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Abstract: In this paper, the thermal and electrical conductivity and mechanical properties of fiber
reinforced composites produced from nickel- and copper-coated carbon fibers compared to uncoated
fibers are presented. The carbon fibers were processed by our prepreg line and cured to laminates.
In the fiber direction, the thermal conductivity doubled from ~3 W/mK for the uncoated fiber,
to ~6 W/mK for the nickel, and increased six times to ~20 W/mK for the copper-coated fiber for a
fiber volume content of ~50 vol %. Transverse to the fiber, the thermal conductivity increased from
0.6 W/mK (uncoated fiber) to 0.9 W/mK (nickel) and 2.9 W/mK (copper) at the same fiber content.
In addition, the electrical conductivity could be enhanced to up to ~1500 S/m with the use of the
nickel-coated fiber. We showed that the flexural strength and modulus were in the range of the
uncoated fibers, which offers the possibility to use them for lightning strike protection, for heatsinks
in electronics or other structural heat transfer elements.

Keywords: Thermal conductivity; prepreg; carbon fiber; nickel coating; copper coating; flexural
strength

1. Introduction

Efficient heat transport is important for increasing the lifetime and performance of parts [1,2].
Thermal conductivity reduces hotspots and disperses heat, which reduces stress concentration in
the material. Especially polymeric materials, such as carbon fiber reinforced composites with epoxy
matrices, inhibit low thermal conductivity and need efficient thermal management. Thermally
conductive carbon fiber reinforced composites might be useful for heated rollers or the housing of
lightweight electric engines. In contrast to metals, where electrons in the crystal structure can efficiently
transfer the heat, phonons are the main transport mechanism for the heat transfer in amorphous
materials as polymers [3–5]. Therefore, polymers exhibit only low thermal conductivities between
0.1 and 0.5 W/mK [6,7].

One possibility to increase the thermal conductivity is the incorporation of fillers, which is
extensively studied with metallic [8–10], carbon-based [11–14] and ceramic materials [15–17]. Filler
particles dispersed in epoxy resin lead to a number of matrix-particle interfaces. The phonon scattering
at these interfaces can lower the thermal conductivity and mechanical properties of the materials.
Additionally, the enhanced viscosity reduces processability and increases the cost.

Another pathway to increase the thermal conductivity is the use of pitch-based carbon fibers,
also called graphite fibers. The morphology of these fibers fundamentally differs from those of the
commonly used carbon fibers based on polyacrylonitrile (PAN) [18–20].
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A further promising solution to enhance the conductivity is the coating of conventional carbon
fibers with metals. The coating via galvanic methods is superior to the coating with Physical Vapour
Deposition (PVD). In PVD processes, the thickness and distribution of the metal coating are difficult to
control. Nickel is easier to process and, therefore, nickel coated fibers have been commercially available
for several years (e.g., from Cycom or TohoTenax) [21]. Composites consisting of nickel coated fiber
and epoxy resin were studied by Evans et al., who showed an enhancement in thermal conductivity in
the fiber direction from 4.41 W/mK to 6.4 W/mK and in the transverse direction from 0.90 to 0.95 W/mK
with 60 vol % fiber volume content [21]. Here, it is worth mentioning that the nickel coated fibers
were only used in the outer layer of the laminate. In addition, composites of copper-coated fibers
are known from the literature. Yu et al. used copper-coated fibers with very homogenous surfaces
using rapid temperature annealing to produce fiber reinforced composites [22]. Copper is beneficial
because of its thermal and electrical conductivity and the functional groups on the surface, which can
bond to the matrix and presents fewer health concerns than nickel. The main challenge with copper is
during galvanic processing, which leads to varying coating thicknesses. The thermal conductivity in
this study was enhanced from 0.7 W/mK to 1.9 W/mK in the transverse and from 2.9 to 47.2 in the fiber
direction. The fiber content was 48.5 vol % for the uncoated fiber and 26.2 vol % for the coated fiber.

Although the thermal conductivity of these composites was investigated partially, the mechanical
properties and electrical conductivity remain uncertain. For use in industrial applications, an elaborative
investigation about the thermal and electrical conductivity and the mechanical properties is necessary.
This research, therefore, addresses the thermal conductivity in the transverse and fiber direction and
the mechanical properties in bending tests.

2. Production and Characterization Methods

2.1. Materials

The resin tetraglycidylmethylenedianiline (TGMDA, EpikoteTM RESIN 496, Hexion Inc.,
Columbus, OH, USA) is four-functional with an epoxy equivalent of 115 g/eq and was cured with
diethyltoluenediamine (XB3473TM, DETDA, hydrogen equivalent weight 43 g/eq).

The used carbon fibers were HTS40 (TohoTenax, Chiyoda, Japan), HTS40 with a nickel coating
(TohoTenax, Chiyoda, Japan) and Grafil 34700 with a copper coating (Inca-Fiber, Chemnitz, Germany).
The production of the copper-coated fiber is described in detail in the publications of Böttger-Hiller [23,24].
The mechanical properties can be found in Table 1. The thickness of the nickel-coating was
0.247 ± 0.01 µm and those of the copper-coating were 0.75 ± 0.2 µm. The diameter of the carbon fiber
without coating was 7 µm for all fibers.

The volume share of nickel on the fiber was 12.6 %, and 33% of copper of the whole fiber.

Table 1. Properties of fibers used in the underlying research.

Fiber Manufacturer Tensile Strength Tensile Modulus

- - MPa GPa
HTS40 TohoTenax 4620 239
HTS40_NC (Nickel coated) TohoTenax 2900 230
Grafil_34700 (Copper-coated) Inca-Fiber GmbH n.a. n.a.

2.2. Resin Preparation and Curing

The resin and hardener were stirred in a stoichiometric ratio of 72:28. The mixture had been
degassed at 10–20 mbar. The samples were cured under pressure in a laboratory press at 120, 160 and
200 ◦C, at each temperature for 1 h with a heating rate of 10 K/min. A postcuring at 220 ◦C for 2 h
followed, before cooling down at a rate of 5 K/min.
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2.3. Prepreg Production and Consolidation

The unidirectional prepregs were produced via hot-melt processing using the laboratory scale
prepreg impregnation machinery of the University of Bayreuth.

First of all, the unidirectional rovings of 12 K carbon fibers were pre-spread. A resin film was
coated at 25 ◦C on a siliconized carrier paper in the coating unit of the prepreg machinery. Finally,
the pre-spread fibers were impregnated with the resin film to the final prepreg with a calender (25
◦C). The prepregs were then further processed via hand-layup. They were sealed in vacuum bags
and cured under atmospheric pressure of 5 bar in a laboratory press at 120, 160 and 200 ◦C, at each
temperature for 1 h with a heating rate of 10 K/min. A postcuring at 220 ◦C for 2 h followed before
cooling down at a rate of 5 K/min.

2.4. Determination of Fiber Volume Content

Thermogravimetric measurements were conducted with the TG 209 F1 Libra (Netzsch-Gerätebau
GmbH, Selb, Germany).

For the determination of the fiber volume content, a routine suggested by Monkiewitsch was
followed, which was verified in a very thorough investigation [25]. In the suggested routine, fibers
were dried for 2 h at 120 ◦C in the TGA. Then the fibers were heated in the TGA from 20 ◦C to 800 ◦C,
with a heating rate of 2 K/min under a nitrogen flux of 85 ml/min. The samples of the laminates and
samples from neat resin were also dried for 2 h in the TGA, then heated up to 450 ◦C with a heating
ramp of 10 K/min. Finally, an isothermal step for 170 min at 450 ◦C was performed. All samples were
handled with gloves to prevent possible contamination.

In the TGA, the fibers showed only a slight weight loss of (1.0 ± 0.1)%, which could be attributed
to the oxidation of the sizing. During the drying step, no significant weight loss could be detected.

The fiber volume content φ could then be calculated:

φ =
m f

ρ f

(
m f
ρ f

+ 1−mr
ρr

) (1)

where m f is the mass of the fibers, ρ f is their density, and ρr represents the density of the resin. The mass
of the fibers was calculated by:

m f =
ml −mr

1−mr
(2)

where ml is the remaining mass of the laminate after the cycle, and mr is the remaining mass of the resin.
The method was successfully verified and tested in comparison to the determination of the fiber

volume content via density measurements [26].

2.5. Morphological Characterization

All samples were scanned with the Skyscan 1072 Micro-CT (Bruker, Artselaar, Belgium), with a
linear resolution of 3.50 µm at a magnification of 80, with an accelerating voltage of 80 kV and tube
current of 122 µA. The projection images were acquired over 180◦ at angular increments of 0.23◦ with
an exposure time of 2.57 seconds per frame, averaged over six frames. Three-dimensional images
were reconstructed using the reconstruction software provided by the manufacturer (NRecon Version
1.6.4.1), where the ring artifact reduction was applied as needed.

The samples were sputtered using the Cressington 108 Auto Sputter Coater with an Au coating
thickness of 13 nm and studied in the JSM 6510 Scanning Electron Microscope (JEOL, Freising, Germany).
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2.6. Thermal and Electrical Conductivity Measurements

The thermal conductivity was measured by the laser flash method (LFA) with LFA447 (Netzsch
GmbH, Selb, Germany). Five shots were used with a duration of 30 ms each, the signal was fitted
with the Proteus Analysis Software (Netzsch GmbH, Selb, Germany) by the Cape–Lehman algorithm.
The tested samples had a diameter of 12.7 mm.

The electrical conductivity was measured in accordance with ASTM D257. Thereby, the electrical
resistivity was measured with the Keithley 6517A for a resistivity higher than 100 MΩ, and for lower
values, a Keithley 2100 (Keithley, Cleveland, OH, USA) with samples of 60 mm was used.

The density was measured with the AG245 (Mettler-Toledo International Inc., Columbus, OH, USA)
using Archimedes’ principle. The thermal heat capacity was measured with the DSC 1 (Mettler-Toledo
International Inc., Columbus, OH, USA), according to ASTM E1269–11, with a heating rate of 20 K/min.

2.7. Flexural Modulus and Strength

The mechanical properties of the composites were measured using the Zwick Z2.5. The samples
for testing were prepared according to DIN EN ISO 14125 standards. The bending strength was
measured on at least five samples of length 100 mm, width 15 mm and thickness 2 mm, by a three-point
bending technique at a cross-head speed of 1 mm/min.

3. Results and Discussions

3.1. Morphology of Metal Coated Fibers and Laminates

The fibers were used as delivered from the supplier. Figure 1 shows the cross-section records
of the uncoated carbon fiber. The surface of these fibers was quite smooth, only the cut edge of the
fiber showed detached layers. Figure 2 shows a very homogenous nickel coating on the surface of the
carbon fibers. The adhesion between the nickel and fiber was excellent. Figure 3 shows the surface of
the copper-coated fiber. The coating of copper was much less homogenous: Larger agglomerations
could be found on the surface. In addition, the adhesion with the fiber was not as smooth as those of
the nickel fibers: Parts of copper seemed to detach from the fiber. Already during production, smaller
particles loosened from the fibers, however, their share was determined to be below 2%.
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Figure 3. SEM cross-section images of the copper-coated fiber (a) with inhomogenous coating, (b) with
detached coating.

Figure 4 shows the cross-section of the laminates in SEM. The sample from the copper-coated
fiber laminate showed an heterogeneous distribution of the copper coating. Therefore, the coating
thickness on the fibers varied. The nickel coating was much more homogenous.
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Figure 4. SEM cross-section images of the laminates from (left) the copper-coated fiber (39.5 vol %
fiber) and (right) nickel-coated fiber (49.4 vol % fiber).

The µCT records in Figure 5 confirmed the excellent laminate quality. The nickel-coated laminate
was very homogenous. The pictures on the left show the void content. Here, the nickel-coated laminate
showed no visible voids, the software calculated them as below 0.5%. The copper samples showed
some minor voids, which were below 0.8%. The image in Figure 5d shows some heterogeneity of the
copper-coated sample.
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3.2. Thermal Conductivity of Laminates

The thermal conductivity can be calculated from the heat capacity cp, density ρ and thermal
diffusivity a by the following equation:

λ = ρ ∗ cp ∗ a (3)

The densities at room temperature are shown in Table 2. The heat capacity was determined to be
1.11 ± 0.040 J/gK for the resin hardener system, 0.966 ± 0.045 J/gK for the PAN fiber at room temperature,
0.864 ± 0.039 J/gK for the nickel-coated fiber and 0.870 ± 0.050 J/gK for the copper-coated fiber. The heat
capacity of the resin was in accordance with the findings of Baller [27]. Rana et al. determined the heat
capacity of the carbon fiber to be 0.92 J/gK, so the measured value seems valid [28]. Knowing these
values, the heat capacity of the samples can be calculated. The density as measured by Archimedes’
principle, and the diffusivity as measured by the laser flash method, can be found in Table 2.

The samples are denoted by their fiber volume content, which was determined by thermogravimetry
(as described in the methodology section). Therefore, PAN_39.4 refers to a laminate produced from
an uncoated PAN-based carbon fiber with a fiber content of 39.4 vol %. By comparing the density
measured by the Archimedes’ principle and the density calculated from the contents derived from TGA
measurements, the void content of the samples was determined. All samples showed void contents
below 1%.
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Table 2. The heat capacity, density and thermal diffusivity of the tested samples at 20 ◦C, the sample
name consists of the fiber type and the fiber volume content.

Sample Heat Capacity Density Diffusivity ⊥ Diffusivity ||

- J/gK g/cm3 m2/s m2/s
PAN_39.4 1.053 1.39 ± 0.010 0.29 ± 0.005 1.60 ± 0.005
PAN_50.5 1.037 1.45 ± 0.012 0.39 ± 0.003 2.01 ± 0.004
PAN_54.9 1.030 1.47 ± 0.009 0.45 ± 0.004 2.18 ± 0.006
PAN_60.3 1.023 1.50 ± 0.014 0.51 ± 0.007 2.28 ± 0.007
PAN_62.9 1.019 1.51 ± 0.008 0.54 ± 0.005 2.40 ± 0.003
PAN_66.5 1.014 1.53 ± 0.011 0.61 ± 0.008 2.45 ± 0.004
NC_48.1 0.992 1.90 ± 0.015 0.37 ± 0.003 2.36 ± 0.003
NC_49.4 0.989 1.92 ± 0.090 0.45 ± 0.002 2.87 ± 0.005
NC_55.2 0.974 2.01 ± 0.007 0.55 ± 0.003 3.26 ± 0.003
CC_39.5 1.019 2.33 ± 0.012 0.35 ± 0.005 6.04 ± 0.004
CC_49.5 0.991 2.67 ± 0.007 1.075 ± 0.003 7.62 ± 0.006

The thermal conductivity of the samples was measured in the transverse and in-fiber direction.
The conductivities in the fiber direction are shown in Figure 6. In the fiber-direction, the thermal
conductivity is expected to follow the rule of mixture and, therefore, a linear correlation was expected.
The conductivities of the laminates from the uncoated fiber follow the equation 0.23 + 0.054 × x, where x
is the fiber volume content of the PAN fiber. By this, the thermal conductivity of the PAN fiber in the
fiber direction was calculated as 5.63 W/mK. For the nickel-coated fiber, the correlation from three
measurement points was 0.23 + 0.102 × x, so the conductivity of the fiber should be close to 10.43 W/mK.
From the two data points of the copper-coated fiber laminates, the thermal conductivity followed the
correlation 0.23 + 0.385 × x, so the thermal conductivity of the copper-coated fiber was estimated as
~39 W/mK. The thermal conductivity of neat nickel was 91 W/mK and 391 W/mK for copper.
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The thermal conductivities transverse to the fiber direction can be found in Figure 7. Unlike the
thermal conductivity in the fiber direction, the transverse conductivity did not follow a linear trend.
According to the models of Nielsen, Hatta/Taya or Tsai, the conductivity in filled polymer systems
follows an exponential trend [29–31]. This trend seemed clearly visible for the carbon fibers.

The carbon fibers were radially isotropic and consisted of several graphitic layers, which were
wrapped around the center [32]. Along the crystal structure of carbon, the thermal heat can be
transferred efficiently. Between the different layers of the fiber, act van der Waals forces, which lead to
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low thermal transport [33]. In conclusion, mainly the outer shells of the carbon fibers were responsible
for the thermal conductivity transverse and in-fiber direction. This explains the relatively low thermal
conductivity of PAN-based carbon fibers compared to CNT, graphene and other carbon materials.
Dong et al. determined the thermal conductivity of carbon fiber to be 10.2 W/mK in the fiber direction
and 1.256 W/mK transverse to the fiber [34]. Rolfes et al. estimated the conductivities to ~7 W/mK and
~2 W/mK in the fiber and transverse direction [32]. The laminate from the copper-coated sample showed
extraordinary high thermal conductivity compared to the other samples. The distances between the
fibers were very small and the fibers were in close contact. Therefore, the number of copper-matrix
interfaces decreased, which led to phonon scattering and thereby reduced the thermal conductivity.
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The experimental values were then compared to models of Lewis and Nielsen. This model is used
in various publications to calculate the thermal conductivity of composites [32,35–37]. In elaborative
literature reviews, Progelhof et al. [38] and Pal [39] concluded that the Lewis–Nielsen model showed the
most reliable results for compounds of rigid bodies. The conductivity of the composite is determined by:

λk = λM
1 + A B φ
1− B φ C

(4)

while φ is defined as the filler content and λM as the conductivity of the matrix. The factors A, B and C
reflect the filler geometry, orientation and thermal conductivity. According to Guth [40], the parameter
A can be calculated with the aspect ratio p by:

A =
p

[2 ln(2p)] − 3
+ 1 (5)

B is not an independent variable as it also reflects conductivity of filler and matrix and C reflects
the maximal packing density φmax:

B =

(λF)
(λM)

− 1

(λF)
(λM)

+ A
(6)

C = 1 +
(1−φmax)

φ2
max

φ (7)

The maximum packing density of fibers in the composite was 82 % [41]. B is calculated with
the thermal conductivity of the matrix given above and the transverse thermal conductivity of the
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carbon fiber of 2 W/mK. The transverse thermal conductivity of the fiber can only be estimated, as no
method to measure a single fiber could be identified in the literature. Rolfes and Hammerschmidt [32]
calculated a transverse conductivity of 2 W/mK from their experimental data for a round-type PAN
fiber. For the metal-coated fiber, the through-thickness conductivity was calculated by the volume
fraction of the metal and carbon fiber multiplied with the thermal conductivity of the metal, which was
91 W/mK for nickel and 391 W/mK for copper. A was calculated to 0.83 with an aspect ratio of 0.5, and
Rolfes and Hammerschmidt confirm that this value was suggested in the literature [32]. The theoretical
and experimental values can be found in Figure 8.

As it can be seen from the figure, the model was not applicable to the copper-coated and nickel-coated
laminates. The model significantly underestimates the thermal conductivity of these laminates. In addition,
the shape of the copper-coating was not comparable to the shape of typical fillers, of which the models
are tailored to. The shell geometry of the metal coating around the fibers most likely transports the
heat more efficiently than expected and thereby leads to higher thermal conductivities.

A main advantage of the copper-coated fibers compared to particles is that the structure resulting
in the laminates is beneficial for the transport of heat. The more interfaces between particles and matrix
are generated, the higher the thermal resistance due to phonon scattering [6]. In the laminates from
coated fibers, the fibers are likely to bump into each other. The resistance between the metal layer of
adjacent fibers is much smaller than those between copper and epoxy matrix. [22] This effect then leads
to the enhanced thermal conductivities in the laminates with coated fiber.
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3.3. Electric Conductivity

In polymers, the dominating mechanism for the transport of heat is phonon transport. In metals
and carbon allotropes, the heat is transported mainly by electrons. This mechanism is much more
efficient due to the much smaller radius of 10−5 nm of electrons compared to the free wavelength
of phonons of 0.7 nm. [5,42,43] For this reason, the transport mechanism of the electric conductivity
and the thermal conductivity is similar in carbon-based materials and metals. An increase in thermal
conductivity of carbon or metal can be correlated with an increase in electrical conductivity.

Figure 9 shows the electric conductivities of the laminates. The laminates from the copper-coated
fibers showed the highest conductivities compared to the nickel-coated and uncoated fibers at the same
fiber content. It is was clear that the metal-coated fibers showed electric conductivities, which were
three orders of magnitude higher than their uncoated counterparts. For the movement of electrons in
heterogeneous materials, the distance between the particles is crucial. Once a conductive network of
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adjacent particles is built, the conductivity significantly increases. The filler content, which marks a
sudden increase in electric conductivity is called the percolation threshold. The morphology of the
coated laminates is beneficial to build a conductive network: The copper coating around the fibers
easily makes contact with the surrounding copper shells. By this way, a conductive path out of the
copper coating is formed.
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3.4. Mechanical Properties

The flexural strength of the laminates can be found in Figure 10. For the uncoated laminate,
the flexural strength increased with increasing fiber volume content up to 2068 ± 70 MPa with a fiber
volume content of 60 vol %. The flexural strength decreased at a higher fiber volume content because
of the higher number of fibers in direct contact without a matrix in between. The missing adhesion
between the fibers then lowered the mechanical properties of the composite.

The flexural strength of the copper-coated fiber at 39.5 vol % was significantly lower than its
uncoated counterpart at 39.4 vol % of carbon fiber. At a 48.1% and 49.4% fiber volume content,
nickel-coated fibers showed a flexural strength comparable to the uncoated laminates. It seemed
that the functional groups of the metal coated fibers led to an excellent adhesion between the fiber
and matrix, which led to flexural properties in the range of the laminates from the uncoated fiber.
In addition, the flexural modulus of the laminates from the coated and uncoated fibers was comparable.
Only at very high fiber volume contents of 55.2 vol %, the nickel-coated fiber showed significantly
lower mechanical properties than those of the uncoated PAN-based fiber. The microscopy records
and micro-CT scans gave no rise to the assumption that the laminate quality was responsible for
the lower mechanical properties. Still, the hand layup may have led to imperfections and should
be responsible for the lower mechanical properties. The copper-coated fibers showed lower flexural
strength and modulus than the other fibers. Here, the heterogeneous coating and the thickness of
the coating might lead to a detachment of fiber and matrix and, therefore, weaken their properties.
The effect of the replacement of the carbon fiber by a copper coating might be even stronger: Copper
shows significantly lower flexural strength of 300–500 MPa (depending on specific composition) than
carbon fiber reinforced laminates.

The flexural strength of laminates from metal-coated fibers was not determined in the literature so
far. Only Evans et al. showed that the compressive strength of laminates from nickel-coated fibers was
significantly lower than those of the laminates with an uncoated fiber [21]. Compared to aluminum,
which shows higher densities (2.7 g/cm3), the flexural strength of the laminates in the underlying
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research was at a much higher level (aluminum 6061-T6: 310 MPa). In addition, the flexural modulus
was higher compared to its metal counterpart (aluminum 6061-T6: 69 GPa).
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4. Conclusions

The aim of this work was to explore the influence of a metal coating on the thermal and electrical
conductivity and mechanical properties of laminates. We could show that the metal coating was very
effective to enhance the thermal conductivity, both in the transverse and in-fiber direction. For the
in-fiber direction, the thermal conductivity doubled from ~3 W/mK for the uncoated fiber to ~6 W/mK
for the nickel, and increased six times to ~20 W/mK for the copper-coated fiber for a fiber volume
content of ~50 vol %. The thermal conductivity transverse to the fiber was 45% higher with the nickel
coating and enhanced by 380% in the copper coating of the carbon fibers, compared to the uncoated
fibers. A linear trend for the correlation between fiber volume content and thermal conductivity in
the fiber direction was found for all composites. Perpendicular to the fibers, the thermal conductivity
followed the equations suggested by Lewis and Nielsen for the uncoated fiber laminates. The electric
conductivity was three orders of magnitude higher than those of the laminate from uncoated PAN
fiber. The mechanical properties were very promising and the flexural strength as the modulus was in
the range of the uncoated fiber laminates.
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