves upwards and for ε>0 downwards. This allows to control the direction of vn via the time-dependence of liquid shaking. In (b)
vn is given as function of the amplitudeU of the shaking velocity. At low values ofU the shaking effect is weak and the capsule sinks. In
the rangeU�450vs the actuation induced by the shaking is stronger than the gravity and the capsulemoves upwards.
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capsulewith in lattice Boltzmann simulations an upward swim velocity of about 57 mm s−1. For a Janus capsule
one obtains for shaking-velocity amplitude 0.3 m s−1 an upward swimvelocity of about 15 mm s−1.

Besides the possibility to engineer passive swimmers, the described effects have further applications: the
inertia induced actuationmay be exploited for separating particles with respect to their differentmass and
different elasticity (deformability). The separation of two kinds of soft particles with a different stiffness is
achieved by choosing a shaking period thatfits the shape relaxation time of one type of particles but not of the
others. In this case one particle type is stronger actuated and can be accumulated for instance near one container
wall. An example are biological cells. They have often a different density thanwater [49] or other carrier liquids.
In addition the stiffness of cells is often an indicator of their health status [50–52]. In this case healthy cellsmay
be separated for instance frommalignant cells by non-symmetric liquid shaking. Our insights about inertia
driven particle propulsionmight also have impact on further systems studied atfinite values of the Reynolds
number [53, 54].
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AppendixA.DynamicOseen tensor and drag coefficient

A1.DynamicOseen tensor
The liquid velocityu(ri) at the particle positions ri includes the imposed homogeneous flowu0 as described by
equation (1) and theflowdisturbances caused by differences between the particle velocities vj and the liquid
velocityu0(rj). For this we use the general solution of the linear part of theNavier–Stokes-equation

p tu f r,f t

ur h= D -  +¶
¶

( ) for an arbitrary point-like force acting on thefluid. The solution of this problem
with a point force t t r rf r F, d= - ¢( ) ( ) ( ) is given by [33]
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with n = h
r
, the error functionΦ, the unitmatrix 1 and the dyadic product⊗. This allows to calculate the liquid

velocity at a bead positionui=u(ri),

t t t tu u H F
1
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0
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= -
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with t tH H r r ,i j i j, = -( ) ( ). This velocity is composed of the homogeneous background flow and the liquid
velocity changes caused by the differences between the particle velocities and the flowu0, which are induced by
the forces F j

1( ) given in section 2.2.

A2.Determination of the drag coefficient
To calculate the drag ζtot(t), we follow the procedure given in [55–57]. For this, we use the positions of the beads/
nodes on the particle surface obtained by simulations. The drag at time t is determined by assuming afixed shape
which implies a constant velocity vv v ei y= = ˆ on each bead/node.We calculate the forces via

v H F , A.8i
j

i j j
P

,å= · ( )( )
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where
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is themobilitymatrix including the hydrodynamic interaction between particle ri and rj described by theOseen

tensor O r 1
r r

r r1

8 2= +
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Ä( )( ) . The drag finally followswith

F F v. A.10
j

jtot totå z= = ( )

The values ζ1 and ζ2 (used in equation (28)) are chosen as themaximal value during the first or the second halve
period, respectively.

Appendix B. Tetrahedron consisting of beadswith differentmass

Herewe investigate the effects of themass inhomogeneity on the propulsion velocity of a tetrahedron. If all beads
of a tetrahedron have the samemass density, the upward oriented tetrahedron () and the downward oriented
one () are both stable. By changing themass density of one of the four beads then one of both orientationswith
respect to the gravitational field is preferred, similar as in reference [12]. For example, if the tetrahedron sinks
(without liquid shaking) the lighter bead points upwards after a certain time. For this orientationwe investigate
the effect of a inhomogeneousmass density on the propulsion velocity.

We introduce the density ratioα between one and the other three beads, i.e. ρ1=αρ2,3,4, and keep themean
density r̄ constant:

N

1
, B.1

i

N

i
1

år r=
=

( )

, . B.21 2 2 3 4r ar r r r= = = ( )

Figure B1 shows themean velocity vn of the tetrahedron and the amplitude of the shape deformation Ā
(defined in equation (38)) as a function of themass-density ratioα simulatedwith theMaxey Riley equations.
The tetrahedronmoves slowerwith an increasing difference of the densities of the beads, which can be explained
as follows. A lighter bead can follow the heavier ones easily and thus the lighter beadmovesmore in phasewith
the heavy beads than a bead of the samemass density. This results in smaller spring deformation and in a lower
deformation amplitude Ā, see figure B1. A smaller amplitude Ā leads to smaller temporal changes of the drag
coefficient ζtot and therefore to slowermean velocity.

So farwe have used theMaxey andRiley equations and the dynamicOseen tensor, i.e. we have neglected
effects of a finite Reynolds number.Here we compare the results with lattice Boltzmann simulations of the full
Navier–Stokes equationwith the tetrahedron. Figure B2 shows themean velocity of a tetrahedronwithα=0.6
as function of the amplitudeU of the shaking velocity. Bothmethods show that themean velocity increases
continuously with the amplitudeU. Furthermore both simulations show that at low values ofU the tetrahedron
sinks and above a critical value ofU the tetrahedron rises against gravity. Thus the numericalmethods agree
qualitatively. Thismeans the LBM simulations, taking effects of afinite Reynolds number into account, and the
Maxey andRiley equations including the dynamicOseen tensor in the limitRe=0 describe inertia induced

Figure B1.The left part shows themean propulsion velocity of the tetrahedron for differentmass-density ratios fr r¯ as function of
the density ratioα and the right part the amplitude of the shape deformation Ā as defined in equation (38).
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propulsion of the tetrahedron. This confirms that themean velocity is the result of the temporal change of the
drag coefficient ζtot(t) and afinite Reynolds number justmodifies this result quantitatively.

AppendixC.Discussion of the sign of themean velocity

Themean velocity vn of the particle is given by equations (33) and (34) in themain text as follows
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We showhere that the sign of themean velocity vn is determined byΓ because all other factors in the
equation (34) are positive.

The factor U M
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A is obviously positive.We demonstrate nowA+B>0 by showing that A B>∣ ∣ ∣ ∣.We compare the absolute
values ofA and byB for each factor. It is clear that
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Figure B2.Themean propulsion velocity of a tetrahedron is shown forα=0.6 as a function of the amplitudeU of the liquid velocity,
obtained by simulations of theMaxey–Riley equations and lattice Boltzmann simulations.
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The function f has the following properties: it increasesmonotonously with a2 and decreasesmonotonously
with a1. Furthermore it is
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The equations (C.4), (C.5), (C.14) lead to A B>∣ ∣ ∣ ∣andwithA>0 followsA+B>0. Therefore we obtain for
equation (34)
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Therefore, the sign of themean particle velocity vn is determined by the factorΓ forU>0.
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