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Robustness of Individual Score Methods against
Model Misspecification in Autoregressive Panel

Models

Katinka Hardt,1 Martin Hecht, 1 and Manuel C. Voelkle1,2
1Humboldt-Universität zu Berlin

2Max Planck Institute for Human Development

Different methods to obtain individual scores from multiple item latent variable models exist,
but their performance under realistic conditions is currently underresearched. We investigate
the performance of the regression method, the Bartlett method, the Kalman filter, and the mean
score under misspecification in autoregressive panel models. Results from three simulations
show different patterns of findings for the mean absolute error, for the correlations between
individual scores and the true scores (correlation criterion), and for the coverage in our
settings: a) all individual score methods are generally quite robust against the chosen mis-
specification in the loadings, b) all methods are similarly sensitive to positively skewed as well
as leptokurtic response distributions with regard to the correlation criterion, c) only the mean
score is not robust against an integrated trend component, and d) coverage for the mean score is
consistently below the nominal value.

Keywords: Individual score/factor score methods, Kalman filter, longitudinal autoregressive
models, model misspecification

In psychological research, we often aim at understanding
individual development with regard to some latent variable
such as depression, competencies, or emotional quantities.
The question of how we can obtain scores for latent variables
that reliably and validly represent the construct we want to
measure guides efforts in latent variable modeling. Most of
the popular longitudinal models (e. g., multilevel models or

autoregressive (AR) models) yield model parameters such as
averages, coefficients of variation or regression coefficients,
but they do not directly provide information on individual
trajectories. Individual score estimates, sometimes also
referred to as predictions, allow us to locate persons on an
underlying latent variable (often a normally distributed ran-
dom latent variable), and, thus, to track them for reasons of
monitoring, diagnosis, or prognosis. However, as opposed to
parameters of longitudinal models themselves, methods to
obtain individual scores are comparatively underresearched,
especially in regard to model misspecification.

Research on individual score methods and their perfor-
mance has a long history, beginning in the last century. Most
of the research on individual score methods conducted before
the turn of the millennium deals with the performance of
individual score methods in the context of exploratory factor
analysis (e. g., Horn, 1965), where one of the leading questions
was centered around the indeterminacy of individual scores.
For a summary of the history of individual score methods and
the problem of factor indeterminacy, see for instance Steiger
(1979), Acito and Anderson (1986), and Steiger (1996).
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Due to the development and spreading of latent variable
modeling during the past decades, the focus of recent research
on individual score methods has shifted away from their pri-
mary use in exploratory factor analyses towards their use in full
latent variable models. In one strand of research, individual
score methods are investigated with respect to their perfor-
mance in multistep procedures (e. g., Croon, 2002; Devlieger,
Mayer, & Rosseel, 2016; Devlieger & Rosseel, 2017; Hoshino
& Bentler, 2013; Skrondal & Laake, 2001). Those approaches
have in common that individual scores are first obtained based
on a measurement model before they are used to study struc-
tural relationships between latent variables. A related strand of
research focuses on the role of covariates in individual score
modeling (Curran, Cole, Bauer, Hussong, &Gottfredson, 2016;
Curran, Cole, Bauer, Rothenberg, & Hussong, 2018). Other
applications of individual scores in quantitative psychology
include propensity score analysis (Raykov, 2012; for problems
of this approach see Lockwood & McCaffrey, 2016), latent
interaction modeling (Schumacker, 2002), residual analysis
(e. g., Bollen & Arminger, 1991; Coffman & Millsap, 2006),
and integrative data analysis, where individual scores are used
for secondary analyses of multiple pooled raw datasets (e. g.,
Curran & Hussong, 2009).

Most of the previous research on individual score method
performance is either not tailored to focus on the individuals
themselves (e. g., when individual scores are used to study
structural relationships between latent variables) or their perfor-
mance is studied under ideal conditions, that is, when all of the
model assumptions are perfectly met. However, in practice,
such ideal situations hardly ever exist and findings require
further supportive or contradictory evidence (Wackwitz &
Horn, 1971, p. 406). When analyzing real data, our models are
usually somewhat misspecified, that is, the model that is used
for data analysis differs from the model that generated the data.
To account for this fact, the goal of our article is to investigate
the robustness of different individual score methods against
model misspecification in a series of simulation studies. We
connect to previous research by choosing similar design factors
and features. We extend previous studies by focusing on indi-
viduals (rather than on averagemodel parameters) and by taking
a longitudinal perspective. To account for the longitudinal
structure, we use an autoregressive panel model, where one
latent variable measured by multiple indicators predicts the
value of the same variable at the next time point. Panel models
are often characterized by having rather small numbers of
measurement occasions but many individuals and are used,
for instance, in clinical (e. g., Luoma et al., 2001; Nolen-
Hoeksema, Girgus, & Seligman, 1992) or educational (e. g.,
Compton, Fuchs, Fuchs, Elleman, & Gilbert, 2008; Lowe,
Anderson, Williams, & Currie, 1987; Osborne & Suddick,
1972) contexts.

Our paper is structured as follows. First, we present four
common individual score methods: the individual mean score,
the regression method, the Bartlett method, and the Kalman

filter. As we will show in more detail later on, the individual
mean score is usually directly computed by the researchers
themselves, whereas the other methods require some latent
variable model1 and are part of most standard software
packages for latent variable modeling. The mean score is the
most restrictive method as it does not incorporate any estimated
model parameters but implicitly assumes an equal weighting of
perfectly measured responses. If these assumptions are met, for
instance, because the measurement with the corresponding
instrument has been shown to be psychometrically sound, reli-
able, and valid, it is perfectly fine to use the sum or mean score.
If, however, good psychometric properties have not been
shown, the implicit assumptions may be violated. The Bartlett
method does not incorporate structural model parameters
(except for mean structures) but only considers loadings and
error variances from the measurement model. The regression
method aswell as theKalmanfilter incorporate structuralmodel
parameters in addition to measurement model parameters, but
they slightly differ in the extent to which that information is
used: the Kalman filter only incorporates information up to the
current time point, not from future time points as the regression
method, which exploits all available information to estimate the
individual scores. Next, we investigate the robustness of the
selected methods against model misspecification in three simu-
lation studies. The models are misspecified with regard to the
loadings (Study 1), the distributional assumptions of the
responses (Study 2), and the structural model (Study 3). In
Study 3, we use an autoregressive model with an integrated
trend to generate the data but estimate the model based on an
autoregressive model without a trend as in Studies 1 and 2. To
investigate the performance of different individual score meth-
ods under model misspecification in AR panel models, we rely
on parameters similar to those byMuthén andMuthén (2002) or
we use misspecifications as used in recent studies. We thus
connect our research to the most current research of individual
score methods, rather than pursuing a “testing the limits”, fully-
blown simulation study that focuses on one selected type of
misspecification.

We expect that the mean score and the Bartlett method
should be more sensitive to misspecifications as specified in
Studies 1 and 2. These studies will show whether the
incorporation of longitudinal information as done by the
regression method and the Kalman filter can compensate
for misspecification in the measurement model. The regres-
sion method and the Kalman filter might be prone to an
omitted linear trend as specified in Study 3. Also the mean
score may show worse performance in Study 3 as it does
not account for any structural information (i. e., a trend).

By examining the robustness of different, easily accessible
individual score methods against common types of model
misspecification, we make a step towards determining the
appropriateness of individual score methods in a wide range

1 For this reason, they are also referred to as model-based approaches.
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of empirical situations. We investigate what we gain or lose in
terms of performance when we apply one or the other method
in controlled but realistic scenarios.

INDIVIDUAL SCORES

For the purpose of the present paper and in line with Hardt,
Hecht, Oud, and Voelkle (2019), we consider an individual
score as a realization of a normally distributed random latent
variable that conceptually represents a psychological construct.
Let any construct (e. g., intelligence, depression, positive/nega-
tive affect, etc.) be measured by i ¼ 1; . . . ; I multiple indica-
tors (synonym: items), for which we can observe a response yi.
Further, let c ¼ 1; . . . ;C be the running index of the latent
variables representing the constructs of interest with C being
the total number of constructs. Let f j be the vector of the C
latent variable values for j ¼ 1; . . . ; J individuals. The com-
mon factor model establishes the following linear relationship
between the responses and the latent variables:

yj
I�1

¼ v
I�1

þ Λ
I�C

� f j
C�1

þ ɛj
I�1

; (1)

where yj is a vector of the manifest responses across items
for person j, v is a vector of item intercepts, Λ is the loading
matrix connecting manifest and latent variables, and ɛj is
the vector of error terms in the measurement model, with
ɛj,Nð0;ΘÞ, where Θ is the variance-covariance matrix of
ɛj. If, in addition, relations among the latent variables are
postulated, those can be expressed by

f j
C�1

¼ α
C�1

þ B
C�C

� f j
C�1

þ ζ j
C�1

; (2)

where α contains the intercepts of f, B contains all directed
effects among the C latent variables and ζ j are the struc-
tural disturbances for subject j with ζ j,Nð0;ΨÞ, where Ψ
is the variance-covariance matrix of ζ j.

Because f j denotes values of latent variables that cannot
be directly observed, individual score estimates or predic-

tions f̂ j need to be obtained. In the following paragraph we

present several ways to obtain individual score estimates f̂ j
from observable responses yj.

INDIVIDUAL SCORE METHODS

One simple way to obtain individual scores f̂ j is to compute
individual sum scores or mean scores for the C latent
variables as defined by

f̂SSj
C�1

¼ S0

C�I

� yj
I�1

; (3)

where f̂SSj denotes individual scores obtained by computing
individual sum scores, and S is a selection matrix that assigns
a particular element in yj to its corresponding construct.

Choosing sic 2 f0; 1g yields sum scores for f̂SSj, whereas we

obtain mean scores by choosing sic 2 f0; 1Icg, where Ic denotes
the total number of items I measuring one specific construct c.
If there are no missing values, an individual’s sum score and
mean score correlate to one and differ only by their scale. These
approaches assume that items are equally strongly related to the
latent variables (i. e., all Λi ¼ 1) and that they are measured
without any error (i. e., all ɛj ¼ 0). In order to obtain individual
confidence intervals, we can use the standard error of measure-

ment according to SEm ¼ s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� reliability

p
, where s is the

standard deviation of the sum scores or mean scores, respec-
tively, in the sample. One common choice for the reliability is
to use Cronbach’s (1951) Alpha, which, just like the
unweighted individual mean or sum score, also makes the
assumption of equal loadings and therefore is referred to as tau-
equivalent reliability (Cho, 2016).

Lessening these assumptions by incorporating the corre-
sponding model parameters in the computation of indivi-
dual scores yields more sophisticated approaches such as
the Bartlett method, the regression method, and the Kalman
filter. According to the Bartlett method (Bartlett, 1937), an
individual score is given by

f̂Bj

C�1

¼ ðΛ0
C�I

�Θ�1

I�I

� Λ
I�C

Þ�1 � Λ0
C�I

�Θ�1

I�I

�ðyj
I�1

�μy
I�1

Þ þ α
C�1

; ð4Þ

where μy are the model implied means for y as computed by
Λ � α. In order to obtain standard errors, we can take the
square root of the diagonal elements of the estimation error

variance-covariance matrix P ¼ E½ðf̂ � fÞ � ðf̂ � fÞ0� (e. g.,

Oud, van Den Bercken, & Essers, 1990), with f̂ representing
the individual score estimates obtained by a particular method
and f representing the true scores of the latent variables. For

the Bartlett method, PB ¼ ðΛ0 �Θ�1 � ΛÞ�1. As we can see,
only the measurement model components Λ and Θ enter the
computation, whereas structural components are ignored.

This is different in the regression method (Thomson,
1938; Thurstone, 1934), which uses

f̂Rj

C�1

¼ Φ
C�C

� Λ0
C�I

�Σ�1

I�I

�ðyj
I�1

� μy
I�1

Þ þ α
C�1

(5)

as an estimate of f j, where Φ is the variance-covariance
matrix of the latent variables f. For the regression method,

PR ¼ Φ � ½Iþ ðΛ0 �Θ�1 � ΛÞ �Φ��1. By capturing temporal
dependencies among the latent variables in Φ, the regres-
sion method allows us to incorporate longitudinal structural
information.

The same is true for the Kalman filter (Kalman,
1960), which is an inherently longitudinal approach
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and considered to be an optimal method for online
individual score estimation (e. g., Hardt et al., 2019;
Oud et al., 1990) in a longitudinal context. The
Kalman filter involves two steps: in the first step (pre-
diction step), the individual score f̂KFj;tjt�1

at time point t
is predicted by the individual score at the previous time
point t � 1 yielding

f̂KFj;tjt�1

C�1

¼ α
C�1

þ B
C�C

� f̂KFj;t�1jt�1

C�1

; (6)

where B denotes the transition matrix, which connects f̂ over
time. It contains autoregressive parameters in the diagonal and,
for C >1, cross-lagged effects between f in the off-diagonals.
Thus, the diagonal elements of B reflect the strength of the
relationship of a given construct between adjacent measure-
ment occasions: the closer the absolute values are to one, the

stronger the relationship and the better the prediction of f̂ at

time point t by f̂ at t � 1. With the arrival of data from the
newmeasurement at time point t the prediction from time point
t � 1 is updated (update step) according to

f̂KFj;tjt
C�1

¼ f̂KFj;tjt�1

C�1

þKtjt
C�I

�ðyjt
I�1

� ŷj;tjt�1
I�1

Þ; (7)

with ŷj;tjt�1 being the responses predicted by Λ � f̂KFj;tjt�1
.

The Kalman gain, Ktjt, determines how strongly the new
measurement is weighted as compared to the prediction
based on the previous time point and is defined by

Ktjt
C�I

¼ PKFtjt�1

C�C

� Λ0

C�I

�ð Λ
I�C

�PKFtjt�1

C�C

� Λ0

C�I

þ Θ
I�I

Þ�1 ; (8)

where PKFtjt�1
is the predicted Kalman estimation error as

given by PKFtjt�1
¼ B � PKFt�1jt�1

� B0 þΨ. The updated
Kalman estimation error is defined by
PKFtjt ¼ ðI�Ktjt � ΛÞ � PKFtjt�1

, where I is the identity
matrix. Note that the index for the time point in the
Kalman filtering approach goes from t ¼ 2 to T , where T
denotes the total number of measurement occasions. At
t ¼ 1, the Kalman filter can be initialized completely “unin-
formative” for instance by setting fKFj;1j1 and PKF1j1 to arbi-
trary values or “informative” by choosing individual score
estimates obtained by another individual score method
(e. g., the Bartlett method or the regression method, see
Oud, Jansen, Van Leeuwe, Aarnoutse, & Voeten, 1999;
Hardt et al., 2019; for more comprehensive research on
the initial condition specification, see Losardo, 2012).

SIMULATION STUDIES

Three simulation studies were conducted in order to exam-
ine the robustness of the four selected individual score

methods against misspecification in the context of an AR
(1) panel model. Misspecifications are studied with regard
to the loadings (Study 1), the distributional assumptions of
the responses (Study 2), and the longitudinal structural
model (Study 3). Based on the results we draw conclusions
for the use of individual scores in practice.

General setting and procedure

All three simulation studies followed the same steps: data gen-
eration, model specification and estimation, computation of
individual scores, and analyses of the results. Data generation
was different across simulations and will be described for each
simulation study separately. The model used for data analysis is
always a univariate (i. e.,C ¼ 1) autoregressive panel model of
order one, AR(1), in which one latent variable with I ¼ 5 items
is repeatedly measured on T ¼ 5 equally-spaced measurement
occasions for J ¼ 200 individuals.2 All variables are z-
standardized if not indicated otherwise. Adapting Equations
(1) and (2) and assuming a stationary process (see e. g.,
Hamilton, 1994, pp. 45–46) with βt ¼ β and measurement
invariance across time (i. e., Λt ¼ Λ,Θt ¼ Θ) yields

yjt ¼ Λ � fjt þ ɛjt (9)

with ɛjt,Nð0;ΘÞ for the measurement model and

fjt ¼ β � fj;t�1 þ ζjt (10)

with ζjt,Nð0;ψÞ for the structural model. The disturbance
term ζjt, also called process noise, reflects the degree to which
fj;t cannot be predicted by fj;t�1. Figure 1 depicts themodel used
for data analysis as well as the locations of themisspecifications
in the simulation studies. After having estimated the models,
individual scores are computed according to Equations (3) to
(7). Unless stated otherwise, we assumed α ¼ 0 and v ¼ 0.

In all three simulation studies, we varied the degree of
persistence of the process (referred to as factor beta) to be
either 0.25 or 0.75. A parameter of β ¼ 0:25 indicates
lower persistence, whereas a parameter of β ¼ 0:75 indi-
cates higher persistence. The different individual score
methods are represented as a factor Method which com-
prises the levels Regression, Bartlett, MeanScore, KFiniR,
and KFiniB with the latter two being the Kalman filter
initialized with the regression method and the Bartlett
method, respectively. As the misspecification in simulation
Studies 1 and 2 is located in the measurement model, we
varied the average of the loadings (referred to as factor

2We also ran our analyses based on J ¼ 2; 000 individuals and
Nrepl ¼ 500 replications. We mostly found the same pattern of results
(see the Online Supplemental Material A); the few differences that
occurred are reported in the main text.
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LDm). The average of the loadings was either 0.6 or 0.8.
Loadings of 0.8 correspond to a latent variable indicator
reliability of 64% when variables are standardized and can
be considered prototypical for loadings in psychological
studies (Muthén & Muthén, 2002). The set of loadings
with an average value of 0.6 represents situations with
less reliable indicators. In practice, loadings are usually
not equal across indicators. Hence, loadings for our five
observable indicators were chosen in such a way that they
approximately followed a normal distribution around the
mean. For LDm ¼ 0:8 conditions, loadings were 0.65, 0.75,
0.80, 0.85, 0.95 and for LDm ¼ 0:6 conditions, loadings
were 0.45, 0.55, 0.60, 0.65, 0.75. In addition, we incorpo-
rated the five time points as control factor Time into the
analyses of simulation Studies 1 and 2 in order to capture
time-specific effects which may emerge in a longitudinal
context. Further study specific design factors that relate to
the type of misspecification itself are outlined for each
simulation study separately.

All steps were replicatedNrepl ¼ 1;000 times per condition.
If the model converged, we computed individual scores as
described before and subsequently evaluated their perfor-
mance as described next. All analyses were conducted using
the package OpenMx (Neale et al., 2016; Boker et al., 2018,
version 2.12.2) in the software environment R (R Core Team,
2018, version 3.5.0); individual scores were computed with
our own routines. As starting values, we used 0.5 for the
loadings, for the process error variance as well as for the
autoregression coefficient, and 0.4 for the error variances in
the measurement model. For the intercepts in simulation
Study 3 we relied on the OpenMx’ default starting value of
zero. Further, by specifying lbound = 0.0001 for variances,
we ensured that estimates for variances are positive.
Regarding model convergence, we relied on OpenMx default
values but used the function mxTryHard() with 50 extra

attempts to obtain model convergence. In the extra attempts,
parameter estimates from the previous attempt are perturbed
by random draws from a uniform distribution and then used as
starting values for the next attempt.

Outcome criteria

To evaluate the performance of the different individual score
methods, we use three criteria: the mean absolute error
(MAE), the Fisher-Z-transformed correlation between true
scores and individual score estimates, and the coverage rate.
We use analysis of variance (ANOVA) or logistic regression
models to examine variation in the three criteria. In these
models, we consider the unique impact of the simulation
design and control factors and all possible interactions

between them. The MAE is calculated by N�1
repl

PNrepl

r¼1 j f̂jr �
fjj and is a measure of the absolute discrepancy between the
true score and the individual score estimate. It is considered to
be among the most appropriate measures when all the data are
on the same scale (see Hyndman & Koehler, 2006). The
correlation is expressed as r̂f f and it is a relative measure. It

describes how well the relative positioning of individuals
based on their true scores is maintained by individual score
estimates and may thus be considered an index for the indivi-
dual score reliability. For the MAE and for the correlation
criterion, we fit ANOVA models using sums of squares of
type III to explain variation in them. The coverage criterion
assesses the frequency with which the true score is “captured”
by an individual score estimate plus/minus the corresponding
95% confidence interval limits relative to the total number of
replications. The confidence intervals are computed by

CIjt ¼ f̂jt � z:975 � SEt, where z:975 � 1:96 and the standard
errors SE at each time point t are obtained based on
SEm; PB; PR; and PKFtjt as described before. Ideally, the

FIGURE 1 Conceptual path diagram of an autoregressive model of order one with five observed indicators; the squared areas indicate locations of
misspecification as examined in the three simulation studies.
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coverage rate matches the nominal confidence of 95%.
Because of its range from 0 to 1, the coverage criterion is
further analyzed by means of logistic regression models using
dummy coding of the design and control factors as well as all
possible interactions between them. In dummy coding, one of
the factor levels is chosen as reference category (coded as 0),
while each other factor level is represented as dichotomous
group indicator with code 1 indicating group membership and
0 otherwise. As for the coverage criterion departures from
0.95 are more important to consider than the mere variation in
it, we included an additionalMethod level with the value 0.95
for each person at each time point and for each condition. This
“method” reflects the nominal coverage rate for 95% confi-
dence intervals and is the baseline (“reference category”) for
the Method factor. Thus, a regression coefficient for
a particular individual score method reflects its departure in
coverage from the nominal 95% confidence.3

The three outcome criteria capture very different aspects
of individual score method performance. Whereas the MAE
and the coverage may be more important in the context of
individual diagnostics with predefined diagnostic criteria and
thresholds, the correlation criterion may be more important
for subsequent (e. g., covariance based) analyses. Note that
the MAE and the coverage are calculated for each individual
across replications, whereas the correlation criterion is cal-
culated across all individuals per replication, resulting in
different numbers of units entering the ANOVA models
reported below. Given the extreme power due to the high
number of units for the two outcomes (at least 40,000), we
only deem factors with both p <:01 and an η2 of at least :01
as meaningful in the ANOVA models. In case of such mean-
ingful factors, we further conducted post hoc pairwise com-
parisons of the factor levels with Bonferroni adjustment of
the p-values to avoid α error inflation. We considered sig-
nificant effects (i. e., p <:01) with an effect size of jdj � 0:2
to be meaningful. For the logistic regression models, we
transformed the exponentiated regression coefficients into
Cohen’s d according to Borenstein, Hedges, Higgins, and
Rothstein (2009, Equation (7.1)) and considered a predictor
effect as meaningful if p <:01 and jdj � 0:2. These thresh-
olds correspond to Cohen’s (1988) conventions for small
effects and the η2 threshold is additionally in line with that
used by Curran et al. (2016).

SIMULATION STUDY 1: LOADINGS

Methods

Data generation

Data were generated according to an autoregressive
panel model of order one as described before. First, the
trajectories of the true scores were generated according
to Equation (8). For t ¼ 1 we drew J ¼ 200 values from
a standard normal distribution. Next, based on the trajec-
tories of the true scores, we generated the response data
under the common factor model as given in Equation (9)
and with the two sets of loadings with an average of 0.6
and 0.8, respectively, as described before. For this, we
multiplied an individual’s true score at a given time point
by the loadings and added a measurement residual,
ɛj,Nð0;ΘÞ, where the variances in Θ are one minus
the squared loading, with zeros in the off-diagonals, in
order to obtain standardized items without error
covariances.

Design and analyses

In order to study the effect of misspecifications in the
loadings on individual score methods, we analyzed the data
generated with unequal loadings with a model in which the
loadings and measurement error variances are assumed to
be equal (LDequal). As reference, we compare our results
to those obtained for a model with a correct specification of
the loadings, that is, when they are estimated freely
(LDfree) and subsumed these specifications under the fac-
tor LDspec (with the levels LDequal/misspecified vs.
LDfree/correct [reference]). In addition, the following
aforementioned design and control factors enter the ana-
lyses: beta (reference: β ¼ 0:75), LDm (reference: average
loading of 0.6), Time (reference: t ¼ 1), and Method (refer-
ence: nominal 95%).

Results

In simulation Study 1, all models converged. With regard to
the MAE, we only find a few statistically significant (i. e.,
p <:01) effects (see Table 1), of which only the effect of the
average loading design factor LDm can be considered prac-
tically meaningful η2 ¼ 1:1%. Unsurprisingly, this means
that a mean loading of 0.8 leads on average to a smaller
MAE value than a mean loading of 0.6. Considering the
coverage criterion (see Figure 2), only the mean score
leads to a meaningfully smaller odds of capturing the true
score by the confidence interval as compared to the nominal
0.95 coverage (OR ¼ 0:396; p <:001; d ¼ �0:511). This
effect is more pronounced in LDm ¼ 0:6 conditions for the
mean score than for other individual score methods
(OR ¼ 0:527; p <:001; d ¼ �0:353).

3 For reasons of limited space, full regression tables are available in the
Online Supplemental Material B. In the text, we only report results and
provide figures to illustrate proportions and confidence intervals according
to Wilson (1927), which is recommended for binomial proportions
(Brown, Cai, & DasGupta, 2001; Wallis, 2013).
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Regarding the correlation criterion (see Table 2), we find the
same effect of the average loading on the average Z-trans-
formed correlation between the true scores and the estimated
individual scores (η2 ¼ 7:4%).

In summary, the effects we found are in line with what
we know about the individual score methods’ performance
under ideal conditions (i. e., without model misspecifica-
tion). In turn, this means that loading misspecification, as
implemented in this simulation study, neither has
a meaningful impact on the MAE nor on the correlation
criterion, and that the individual score methods have proven
robust against this type of misspecification. However,
regardless of the model misspecification, when using the
individual mean scores and corresponding confidence inter-
vals, we are testing with a confidence that is actually lower
than the nominal confidence. That is, the type I error prob-
ability is higher than we assume.

SIMULATION STUDY 2: RESPONSE
DISTRIBUTIONS

Methods

Data generation

Data were generated in the same way as described for
simulation Study 1 except for the distribution from which
the measurement residuals were drawn. In order to generate
non-normal response data, measurement residuals were
drawn from two different distributions as in Devlieger
et al. (2016): for one set of conditions, ɛj,tð3Þ and multi-
plied by the square root of the diagonal elements in Θ,
resulting in curved response data that are leptokurtic
(Mkurtosis ¼ 9:991; SDkurtosis ¼ 14:416). For another set of
conditions, ɛj, χ2ð1Þ and were multiplied by the square
root of the diagonal elements in Θ, resulting in positively
skewed response data (Mskewness ¼ 1:410; SDskewness ¼
0:699) as may be the case when modeling responses times
for instance. In the baseline conditions, ɛj,Nð0;ΘÞ as
before.

Design and analyses

In order to study the effect of non-normally distributed
response data on the performance of different individual score
methods, we entered the factor Ydistr (representing different
response distributions) with the three levels curved, skewed,
and normal (reference) into the analyses of the simulation
results. In addition, we included beta, LDm, Time, andMethod
as control and design factors just as before.

Results

In simulation Study 2, all models converged except for up to
three replications in conditions with curved response distribu-
tions. With regard to the MAE, none of the factors or interac-
tions became significant and explained at least 1% of the
variance in the MAE (see Table 3). That is, the error that we
make when estimating individual scores is independent of the
design factors, including misspecifications in the
response distribution. This is different for the correlation
criterion, for which the response distribution (Ydistr) accounts
for η2 ¼ 2:3% of the variance (see Table 4). Post hoc pairwise
analyses yielded strong effects of jdj ¼ 0:535 for curved
response distributions as compared to normal response dis-
tributions and of jdj ¼ 0:403 for skewed response distribu-
tions as compared to normal response distributions. The
difference between skewed and curved distributions is not
meaningful. This result means that individual score methods
suffer to the same degree from misspecification in the
response distributions in terms of their accuracy in maintain-
ing the relative positioning of individuals. Moreover, LDm

TABLE 1
ANOVA Results for the MAE Criterion for Study 1

term df SS F p η2

(Intercept) 1 26.18 4,574.15 <.001 .1
Time 4 0.32 14.00 <.001 .001
Method 4 1.26 54.99 <.001 .005
LDspec 1 0.03 4.86 .028 0
beta 1 0.09 15.15 <.001 0
LDm 1 2.84 496.58 <.001 .011
Time:Method 16 0.76 8.34 <.001 .003
Time:LDspec 4 0.00 0.06 .993 0
Method:LDspec 4 0.07 2.99 .018 0
Time:beta 4 0.08 3.33 .01 0
Method:beta 4 0.12 5.22 <.001 0
LDspec:beta 1 0.00 0.06 .814 0
Time:LDm 4 0.09 3.90 .004 0
Method:LDm 4 0.51 22.45 <.001 .002
LDspec:LDm 1 0.06 9.71 .002 0
beta:LDm 1 0.03 5.05 .025 0
Time:Method:LDspec 16 0.01 0.15 >.999 0
Time:Method:beta 16 0.15 1.62 .055 .001
Time:LDspec:beta 4 0.00 0.01 >.999 0
Method:LDspec:beta 4 0.00 0.04 .997 0
Time:Method:LDm 16 0.31 3.37 <.001 .001
Time:LDspec:LDm 4 0.00 0.04 .997 0
Method:LDspec:LDm 4 0.04 1.74 .138 0
Time:beta:LDm 4 0.02 0.90 .465 0
Method:beta:LDm 4 0.04 1.80 .126 0
LDspec:beta:LDm 1 0.00 0.02 .895 0
Time:Method:LDspec:beta 16 0.00 0.01 >.999 0
Time:Method:LDspec:LDm 16 0.00 0.01 >.999 0
Time:Method:beta:LDm 16 0.04 0.47 .963 0
Time:LDspec:beta:LDm 4 0.00 0.02 .999 0
Method:LDspec:beta:LDm 4 0.00 0.00 >.999 0
Time:Method:LDspec:beta:LDm 16 0.00 0.00 >.999 0
Residuals 39,800 227.76

Note. The design and control factors include Time (t1 � t5), Method
(Regression, Bartlett, MeanScore, KFiniR and KFiniB), LDspec (incorrect vs.
correct), LDm (mean loading 0.6 vs. 0.8), and beta (β¼ 0:25 vs. β¼ 0:75).
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again turned out to be meaningful (η2 ¼ 6:2%) indicating, as
expected, that individual score methods perform better in
high average loading conditions than in low average loading
conditions. Considering the coverage (see Figure 3), we
observe two main findings that are related to the mean
score on the one hand, and to the model-based methods on
the other. With regard to the mean score, the coverage
again results to be meaningfully lower than 0.95
(OR ¼ 0:397; p <:001; d ¼ �0:509), while keeping the
other factors at their baseline. This main effect is strengthened
if the average loading is 0.6 as compared to the
nominal coverage of 0.95 in a more reliable measurement
(LDm = 0.8; OR = 0.526, p <:001; d ¼ �0:354). This nega-
tive effect is lowered if responses are leptokurtic (OR = 1.810,
p <:001; d = 0.327). It is strengthened if they are skewed
(OR ¼ 0:310; p <:001; d ¼ �0:646), particularly, when
the average loading is 0.6 as compared to 0.8
(OR ¼ 1:520; p <:001; d ¼ 0:231). With regard to the
other, model-based individual score methods, we also
find that skewness generally leads to coverage rates
meaningfully lower than the nominal 0.95 (OR between
0.125 and 0.157, all p <:001; d between �1:145 and
�1:021) while keeping β at 0.75, LDm at 0.8 and t at 1, and
that the negative departure from 0.95 is even stronger for
LDm ¼ 0:6 conditions (OR between 0.476 and 0.660,
all p <:001; d between �0:410 and �0:229). The
regression method additionally suffers slightly more at t ¼ 2
(OR = 0.635, p <:001; d ¼ �0:25) and t ¼ 4 (OR ¼ 0:668,
p <:001; d ¼ �0:222) from skewed responses. However,
note that these time point specific effects for the regression
method do not occur in the analyses based on J ¼ 2; 000
individuals. Further, although we do not find a general
Kalman filter initialization effect, we observe a few, time
point-specific effects: if the responses are skewed at t ¼ 2
(OR ¼ 0:694, p <:001; d ¼ �0:201), or, in particular, if
LDm ¼ 0:6 at t ¼ 3 (OR ¼ 0:656, p <:001; d ¼ �0:233)
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FIGURE 2 LDspec = loading specification with LDfree = freely estimated loadings and LDeq = loadings constrained to be equal; M06 = average loading
of 0.6, M08 = average loading of 0.8; be025 = β of 0.25, be075 = β of 0.75. Proportions and confidence intervals for Study 1.

TABLE 2
ANOVA Results for the Correlation Criterion for Study 1

term df SS F p η2

(Intercept) 1 2,187.41 758,636.18 <.001 .707
Time 4 8.84 766.65 <.001 .003
Method 4 15.26 1,322.64 <.001 .005
LDspec 1 1.24 428.41 <.001 0
beta 1 3.66 1,268.99 <.001 .001
LDm 1 227.56 78,921.72 <.001 .074
Time:Method 16 13.45 291.54 <.001 .004
Time:LDspec 4 0.01 1.27 .279 0
Method:LDspec 4 1.17 101.46 <.001 0
Time:beta 4 10.08 873.76 <.001 .003
Method:beta 4 4.17 361.31 <.001 .001
LDspec:beta 1 0.01 1.95 .162 0
Time:LDm 4 2.52 218.95 <.001 .001
Method:LDm 4 13.48 1,168.67 <.001 .004
LDspec:LDm 1 9.45 3,278.03 <.001 .003
beta:LDm 1 0.82 284.02 <.001 0
Time:Method:LDspec 16 0.03 0.67 .827 0
Time:Method:beta 16 5.43 117.64 <.001 .002
Time:LDspec:beta 4 0.00 0.25 .91 0
Method:LDspec:beta 4 0.01 1.17 .32 0
Time:Method:LDm 16 2.69 58.27 <.001 .001
Time:LDspec:LDm 4 0.09 8.02 <.001 0
Method:LDspec:LDm 4 7.82 677.85 <.001 .003
Time:beta:LDm 4 0.73 63.43 <.001 0
Method:beta:LDm 4 0.94 81.75 <.001 0
LDspec:beta:LDm 1 0.01 2.75 .097 0
Time:Method:LDspec:beta 16 0.01 0.24 .999 0
Time:Method:LDspec:
LDm

16 0.07 1.47 .103 0

Time:Method:beta:LDm 16 1.04 22.56 <.001 0
Time:LDspec:beta:LDm 4 0.04 3.09 .015 0
Method:LDspec:beta:LDm 4 0.01 0.63 .642 0
Time:Method:LDspec:
beta:LDm

16 0.03 0.60 .888 0

Residuals 199,800 576.09

Note. The design and control factors include Time (t1 � t5), Method
(Regression, Bartlett, MeanScore, KFiniR and KFiniB), LDspec (incorrect vs.
correct), LDm (mean loading 0.6 vs. 0.8), and beta (β¼ 0:25 vs. β¼ 0:75).
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and t ¼ 4 (OR ¼ 0:692, p <:001; d ¼ �0:203), the Bartlett
initialized Kalman filter leads to a coverage below the nom-
inal 0.95. Note that these Kalman filter initialization effects do
not occur in the analyses based on J ¼ 2; 000 individuals.
Therefore, they are an effect due to bias in the model para-
meter estimation rather than due to individual score method
properties. This will be explained in the discussion. In sum,
the results of simulation Study 2 show that all individual score
methods are similarly robust against misspecification in the
response distribution when their absolute value matters.
However, as soon as we consider confidence intervals when
the response distributions are skewed, our type I error is
inflated. Further, the individual score methods are sensitive
to departures from normality when it comes to the relative
positioning of individuals.

SIMULATION STUDY 3: STRUCTURAL
MISSPECIFICATION

Methods

Data generation

The goal of simulation Study 3 is to simulate the effect
of an unmodeled integrated trend component on individual
score methods. Trajectories of true scores are generated
according to fjt ¼ ht þ β � fj;t�1 þ ζjt with ζjt,Nð0;ψÞ,
where ht ¼ ðt � 1Þ � g with g being the slope and h being
the trend variable at time t. Based on these trajectories of
the true scores we then generated the responses according
to Equation (9) as before.

TABLE 4
ANOVA Results for the Correlation Criterion for Study 2

term df SS F p η2

(Intercept) 1 1,934.60 293,434.79 <.001 .445
Time 4 5.61 212.68 <.001 .001
Method 4 2.54 96.29 <.001 .001
Ydistr 2 102.17 7,748.09 <.001 .023
beta 1 3.77 571.19 <.001 .001
LDm 1 269.99 40,951.68 <.001 .062
Time:Method 16 0.22 2.13 .005 0
Time:Ydistr 8 1.13 21.51 <.001 0
Method:Ydistr 8 1.65 31.25 <.001 0
Time:beta 4 10.47 396.95 <.001 .002
Method:beta 4 4.09 155.23 <.001 .001
Ydistr:beta 2 1.00 75.51 <.001 0
Time:LDm 4 0.15 5.64 <.001 0
Method:LDm 4 16.31 618.56 <.001 .004
Ydistr:LDm 2 1.31 99.72 <.001 0
beta:LDm 1 0.93 140.65 <.001 0
Time:Method:Ydistr 32 1.72 8.15 <.001 0
Time:Method:beta 16 5.45 51.67 <.001 .001
Time:Ydistr:beta 8 0.64 12.04 <.001 0
Method:Ydistr:beta 8 1.42 26.89 <.001 0
Time:Method:LDm 16 0.07 0.66 .836 0
Time:Ydistr:LDm 8 0.30 5.78 <.001 0
Method:Ydistr:LDm 8 0.86 16.34 <.001 0
Time:beta:LDm 4 0.85 32.26 <.001 0
Method:beta:LDm 4 0.98 37.23 <.001 0
Ydistr:beta:LDm 2 0.06 4.38 .013 0
Time:Method:Ydistr:beta 32 1.10 5.24 <.001 0
Time:Method:Ydistr:LDm 32 0.63 2.99 <.001 0
Time:Method:beta:LDm 16 1.03 9.73 <.001 0
Time:Ydistr:beta:LDm 8 0.29 5.58 <.001 0
Method:Ydistr:beta:LDm 8 0.25 4.72 <.001 0
Time:Method:Ydistr:beta:LDm 32 0.42 1.99 .001 0
Residuals 299,650 1,975.58

Note. The design and control factors include Time (t1 � t5), Method
(Regression, Bartlett, MeanScore, KFiniR and KFiniB), LDm (mean load-
ing 0.6 vs. 0.8) and beta (β ¼ 0:25 vs. β¼ 0:75), and response distribution
Ydistr (normal, curved and skewed).

TABLE 3
ANOVA Results for the MAE Criterion for Study 2

term df SS F p η2

(Intercept) 1 30.70 115.64 <.001 .002
Time 4 0.04 0.04 .997 0
Method 4 0.42 0.40 .811 0
Ydistr 2 17.92 33.76 <.001 .001
beta 1 0.09 0.34 .561 0
LDm 1 3.74 14.10 <.001 0
Time:Method 16 0.26 0.06 >.999 0
Time:Ydistr 8 1.69 0.80 .606 0
Method:Ydistr 8 3.53 1.66 .102 0
Time:beta 4 0.09 0.09 .987 0
Method:beta 4 0.11 0.11 .98 0
Ydistr:beta 2 0.09 0.17 .841 0
Time:LDm 4 0.01 0.01 >.999 0
Method:LDm 4 0.30 0.29 .886 0
Ydistr:LDm 2 0.68 1.29 .276 0
beta:LDm 1 0.03 0.12 .732 0
Time:Method:Ydistr 32 1.88 0.22 >.999 0
Time:Method:beta 16 0.15 0.04 >.999 0
Time:Ydistr:beta 8 0.21 0.10 .999 0
Method:Ydistr:beta 8 0.11 0.05 >.999 0
Time:Method:LDm 16 0.12 0.03 >.999 0
Time:Ydistr:LDm 8 14.69 6.92 <.001 .001
Method:Ydistr:LDm 8 2.86 1.35 .215 0
Time:beta:LDm 4 0.03 0.02 .999 0
Method:beta:LDm 4 0.04 0.04 .997 0
Ydistr:beta:LDm 2 0.02 0.04 .96 0
Time:Method:Ydistr:beta 32 0.24 0.03 >.999 0
Time:Method:Ydistr:LDm 32 11.62 1.37 .08 .001
Time:Method:beta:LDm 16 0.04 0.01 >.999 0
Time:Ydistr:beta:LDm 8 7.98 3.76 <.001 .001
Method:Ydistr:beta:LDm 8 3.79 1.78 .075 0
Time:Method:Ydistr:beta:LDm 32 6.01 0.71 .889 0
Residuals 59,700 15,845.70

Note. The design and control factors include Time (t1 � t5), Method
(Regression, Bartlett, MeanScore, KFiniR and KFiniB), LDm (mean load-
ing 0.6 vs. 0.8) and beta (β¼ 0:25 vs. β¼ 0:75), and response distribution
Ydistr (normal, curved and skewed).

248 HARDT ET AL.



Design and analyses

We chose the trend to be either weak with a slope (referred
to as factor g) of 0.5 or moderate with a slope of 1. We assess
the robustness of individual score methods against ignoring an
integrated trend component in an AR(1) model by comparing
their performance in an AR(1) model without integrated trend
component with their performance in an AR(1) model includ-
ing an integrated trend component. This trend component can
be modeled by an AR(1) process of an additional latent vari-
able (the trend variable) parallel to the AR(1) process of
interest while imposing special constraints on this additional
process. The two processes are connected by regressing the

latent variable of interest on the latent trend variable with the
regression coefficient being fixed to one. The variances (initial
variance and process noise variance) of the latent trend vari-
able are constrained to zero and the autoregressive coefficient
is constrained to 1. The intercept of the latent trend variable is
freely estimated from t ¼ 2 onwards but constrained to be
equal across time. All other means and intercepts are con-
strained to zero. The model-implied mean structure is given in
the Appendix. Figure 4 illustrates this model. Example code
for specifying this model is provided in the Online
Supplemental Material C. The correctly specified model
(including the trend; AR1litrend) and the misspecified
model (without trend; AR1notrend) were fitted to the same
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FIGURE 3 Ydistr = response distribution; M06 = average loading of 0.6, M08 = average loading of 0.8; be025 = β of 0.25, be075 = β of 0.75. Proportions
and confidence intervals for Study 2.

FIGURE 4 Conceptual path diagram of an autoregressive model of order one including an integrated trend component, five observed indicators, and
measurement invariance assumed as used for simulation Study 3.
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data set, and are subsumed under the factor Model (with the
levels AR1notrend/incorrect vs. AR1litrend/correct [refer-
ence]) in the following ANOVA and regression models. In
addition, we considered beta and Method as design and con-
trol factors as before. As simulation Studies 1 and 2 did not
yield any meaningful interactions including the LDm condi-
tions, we focused on LDm ¼ 0:8 in this study. Time was not
included as a control factor here because the factor Model
already inheres whether the longitudinal structure is appro-
priately accounted for or not.

Results

In simulation Study 3, all models converged. For the three
outcome criteria, we find different patterns of results, includ-
ing differences in coverage between the analysis with J ¼
200 and J ¼ 2; 000. With regard to the MAE, we find
a meaningful main effect for Method (η2 ¼ 18:5%) as well
as meaningful effects for the interactions between Method
and slope (η2 ¼ 2:9%) and between Method and beta
(η2 ¼ 1:2%; see Table 5). Pairwise comparisons for the
main effect of Method reveal that the mean score performs
meaningfully worse than all other methods (jdj between
0.592 and 0.600) and that this effect is more pronounced
when the trend is moderate (jdj between 0.617 and 0.645) as
compared to weak (jdj between 0.253 and 0.281) and when
the persistence of the process is high (jdj between 0.515 and
0.527) as compared to low (jdj between 0.336 and 0.337).

With regard to the correlation criterion, we find the same
meaningful main effect for Method as for the MAE
(η2 ¼ 1:3%; see Table 6). That is, as compared to the other

individual score methods, the mean score is meaningfully
less capable of accurately positioning individuals than the
other methods (jdj between 1.247 and 1.353). With regard to
the coverage (see Figure 5), there are five main findings:
first, out of all methods, the individual mean score most
pronouncedly has a coverage smaller than the nominal 0.95
(OR ¼ 0:104; p <:001; d ¼ �1:250) while keeping the
other factors at their baselines. Second, all other methods
also yield coverages slightly below the assumed confidence
of 0.95 (OR between 0.572 and 0.693, all p <:001; d
between �0:308 and �0:202). Third, this effect is stronger
if a moderate trend is present (OR between 0.572 and 0.693,
all p <:001; d between �0:308 and �0:202). Fourth, the
discrepancy from 0.95 in a model without trend is weaker for
methods that incorporate longitudinal information (i. e., the
regression method and the Kalman filter versions; OR
between 1.5 and 1.578, all p <:001; d between 0.223 and
0.252). Fifth, all effects for the model-based approaches
disappear in the analyses based on J ¼ 2; 000 individuals.
This means that the effects we found for the model-based
individual score methods with regard to the coverage criter-
ion are due to bias in the model parameters in the AR(1)
model with a trend component (see Online Supplemental
Material D), which evokes the reported effects for the cover-
age. Interestingly, we do not find a meaningful main effect
for Model, neither for samples of J ¼ 200, nor for samples
of J ¼ 2; 000. This means that an omitted trend component,
as implemented in this simulation study, has an effect on
model parameters in such a way that it is canceled out when
they are combined for computing individual scores. In sum,
simulation Study 3 has shown that all the individual score

TABLE 5
ANOVA Results for the MAE Criterion for Study 3

term df SS F p η2

(Intercept) 1 40.75 1,843.33 <.001 .034
Method 4 222.32 2,514.03 <.001 .185
beta 1 0.00 0.10 .753 0
slope 1 0.03 1.54 .214 0
Model 1 0.47 21.08 <.001 0
Method:beta 4 14.09 159.34 <.001 .012
Method:slope 4 34.74 392.85 <.001 .029
beta:slope 1 0.01 0.30 .581 0
Method:Model 4 0.32 3.67 .005 0
beta:Model 1 0.03 1.35 .246 0
slope:Model 1 0.12 5.36 .021 0
Method:beta:slope 4 2.23 25.20 <.001 .002
Method:beta:Model 4 0.02 0.27 .897 0
Method:slope:Model 4 0.10 1.15 .331 0
beta:slope:Model 1 0.00 0.19 .659 0
Method:beta:slope:Model 4 0.01 0.07 .99 0
Residuals 39,960 883.44

Note. The design and control factors include Method (Regression,
Bartlett, MeanScore, KFiniR and KFiniB), Model (incorrect vs. correct),
beta (β ¼ 0:25 vs. β ¼ 0:75), and slope (small vs. moderate).

TABLE 6
ANOVA Results for the Correlation Criterion for Study 3

term df SS F p η2

(Intercept) 1 22,303.45 5,390,919.96 <.001 .951
Method 4 305.48 18,459.07 <.001 .013
beta 1 1.82 440.88 <.001 0
slope 1 0.09 22.16 <.001 0
Model 1 0.27 65.54 <.001 0
Method:beta 4 2.72 164.30 <.001 0
Method:slope 4 0.14 8.14 <.001 0
beta:slope 1 0.01 3.05 .081 0
Method:Model 4 0.20 12.22 <.001 0
beta:Model 1 0.06 14.20 <.001 0
slope:Model 1 0.05 12.45 <.001 0
Method:beta:slope 4 0.05 3.00 .017 0
Method:beta:Model 4 0.04 2.73 .027 0
Method:slope:Model 4 0.04 2.29 .058 0
beta:slope:Model 1 0.02 5.40 .02 0
Method:beta:slope:
Model

4 0.02 1.02 .393 0

Residuals 199,910 827.07

Note. The design and control factors include Method (Regression,
Bartlett, MeanScore, KFiniR and KFiniB), Model (incorrect vs. correct),
beta (β ¼ 0:25 vs. β ¼ 0:75), and slope (small vs. moderate).
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methods, except for the mean score, are similarly robust to
the omission of a trend component in the AR(1) panel model
as used here. If a trend might be present, methods that
incorporate model parameters (all methods except the
mean score) are clearly to be preferred, both in situations
when the individual score is used to make a decision based
on a predefined, diagnostically relevant threshold and
in situations when it is used for the relative positioning and
covariance based analyses using the individual scores. When
there are only relatively few data points (i. e., owing to
a small T or small J ), individual decisions based on con-
fidence intervals come along with a confidence that is smal-
ler than assumed, and, thus, the type I error probability is
increased.

DISCUSSION

The main question guiding our research is how robust differ-
ent, very common, and easily accessible individual score
methods are against slight model misspecifications in the
context of an AR(1) panel model. Because individual score
methods, as considered in this study, are computed after
model estimation, model misspecification affects individual
scores indirectly via the estimated model parameters. In
a series of simulation studies, we used the regression method,
the Bartlett method, the mean score, the Kalman filter initi-
alized by the regression method, and the Kalman filter initi-
alized by the Bartlett method to estimate individual scores
under various conditions of misspecification. These condi-
tions included unequal loadings constrained to be equal
(Study 1), response distributions departing from normality in
terms of skewness and kurtosis (Study 2), and an unmodeled
trend component (Study 3). We evaluated the relative perfor-
mance of the individual score methods using theMAE and the
Fisher-Z-transformed correlation between the true score and

the individual score estimate. We assessed their absolute
performance comparing nominal and actual coverage. The
MAE and the coverage are important in situations, in which
diagnostically relevant, predefined thresholds are used to
make individual decisions. In those situations, the individual
score itself is of interest, rather than the relative positioning of
an individual. In contrast, the correlation criterion becomes
particularly relevant when scores are used for subsequent
covariance-based analyses or relative comparisons.

Our results have shown that all methods are similarly
robust to model misspecification in terms of the two rela-
tive performance criteria, the MAE and the correlation
criterion. In addition, we found that the mean score yields
coverage rates well below the nominal confidence through-
out all three simulations. Further, several details and their
implications for practice are noteworthy: first, we observed
no meaningful difference in performance between methods
which incorporate model parameters (all methods except
the mean score) with regard to the MAE and the correlation
criterion. This is quite interesting given that the Bartlett
method does not incorporate any longitudinal structural
information, but nevertheless, it does not perform worse
than the regression method and the two Kalman filter ver-
sions, all of which include longitudinal information.
Second, assuming loadings to be equal when they are
truly unequal to the extent as realized in our study does
not have an impact on the individual score method perfor-
mance with regard to the two outcome criteria. Third, when
response distributions depart from normality either in terms
of kurtosis or in terms of skewness, caution is warranted if
individual scores are meant for relative comparisons or
subsequent covariance-based analyses. Fourth, the coverage
criterion yields an initialization impact for the Kalman filter
in case of skewed responses in simulation Study 2: when
initialized with the Bartlett method, the coverage increas-
ingly becomes lower than the nominal value of 0.95. The
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Bartlett method induces some — although not meaningful
— error to the Kalman filter which is then enhanced and
carried forward in time. This occurs because if model
parameters are biased, this bias enters the coverage in two
ways: via the individual scores themselves and via the
standard errors which are based on the estimation error.
Bias for the standard errors is given in the Online
Supplemental Material E. Fifth, except for the single, afore-
mentioned Kalman filter initialization effect, there was no
other initialization effect across simulation studies and per-
formance criteria. This result puts the finding by Oud et al.
(1999, pp. 127–130) who argued based on analytical deri-
vations that the Bartlett initialized Kalman filter is prefer-
able over the regression initialized Kalman filter in terms of
unbiasedness into perspective from a practical point of
view. Finally, in our study, individual score methods that
incorporate longitudinal information (i. e., the regression
method and the Kalman filters) paradoxically seem to ben-
efit from a misspecified AR(1) model without trend as
compared to a model including the trend component when
being fitted to samples comprising J ¼ 200 individuals.
This finding has two reasons: first, the autoregressive para-
meter in an AR(1) model without trend is biased in such
a way that it may result in an “unstable” model (β >1), and,
thus, inheres an increase over time. Second, autoregressive
models are known to yield biased autoregressive para-
meters, this effect is even more pronounced if a mean
structure additionally is estimated (e. g., Marriott & Pope,
1954). Even if the relative bias of parameter estimates is
below � 10% and, thus, deemed acceptable (e. g., Muthén
& Muthén, 2002), it leads to coverages meaningfully below
the nominal confidence on the individual level. Many data
points due to large sample sizes or a large number of
measurement occasions reduce this bias. This latter reason
also explains the finding that all model-based approaches
deviate from the nominal 0.95 coverage in J ¼ 200 but not
in J ¼ 2; 000 conditions.4

With this latter finding we encountered one important
pitfall in the context of autoregressive modeling: the bias of
parameters in case of limited numbers of data points, which
is even more pronounced in the presence of a trend com-
ponent. Thus, declines in individual score method perfor-
mance become a function of model complexity, bias in the
parameter estimates, number of data points, and method
specific properties. This interrelationship is a continuum,
and we considered only a few selected scenarios but of very

different kinds. Rather than pursuing a comprehensive
“testing the limits” simulation study that only focuses on
one type of misspecification, our aim was to get an intuition
of what the “average” researcher might encounter in typical
situations. Hence, future research should investigate indivi-
dual score method performance in the presence of more
complex autoregressive models (e. g., including seasonal
trends). As we hardly found any differences among the
model-based approaches, we further suggest to put the
focus more on the usefulness of individual scores than on
differential performance of these methods. Exemplary lines
of research in this direction have been mentioned in the
beginning; in contrast, nearly unexplored is, for instance,
the usefulness of individual scores in the context of latent
differential equations modeling (e. g., Boker, Neale, &
Rausch, 2004). In conclusion, for situations comparable to
the ones considered here, we recommend using any of the
model parameter based approaches (regression method,
Bartlett method or the Kalman filter versions) rather than
the mean score.
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APPENDIX
MODEL-IMPLIED MEANS IN STUDY 3

The model-implied means in an AR(1) model with an integrated trend
component and T ¼ 5 measurement occasions can be calculated
according to:

EðfÞ
9�1

¼ ð I
9�9

� B
9�9

Þ�1 � α
9�1
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