
I

University Degree in Computer Science and Engineering

2018-2019

Bachelor Thesis

 “Development of a web application

to facilitate access to clients for

catering”

Eduardo Boronat López

Tutor

Telmo Zarraonandia Ayo

Leganés, 2019

Esta obra se encuentra sujeta a la licencia Creative Commons
Reconocimiento – No Comercial – Sin Obra Derivada

II

III

ABSTRACT

A web application is going to be implemented and designed in this thesis. I called

the application UCOME and it is a platform specially thought for companies that have

catering services like restaurants or cafes; or even it can be adapted to any restaurant.

The main idea is that users can seat wherever they want because the administrator of the

application configured the scenario of his local before and then, users will be able to

order food without calling the waiter through their laptops or mobile phones.

UCOME is developed with Spring Boot and it consists of three main pages:

• Administrator Page: the administrator of the application will be able to configure

the scenario of the local, the login preferences (LDAP, Office 365…), the food

menu, events, social networks, statistics, etc.

• Customers Page: the customers will choose the seat where they want to eat, and

they will order the food.

• Employees Page: the employees of the local will receive the orders made by the

customers and they will carry the food to their seats.

All the data is stored in a MySQL database which provides the necessary capacity

for this application.

 Keywords: Client-server systems; Web design; Web 2.0; Food industry.

IV

V

DEDICATION

In these lines I would like to thank everyone who has helped me in this stage.

Thanks to my colleagues and friends who have made it easier and have supported

me in every moment. Thanks to my family for being always at my side and thanks to all

my professors who have taught me most of my knowledge, with special mention to my

tutor Telmo Zarraonandia.

 Thank you all.

VI

VII

CONTENIDO

1 INTRODUCTION ... 1

1.1 Context ... 1

1.2 Motivation of Work ... 2

1.3 Goals .. 2

1.4 Structure of work ... 3

1.5 Regulatory framework ... 4

1.6 List of abbreviations ... 4

2 RELATED WORK ... 7

2.1 The Evolution of the Web .. 7

2.2 Web development technologies .. 8

2.2.1 Java EE .. 8

2.2.1.1 Spring vs Struts ... 8

2.2.2 PHP.. 8

2.2.3 ASP.NET .. 9

2.2.4 Ruby on Rails .. 10

2.2.5 Go and Node.js ... 10

2.2.6 Decision .. 10

2.3 Software Architecture .. 11

2.3.1 Monolithic Architecture ... 11

2.3.2 Microservices Architecture... 11

2.3.3 Comparison ... 12

2.3.4 Decision .. 13

2.4 Spring Framework .. 13

2.4.1 Introduction .. 13

2.4.2 Versions .. 14

2.4.3 Characteristics .. 14

2.4.4 Spring Boot ... 15

2.4.5 Decision .. 16

2.5 Maven .. 16

2.6 Similar applications in the current market .. 17

3 SYSTEM ANALYSIS ... 18

VIII

3.1 System functionalities .. 18

3.1.1 Neither signed up nor logged in users features 18

3.1.2 Administrator features ... 18

3.1.3 Customers features .. 18

3.1.4 Employees features .. 19

3.2 Functional requirements ... 19

3.3 Non-functional requirements .. 29

4 SYSTEM DESIGN ... 34

4.1 Project structure .. 34

4.2 System Architecture ... 35

4.2.1 Spring Web MVC ... 35

4.2.1.1 MVC pattern .. 35

4.2.1.2 MVC implementation in Spring .. 36

4.3 User Interfaces Design ... 37

4.3.1 JSP and Thymeleaf .. 37

4.3.1.1 JSP ... 37

4.3.1.2 Thymeleaf.. 37

4.3.1.3 Comparison ... 38

4.3.1.4 View Resolver ... 38

4.3.2 Bootstrap .. 39

4.4 Physical Database Design ... 40

4.4.1 MySQL ... 40

4.4.1.1 Database structure ... 41

4.4.2 ORM in Spring ... 42

4.4.2.1 Spring Data .. 42

5 DEVELOPMENT .. 46

5.1 Development environment.. 46

5.2 Used technologies .. 46

5.2.1 JQuery ... 46

5.2.2 AJAX .. 46

5.2.3 Pusher ... 48

5.2.4 Swing ... 50

5.2.5 JFreeChart ... 51

5.2.6 JavaMail .. 52

5.3 Authentication ... 53

IX

5.3.1 LDAP .. 53

5.3.1.1 Apache Directory Studio ... 55

5.3.1.2 Login ... 56

5.3.1.3 JNDI .. 57

5.3.1.4 LDAP Synchronization ... 60

5.3.2 Azure Active Directory .. 61

5.3.2.1 Office 365 .. 62

5.3.2.2 Spring Security OAuth2 .. 62

5.3.3 Google ... 64

5.3.4 Aula Global.. 66

5.4 Payment ... 67

5.4.1 PayPal Sandbox ... 67

5.5 Order delivery .. 71

5.5.1 MySQL replication .. 72

5.6 HTTPS ... 73

6 SOCIO-ECONOMIC ENVIRONMENT ... 76

6.1 Socio-economic impact .. 76

6.2 Budget .. 77

7 CONCLUSIONS ... 79

7.1 Main conclusions ... 79

7.2 Level of goals achievement .. 79

7.3 Future work .. 80

BIBLIOGRAPHY .. 81

X

XI

LIST OF FIGURES

Fig. 2.1. Monolithic Architecture ... 11

Fig. 2.2. Microservices Architecture .. 12

Fig. 2.3. Spring Framework Modules ... 14

Fig. 2.4. Spring Boot Dependency ... 16

Fig. 2.5. Spring Boot Plugin ... 17

Fig. 4.1. Project Structure ... 34

Fig. 4.2. MVC pattern components diagram .. 35

Fig. 4.3. Spring Web MVC diagram .. 36

Fig. 4.4. JSP and Thymeleaf dependencies .. 38

Fig. 4.5. Spring views configuration - application.yaml. ... 39

Fig. 4.6. View resolution for JSP pages ... 39

Fig. 4.7. Static resources handler configuration ... 40

Fig. 4.8. Database diagram ... 41

Fig. 4.9. Database script ... 42

Fig. 4.10. Spring Data JPA and MySQL dependencies.. 43

Fig. 4.11. User Entity ... 43

Fig. 4.12. All project entities and DAOs .. 44

Fig. 4.13. User DAO - CRUD Repository .. 45

Fig. 4.14. Database connection configuration .. 45

Fig. 5.1. MVC based in AJAX ... 47

Fig. 5.2. AJAX request with JQuery .. 47

Fig. 5.3. Pusher working diagram .. 48

Fig. 5.4. Pusher - App registration ... 49

Fig. 5.5. Pusher dependency ... 49

Fig. 5.6. Pusher server code .. 49

Fig. 5.7. Pusher client code... 50

Fig. 5.8. Java Swing - Configure scenario .. 51

Fig. 5.9. JFreeChart dependency .. 52

Fig. 5.10. JavaMail dependency ... 52

Fig. 5.11. LDAP Directory structure .. 54

Fig. 5.12. Apache Directory Studio .. 55

Fig. 5.13. ldaps.yaml configuration file ... 56

Fig. 5.14. LDAP login drop-down button .. 57

Fig. 5.15. JNDI Architecture .. 58

Fig. 5.16. JNDI - LDAP Connection .. 58

Fig. 5.17. JNDI - search for attributes .. 60

Fig. 5.18. LDAP Synchronization - application.yaml .. 61

Fig. 5.19. OAuth 2.0 authorization flow .. 62

Fig. 5.20. Azure Active Directory Credentials - application.yaml 63

Fig. 5.21. Application registration - AAD .. 63

XII

Fig. 5.22. Redirection URI - AAD ... 63

Fig. 5.23. Google API Console – OAuth 2.0 Credentials .. 64

Fig. 5.24. OAuth 2.0 Credentials - application.yaml .. 64

Fig. 5.25. OAuth 2.0 - Google redirection.. 65

Fig. 5.26. Moodle web services infrastructure functioning .. 66

Fig. 5.27. PayPal Developer - App Registration .. 67

Fig. 5.28. PayPal Credentials in application.yaml .. 68

Fig. 5.29. PayPal Dependency .. 68

Fig. 5.30. PayPal payment confirmation .. 69

Fig. 5.31. Buyer Sandbox PayPal account ... 69

Fig. 5.32. UCOME PayPal payment process.. 70

Fig. 5.33. Order delivery process ... 71

Fig. 5.34. MySQL replication configuration .. 72

Fig. 5.35. Replication log connector dependency .. 72

Fig. 5.36. HTTPS connection diagram ... 73

Fig. 5.37. Keytool - Keystore generation ... 74

Fig. 5.38. SSL configuration - application.yaml .. 75

Fig. 5.39. HTTP to HTTPS redirection bean .. 75

XIII

XIV

LIST OF TABLES

TABLE 2.1. COMPARATIVE ANALYSIS BETWEEN SPRING AND STRUTS 8

TABLE 2.2. COMPARATIVE ANALYSIS BETWEEN PHP AND JAVA 9

TABLE 2.3. MONOLITHIC VS MICROSERVICES ARCHITECTURE 12

TABLE 3.1. FR 01 - CONFIGURE RESTAURANT SCENARIO 19

TABLE 3.2. FR 02 - EMPLOYEES REGISTRATION .. 20

TABLE 3.3. FR 03 - EMPLOYEES DELETION .. 20

TABLE 3.4. FR 04 - EVENTS REGISTRATION ... 20

TABLE 3.5. FR 05 - EVENTS DELETION .. 21

TABLE 3.6. FR 06 - FOOD DISHES REGISTRATION .. 21

TABLE 3.7. FR 07 - FOOD DISHES DELETION ... 21

TABLE 3.8. FR 08 - SOCIAL NETWORKS REGISTRATION 22

TABLE 3.9. FR 09 - LDAP SYNCHRONIZATION .. 22

TABLE 3.10. FR 10 - STATISTICS CONTROL .. 22

TABLE 3.11. FR 11 - FILTERING STATISTICS .. 23

TABLE 3.12. FR 12 - USER REGISTRATION .. 23

TABLE 3.13. FR 13 - SIGN IN WITH OFFICE 365 .. 23

TABLE 3.14. FR 14 - SIGN IN WITH GOOGLE ... 24

TABLE 3.15. FR 15 - SIGN IN WITH AULA GLOBAL ... 24

TABLE 3.16. FR 16 - SIGN IN WITH LDAP ... 24

TABLE 3.17. FR 17 - SIGN IN WITH UCOME ... 25

TABLE 3.18. FR 18 - MODIFY PROFILE ... 25

TABLE 3.19. FR 19 - DELETE ACCOUNT ... 25

TABLE 3.20. FR 20 - SEE TOP DISHES ... 26

TABLE 3.21. FR 21 - SEE UPCOMING EVENTS .. 26

TABLE 3.22. FR 22 - ACCESS SOCIAL NETWORKS .. 26

TABLE 3.23. FR 23 - SEAT RESERVATION ... 27

TABLE 3.24. FR 24 - TABLE RESERVATION .. 27

TABLE 3.25. FR 25 - ADD DISHES TO CART .. 27

TABLE 3.26. FR 26 - REMOVE DISHES FROM THE CART 28

TABLE 3.27. FR 27 - BUY THE DISHES OF THE CART ... 28

TABLE 3.28. FR 28 - FREE SEAT ... 28

TABLE 3.29. FR 29 - SEE PURCHASES ... 29

TABLE 3.30. NFR 01 - INTERNET CONNECTION ... 29

TABLE 3.31. NFR 02 - BROWSER .. 29

TABLE 3.32. NFR 03 - BROWSERS COMPATIBILITY ... 29

TABLE 3.33. NFR 04 - SERVER .. 30

TABLE 3.34. NFR 05 - FRAMEWORK ... 30

TABLE 3.35. NFR 06 - PROOGRAMMING LANGUAGE ... 30

TABLE 3.36. NFR 07 - IDE... 30

TABLE 3.37. NFR 08 - DATABASE .. 31

XV

TABLE 3.38. NFR 09 - MANUALS ... 31

TABLE 3.39. NFR 10 - EFFICIENCY .. 31

TABLE 3.40. NFR 11 - APPEARANCE ... 31

TABLE 3.41. NFR 12 - USABILITY .. 32

TABLE 3.42. NFR 13 - PORTABILITY ... 32

TABLE 3.43. NFR 14 - SECURITY .. 32

TABLE 3.44. NFR 15 - RELIABILITY AND AVAILABILITY 32

TABLE 3.45. NFR 16 - INTEGRITY .. 33

TABLE 3.46. NFR 17 - PRIVACY .. 33

TABLE 4.1. JSP AND THYMELEAF ADVANTAGES .. 38

TABLE 5.1. JAVAMAIL CONNECTION PROPERTIES ... 53

TABLE 5.2. JNDI - CONNECTION PARAMETERS DESCRIPTION 59

TABLE 6.1. COST OF REASEARCH TIME AND DOCUMENT GENERATION ... 77

TABLE 6.2. HARDWARE COST ... 77

TABLE 6.3. SOFTWARE COST .. 78

TABLE 6.4. PROGRAMMING COST .. 78

XVI

1

1 INTRODUCTION

1.1 Context

Nowadays web applications have become the most demanded alternative for

software development by all types of companies. They are the technological basis of

modern companies, both for small and for the largest multinationals, because they can

solve business problems providing efficiency and productivity; or they create platforms

in which the users and customers interact with the company in an agile and simple way.

These applications have helped companies to automate and simplify processes; and to

have a better contact with clients and suppliers of the company. In the same way they

have improved these activities, they can also be used to improve the catering service,

which is what this project is going to be focused on.

We must differentiate between web applications and websites. Websites are static

and its objective is to provide information to the user, so there is no interaction between

the user and the site. Web applications are dynamic and there is an interaction between

the user and the application, so it is constantly changing. Therefore, websites are usually

cheaper because less time is invested as they don’t use programming languages or

databases; although it is true that nowadays most of websites are not totally static. For

example, most of them have a form where the user sends a message to the

administrators.

Web applications are used by accessing to a web server by means of the internet or

an intranet through a browser. Therefore, it is not needed to install any application into

the computer or smartphone because users connect to the server where the system is

located.

Native apps are also in constant progress. They are installed into smartphones or

tablets, so they are developed to be used in a particular platform or device. Both native

apps and web apps have a lot of advantages, but it was chosen to make a web

application because for a native app two implementations must be done, one for

Android and another one for iOS. Then, development cost is bigger, while a single web

application can be accessed from all devices if it is responsive. In addition, from the

users’ point of view, web applications do not occupy memory on the phone and they are

not needed to update. However, native apps can offer push notifications, that would be

very useful for UCOME to keep users informed about upcoming events or new dishes,

so it would be a good decision to consider as future work.

2

1.2 Motivation of Work

Every sector in the society faces daily the progress of the technological world, but in

the catering sector there exist a lot of businesses with the traditional procedure of

ordering at the bar or requesting to the waiter. We have the opportunity to adapt to new

technologies and achieve greater results. Therefore, a system can be implemented to

improve some problems that are faced by companies’ cafeterias or cafes. For example,

when the number of customers increases, the service gets worse and it is always

difficult to locate who ordered the food. This system will allow users to make orders

with their phones or laptops and the waiter will process them in a computer respecting

the time of arrival. This will cause an improvement in the quality of the service, being

more organized, effective and comfortable.

The possibility of choosing your seat from your place of work and to have your

order in your seat when arriving; or having the statistics of your dishes, offers major

advantages for both the clients and the company. Clients will have a greater level of

satisfaction, while companies will have logistic improvements among others.

The knowledge acquired during the degree will be applied, especially programming,

web design and project management aspects. All with a global business vision.

1.3 Goals

The purpose of this project is to create a complete system for the food orders

management, as an alternative to the classical service that is currently being used

through a waiter.

The main goal can be defined as the implementation of a project that improves the

catering services in a restaurant/cafeteria providing a simple and intuitive interface for

the user, so that all the process of ordering and delivering food is completed in the

simplest way without requiring a technical profile to the user. In addition, the project

will help to complement the knowledge and skills acquired in the degree on

development of web applications, more specifically in the Spring Framework and its

modules.

The objectives of the theoretical part are:

• Installation and configuration of Spring with Maven: how to use Spring,

configuring it with Spring Boot and adding dependencies with Maven.

• Study MVC Framework of Spring: learn the architecture Model-View-

Controller.

• Study Spring Security: learn how to provide both authentication and

authorization to users in the application.

• Study of all the tools and APIs that are going to be used: Google API, Microsoft

Graph, Azure Active Directory, PayPal API, LDAP, Moodle API, Pusher, etc.

3

• Study of the technologies never used until this project: Swing, AJAX,

Thymeleaf.

• Study of the deployment of Spring Boot applications and deployment options on

different platforms in a production environment.

The objective of the practical part is to apply all the concepts learned to be able to

do in a satisfactory way the web application.

1.4 Structure of work

In the present work, each of the parts carried out will be explained, as well as the

results obtained. The structure has been organized as detailed below, with the objective

that the reader obtains an incremental knowledge of the design as the reader progresses

through the project.

After this brief introduction, the contents of each chapter will be detailed below.

• Chapter 1 Introduction: it contains a brief introduction about web applications,

the motivation of the project, goals to be developed, how the work is structured,

a list of abbreviations and the regulatory framework through which the work is

governed. In the latter, the professional responsibilities and data protection laws

will be explained.

• Chapter 2 Related work: a complete study of the web evolution and the main

web development technologies is carried out to reach a final decision of which

technology is best suited to the project. After that, a software architecture

decision will be taken, and the chosen technologies to be used will be explained

in detail. Finally, the application will be compared with another one existing in

the current market.

• Chapter 3 System analysis: system functionalities according to the role; and

functional and non-functional requirements will be described.

• Chapter 4 System design: the structure of the project, the system architecture,

the technologies used for the user interfaces design and the physical data design

will be explained for a whole understanding of the system.

• Chapter 5 Development: it is the most extensive part. All the technologies,

programs, configurations made, APIs and libraries used are explained in detail.

• Chapter 6 Socio-economic environment: the social, economic and

environmental impact due to web applications is evaluated; and a detailed

budget with the time invested and resources used in the project is calculated.

• Chapter 7 Conclusions: it is concluded by providing a vision of the work done

and detailing the goals achieved, as well as the improvements and future lines of

work.

Finally, the bibliography used and the administrator’, users’ and employees’

manuals as annexes will be defined in the final pages of the document. These annexes

will help as a summary of all the functionalities that the application does and how the

application looks like with screenshots of each section.

4

1.5 Regulatory framework

All works done on any topic present a political-legal environment that must be

known. In this section the criteria that affects the development of the work will be

described, as well as the standards applicable to it.

One of the topics to be discussed in this section is the professional responsibility

known as Public Liability, which according to Article 1902 of the Civil Code for

engineers, if any work, application or device which may harm society or may cause any

damage is done, then the responsible party is obligated to repair the damage caused.

General Data Protection Regulation (GDPR) is the European regulation according to

the natural people protection in the treatment of their personal data. It was applied on

May 25th, 2018; but it entered into force May 25th, 2016. Any company belonging to the

European Union must enforce this law. In Spain, it rendered the LOPD of 1999

obsolete, being replaced by the Organic Law 3/2018.

In the Organic Law 3/2018, 5th of December, is detailed how to protect the sensible

data of the natural people. Those articles, as far as possible, will be respected in the

application.

1.6 List of abbreviations

AAD

AD

AJAX

ApacheDS

API

ASCII

AWS

CA

CMS

CN

CRUD

CSS

DAO

Azure Active Directory

Active Directory

Asynchronous JavaScript and XML

Apache Directory Server

Application Programming Interface

American Standard Code for Information Interchange

Amazon Web Services

Certification Authority

Content Management System

Common Name

Create, Read, Update, Delete

Cascading Style Sheets

Data Access Object

5

DC

DN

GDPR

GUI

HTML

HTTP

HTTPS

IDE

IIS

IMAP

iOS

IoT

JAR

Java EE

JCP

JNDI

JPA

JRE

JS

JSON

JSP

JSTL

LDAP

LDIF

LMS

LOPD

MOODLE

MVC

Domain Component

Distinguished Name

General Data Protection Regulation

Graphical User Interface

HyperText Markup Language

HyperText Transfer Protocol

HyperText Transfer Protocol Secure

Integrated Development Environment

Internet Information Services

Internet Message Access Protocol

iPhone Operating System

Internet of Things

Java Archive

Java Enterprise Edition

Java Community Process

Java Naming and Directory Interface

Java Persistence API

Java Runtime Environment

JavaScript

JavaScript Object Notation

JavaServer Pages

JSP Standard Tag Library

Lightweight Directory Access Protocol

LDAP Data Interchange Format

Learning Management System

Ley Orgánica de Protección de Datos de Carácter Personal

Modular Object-Oriented Dynamic Learning Environment

Model-View-Controller

6

OAuth

OGNL

ORM

OU

PHP

PKCS

POM

POP

REST

RoR

RSA

SMTP

SPI

SQL

SSL

SSO

TLS

UC3M

UI

UID

UPN

URI

URL

VAT

WAR

WWW

XHTML

XML

Open Authorization

Object-Graph Navigation Language

Object-Relational Mapping

Organizational Unit

Hypertext Preprocessor

Public-Key Cryptography Standards

Project Object Model

Post Office Protocol

Representational State Transfer

Ruby on Rails

Rivest, Shamir, Adleman

Simple Mail Transfer Protocol

Serial Peripheral Interface

Structured Query Language

Secure Sockets Layer

Single Sign-On

Transport Layer Security

Universidad Carlos III de Madrid

User Interface

User Identifier

User Principal Name

Uniform Resource Identifier

Uniform Resource Locator

Value Added Tax

Web Application Archive

World Wide Web

Extensible HyperText Markup Language

Extensible Markup Language

7

2 RELATED WORK

The technologies used in web development have evolved a lot in the last decade.

There are many applications, frameworks, libraries, architectures that are constantly

improving with the release of new versions. This progress has also been produced in the

administration of systems, hosting services, scalability techniques and monitoring.

This evolution has allowed developing websites and applications with very different

technologies and tools.

In this section how web is evolving, and the most known technologies used for web

development will be explained and compared to justify the decision of the chosen ones

to be used in the project; and the software architecture based in microservices will be

compared with the monolithic architecture. After that, the key points of Spring

Framework and Maven will be explained and finally, the application will be compared

with another one in the current market.

2.1 The Evolution of the Web

WWW (World Wide Web) or Web is an information system composed by

interconnected hypertext documents that are accessible through the internet.

The web has been constantly evolving from its creation in the year 1991 until

nowadays. In this period four stages of web can be well differentiated:

• Web 1.0: static unidirectional pages with an informative character where the

user could not interact with.

• Web 2.0: social webs were developed where users could exchange information

through blogs, forums and social networks. Internet became a global

phenomenon.

• Web 3.0 or data web: it is an intelligent web that uses cloud services and web

applications to provide services to the users. They can be accessed from almost

any device with internet connection. In addition, semantic data is used to create

an understandable language which allows more intelligent searches.

• Web 4.0: it is in progress. It is an open, connected, predictive and intelligent

web thanks to deep learning and machine learning techniques. The systems will

be able to process information in a similar way than a human and all the devices

will be connected (IoT). This will lead us to situations in which for example the

people can reserve a hotel room through a virtual assistant, who will know all

our preferences and likes.

It is incredible how technology has advanced in the last twenty years and we cannot

imagine what will come in the future.

8

2.2 Web development technologies

In the server-side, many technologies for developing web applications can be used.

Foremost among them are Java EE, PHP, ASP.NET, Ruby on Rails or new technologies

like Go or Node.js. All of them will be compared, drawing conclusions to finally make

a final decision.

2.2.1 Java EE

Java EE is a programming platform on the basis of Java. It is standardized by JCP

(Java Community Process), so providers must meet certain requirements. There are

some independent implementations such as Spring or Struts, which do not follow Java

EE specifications, but they include most of the solutions offered by Java EE and they

allow a coupling with many other frameworks.

Every Java EE web application must be executed in an application server such as

Glassfish, Tomcat, JBoss, Jetty, etc., while Spring is who joins the core APIs (Servlet,

JPA, JMS…) together.

2.2.1.1 Spring vs Struts

The main differences between Spring and Struts can be seen in the following table: [1]

TABLE 2.1. COMPARATIVE ANALYSIS BETWEEN SPRING AND STRUTS

Characteristics Spring Struts

Architecture Layered Not layered

Framework Lightweight Heavyweight

Integrating Easy integration with ORM and JDBC Manual coding needed

Flexibility Spring MVC is more flexible Less flexible

Coupling Loosely coupled Tightly coupled

For developing an enterprise application, I would choose Spring because it is a

loosely coupled framework, so it will make the application more reusable, distributed

and robust.

2.2.2 PHP

PHP is a programming language suitable for web development and it is embedded

into HTML. It is used to generate dynamic webpages and it is usually integrated with

Apache and MySQL. There are a lot of frameworks for the web applications

development such us Laravel, Symfony, Zend, Codelgniter and CakePHP.

9

A comparative table between Java and PHP is created to see which technology more

advantages could have for the type of application thought.

TABLE 2.2. COMPARATIVE ANALYSIS BETWEEN PHP AND JAVA

Characteristics PHP Java

Costs Cheaper More expensive

Performance Good Good

Code Interpreted Compiled

Security Less secure More secure

Concurrency Multiprocessing Multithreading

Development time Less More

Portability Portable Portable

Support Good Good

Both technologies have competitive advantages and are very used, so they have a

big community behind. It is difficult to decide in favor of one of them, but considering

our project I would choose Java because I give more importance to the security and

robustness than cost. In addition, the web application will use threads to control the time

that the user is eating and to be listening to the database log file, as will explained

throughout the document. Therefore, Java is a better approach because it will be faster

as the memory of subprocesses is faster shared than the communication between

processes.

2.2.3 ASP.NET

ASP.NET is a web application framework developed by Microsoft. ASP.NET is

stuck on the Microsoft platform due to compatibility problems. It can only be developed

in a computer with Microsoft Windows and at the time of deployment it only works in

the Microsoft IIS server, which is a huge disadvantage for this project because it must

focus on an easy deployment in the companies’ servers and there are more popular ones

than the IIS server like Apache. [2]

10

2.2.4 Ruby on Rails

RoR is a web application framework written in the high-level programming

language Ruby. Its syntax is very simple and intuitive being a good option for

beginners. [3]

RoR has some advantages over frameworks based on Java for the development of

web applications. RoR uses less lines of code, so it allows improving bug fixing; but

Java provides a better performance, it has a high popularity and the ability to migrate to

any other app, database or platform that could be of interest in the project for the future.

2.2.5 Go and Node.js

In 2009 appeared two technologies: Go and Node.js. Go is a programming language

developed by Google and Node.js is a JavaScript run-time environment. Both are the

growing technologies that are gaining a lot of popularity nowadays among the

developers and they could substitute the traditional server-side languages like Java and

PHP in the future because both show a very good performance. For a web application

Node.js could be a better choice than Go because Go is focusing more on concurrency

and speed, so it is more used as a scripting language.

The drawback of these two technologies is that they have lack of maturity in the

market and we have to make sure that the selected packages have a recent activity. In

addition, there won’t be as much documentation and common errors that are solved in

internet as Java.

2.2.6 Decision

We have seen that there are a lot of technologies for the development of web

applications; and only the most popular ones have been explained. This does not mean

that there are no more technologies that could fit into the project.

I cannot say that a technology is better than another, but I have considered the size

of the project, its structure, its costs and the type of deployment desired; and from my

point of view Java is the programming language that matches my business goals and

requirements best. Therefore, I will use Spring as the framework for developing the web

application.

11

2.3 Software Architecture

2.3.1 Monolithic Architecture

Monolithic applications are those in which the software is structured in very

coupled functional groups, involving aspects related to the presentation, processing and

storage of information. They are implemented within a single software component.

The first software applications used this architecture and even though new

alternatives have been developed, monolithic applications continue being the most used

because they are easy to develop, easy to deploy, efficient and fast in their execution

and management, but as a consequence, they are less flexible to new work environments

or types of applications.

 Fig. 2.1. Monolithic Architecture

2.3.2 Microservices Architecture

 The purpose of this architecture is the development of the applications as sets of

small services that are executed independently and are communicated through light

mechanisms like HTTP or REST APIs.

 These services are developed around business capabilities and can be

implemented independently and completely automated. Services can be written in

different programming languages and can use different data storage technologies.

 Microservices adapt perfectly to the requirements of agility, scalability and

reliability.

12

 Fig. 2.2. Microservices Architecture

2.3.3 Comparison

Unlike the traditional monolithic applications, in which everything is integrated

into a single piece, the microservices are independent and work together to carry out the

same tasks.

In the table below, it is possible to observe the main differences between both

architectures to understand how a monolithic application and one based on

microservices affect the different aspects of software development. Finally, in the next

section it will be explained which one is selected for this project considering the

advantages and disadvantages.

TABLE 2.3. MONOLITHIC VS MICROSERVICES ARCHITECTURE

Characteristics Monolithic Microservices

Deployment One single deployment One deployment per microservice

Language One programming language Different programming languages

Understandable Easy to understand Difficult to understand as a whole,

but easy to understand a service

Testing Easy to test as a single unit Distributed deployment could block

tests

Maintenance Easy to manage changes (up to a

size)

Changes can be done quickly

Design Centralized Decentralized

13

Scalability Reduce performance Easy to scale

Data storage One single database model No one single database model

Development Could become heavy Continuous improvement

Team Big Small

Size One big-size file Some small-size files

Transactions Simple No transactions

2.3.4 Decision

After having seen the advantages and disadvantages of both architectures, the

monolithic one was chosen. The reasons are:

• This web application will be sold to companies and restaurants, and it is

good to have a single deployable file. It will be much easier, handy and

fast to deploy it.

• This application is not a huge one and therefore, not too complex, so there

is no need to divide it into microservices.

• One single database model is enough to handle all the data.

• It will not grow a lot. Maybe are added just some requests of the clients.

“Don’t even consider microservices unless you have a system that’s too complex

to manage as a monolith. The majority of software systems should be built as a single

monolithic application. Do pay attention to good modularity within that monolith, but

don’t try to separate it into separate services”. [4]

“If you can’t build a well-structured monolith, what makes you think microservices

is the answer?”. [5]

2.4 Spring Framework

2.4.1 Introduction

Spring is an open source framework used for the development of Java

applications. Spring is divided into different modules and each one helps in different

needs. Therefore, its modular aspect makes it flexible and configurable for any kind of

application. [6]

14

2.4.2 Versions

The first version was written by Rod Johnson and was published in the book

“Expert One-to-One J2EE Design and Development” in October 2002.

• The first version of Spring (1.0) was released in March 2004.

• Spring 2.0 was released in October 2006.

• Spring 3.0 was released in December 2009.

• Spring 4.0 was released in December 2013.

Each one has their respective subversions. Nowadays, the last stable version is

Spring 5.0.0 and was released in September 2017, which include improvements like a

JDK update, a Core update, functional programming with Kotlin, a reactive

programming model and testing improvements because it supports JUnit 5.

2.4.3 Characteristics

The Spring modules can be summarized in the image below and each of them will

be explained.

 Fig. 2.3. Spring Framework Modules

15

In the Core Container is the Bean Factory, which is the main container of Spring.

It is in charge of Dependency Injection. The Application Context is also located there. It

is based on Bean Factory and extends its functionality with support for i18n, life cycle

events and better integration with AOP. Finally, Expression Language module provides

an expression language for querying.

AOP (Aspect Oriented Programming) allows to develop method-interceptors and

pointcuts to cleanly decouple code of the transversal functionalities.

The Data Access/Integration layer consists of a JDBC-abstraction layer, the ORM

module that provides integration layers for popular object-relational mapping APIs, the

OXM module that supports Object/XML mapping implementations for JAXB, Castor,

XMLBeans; JiBX and XStream; the JMS (Java Messaging Service) module that allows

the exchange of messages and the Transactions module for the transaction management

for classes that implement special interfaces.

Web layer provides special classes oriented to web development and integration

with technologies like Struts and JSF. It contains the Spring MVC implementation used

in this project.

Finally, the Test module allows testing the Spring components with JUnit or

TestNG. [7]

2.4.4 Spring Boot

Spring Boot is a technology used inside the Spring Framework specially designed

for the agile development of applications. As seen before, Spring has a lot of modules

which involve many configurations. Spring Boot facilitates all these configurations,

especially in an initial stage.

The main characteristics of Spring Boot are:

• It aims at facilitating creating Spring applications with minimum

configuration.

• Microservices oriented.

• Works with Maven, Ivi and Gradle.

• It has an embedded Tomcat or Jetty, so the deployment is quite fast using

an über-jar, which is a package of the application and its dependencies in a

single and executable JAR.

• Eliminates possible conflicts related with the dependency’s versions

thanks to the autoconfiguration.

In conclusion Spring Boot is an extension of Spring itself to make the

development, testing, and deployment more convenient. [6]

16

2.4.5 Decision

Spring Boot has been used in this project for some reasons. First, it brings a lot of

tools that eliminate some complexities and considerably facilitates the configuration of

the project. Then, the embedded server is included, so it avoids complexity in

application deployment. Mixing this with the decision of making a monolithic

application, a really fast deployment is achieved, being good for clients; and it is also

very fast to test when developing the application. Finally, using Maven it is quite simple

to add the dependencies in a POM.xml.

2.5 Maven

Maven was created in 2001 and it is an open source tool whose objective is to

simplify build processes. Before Maven was invented, the developer had to spend a lot

of time trying to understand how to compile and how to generate executables from

source code. Each project used to have a developer just to configure the build process.

Maven builds the projects in some stages:

• Validate that the project is correct.

• Compile

• Test the source code using a unitary testing framework.

• Package the compiled code and transform it in .jar or .war format. UCOME is

packaged in a .war.

• Integration test: process and deploy the code in an environment where

integration tests can be executed.

• Verify that the packaged code is valid and fulfil quality requirements.

• Install the packaged code in the local repository of Maven, to use it in other

projects as dependencies.

• Deploy the code in an environment.

Maven makes the dependencies management between modules and libraries

versions very easy. Project modules must be set in a configuration file of the project

called pom.xml. [8]

For starting using Spring Boot with Maven the most important dependency, which is

written in the pom.xml is the following one:

Fig. 2.4. Spring Boot Dependency

17

With this dependency an embedded Tomcat will be used to deploy our

application and it also provides spring web dependencies like spring MVC.

The Spring Boot Maven plugin will also be defined in the POM and when

packaging the application, an über-jar will be created. It also searches the main class to

run it.

 Fig. 2.5. Spring Boot Plugin

As seen, configuring Spring Boot with Maven is very easy. When the packaging

format is specified (war or jar), and some dependencies are set, the application can be

deployed in the embedded Tomcat and can be accessed for example

from http://localhost:8080. These are the basic dependency and plugin to

deploy a very simple application, but of course, in this project have been used much

more dependencies than here explained, which will be analysed later.

2.6 Similar applications in the current market

The most similar application found in the market is called “mr.noow” [9]. It is an

iOS or Android app that shows you the nearest restaurants (around 40 in Madrid) and it

is possible to buy the food from another place. When arriving to the restaurant, the food

will be there waiting for you.

The web application developed in this project differs from it because it is more

focused on companies’ cafeterias and restaurants. Each one deploys the application in a

server and it is more customizable. Single Sign-On are configurable depending on the

login mechanisms used in the company (LDAP, Office365, Google, Aula Global in case

of the UC3M). Then, UCOME is accessible from mobile phones and laptops through a

browser without the need of downloading an app, while mr.noow is only accessible

through the app. Even though, an app could be fine to develop for UCOME as future

work.

UCOME allows users to see upcoming events and a photo of each dish, and to

configure the restaurant scenario to allow users to choose the seat he/she wants. These

functionalities are not possible with mr.noow.

18

3 SYSTEM ANALYSIS

3.1 System functionalities

The application will have different functionalities, which are divided according to

the type of user accessing the application, so there are three different pages:

administrator’s page, customers’ page and employees’ page.

In this section the functionalities will be defined in a summarized form for the

reader to have a global vision of all the functionalities of the system, before getting into

functional and non-functional tables.

3.1.1 Neither signed up nor logged in users features

 Users who are in the index page will be able to sign up if they haven’t any account

yet; or to log in through Office365, Google, Aula Global, LDAP or UCOME.

3.1.2 Administrator features

The administrator can:

• Configure the restaurant: introduce how many square meters the restaurant

has, then a matrix will be created. Each clicked cell represents a seat.

• Register and delete employees. They will be able to access the application in

the employees’ page.

• Register and delete events. They will be seen by the customers.

• Register and delete food dishes.

• Register social networks to be seen by customers.

• LDAP synchronization: auto registration and synchronization of users into

UCOME from LDAP.

• See the statistics of the dishes.

3.1.3 Customers features

These users can:

• Modify and delete profile.

• See top dishes.

• Buy food dishes.

• See upcoming events.

• Access social networks.

• Reserve a seat or a table.

19

• Free seat.

• See shopping cart, delete dishes from the shopping cart and pay food dishes.

• See purchases.

3.1.4 Employees features

Employees will be able to:

• Receive orders in real time seeing in a visual way what ordered, who and

where is seated.

• Modify profile.

• Access social networks.

3.2 Functional requirements

 Functional requirements represent how the system should react when an event is

triggered. They specify a behaviour that give the programmer the list of functionalities

to be implemented and how they must work under certain conditions.

TABLE 3.1. FR 01 - CONFIGURE RESTAURANT SCENARIO

ID FR-01

Name Configure restaurant scenario

Trigger The administrator enters the square meters and clicks on

create/restart/accept buttons.

Prerequisites The administrator must be authenticated.

The administrator must be in the server-side.

Description 1. If “create”, the system should paint a matrix with the

dimensions set and the user should be able to click on the

squares.

2. If “restart” the system should delete the matrix, being possible

to be recreated.

3. If “accept”, the system should save the matrix created.

20

TABLE 3.2. FR 02 - EMPLOYEES REGISTRATION

ID FR-02

Name Employees registration

Trigger The administrator registers an employee through a form.

Prerequisites The administrator must be authenticated.

The employee’s email must not be already registered.

Description

1. The system should check for valid fields.

2. The system should save the employee into the database.

3. The system should send an email to the employee with the

new password.

TABLE 3.3. FR 03 - EMPLOYEES DELETION

ID FR-03

Name Employees deletion

Trigger The administrator deletes an employee.

Prerequisites

The administrator must be authenticated.

Some registered employee.

Description 1. The system should delete the employee from the database.

TABLE 3.4. FR 04 - EVENTS REGISTRATION

ID FR-04

Name Events registration

Trigger The administrator registers an event through a form.

Prerequisites The administrator must be authenticated.

Description 1. The system should check for valid fields.

2. The system should save the event into the database.

21

TABLE 3.5. FR 05 - EVENTS DELETION

ID FR-05

Name Events deletion

Trigger The administrator deletes an event.

Prerequisites The administrator must be authenticated.

Some registered event.

Description 1. The system should delete the event from the database.

TABLE 3.6. FR 06 - FOOD DISHES REGISTRATION

ID FR-06

Name Food dishes registration

Trigger The administrator registers a dish through a form.

Prerequisites The administrator must be authenticated.

Description 1. The system should check for valid fields.

2. The system should save the dish into the database.

TABLE 3.7. FR 07 - FOOD DISHES DELETION

ID FR-07

Name Food dishes deletion

Trigger The administrator deletes a dish.

Prerequisites The administrator must be authenticated.

Some registered dish.

Description 1. The system should delete the dish from the database.

22

TABLE 3.8. FR 08 - SOCIAL NETWORKS REGISTRATION

ID FR-08

Name Social networks registration

Trigger The administrator registers a social network.

Prerequisites The administrator must be authenticated.

Description 1. The system should save the social network into the database.

2. The system should enable the social network’s icon of the

footers.

TABLE 3.9. FR 09 - LDAP SYNCHRONIZATION

ID FR-09

Name LDAP synchronization

Trigger The administrator registers/synchronizes the users from an LDAP

Directory into UCOME.

Prerequisites The application.yaml file must be configured.

The administrator must be authenticated.

Description 1. The system should save into the database the non-existing

users and an email should be sent to them with the new

generated password.

2. The system should update a user in the database if the LDAP

attributes have been modified.

3. The system should not do anything if the user already exists in

UCOME and its LDAP attributes have not been modified.

TABLE 3.10. FR 10 - STATISTICS CONTROL

ID FR-10

Name Statistics control

Trigger The administrator clicks on the statistics button.

Prerequisites The administrator must be authenticated.

The administrator must be in the server-side.

Description 1. The system should show the quantity sold of every registered

dish and the total revenues.

23

TABLE 3.11. FR 11 - FILTERING STATISTICS

ID FR-11

Name Filtering statistics

Trigger The administrator filters by date the statistics.

Prerequisites The administrator must be authenticated.

The administrator must be in the server-side.

Description 1. The system should show the quantity sold of the dishes and

the revenues in the date range specified.

TABLE 3.12. FR 12 - USER REGISTRATION

ID FR-12

Name User registration

Trigger The user registers an account in UCOME through a form.

Prerequisites The user’s email must not be already registered.

Description 1. The system should check the fields.

2. The system should save the user into the database.

TABLE 3.13. FR 13 - SIGN IN WITH OFFICE 365

ID FR-13

Name Sign in with Office 365

Trigger The user logs in through Office 365.

Prerequisites The application.yaml file must be configured.

The user must be registered.

The scenario must be configured.

Description 1. The system should redirect to Microsoft login page.

2. The system should redirect to the UCOME user’s account

after a successful authentication.

24

TABLE 3.14. FR 14 - SIGN IN WITH GOOGLE

ID FR-14

Name Sign in with Google

Trigger The user logs in through Google.

Prerequisites The application.yaml file must be configured.

The user must be registered.

The scenario must be configured.

Description 1. The system should redirect to Google login page.

2. The system should redirect to the UCOME user’s account

after a successful authentication.

TABLE 3.15. FR 15 - SIGN IN WITH AULA GLOBAL

ID FR-15

Name Sign in with Aula Global

Trigger The user logs in through Aula Global.

Prerequisites The user must be registered.

The scenario must be configured.

Description 1. The system should redirect to the UCOME user’s account

after a successful authentication using the Moodle API.

TABLE 3.16. FR 16 - SIGN IN WITH LDAP

ID FR-16

Name Sign in with LDAP

Trigger The user logs in through the LDAP chosen.

Prerequisites The ldaps.yaml file must be configured.

The user must be registered.

The scenario must be configured.

Description 1. The system should redirect to the UCOME user’s account

after a successful authentication in the LDAP Directory

chosen.

25

TABLE 3.17. FR 17 - SIGN IN WITH UCOME

ID FR-17

Name Sign in with UCOME

Trigger The user/administrator/employee logs in through UCOME.

Prerequisites The user/admin/employee must be registered.

The scenario must be configured.

Description 1. The system should redirect to the UCOME

user’s/administrator’s/employees’ account after a successful

authentication.

TABLE 3.18. FR 18 - MODIFY PROFILE

ID FR-18

Name Modify profile

Trigger The user/employee modifies his profile through a form.

Prerequisites The user/employee must be authenticated.

Description 1. The system should check for valid fields.

2. The system should update the user/employee in the database.

TABLE 3.19. FR 19 - DELETE ACCOUNT

ID FR-19

Name Delete account

Trigger The user deletes his account.

Prerequisites The user must be authenticated.

Description 1. The system should delete the user from the database.

26

TABLE 3.20. FR 20 - SEE TOP DISHES

ID FR-20

Name See top dishes

Trigger The user navigates to the top dishes section.

Prerequisites The user must be authenticated.

Description 1. The system should show the top 8 most purchased dishes.

TABLE 3.21. FR 21 - SEE UPCOMING EVENTS

ID FR-21

Name See upcoming events

Trigger The user navigates to the events section.

Prerequisites The user must be authenticated.

Description 1. The system should show the events registered in the database.

TABLE 3.22. FR 22 - ACCESS SOCIAL NETWORKS

ID FR-22

Name Access social networks

Trigger The user/administrator/employee clicks on the social network icon in

the footer.

Prerequisites The user/administrator/employee must be authenticated.

Description 1. The system should redirect the user/administrator/employee to

the social network profile.

27

TABLE 3.23. FR 23 - SEAT RESERVATION

ID FR-23

Name Seat reservation

Trigger The user reserves a seat.

Prerequisites The user must be authenticated.

The seat must be free.

The user must not have already a seat reserved.

Description 1. The system should save the user’s seat location in the

database.

2. The system should mark the seat as occupied.

3. The system should allow the user to buy dishes.

TABLE 3.24. FR 24 - TABLE RESERVATION

ID FR-24

Name Table reservation

Trigger The user reserves a table through a form.

Prerequisites The user must be authenticated.

Description 1. The system should send an email to the administrator with the

information.

TABLE 3.25. FR 25 - ADD DISHES TO CART

ID FR-25

Name Add dishes to cart

Trigger The user adds food dishes to the shopping cart.

Prerequisites The user must have a seat reserved.

Description 1. The system should add the dishes to the user’s cart.

28

TABLE 3.26. FR 26 - REMOVE DISHES FROM THE CART

ID FR-26

Name Remove dishes from the cart

Trigger The user removes food dishes from the shopping cart.

Prerequisites The user must have a seat reserved.

Description 1. The system should remove the dishes from the user’s cart.

TABLE 3.27. FR 27 - BUY THE DISHES OF THE CART

ID FR-27

Name Buy the dishes of the cart

Trigger The user buys the dishes of the shopping cart through PayPal.

Prerequisites The application.yaml file must be configured.

The user must have a seat reserved.

Description 1. The system should redirect to the PayPal login page to

proceed to the payment.

2. The system should save the purchase into the database.

3. The system should record the transaction into the database

replication log file.

4. The system should read in real time the replication log file and

send all the information of the purchase to the employees’

page.

TABLE 3.28. FR 28 - FREE SEAT

ID FR-28

Name Free seat

Trigger The user frees his seat.

Prerequisites The user must have a seat reserved.

Description 1. The system should update the seat of the user in the database.

2. The system should mark the seat as free.

3. The system should ask the user to free his seat when he has

been eating for thirty minutes and he didn’t free his seat. If the

user does not answer the message, he will have another

opportunity to answer in ten minutes and if no answer is

provided, the system should free his seat.

29

TABLE 3.29. FR 29 - SEE PURCHASES

ID FR-29

Name See purchases

Trigger The user navigates to the purchases section.

Prerequisites The user must be authenticated.

Description 2. The system should show all the purchases of the user taking

them from the database.

3.3 Non-functional requirements

These requirements are those related with quality attributes that must be met so that

the functionalities can be used correctly by the users, handling the application without

problems. Alternatively, they define system restrictions.

TABLE 3.30. NFR 01 - INTERNET CONNECTION

ID NFR-01

Name Internet connection

Description It is necessary to have internet connection to access the web

application.

TABLE 3.31. NFR 02 - BROWSER

ID NFR-02

Name Browser

Description It is necessary to have a web browser to access the web application.

TABLE 3.32. NFR 03 - BROWSERS COMPATIBILITY

ID NFR-03

Name Browsers compatibility

Description The application will be compatible with Google Chrome, Firefox,

Opera, Safari and Mozilla navigators.

30

TABLE 3.33. NFR 04 - SERVER

ID NFR-04

Name Server

Description The application will be deployed in a server with enough memory to

support a number of concurrent users of at least the number of seats in

the restaurant.

TABLE 3.34. NFR 05 - FRAMEWORK

ID NFR-05

Name Framework

Description The application will be developed with the Spring framework.

TABLE 3.35. NFR 06 - PROOGRAMMING LANGUAGE

ID NFR-06

Name Programming language

Description The application will be developed with the programming language

Java.

TABLE 3.36. NFR 07 - IDE

ID NFR-07

Name IDE

Description The application will be developed in the Eclipse IDE.

31

TABLE 3.37. NFR 08 - DATABASE

ID NFR-08

Name Database

Description The application will use MySQL as database.

TABLE 3.38. NFR 09 - MANUALS

ID NFR-09

Name Manuals

Description A manual for the users, administrator and employees will be

delivered.

TABLE 3.39. NFR 10 - EFFICIENCY

ID NFR-10

Name Efficiency

Description The system will respond the 95% of the requests in less than 4

seconds.

TABLE 3.40. NFR 11 - APPEARANCE

ID NFR-11

Name Appearance

Description The interface will be responsive and attractive.

32

TABLE 3.41. NFR 12 - USABILITY

ID NFR-12

Name Usability

Description The system will be easy to use with simple and intuitive elements.

TABLE 3.42. NFR 13 - PORTABILITY

ID NFR-13

Name Portability

Description The system can be transferred from its current hardware and software

environment to another.

TABLE 3.43. NFR 14 - SECURITY

ID NFR-14

Name Security

Description The system will have a login system in which users will have roles

and each role offers some functionalities.

TABLE 3.44. NFR 15 - RELIABILITY AND AVAILABILITY

ID NFR-15

Name Reliability and availability

Description The system will be available in the restaurant/cafeteria working hours.

33

TABLE 3.45. NFR 16 - INTEGRITY

ID NFR-16

Name Integrity

Description The system will check the incorrect data inputs.

TABLE 3.46. NFR 17 - PRIVACY

ID NFR-17

Name Privacy

Description The system will comply the current legislation.

34

4 SYSTEM DESIGN

4.1 Project structure

The Spring Boot project is organized in folders. The /src/main/java folder

contains all the java files separated by packages. The package sso has the main java

classes and some needed configuration classes, sso.controllers has all the

controllers that use the MVC pattern and sso.domains contains all the entities and

interfaces used by Spring Data for the Object Relational Mapping (ORM). These

concepts will be explained throughout the document.

Inside /src/main/resources folder are the views and thymeleaf folders,

which include the views of the MVC pattern that are the interfaces seen by the users.

Bootstrap files, images used in the application, stylesheets (files with .css extension)

and JavaScript (with extension .js) files are in the static folder. It is worth highlighting

the application.yaml and ldaps.yaml files, which will be the ones that the

administrators of the application must edit for multiple purposes: single sign-on,

LDAPs, database, payment, etc. configuration.

Finally, note the pom.xml file that is the main unit of a Maven project. It contains

information about the project, sources, tests, dependencies, plugins, versions, etc.

Fig. 4.1. Project Structure

35

4.2 System Architecture

4.2.1 Spring Web MVC

Spring Web MVC framework is the one that makes a separation between the web

views and the Java application behind it, while communicating them with effectiveness

and in a simple way. That is, it provides Model-View-Controller (MVC) architectural

pattern. In addition, it integrates with other Spring Framework components than could

be necessary. [10]

4.2.1.1 MVC pattern

Three elements are defined in this pattern: model, view and controller, related

according to the following diagram:

Fig. 4.2. MVC pattern components diagram

The functions of the three components are:

• Model: it contains the data to be displayed in the view. Everything related to the

access and management of data is done by the model.

• View: graphical user interface. It displays the data obtained from the model to

the user.

• Controller: it connects the model with the view. It is in charge of obtaining the

data of the model to send it to the view. It also receives the events that the user

generates in the view and performs the requested changes in the model.

36

4.2.1.2 MVC implementation in Spring

In the application, the views are .html (Thymeleaf) or .jsp files, the

controllers are Java classes that receives HTTP requests and generates responses; and

the model are the classes that contains the user requested data. The model will connect

with the MySQL database.

Spring Web MVC is designed around a DispatcherServlet that handles the

HTTP requests and responses.

 Fig. 4.3. Spring Web MVC diagram

 The browser sends a request and the DispatcherServlet consults the

Handler Mapping for calling the appropriate Controller. The

Controller performs all the business logic and will return a view name to the

DispatcherServlet, that will have to associate a view with the view name. This

will be done with the help of the View Resolver, which must be edited because

UCOME uses two technologies to render a view: Thymeleaf and JSP (explained in the

next section). Finally, the DispatcherServlet sends the data model to the view

and it is displayed on the browser to be seen by the user. [11]

37

4.3 User Interfaces Design

4.3.1 JSP and Thymeleaf

The application uses JSP and Thymeleaf. Thymeleaf is being used for the pages that

the user sees before logging in UCOME, and JSP after logging. Both are technologies

that can be used to render a view from Spring models.

4.3.1.1 JSP

JavaServer Pages (JSP) allows to divide a webpage into dynamic and static parts

by combining dynamic code written in Java and static content written in HTML or

XML. Therefore, it has a great compatibility with Spring. The Java code is embedded

within the HTML with <% … %> tags and it is executed in the server side.

To execute JSP pages, it is needed a Web server with a Web container that

comply with the JSP and Servlet specifications. The embedded Tomcat used by Spring

Boot accomplish it.

 JSP pages are files with the extension .jsp and is compiled into a Servlet the

first time is accessed.

There are three ways for inserting Java code in a JSP page [12]:

• Expressions <%= expression %>: the expression is evaluated; its result is

converted to String and it is inserted in the output.

• Scriptlets <% code %>: the code is executed inside the method service()

of the servlet generated.

• Declarations <%! code %>: they are inserted in the generated servlet body,

outside the methods.

4.3.1.2 Thymeleaf

Thymeleaf is a Java library which provides an XML/XHTML/HTML5 template

engine that fits very well for working with MVC view layer of web applications. It

allows to work with different expressions types [13]:

• Variables expressions: are the most used. Specified in OGNL (Object-Graph

Navigation Language). Represented by ${…}.

• Selection expressions: allows to reduce the expression length if an object is

assigned through a variable expression. Represented by *{…}.

• Message expressions: to load messages and even perform the internalization of

the application from properties or text files. Represented by #{…}.

• Link expressions: to create URLs that can have parameters or variables.

Represented by @{…}.

• Fragments expressions: to divide the templates into smaller ones and to load

them only when needed. Represented by ~{…}.

38

4.3.1.3 Comparison

The advantages of JSP and Thymeleaf will be described in the following table

being compared with the alternative technology.

TABLE 4.1. JSP AND THYMELEAF ADVANTAGES

Advantages

JSP Thymeleaf

Older technology with a long way behind. Prototype without executing the application.

Templates processing is faster than the

Thymeleaf processing speed.

No need to re-deploy the application if

templates are modified. In JSP it is needed

to re-deploy.

Easier to learn if HTML and Java are

already known.

If Thymeleaf is used with Spring, the Spring

dialect is more powerful than the tags

library of JSTL.

4.3.1.4 View Resolver

Maps view names to actual views, and it is enabled to render models in the browser.

As the web application is using Thymeleaf and JSP simultaneously, it is needed to

configure the InternalResourceViewResolver bean.

For that, the following dependencies must be added:

Fig. 4.4. JSP and Thymeleaf dependencies

39

Then, in the application.yaml file set Thymeleaf view names and JSP configuration

that will be used in a new configuration class.

 Fig. 4.5. Spring views configuration - application.yaml.

As seen in the Fig. 4.1., jsp files are in the /WEB-INF/views folder and

Thymeleaf files (.html) in /templates/thymeleaf folder. Both in /resources

folder.

Finally, the bean is configured in the new configuration class marked with the

@Configuration annotation for the view resolution for JSP pages [14]:

Fig. 4.6. View resolution for JSP pages

Now, the controller can serve:

• JSP pages. Example:

return new ModelAndView(“views/admin”);

• Thymeleaf pages. Example:

return new ModelAndView(“thymeleaf/sign-up);

4.3.2 Bootstrap

Bootstrap is a CSS framework used to create user interfaces, which are most of them

adaptable to any type of devices and screens. It simplifies the creation of web designs

combining CSS, HTML and JavaScript. These characteristics make it an excellent

option to develop responsive and mobile-first web applications. In addition, it is

perfectly integrated with the main JavaScript libraries like JQuery, used in this project

too. [15]

40

In the client side, Bootstrap is used as the Front-End because it was very important

for UCOME application to be accessible not only through computers, but smartphones

too, so that the seat reservation and purchases can be done from anywhere.

There are some free and premium templates for web designers and developers that

are very useful to start designing the webpage or web application from a theme and not

from scratch. In this application a free template called “Foodee” was used as a basis.

[16]

To use Bootstrap inside the Spring Boot Project, the static content of the template

such as CSS, JavaScript and images are placed inside the

src/main/resources/static folder. As the @EnableWebMvc annotation was

used in a @Configuration class for using Thymeleaf and JSP together as explained

in the previous section, Spring Boot’s MVC auto-configuration was disabled. This

means that Spring Boot MVC must be manually configured to serve static resources.

 Fig. 4.7. Static resources handler configuration

4.4 Physical Database Design

4.4.1 MySQL

MySQL is the open source relational database management system used in this

project. It is multithread and multiuser allowing to be used by some people at the same

time, even perform queries at the same time.

The packages used are MySQL Community Server and MySQL Workbench:

• MySQL Workbench is the graphical tool to manage or create databases. [17]

• MySQL Community Server is the database engine. [18]

41

4.4.1.1 Database structure

The database consists of 7 tables. These tables contain the information of the

users, the purchases, the dishes, the social networks, the events and the employees.

 We have a many-to-many relationship between the purchases and the dishes, since

each purchase can have multiple dishes, and each dish can be in multiple purchases.

Therefore, a junction table called purchase_dish is made, so we could see all the

dishes purchased by a user or how many times a dish was purchased. This will be used

for calculating the statistics.

Fig. 4.8. Database diagram

In the MySQL database script, all the tables are created with its corresponding

primary key and foreign keys. It has been used on delete/update cascade because if for

example a user is deleted, all their purchases will be deleted too; or if a dish is deleted,

this dish will be deleted from the purchases because it does not exist anymore.

42

Fig. 4.9. Database script

4.4.2 ORM in Spring

 Object-Relational Mapping (ORM) is a technique used in object-oriented

programming languages that maps the relational database tables into programming

objects called entities. This technique will be used by Spring Data explained below.

4.4.2.1 Spring Data

Spring Data is a Spring module whose objective is to simplify the data persistence

against different information repositories. Spring Data can be used with JPA,

MongoDB, Redis, Solr, etc. In this project JPA is used. [6]

Java Persistence API (JPA) is a persistence API developed for Java which handles

relational data following ORM pattern. Spring Data JPA allows to implement the ORM

layer in a simple way and reduce the necessary lines of code implementing

automatically the repository interfaces. The interface used in this project is CRUD

Repository, which will be explained soon.

For starting using Spring Data JPA it is necessary to add two new dependencies in

pom.xml: Spring Data JPA module and relational database module which is MySQL in

this project.

43

 Fig. 4.10. Spring Data JPA and MySQL dependencies

After that, the next step is to define the entities. For that, a Java class is created

with the structure of that entity. The image below represents the user entity:

 Fig. 4.11. User Entity

44

The User entity contains all the fields created in the MySQL database table named

user because when running the application, the table user will be mapped with this User

entity.

Each field in the entity has their corresponding getters and setters.

All the entities are defined with the annotation @Entity to indicate that they will

be used by Spring Data. The name of the table must be the same as the name of the

entity for the mapping. If not, the annotation @Table must be used to indicate the

name of the table to map.

The primary key will be indicated with the annotation @Id and

@GeneratedValue is used to fill these ids automatically by JPA.

There are more annotations that have been used in this project like @Lob which

indicates that the type is blob, or @Temporal to indicate if we are referring to date,

time or timestamp. @Column used if the name of the table attribute is different from the

one written in the entity.

Using all these annotations, the database structure will be defined making sure

that there is a correct traceability between data. The ORM layer generated by Spring

JPA handles these operations.

Finally, one entity per each table is created, except the purchase_dish table

which is indicated with the @ManyToMany annotation.

 Fig. 4.12. All project entities and DAOs

Next step is to create a DAO linked to the entity. The DAO is a specific interface

for each entity that extends a repository, which will make very easy to perform the main

operations with the database.

45

The following DAO works with the User Entity:

 Fig. 4.13. User DAO - CRUD Repository

UserDAO extends the interface CrudRepository which has the CRUD

operations (Create, Read, Update, Delete) used to find, save, update and delete records

from the User table. The parameters are User and Long, that indicates the type of the

entity and the primary Key data type.

To define specific queries, methods are created in the interface, as seen in the

image above. Since JPA implements the interface, it is very important to follow a names

structure which JPA understands.

At the start of the Spring context, an implementation class will be created with the

necessary functionality to cover the base CrudRepository methods, plus the added

by us.

Finally, a connection with the database must be configured in the

application.yaml file. The location of the database and the credentials of how to

access it are set.

 Fig. 4.14. Database connection configuration

46

5 DEVELOPMENT

5.1 Development environment

To develop the application the following work environment has been used:

• Windows 10.

• Java 8.

• Apache Maven 3.6.0.

• Eclipse IDE 2018-12.

• Google Chrome.

• MySQL Workbench 6.3 CE.

• MySQL Community Server 5.5

• Apache Directory Studio.

5.2 Used technologies

 In this section, the remaining technologies that have been used to develop some

project functionalities are explained.

5.2.1 JQuery

JQuery is an open source JavaScript library that simplifies JavaScript programming.

There exists a lot of plugins created by developers that can be found in internet that

solve concrete situations like a responsive menu, a carrousel of images, a photo gallery,

etc. [19]

For using JQuery is as easy as locate the .js file in the

src/main/resources/js folder and then reference it by means of a <script>

tag. For example:

<script src=”js/jquery-3.2.1.min.js”></script>

5.2.2 AJAX

AJAX (Asynchronous JavaScript and XML) is a technique that allows a client and a

server to exchange information asynchronously and it is not necessary to refresh the

webpage to see what returned the server; unlike when for example the button of a form

is pressed and the page is refreshed to show you a message saying that the form was

sent.

47

Fig. 5.1. MVC based in AJAX

With the AJAX technique the server will not send a complete view that refresh the

web page as the classical model did. It will send back a JSON or XML as response and

it will be stored in a JavaScript variable used to modify something in the already

existing view.

 This technique will be used in the Spring Boot project for the employees’ page.

When someone buys a dish, it will appear in the employees’ page automatically in real

time, without refreshing the page by the employees to see if there are new purchases to

serve those dishes.

 The most common way of making AJAX calls is with JQuery. It provides a

method called $.ajax(), which will make the AJAX request.

 Fig. 5.2. AJAX request with JQuery

48

 The above code will make a POST request, in which a purchase id (data.list)

is passed. It will be caught by the controller and will return the dishes information of

that purchase as JSON. On success, a function will be called with the result as

parameter and it will be used to draw in the employees’ screen the information of the

dishes.

5.2.3 Pusher

Pusher is a cloud service to manage connections and messages sending through

WebSockets (bidirectional communication channel). It encapsulates WebSockets

implementation saving time because it is not necessary to make a new infrastructure and

it is possible to automatically scale according to the number of connections and the

number of sent messages. [20]

 Fig. 5.3. Pusher working diagram

First step to start using Pusher is to create a new account, register an application and

some credentials will be obtained to be used in the code to establish a connection.

49

Fig. 5.4. Pusher - App registration

Then, the Pusher dependency is added in pom.xml file.

 Fig. 5.5. Pusher dependency

UCOME uses Pusher to send a message to all the clients that have been seated for

more than thirty minutes asking them if they continue eating or not. This is a control

mechanism that is used because the diners could have forgotten to free their seat after

finishing eating. If they confirm that they continue eating, no operation is performed

and if they confirm that they finished, their seat is freed. In case the user does not

answer, he will have two attempts to answer or his seat will be freed.

From Java, this is the way a message is sent to Pusher through the Pusher API:

 Fig. 5.6. Pusher server code

50

And the JavaScript client will take the message being subscribed to the channel:

Fig. 5.7. Pusher client code

5.2.4 Swing

Java Swing is a GUI (Graphical User Interface) tool that allows creating widgets for

Java applications. There are two main basic elements for the creation of graphical

interfaces [21]:

• Containers: elements that contains other components like buttons and text fields.

• Components: elements that are added into containers.

Swing is used to create the scenario where the administrator sets the square meters

that the local has and a matrix with those dimensions will appear. He will be able to

click on the squares which mean that there is a seat there. Therefore, the

restaurant/cafeteria tables will be represented. After that, the user could choose any free

seat and it will become occupied.

The containers used are:

• JFrame: it is the main container and the most used one. It represents the main

window.

• JPanel: it allows the creation of independent panels where other components are

added.

They are composed by the following components:

• JButton: implementation of a push button that performs an action when pressed.

• JLabel: text or image displayed in the frame.

• JTextField: text field for obtaining data.

• JSeparator: horizontal or vertical dividing line.

51

 Fig. 5.8. Java Swing - Configure scenario

These frames created with Swing are only accessible in the server. The client side

won’t be able to see them. This is a disadvantage because it is needed to be in the server

computer.

5.2.5 JFreeChart

Swing has no graphing and charting packages. Then, the JFreeChart library is used

for making a bar chart in which the statistics of the dishes are shown. That is, how many

times a dish was purchased giving to the administrator a global vision by providing him

information about the most purchased dishes and the less purchased ones. The charts are

also classified by colours indicating to which type the dish belongs to (seafood, pasta,

meats, etc.). The final purpose of this is to suggest improvements and to think why

some dishes are not being sold.

The total revenues are displayed too. It defines how much money the

cafeteria/restaurant earned by selling the dishes.

The administrator can filter the data by dates. Therefore, he will be able to see what

dishes sold and how much earned in a certain interval of time, for example, per month.

52

 For using JFreeChart the following dependency must be added:

 Fig. 5.9. JFreeChart dependency

 Then, a JFreeChart is created with the dataset to be displayed. It is inserted into a

ChartPanel of the JFreeChart library and this panel will be added into a JPanel,

which, in turn, is inside a JFrame. Both from Java Swing.

5.2.6 JavaMail

UCOME sends emails with the new password to the employees registered by the

administrator and to the users that were synchronized from LDAP by the administrator

too.

For that, JavaMail is used. It is an API that facilitates the sending and reception of

emails through the SMTP, POP3 and IMAP protocols. SMTP (Simple Mail Transfer

Protocol) is used for the outgoing mail management, while POP3 (Post Office Protocol)

and IMAP (Internet Message Access Protocol) are used for receiving the incoming mail.

For using JavaMail in the Spring Boot project, the following dependency must be

added:

 Fig. 5.10. JavaMail dependency

UCOME will communicate with the SMTP server of our service provider (ISP).

This SMTP server will leave the message in the SMTP server of the recipient to be

taken through POP or IMAP by the receiver.

This process is carried out in Java by getting an instance of the Session class of

JavaMail. For that, the method Session.getDefaultInstance() is called

passing the connection properties as parameter that are explained in the following table:

53

TABLE 5.1. JAVAMAIL CONNECTION PROPERTIES

Property Value Description

mail.smtp.host smtp.gmail.com Google SMTP server.

mail.smtp.user sender Username of the sender.

mail.smtp.auth true Use authentication through user and

password.

mail.smtp.starttls.enable true Secure connection to the SMTP server

through TLS.

mail.smtp.port 587 Secure SMTP port of Google.

After that, the message is created by instantiating the MimeMessage class, which

will receive the session generated before and the fields from, to, subject and text are

fulfilled.

Finally, the message is sent with an instance of the Transport class that models a

message transport. [22]

5.3 Authentication

UCOME is thought and designed to facilitate users to log in without the need to use

or remember the access username and password. There are four ways for users to log in:

through LDAP, Office365, Google and Aula Global.

5.3.1 LDAP

LDAP (Lightweight Directory Access Protocol) is an application-level protocol

which allows to perform queries on a directory service to search information in a

network. A directory service is a database in which information is stored and organized.

This hierarchically organized structure of the objects in the directory is achieved with

the implementation of LDAP that defines how to access to the directory. LDAP

directories are not relational databases. They are optimized for a good performance on

reading.

A directory service executes the client-server model, that is, if a client wants to

access to some information, he will not access directly to the database, but he will

contact a process in the server side. This process makes the query and the information is

returned to the client.

54

 Fig. 5.11. LDAP Directory structure

 Each blue circle in the image above represents an entry and, in this way, an

organized and distributed tree is created to be able to perform queries. The structure of a

LDAP directory is the following:

• Entries: collection of attributes with a Distinguished Name (DN) used as unique

identifier of an entry. For example, in the image above, the DN of eboronat

would be: dn: uid=eboronat,ou=People,dc=example,dc=com.

• Attributes: properties of the entries. Some attributes are name, surname, mail,

photo, etc. Some attributes of an entry are mandatory and other optional.

For the import and export of data independently of the LDAP server that is being

used, the LDAP Data Interchange Format (LDIF) format is used. It represents the

entries in ASCII text. [23]

 Most of the big enterprises use these directory services for multiple purposes:

organizing employees’ data, accessing to some services with the same password, access

management to a corporative intranet, CMS (Content Management System)

authentication through LDAP, etc. The biggest advantage of LDAP is that companies

can access the LDAP directory from almost any computing platform. [24]

 As this project focusses mainly on companies’ cafeterias and restaurants, it was

decided to implement authentication to the application through LDAP. Therefore, all the

companies that have directories in which employees are organized, will be able to

access to UCOME without the need of remembering the application password. They

will log in with his LDAP username and password.

55

5.3.1.1 Apache Directory Studio

Apache Directory Studio is a software to display and read an LDAP Directory

Tree, but it also can be used to create and to launch a new LDAP server (ApacheDS), in

which a new directory tree is created and it is allowed creating, modifying or deleting

entries. [25]

 This software is then used to create a new LDAP server for creating our own

directory and two online LDAP servers found in the internet are connected. The purpose

is to test the application against these three LDAP servers.

Fig. 5.12. Apache Directory Studio

In the image above, it is shown the main features used in Apache Directory

Studio. On the bottom left of the image there are two tabs: Connections and LDAP

Servers. In the second one, the ApacheDS server is created in localhost on the port

10389. After that, a connection of this new server is opened, and some entries are

added with my classmates’ information. This connection was called Informatics

Engineering. The other two connections are opened from two online LDAP servers for

testing purposes and to be sure that the authentication works with different LDAP

Directories structures.

56

Coming back to the image, above these two tabs, the Directory Tree is displayed,

and it is possible to read, edit and delete entries (except the online ones [26] [27] that

are only-read directories). These users are the ones who will be able to log in into

UCOME.

For adding a new connection, the window of the middle of the image will appear.

Here the network parameters must be set, as well as the credentials of an authorized user

to see the tree in case it is not open for everybody. For the two online servers the

indicated parameters were written [26][27] and in the case of the own server the

hostname is localhost; and the port is 10389. Authentication parameters are also needed,

so the admin and his password are written.

5.3.1.2 Login

In the web application there will be a drop-down button to select the name of the

LDAP (established by the administrator in ldaps.yaml) in which the user can login

through. The number of options in the drop-down will be automatically increased when

the admin adds a new LDAP in the file ldaps.yaml, located in the folder

/WEB_INF/classes of the war file delivered to the client (UCOME application

buyers).

To add a new LDAP the admin must add the LDAP fields:

• Name: name that will appear in the drop-down. Example: LDAP1.

• Url: LDAP URL.

• Auth: authentication type.

• Security_principal: where the LDAP users’ entries are located.

Fig. 5.13. ldaps.yaml configuration file

57

The end-users will simply select his LDAP from the drop-down button, he will

sign in using his LDAP username and password; and he will be directly redirected to his

UCOME account.

Fig. 5.14. LDAP login drop-down button

5.3.1.3 JNDI

JNDI (Java Naming and Directory Interface) consists of a Java API interface and

a Service Provider Interface (SPI), being able to connect with a big variety of directories

services. SPI allows you to interact with almost every type of naming or directory

service including LDAP.

58

Fig. 5.15. JNDI Architecture

 Once configured the ldaps.yaml file, the application can be launched. All the

LDAPs configuration will be stored as objects and when the end-users try lo login, the

authentication will be done with the selected LDAP from the UCOME index page.

 In the code below, it is shown how the authentication is done. A hashtable is

created with the connection parameters and an InitialDirContext instance is

created. If it is successfully created means that the user entered correctly his credentials.

Fig. 5.16. JNDI - LDAP Connection

59

 A description of the parameters used to connect to the LDAP are explained in the

following table:

TABLE 5.2. JNDI - CONNECTION PARAMETERS DESCRIPTION

JNDI Constant Description

INITIAL_CONTEXT_FACTORY Factory class for LDAP contexts

PROVIDER_URL LDAP service URL

SECURITY_AUTHENTICATION Authentication type. It can be none,

simple or strong

SECURITY_PRINCIPAL Distinguished Name (DN) of the user

SECURITY_CREDENTIALS User password

 It must be mentioned that companies could use very different Directory Tree

structures. For example, Active Directory (AD), which is the Windows directory service

implementation, use the type attribute userPrincipalName (UPN), which users log

in with [28]. This attribute is composed by the username + @domain. In those cases,

small changes in the application must be done. JNDI SECURITY_PRINCIPAL

constant would be in this case the UPN and in the ldaps.yaml file the attribute

domain would be defined instead of security_principal. It is good because any

user in the tree could authenticate without depending on the user tree location as before.

 In conclusion, a previous contact with the client company should be established in

order to know which LDAP directory tree structure they have and do some small

changes in case they need them.

 JNDI is also used to take the photo and the email of the user stored in the

directory. It is mandatory to have the attribute “mail” because a linkage between the

LDAP user and the UCOME account must be established.

60

Fig. 5.17. JNDI - search for attributes

 The image above shows how to access to the attributes. A search of the user is

performed indicating the username as filter and where is in the tree located (baseDN).

Then, all the attributes are obtained, and the mail and photo are taken.

5.3.1.4 LDAP Synchronization

The administrator of the application will have the functionality to create all the

contacts from a LDAP Directory into UCOME. If the contact already exists and any

field was modified, it will be updated into UCOME. If all the fields are the same, no

operation will be performed.

The following LDAP attributes will be taken to create the users in UCOME with

them: mail (will be the email in UCOME), displayName (will be the name in

UCOME) and sn (will be the surname in UCOME). If displayName is empty in the

LDAP, it will be the same as mail.

The administrator in charge of the synchronization must edit the

application.yaml file where the following properties must be completed:

• originLdap: origin the users will be taken to be synchronized from.

• usersToSynchronize: email of the users that the administrator wants to

synchronize. If “all”, all the users from the origin will be synchronized.

An LDAP user with read permissions is needed to access the directory. These

properties are related to him:

• url: LDAP URL to be accessed.

• auth: authentication type.

• userLdap: user to access LDAP with read permissions.

• passLdap: LDAP password of the previous user.

• security_principal: baseDN (base Distinguished Name) of the previous user.

61

Finally, as the administrator is who registers the users through this synchronization,

a random password is generated for each of the new users. This password will be sent to

their email from a Gmail account. For that, the following properties must be written:

• sender: username of the Gmail account (usually administrator username).

• pwd: password of the Gmail account.

For testing, a new Gmail account was created simulating the administrator email:

ucome.info@gmail.com

However, this password that is sent is not needed for these users because they will

be able to log in through LDAP now. It is the main purpose of this synchronization.

 Fig. 5.18. LDAP Synchronization - application.yaml

5.3.2 Azure Active Directory

As with LDAP servers, the application is also integrated with Azure Active

Directory (Azure AD or AAD) because a lot of companies have acquired it as the

identity platform for managing users and providing secure access to their applications.

AAD allows to have a unique identity through a set of applications registered

inside Azure. Therefore, a Single Sign-On (SSO) has been implemented.

62

5.3.2.1 Office 365

Office 365 can be free installed being a student of the university; and Office 365

subscribers have automatically an Azure AD tenant. That is why I could install it and

test the implementation.

5.3.2.2 Spring Security OAuth2

Azure AD is responsible for verifying the identity of users. For that, the OAuth

2.0 protocol is used. It is an authorization protocol that allows users to give access to

their information to third-parties, who will not know user credentials.

Fig. 5.19. OAuth 2.0 authorization flow

This process using the OAuth 2.0 protocol is implemented by the Spring Security

module in a simple way. For that, in the main Spring Boot class the

@EnableOAuth2Sso annotation is needed and it is set which URL is the login page.

 Then, in the configuration file (application.yaml) the following properties

are defined inside specific tags like clientId, clientSecret, etc. that Spring

Security understands:

63

Fig. 5.20. Azure Active Directory Credentials - application.yaml

 These credentials are obtained from the Azure Active Directory when registering

an application:

Fig. 5.21. Application registration - AAD

A redirection URI must also be provided because when UCOME redirects to

Microsoft, it must know where to send the authorization code after logging:

Fig. 5.22. Redirection URI - AAD

64

Spring Security oversees all the process described in Fig. 5.19 and it will do an

automatic redirect to Microsoft login page when clicking on the Office 365 login

button. After a successful login, an authorization code will be returned to our

application that Spring Security will use to obtain a token that is used to call the AD

Graph API where the email of the logged user is get from; and then, it is now possible

to do the redirection to the user’s UCOME account.

5.3.3 Google

Everybody who has a Google account will be also able to authenticate in UCOME

through it with the single sign-on mechanism. The OAuth 2.0 protocol is used for

authentication and authorization [29], as was done in Office 365 in the previous section.

Therefore, the OAuth2 authorization flow is the same as the one described in the image

Fig. 5.19.

First, the OAuth 2.0 credentials must be obtained from the Google API Console

for developers after creating a new project.

Fig. 5.23. Google API Console – OAuth 2.0 Credentials

 These generated credentials must be written in the application.yaml file for

the application to use them.

 Fig. 5.24. OAuth 2.0 Credentials - application.yaml

65

 The scope property controls the set of resources that the access token will

permit. The email and profile resources will be requested for getting the user email for

redirecting to his UCOME account and the photo of the user. The redirectUri

property is the URI that Google Authorization Server will return after logging and

granting permissions by the user.

 After that, the logic of the OAuth 2.0 protocol is developed in the Spring Boot

application. When the user clicks on the option to log in through Google, a redirection

to Google will be done where the user logs in with his Google account. After logging in,

the user will be asked to grant the permissions that the application is requesting (scope

property). If the user grants the permissions, an authorization code will be obtained

from the Google Authorization Server and the application will use it to obtain the access

token.

Fig. 5.25. OAuth 2.0 - Google redirection

Finally, the token is sent in the authorization header of a HTTP request for

requesting the email and the user’s photo to the Google+ API.

66

5.3.4 Aula Global

Aula Global is a Moodle application integrated by UC3M for the management of

teaching resources for students and teachers. Moodle is an LMS (Learning Management

System), which is used to manage all the communications between professors and

students, to distribute the subjects’ contents or to make assessments to students.

Therefore, all the people from the university is constantly accessing to Aula Global and

it was thought as a good idea to integrate UCOME with Aula Global, in case this system

developed in this project is acquired by the university cafeteria. In addition, very small

changes could be introduced to adapt UCOME to any other university or institution that

uses Moodle.

In the application, the user should enter his username and password of Aula

Global and a call to the script located in /login/token.php is requested [30]. If

authentication is successful, then a token is received, which will be used to make

another request to obtain the user’s photo. Therefore, the requests will look like:

https://www.aulaglobal.uc3m.es/login/token.php?username=USE

RNAME&password=PASSWORD&service=ag_mobile

https://aulaglobal.uc3m.es/webservice/rest/server.php?wstok

en=TOKEN&wsfunction=core_webservice_get_site_info

After authenticating, the user will be redirected to his UCOME account.

Fig. 5.26. Moodle web services infrastructure functioning

67

5.4 Payment

5.4.1 PayPal Sandbox

PayPal is a secure payment platform that was born because making online payments

was insecure. Banking information was provided to online forms and someone (fraud

online store or an external person) could access to this data. With PayPal the credit card

is linked with your PayPal account and through an email and a password the payments

are done, and no credit cards information is provided to the online stores.

PayPal Sandbox is used by developers to integrate PayPal in their applications. It

allows to test payments with non-real money. When everything is working right, the

Sandbox API Credentials are changed by the “good” ones (Live API Credentials) and

the payments are now real. In this project only testing API Credentials are used.

When registering in PayPal Developer page two Sandbox Accounts are obtained:

facilitator and buyer. Each one is identified by an email and a password and they

simulate the PayPal vendor and buyer accounts.

Then, an App must be created in PayPal Developer page to receive REST API

credentials for testing and live transactions (the ones mentioned before).

Fig. 5.27. PayPal Developer - App Registration

 The Client ID and the Client Secret generated are placed into the

application.yaml file to be used by the application. Each client company must

put his app credentials that will be linked with the company’s PayPal selling account.

68

 Fig. 5.28. PayPal Credentials in application.yaml

A new dependency must be added to deal with PayPal items, transactions,

payments, etc.

Fig. 5.29. PayPal Dependency

 In the Spring Boot project two classes are created to make this payment process.

The first class will have the logic of building payments and transactions objects, while

the second class is a controller that will catch the /paypal/make/payment,

/paypal/complete/payment and /paypal/cancelled requests. The process

is the following:

First, when all the chosen dishes are in the cart and the PayPal button is pressed a

call to /paypal/make/payment is requested and caught by the controller. A new

payment is created involving a transaction with the total price and the list of dishes; and

the redirection URLs in case of success or error. A call to the PayPal API Server is done

indicating the clientId and clientSecret established before in the

application.yaml file and it will return an approval_url. UCOME will

redirect the user to this approval_url where he will log in into his PayPal account

(for testing is the buyer sandbox account previously created) and he will be able to

confirm the order.

69

 Fig. 5.30. PayPal payment confirmation

 In the confirmation window the requested dishes can be seen, as well as their

prices. It will also be possible to choose a payment method (PayPal Balance or credit

card).

After confirming the order, PayPal will redirect to the success or error URL that

was inserted into the payment object. If success, it will be

/paypal/complete/payment that will receive two parameters from the PayPal

API Server: paymentID and payerID.

Finally, a new call to the API is done with these two parameters to execute or

complete the PayPal payment that the payer approved. Completed sandbox transactions

can be seen in the Sandbox PayPal webpage (https://www.sandbox.paypal.com/signin),

that is an identical instance of the live PayPal production site. Facilitator will see

incoming payments and buyers will see their purchases.

 Fig. 5.31. Buyer Sandbox PayPal account

https://www.sandbox.paypal.com/signin

70

The previous detailed process to purchase a product can be summarized into the

following image for a better understanding:

 Fig. 5.32. UCOME PayPal payment process

71

5.5 Order delivery

Once a purchase is made through PayPal it is registered in the database and it must

be served by an employee of the restaurant/cafeteria. Therefore, the database record

must be taken as soon as it goes in to start preparing the order.

 For that, the replication log of the database is used. It records every change to the

database. There are other methods like polling (see if something changed in the database

every X seconds) or to make a trigger that executes a method when the database

changes, but these ones are not good approaches because polling wastes resources and

triggers hurts performance. The replication log is then the most robust one.

 The following diagram explains all the process done:

Fig. 5.33. Order delivery process

When a user buys the food, the purchase is inserted into the database and the

replication log is written with this insertion. A java class will be listening to the log file

in the background because it is executed as a thread and it will detect the new insertion.

Then, this java class will publish to Pusher the purchaseid and the userid taken

from the log. After that, the employees’ page will subscribe in the Pusher channel and

will obtain the two identifiers that will be sent through an AJAX call to the server in

order to receive the information of the dishes and the user from it. The employee will

see this information in the screen and will be able to carry the order to the seat where

the user is.

 The reason for using the replication log file and not to send directly the purchase

information from the server to the employees’ page is because in a future maybe it

could be possible to make purchases from other server or other location and as long as

the purchase is stored in the purchase table of the database, it will be detected and

showed in screen. In addition, having a replication log is good in case there are any

error in the database.

72

5.5.1 MySQL replication

For generating the replication log file, replication must be enabled in the MySQL

configuration file C:\ProgramData\MySQL\MySQL Server 5.5\my.ini:

Fig. 5.34. MySQL replication configuration

 After restarting the MySQL server, it is possible to check if the replication is

enabled with the command show master status; from the MySQL Workbench.

If not, the following command should be executed:

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO

‘root’@’localhost’;

Finally, for reading the log file from the java class, one dependency must be used to

provide the project with a connector.

 Fig. 5.35. Replication log connector dependency

The java class will be connected to the log file through the following line of code:

BinaryLogClient client = new BinaryLogClient(“localhost”,

3306, “root”, “admin);

And the client will register an event listener that will detect the new insertions.

73

5.6 HTTPS

HTTPS is a secure version of HTTP (Hypertext Transfer Protocol). HTTPS is based

on one of the two cryptographic protocols SSL/TLS that provide confidentiality and

integrity between the endpoints of a communication. Both use a public key and a private

key to encrypt the data.

Fig. 5.36. HTTPS connection diagram

When the user makes a request through HTTPS, the server will respond with the

SSL certificate that includes the public key. The browser checks that the Certification

Authority (CA) is trustworthy and generates a symmetric key that is cyphered with the

public key of the server. In this way, it is only possible to decrypt it with the private key

of the server. When the server decrypts it, both sides have the same symmetric key and

they will encrypt all the transmitted data with it.

Compared to HTTP, HTTPS makes it possible to ensure the server authentication

and that the data exchange between the user and the web is encrypted (confidentiality),

while ensuring the integrity of the transmitted data, preventing it from being intercepted

and manipulated by a man in the middle.

The web applications run through HTTP by default. There could be UCOME

clients that request the application running under HTTPS. They could configure the

server where the application is deployed to use SSL, but if not, a configuration has been

added to use UCOME under HTTPS. For that, an SSL self-signed certificate has been

74

generated and it is used for testing purposes. As it is self-signed, the browser will show

a security warning saying that it is not a trusted page because it is not issued by a

Certificate Authority (CA). Clients should request one from a CA.

 For creating the self-signed certificate Keytool is used, which is a certificate

management utility that comes with every Java Runtime Environment (JRE). A pair of

keys are created (public and private) for generating the SSL certificate and storing it in a

keystore. The command used is the following:

Fig. 5.37. Keytool - Keystore generation

• -genkeypair: generates the pair of keys.

• -alias: indicates the alias of the certificate, which is used by the SSL/TLS layer.

• -keyalg RSA -keysize 2048: cryptographic algorithm used (RSA) and key size

(2048 bits).

• -storetype PKCS12: keystore format type. PKCS12 is an industry standard

format.

• -keystore keystore.p12: name of the keystore.

• -validity 3650: number of days in which the certificate is valid.

 After executing above command, it will ask for some information as seen in the

image. The generated keystore will be copied inside the resources folder of the

project.

75

After that, the application.yaml file must be edited with the certificate

information. The following image has the values of the testing certificate created before:

 Fig. 5.38. SSL configuration - application.yaml

HTTPS will be established through the port 8443, but some class configuration is

added to redirect HTTP (8080) traffic to HTTPS (8443), so that the full site becomes

secured. For that, below configuration is needed:

Fig. 5.39. HTTP to HTTPS redirection bean

A connector at 8080 port is added and redirected to 8443. Then, any request to

8080 through HTTP will be redirected to 8443 through HTTPS.

76

6 SOCIO-ECONOMIC ENVIRONMENT

6.1 Socio-economic impact

The world is continuously evolving around the new technologies and we cannot

conceive it without them and their functionalities. These devices are part of our daily

life, having a social, environmental and economic impact.

Web applications have been integrated into all kinds of services such as restaurants,

transports, shops, etc. Any business uses these applications or web pages. They help us

to perform daily tasks and to reach a bigger audience, while also allowing us to manage

work in real time.

Starting with the social impact, UCOME facilitates the clients of the catering

businesses, to be able to manage their diet, to request and pay their food easily and

quickly, and to choose their seat through the application. Therefore, it will contribute to

the society with a better quality of the service in which it is being used.

Regarding the environmental impact, the computer emits between 52 and 234 gr of

CO2 per hour considering a power between 80 and 360 watts [31]. Apart from that, as a

software product has been developed, it does not require any other energy than

electricity.

Finally, this application would have a significant economic impact if we some

factors:

• The time that the restaurant would dedicate to find a table for its diners would be

considerably reduced, thus being able to invest this time in other tasks such as

preparing the food.

• Workers would be more productive because they would be more rested and less

stressed.

• Diners would have more time to be consuming since the waiting time would be

greatly reduced. Therefore, there would be a greater number of sales (coffee,

desserts...).

• There would be a greater control over the dishes that are consumed in the

restaurant, being able to adjust the budget to the maximum when managing the

purchases, preventing the restaurant from running out of stock.

• On the other hand, the entrepreneur will need less employees, having a negative

impact on the creation of jobs.

77

6.2 Budget

The cost of the web application described in this project amounts to seven

thousand eight hundred fifty-five euros.

 In this amount the time devoted to research and to write this document have been

included, detailing the hours of work of the Software Developer and the Project

Manager shown in the following table:

TABLE 6.1. COST OF REASEARCH TIME AND DOCUMENT GENERATION

Main parts Hours Cost per hour Total

1. Introduction Software Developer=8 8 € 64 €

Project Manager=2 45 € 90 €

2. Status of the question Software Developer=20 8 € 160 €

Project Manager=2 45 € 90 €

3. System analysis Software Developer=10 8 € 80 €

Project Manager=1 45 € 45 €

4. Development Software Developer=270 8 € 2.160 €

Project Manager=20 45 € 900 €

5. Socio-economic

environment

Software Developer=10 8 € 80 €

Project Manager=1 45 € 45 €

6. Conclusions and

bibliography

Software Developer=5 8 € 40 €

Project Manager=1 45 € 45 €

TOTAL Software Developer=323 8 € 2.584 €

Project Manager=27 45 € 1.215 €

The necessary hardware and software have also been considered for the budget

calculation:

TABLE 6.2. HARDWARE COST

Hardware Cost per unit Nº of units Amortization Total

Personal computer 800 € 1 20% 160 €

78

An amortization is applied to the personal computer according to the duration of

the project that is seven months. Then, an amortization of the 20% is applied.

TABLE 6.3. SOFTWARE COST

Software Cost per unit Nº of units Total

Windows 10 EDU 0 € 1 0 €

Office 365 Education 0 € 1 0 €

Programs and tools 0 € - 0 €

Fortunately, Windows 10 and Office 365 are free for students and all the software

used was free because they were open source tools, or the free version was used.

In the same way, the cost of the programming time is detailed.

TABLE 6.4. PROGRAMMING COST

Programming Hours Cost per hour Total

Spring Boot application 487 8 € 3.896 €

 The Spring Boot application has 46 KLOC (thousands (kilo) of lines of code).

Adding all the totals, the cost obtained is:

TOTAL = 2.584 + 1.215 + 160 + 3.896 = 7.855 €

Finally, the VAT (value-added tax) must be added to the project. It is currently

taxed at 21% in Spain.

79

7 CONCLUSIONS

7.1 Main conclusions

After having studied Spring, Spring Boot and the main modules of this framework;

and having implemented a complete web application with it, I can conclude that a great

simplicity is achieved with this framework and the modules that it offers are completely

configurable and compatible with each other. This does not mean that it is the best

option for developing web applications, but I would recommend considering it in most

cases.

This end-of-degree project has been an opportunity, not only for acquiring

knowledge, but for making me see that I am able to develop an entire application

dedicating time and effort, what made me to achieve personal satisfaction. In addition,

the development of the application has had a commercial purpose and I have focused a

lot on business authentication mechanisms, what I find useful because I could find

related tasks in my day to day work in the future as a computer engineer.

During the development I have realized that becoming an entrepreneur is not as

difficult as most people think. If it is something you would like to be, it is enough to

have a good idea and eagerness to constantly work.

Finally, although I have invested a lot of time and effort in the web application to be

working as expected, trying to write good quality code and thinking about solutions

when facing errors and requirements; it was worth it because I really liked it and it was

a great challenge to face and achieve.

7.2 Level of goals achievement

Within the initial goals described at the beginning of the work, it can be concluded

that all of them have been met. A complete system for improving the catering services

has been developed.

The system has been developed in line having in mind all the most popular current

internet trends such as integration with social networks, possibility to pay through

payment platforms and authentication via most used mechanisms.

My idea when I started the project was to apply technologies and methodologies I

have learnt in these years, so now, focusing in the methodologies, this project has been

implemented using Scrum framework, using Trello as main tool since this is one of the

most popular tools used by many organizations nowadays.

I have gone for Trello as I see it as a very intuitive and visual tool, based in Kanban

cards that are added onto a board and shows the complete flow of each task

80

implementation, moving them throughout the whiteboard when a stage is completed till

they reach the “Done” status.

 To conclude, with this project, I think I am more prepared to face real projects as I

have learnt how to fit my tasks to timings, document them and challenge myself to

reach the targeted objective.

7.3 Future work

Regarding future lines of work, the following improvements and supplements could

be carried out:

• Development of an Android/iOS application.
• Visual design improvement in the seat management functionality.
• Option to pay in cash.
• Learn how to deploy in modern cloud computing platforms like Amazon Web

Services (AWS), Docker or Openshift. It was tried, but it was only achieved

with a simple Spring Boot application.
• Improvement in the Spring Security roles and privileges implementation.

A personalized treatment with customers will always be considered to know which

authentication mechanism they would like to have and to help in the integration and

deployment of the system. Small requested changes could also be implemented.

Regarding the commercialization of the application, there will be not a fixed price

for all the companies. The price will be based on the number of seats that the

restaurant/cafeteria has, and it depends also on the complexity of the personalized

requests done, as well as the complexity of the application deployment in the

company’s environment.

81

BIBLIOGRAPHY

[1] EDUCBA. “Spring vs Struts”. EDUCBA.

https://www.educba.com/spring-vs-struts/ (accessed: Dec. 12, 2018).

[2] R. Petrusha, olprod and OpenLocalizationService. “Guía de .NET

Framework”. Microsoft. https://docs.microsoft.com/es-

es/dotnet/framework/ (accessed: Dec. 12, 2018).

[3] Ruby on Rails. “Getting Started with Rails”. Rails Guides.

https://guides.rubyonrails.org/getting_started.html (accessed: Dec. 15,

2018).

[4] M. Fowler. “MicroservicePremium”. MartinFowler.com.

https://martinfowler.com/bliki/MicroservicePremium.html (accessed:

Dec 20, 2018).

[5] S. Brown, “Modular Monoliths”, presented in DevNexus, Atlanta,

March 6, 2019. [Online]. Available at:

http://www.codingthearchitecture.com/presentations/devnexus2016-

modular-monoliths

[6] Pivotal Software. “Main Projects”. Spring. https://spring.io/projects

(accessed: Feb. 6, 2019).

[7] Pivotal Software. “Modules”. Spring.

https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch01s02.ht

ml (accessed: Feb. 13, 2019).

[8] Maven. “What is Maven?”. Apache Maven Project.

https://maven.apache.org/what-is-maven.html (accessed: Feb. 14,

2019).

[9] Mr. Noow. Mr. Noow App Promo Video. (July 26, 2017). Accessed:

Feb. 17, 2019. [Video online]. Available at:

https://www.youtube.com/watch?v=UJzTYlVjZNU

[10] Pivotal Software. “Web on Servlet Stack”. Spring.

https://docs.spring.io/spring/docs/current/spring-framework-

reference/web.html (accessed: Mar. 2, 2019).

[11] Tutorials Point. “Spring-MVC Framework”. Tutorialspoint.

https://www.tutorialspoint.com/spring/spring_web_mvc_framework.ht

m (accessed: Mar. 2, 2019).

[12] I. Iborra and M.A. Lozano. “JSP Básico”. Jtech.ua.es.

http://www.jtech.ua.es/j2ee/2006-2007/doc/sesion08-apuntes.pdf

(accessed: Mar. 6, 2019).

https://www.educba.com/spring-vs-struts/
https://docs.microsoft.com/es-es/dotnet/framework/
https://docs.microsoft.com/es-es/dotnet/framework/
https://guides.rubyonrails.org/getting_started.html
https://martinfowler.com/bliki/MicroservicePremium.html
http://www.codingthearchitecture.com/presentations/devnexus2016-modular-monoliths
http://www.codingthearchitecture.com/presentations/devnexus2016-modular-monoliths
https://spring.io/projects
https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch01s02.html
https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch01s02.html
https://maven.apache.org/what-is-maven.html
https://www.youtube.com/watch?v=UJzTYlVjZNU
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
http://www.jtech.ua.es/j2ee/2006-2007/doc/sesion08-apuntes.pdf

82

[13] Thymeleaf. “Tutorial: Using Thymeleaf”. Thymeleaf.

https://www.thymeleaf.org/doc/tutorials/2.1/usingthymeleaf.html

(accessed: Mar. 6, 2019).

[14] S. Ajit. "Use Thymeleaf And JSP Simultaneoulsy In Spring Boot

App". oodlestechnologies.
https://www.oodlestechnologies.com/blogs/Use-Thymeleaf-And-JSP-

Simultaneously-In-Spring-Boot-App/ (accessed: Mar. 26, 2019).

[15] Bootstrap. “Introduction”. Bootstrap.

https://getbootstrap.com/docs/4.3/getting-started/introduction/

(accessed: Feb. 19, 2019).

[16] FreeHTML5.co. “Foodee: Restaurant Free HTML5 Bootstrap

Template”. FreeHTML5.co. https://freehtml5.co/foodee-restaurants-

free-html5-bootstrap-template/ (accessed: Feb. 19, 2019).

[17] Oracle. “Chapter 1 General Information”. MySQL.

https://dev.mysql.com/doc/workbench/en/wb-intro.html (accessed:

Feb. 10, 2019).

[18] Oracle. “Chapter 1 General Information”. MySQL.

https://dev.mysql.com/doc/refman/5.5/en/introduction.html (accessed:

Feb. 10, 2019).

[19] The jQuery Foundation. “JQuery API”. jQuery. https://api.jquery.com/

(accessed: Apr. 2, 2019).

[20] Pusher. “Channels overview”. Pusher docs.

https://pusher.com/docs/channels (accessed: Apr. 20, 2019).

[21] O. Belmonte Fernández. “Programación Avanzada. Interfaces gráficas

de usuario. Swing: Contenedores y componentes”. UJI.

http://www3.uji.es/~belfern/Docencia/Presentaciones/ProgramacionA

vanzada/Tema3/swing.html#1 (accessed: Mar. 29, 2019).

[22] campusMVP. “Cómo enviar correo electrónico con Java a través de

GMail”. campusMVP.

https://www.campusmvp.es/recursos/post/como-enviar-correo-

electronico-con-java-a-traves-de-gmail.aspx (accessed: May 7, 2019).

[23] J.A. Castillo. “LDAP: Qué es y para qué se utiliza este protocolo”.

Profesional review.

https://www.profesionalreview.com/2019/01/05/ldap/ (accessed: Dec.

28, 2018).

[24] J. Mejía Viteri, M. Gonzáles Valero, and A. España León, “Gestión de

Usuarios Con LDAP (Lightweight Directory Access Protocol) para el

Acceso a los Servicios Tecnológicos y a la Información en las

Empresas”, JSR, vol. 1, n.º CITT2016, pp. 10-15, Aug. 2016. [Online].

Available at:

https://revistas.utb.edu.ec/index.php/sr/article/view/84/66. Accessed:

June 2019.

https://www.thymeleaf.org/doc/tutorials/2.1/usingthymeleaf.html
https://www.oodlestechnologies.com/blogs/Use-Thymeleaf-And-JSP-Simultaneously-In-Spring-Boot-App/
https://www.oodlestechnologies.com/blogs/Use-Thymeleaf-And-JSP-Simultaneously-In-Spring-Boot-App/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://freehtml5.co/foodee-restaurants-free-html5-bootstrap-template/
https://freehtml5.co/foodee-restaurants-free-html5-bootstrap-template/
https://dev.mysql.com/doc/workbench/en/wb-intro.html
https://dev.mysql.com/doc/refman/5.5/en/introduction.html
https://api.jquery.com/
https://pusher.com/docs/channels
http://www3.uji.es/~belfern/Docencia/Presentaciones/ProgramacionAvanzada/Tema3/swing.html#1
http://www3.uji.es/~belfern/Docencia/Presentaciones/ProgramacionAvanzada/Tema3/swing.html#1
https://www.campusmvp.es/recursos/post/como-enviar-correo-electronico-con-java-a-traves-de-gmail.aspx
https://www.campusmvp.es/recursos/post/como-enviar-correo-electronico-con-java-a-traves-de-gmail.aspx
https://www.profesionalreview.com/2019/01/05/ldap/
https://revistas.utb.edu.ec/index.php/sr/article/view/84/66

83

[25] Apache Directory Studio. “The Eclipse-based LDAP browser and

directory client”. Apache Directory.

https://directory.apache.org/studio/ (accessed: Feb. 27, 2019).

[26] M. Yunus. “Online LDAP Test Server”. Forum Systems.

https://www.forumsys.com/tutorials/integration-how-to/ldap/online-

ldap-test-server/ (accessed: Feb. 28, 2019).

[27] zFlex Software. “Free zFlex LDAP Cloud Server”. zFlex Software.

https://www.zflexsoftware.com/index.php/pages/free-online-ldap

(accessed: Feb. 28, 2019).

[28] G. Thomas. “Common LDAP Properties and Script Attributes List

with Examples”. Computer Performance.

https://www.computerperformance.co.uk/logon/ldap-attributes-active-

directory/ (accessed: Mar. 1, 2019).

[29] Google Developers. “Using OAuth 2.0 to Access Google APIs”.

Google Identity Platform.

https://developers.google.com/identity/protocols/OAuth2 (accessed:

May 12, 2019).

[30] Moodle. “Web services”. moodle.

https://docs.moodle.org/dev/Web_services (accessed: May 17, 2019).

[31] Comisión Europea. “Lo que le cuestan sus electrodomésticos y cuánto

CO2 emiten”. Comisión Europea.

http://ec.europa.eu/clima/sites/campaign/pdf/table_appliances_es.pdf

(accessed: Jun. 8, 2019).

https://directory.apache.org/studio/
https://www.forumsys.com/tutorials/integration-how-to/ldap/online-ldap-test-server/
https://www.forumsys.com/tutorials/integration-how-to/ldap/online-ldap-test-server/
https://www.zflexsoftware.com/index.php/pages/free-online-ldap
https://www.computerperformance.co.uk/logon/ldap-attributes-active-directory/
https://www.computerperformance.co.uk/logon/ldap-attributes-active-directory/
https://developers.google.com/identity/protocols/OAuth2
https://docs.moodle.org/dev/Web_services
http://ec.europa.eu/clima/sites/campaign/pdf/table_appliances_es.pdf

ANNEX A. ADMINISTRATOR MANUAL

When the administrator logs into the application, he will access to the

administrator page where he will be able to perform the following actions:

Restaurant/cafeteria scenario configuration

The administrator introduces the square meters of his restaurant and clicks on the

squares. Each green square represents a seat that the users will reserve.

Employees registration

The administrator registers the employees of the business and they will be able then to

access to the employees’ page. An email with the password will be automatically sent to

them.

It is also possible to delete an employee account from here.

Events registration

The administrator registers the events that will appear in the users’ page. He will also be

able to delete them.

Dishes registration

The administrator registers the food dishes that the users will buy. There are some types

in which the dishes can be classified: starters, salads, meats, seafood, pasta, pizzas,

vegetarian, drinks, desserts and gluten-free. If a type is not used, it will not appear in the

food menu.

Dishes can be removed.

Social networks registration

The administrator writes the profile links of the social networks in which the

restaurant/cafeteria has an account and the users will access to the profiles by clicking

on the logos that will appear on the footer of every pages. If a social network is not

registered, it will not appear in the footer.

Synchronize users from an LDAP Directory to UCOME

The new users (those that didn’t exist in the application) will receive an email with the

new generated password to access to UCOME, but they will now be able to log in

through their LDAP credentials. If the user was already synchronized, no operation will

be carried out, unless any field of his LDAP user was updated. Then, it will be updated

in UCOME too.

Statistical control

The administrator sees all the dishes registered and the quantity sold of each of them.

The total revenues are also displayed.

When filtering by date, only the sold dishes and the revenues earned in that date range

are displayed, allowing for example to see the revenues month by month.

ANNEX B. USER MANUAL

Login

The users can log in into UCOME through Office 365, Google, Aula Global, LDAP and

UCOME; or sign up if they haven’t done it yet.

Free seat

The user clicks on the “Free seat” button when he has finished eating to make his seat

available for others.

Modify profile

The user modifies his profile data or deletes his account.

See purchases

The user sees all the purchases done, the date in which was done, and the price paid.

Top dishes

The user sees the top 8 most purchased dishes.

Upcoming events

The user sees the events that will be celebrated soon.

Seat/table reservation

The green squares are the free seats that the user can click on to reserve that seat and the

red ones are the occupied ones. A form is provided in case someone wants to reserve a

full table or to celebrate any event there. An email is sent to the admin when submitting

the form with the message and the information.

Buy food

After reserving a seat, the user can buy the dishes and will be added into the cart.

Payment

The user sees the dishes that he wants to buy in the cart. He can delete them from the

cart.

The payment is carried out through PayPal.

ANNEX C. EMPLOYEES MANUAL

When the employees log into the application, they will access to the employees’

page where they will be able to perform the following actions:

Order delivery

When the users make their payments, the orders will automatically appear in the

employees’ page with some information: dishes ordered, name and photo of the user

that made the payment and where is he located in the restaurant/cafeteria. With this

information employees will be able to prepare the order and to take the order to the seat

where the user is.

After clicking on the “Served” button, the order disappears.

Modify profile

Employees can modify their profile information.

	1 INTRODUCTION
	1.1 Context
	1.2 Motivation of Work
	1.3 Goals
	1.4 Structure of work
	1.5 Regulatory framework
	1.6 List of abbreviations

	2 RELATED WORK
	2.1 The Evolution of the Web
	2.2 Web development technologies
	2.2.1 Java EE
	2.2.1.1 Spring vs Struts

	2.2.2 PHP
	2.2.3 ASP.NET
	2.2.4 Ruby on Rails
	2.2.5 Go and Node.js
	2.2.6 Decision

	2.3 Software Architecture
	2.3.1 Monolithic Architecture
	2.3.2 Microservices Architecture
	2.3.3 Comparison
	2.3.4 Decision

	2.4 Spring Framework
	2.4.1 Introduction
	2.4.2 Versions
	2.4.3 Characteristics
	2.4.4 Spring Boot
	2.4.5 Decision

	2.5 Maven
	2.6 Similar applications in the current market

	3 SYSTEM ANALYSIS
	3.1 System functionalities
	3.1.1 Neither signed up nor logged in users features
	3.1.2 Administrator features
	3.1.3 Customers features
	3.1.4 Employees features

	3.2 Functional requirements
	3.3 Non-functional requirements

	4 SYSTEM DESIGN
	4.1 Project structure
	4.2 System Architecture
	4.2.1 Spring Web MVC
	4.2.1.1 MVC pattern
	4.2.1.2 MVC implementation in Spring

	4.3 User Interfaces Design
	4.3.1 JSP and Thymeleaf
	4.3.1.1 JSP
	4.3.1.2 Thymeleaf
	4.3.1.3 Comparison
	4.3.1.4 View Resolver

	4.3.2 Bootstrap

	4.4 Physical Database Design
	4.4.1 MySQL
	4.4.1.1 Database structure

	4.4.2 ORM in Spring
	4.4.2.1 Spring Data

	5 DEVELOPMENT
	5.1 Development environment
	5.2 Used technologies
	5.2.1 JQuery
	5.2.2 AJAX
	5.2.3 Pusher
	5.2.4 Swing
	5.2.5 JFreeChart
	5.2.6 JavaMail

	5.3 Authentication
	5.3.1 LDAP
	5.3.1.1 Apache Directory Studio
	5.3.1.2 Login
	5.3.1.3 JNDI
	5.3.1.4 LDAP Synchronization

	5.3.2 Azure Active Directory
	5.3.2.1 Office 365
	5.3.2.2 Spring Security OAuth2

	5.3.3 Google
	5.3.4 Aula Global

	5.4 Payment
	5.4.1 PayPal Sandbox

	5.5 Order delivery
	5.5.1 MySQL replication

	5.6 HTTPS

	6 SOCIO-ECONOMIC ENVIRONMENT
	6.1 Socio-economic impact
	6.2 Budget

	7 CONCLUSIONS
	7.1 Main conclusions
	7.2 Level of goals achievement
	7.3 Future work

	BIBLIOGRAPHY

