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SUMMARY

The main goal of this thesis is to prove the validity of an optimizer based on the MATLAB
program GPOPS, for solving complex problems on orbital transfer dynamics.

Nowadays, optimization is one of the most important fields in space exploration. The
high cost of space missions makes that every project developed must be perfectly studied,
calculated, optimized and well executed. Hence, optimization programs appear as a very
suitable solution for trying not only to prove the validity of a solution already designed,
but also to provide a more optimal solution for any problem proposed .

In this study, a program has been developed based on an open source program called
GPOPS, a MATLAB software for solving optimal control problems. This tool is able
to return an optimal solution for problems approached as a dynamical system whenever
it has a consistent initial guess. This initial guess generally is the mission wanted to be
analysed and optimized. It is very important for the optimizer, since it will have a strong
dependence on the performance of the tool, for example, computation time and accuracy.

The problem studied has been a Jovian transfer previously proposed in a different study.
This journey implies moving from the Jovian moon Callisto, to an other Jovian moon,
Ganymede, using an interesting element from Space mechanics, invariant manifolds, a
really useful element for Low Thrust manoeuvres. This mission in particular, has as main
objective the exploration of these celestial bodies, being the transfer time not a key factor.
This fact ends with a multi-revolution Low Thrust manoeuvre.

During this thesis, different solutions were analysed such as: three and two body problem
for the dynamics point of view, inertial and non-inertial reference systems and different
mathematical methods.

After the results obtained, it can be concluded that the tool was able to prove the validity
of the solutions or initial guesses given. However, after all the time spent working on the
program, it has been demonstrated that this tool has a considerable room of improvement
and a considerable number of upgrades have been proposed.

Keywords: Optimization; Space; Three Body problem; Jupiter; Invariant Manifolds
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1. INTRODUCTION

During its History, the human being has set limits to itself for later, surpassing them.
Firstly with ground and sea transport, humans were able to cover longer distances or
heavier cargo, in less time. Later, they had the dream of flying and in the last century,
they did it. The world was connected thanks to the airplane. Finally, the last big advance
in transport was achieved at April 12th, 1961 humans reached the space.

Space transport probably is one of the key factors of the technological development of the
last part of the previous century and the first part of the current one i.e, the creation
of a global communication network with satellites. This milestone has provided the
development of the web, computers, cellphones, smartphones, which at the ends came
up with real time communications through all the globe, breaking the term of distance.
As a consequence, nowadays everyone can talk about globalization, one of the pillars of
21st century.

Concurrently, it has helped to share knowledge worldwide, producing one of the periods in
human history with highest technological development with the 3rd Industrial Revolution
in the last part of the previous century and nowadays, with the 4th Industrial Revolution.

In the beginning of space exploration, efficiency was not the main goal. During the Cold
War, for the United States and the Soviet Union, their main objective was to break the
limits faster and surpass its contrary, no matter how much it will cost. Humans reaching
the Moon together with the end of the Soviet Union years after, caused that the interest
in space was lost significantly, mainly in terms of social popularity, due to its extremely
high cost. This caused an extremely reduction in space investment by governments which
were the main agents in this sector. Space industry needed to change its business model.

In 21st Century, the appearance of the private sector in space transport has changed the
industry. As in air transport, lot of companies are moving forward a common objective,
efficiency. This fact reduces cost, making space more affordable and profitable and
therefore more attractive to investment.

For the next decades, reducing costs should be the next step for space exploration.
Companies such us Space X or Blue Origin in United States or PLD Space, Deimos,
Zero to Infinity in Europe, are introducing this model with very positive results.

Nowadays, Low Earth Orbits and Geostationary Orbits are almost conquered, lot of
business stills being in these distances such us the ones developed by the companies
named later, but now, the humankind is looking for new opportunities outside the Earth.
These new challenges seem to be located in the Solar System specially, in the nearest
neighbour, Mars
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1.1. Motivation

This study was born with an initial purpose, finding different options to reach Mars,
specifically carrying to MARS a satellite range. This fact is crucial for the development of
Mars as a suitable stop for human kind, however, developing a satellite network in Mars
is not as "easier" as in Earth. The main reasons are:

1. Firstly, one main reason is distance. The mean distance between Earth and Mars
is approximately 225 millions of kilometres. An extremely large value if it is
compared to LEO orbit which has a range of 200 to 2000 kilometres or to GEO
which is reached at an altitude of 36000 kilometres.

In addition, satellites maintenance if required, is extremely easier near Earth where
a wide amount of resources can be obtained unlike Mars. Moreover, if maintenance
is not possible, replacing the satellite is easier for Earth Orbits than Mars orbits,
unless Mars has a satellite factory, which at short term seems not possible.

2. Secondly, is launch mass. The last generation of GPS satellites, the III generation,
has a mean launch mass of 3800 kg for single satellite [1]. For completing a GPS
constellation on Earth, 24 satellites are required. Hence, if a symply constellation
of satellites such as a terrestrial one is desired, at least 8 launches of a Falcon Heavy
rocket, the most powerful rocket on the market nowadays [2], would be needed1.

3. And last but not least is the project’s cost,. This element is extremely related with
the launch mass and actually is the most relevant. The higher is the launch mass,
the higher is the cost of the mission.

After this short and pessimistic analysis of the possibility to implement a satellite network
on Mars, a possible solution came up, smallsats. This technology is able to solve the main
threats exposed previously:

• Firstly, the launch mass is reduced, since this technology has a branch of masses
significantly lower in comparison with usual Earth satellites, such us the ones used
at GPS constellations. These values generally oscillates between 1 kg to 200 kg.

• Secondly, a new alternative appears. A wide amount of smallsats can be packed
together and then launched with an equivalent mass as the payload of a nominal
satellite. Reducing the amount of launches needed to perform a constellation.

• Thirdly, and related with the first fact, the cost of the mission is reduced significantly
since the payload for the rocket is shortened or less launches are needed to perform
the mission.

1This conclusion has been done taken into account literally its specifications [2], probably making a deep
analysis, this value should increase.
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• Through all this analysis, the assumption of using chemical propulsion for reaching
Mars was the one used, since Electrical propulsion can not put up with the transfer.
Now, with smallsats the opportunity appears. This last fact is the key and later the
main base for this study.

The possibility of using Electric Propulsion opens the possibility for a Low Thrust
manoeuvre. This type of orbits increases complexity in the design phase and as stated
at the beginning, efficiency is a key factor for the current business model in space
transportation. Hence, every designed mission must be, from the beginning, fully
optimized.

The idea of an optimizer

Achieving the initial purpose of carrying to Mars a suitable satellite constellation, is
a long term project and therefore too extent for a single thesis. Its requires lots of
different disciplines such us, telecommunications, propulsion design, systems design
among others. But the purpose still there.

So following the trends of the industry, an optimizer for Low Thurst Manoeuvres was
decided to be done. This tool, although should be designed for Earth-Mars transfers,
finally is designed for every mission desired , as long as the user knows the dynamics of
the system and has already a mission designed for being optimized.

This program, at its concept, would help mission designers to optimize every mission
needed if and only if previously it was designed and viable. But this tool, after its design
should pass a validity process. This is the main motivation of the project, developing an
optimizing tool and later prove its validity.

1.2. Objective

The main target of this thesis is to design and prove an optimizing program based on an
open source MATLAB optimizer software called GPOPS. For proving the validity of the
tool, a Circular Restricted 3 Body Problem (CR3BP) using invariant manifold dynamics
will be studied based in a Jovian transfer from Callisto to Ganymede already solved such
us the one in [3] will be studied.

1.3. Outline

The report’s structure has been designed in order to follow the program structure:

In Chapter 2, the nature of the optimizer is explained as well as its structure and
mathematical methodology.
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In Chapter 3, all the concepts regarding the Initial guess used are explained. The method
used, the basis for its development and how it was designed. Finally, in this chapter the
auxiliary initial guess used is also explained.

In Chapter 4 all the background regarding physics is explained. Firstly, the main problem
used for the study, the Circular Restricted 3 Body Problem. Secondly, the general
assumptions followed during the project. To conclude, the secondary dynamics of the
project divided mainly in two, according to the reference system used: the inertial
approach and the non-inertial approach.

In Chapter 5, the results obtained after all the simulations are plotted. In order to follow
the same structure as the one in Chapter 4, firstly, the solutions obtained from the initial
guess are plotted. Secondly, the other mission proposal calculated is shown. Lastly, the
difference between both solutions is defined.

To conclude, Chapter 6 evaluates all the solutions given, the validity of the tool and states
some possibilities for future work.

1.4. Regulatory framework

The whole project was developed in Spain, mainly in la Comunidad de Madrid. In
addition, no dangerous materials or equipment has been managed during the process.
Neither dangerous places such us factories or laboratories were needed for doing the
project. Hence, all the elements needed were an office and a computer.

In consequence, the legal framework that comprehend this project is the one related with
offices and devices with screen.

In conclusion, the legislation considered is the one which includes aeronautical projects,
since space legislation was not found for Spain, however, it should be very similar. Hence,
the following legal framework is considered:

(i) The relationship company-worker in the Comunidad de Madrid for an aeronautical
project is recolected in the collective bargaining agreement 28006522011990 of the
Official Bulletin of the Comunidad de Madrid, number 60 from March 10th, 2018.

(ii) The project legislation regarding labour risks is defined at Ley 31/1995 from
November 8th.

(iii) Real Decreto 486/1997 from April 14th, establishes the minimum regulation of
Health and Security in work places.

(iv) And finally, Real Decreto 488/1997 from April 14th, standardizes the jobs which
have equipment with screens.

In addition, this tool as a Software project for academic purposes has not specific
regulations regarding type of project. Moreover, since the tool is an open software, it
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has free access to operation and changes. However, if it is desired to include the software
in a project from a company, there exist some standards that could be followed:

(i) IEEE 1074: Developing Software Life Cycle Processes, where all the processes for
the life cycle of a Software are specified.

(ii) IEEE 1219: Software Maintenance where all the process regarding software
maintenance and execution are standardized.

1.5. Socio-Economic Environment

This section encompass all the elements which the projects affects socially and
economically. It is divided in two main parts: the Project’s Budget and the
socio-economic impact of the project.

1.5.1. Project’s Budget

In this part, all the costs involved in the project’s generation are taken into account except
the indirect costs such as work place, light and gas. These expenses have been assumed
as 0 since they were all provided by the university, and they have not been included in the
budget.

Next, the project’s budget together with the explanation of each element has been written:

Description Price
COMPUTING DEVICE 430 e
The computing device has been a portable computer.
Specifically an HP Probook 430 G2.

MATLAB LICENSE 0 e
The tool used for all the project. Since the Licence
is provided by the university, it has null cost

ENGINEERING HOURS 8750 e
The nominal cost of a engineer has been set in
25 €/hour. This price is for an engineer fully
dedicated to an optimization task and has been
assumed according to market values

Total 9180 e

TABLE 1.1. PROJECT’S BUDGET
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For the part of engineering hours, 350 hours of project were introduced. Although a
nominal project like this should last 300 hours, more time was needed for developing the
project.

Concurrently with the project’s specifications a Gantt diagram was performed for showing
how the engineering hours were distributed during the project.

Fig. 1.1. Gantt diagram of the project

In this diagram is reflected all the process done in the project. However, in this report not
all the process done have been introduced since they are not relevant for the project itself.
Test 1 was a simple training for getting used to the tool and Test 6 did not reach any useful
conclusion. Nevertheless, they have been taken into account for the process pricing.

1.5.2. Socio-economic impact of the tool

Space industry is continuously changing the economy and society in the 21st century. Its
effect can be observed in all the industries specifically in telecommunications. However,
it is just the beginning.

Enabling Space transportation for different places in the Solar Systems can produce a
higher impact for the socio-economic environment than the one produced by events such
as the Silk road utilise by Marco Polo or the Discovery of America.

Those elements produced a significant change in human history since it allowed to
develop new and a wide quantity of jobs, new places to live, new countries or new
economic agents. This effect will be higher for Space Exploration, since the number
of people affected by such a type of change is extremely larger than the living population
from those days.
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This project and its future work could be a catalyst for this development since they could
save an important quantity of money to the industry.

One of the main advantages of this sector is that for the last decades, most of the projects
have been completely studied, its safety factor has increased and the industry has reduced
its price significantly.

The tool developed could help in the future to do this work faster and therefore, save
money in two ways: with the mission cost itself due to mass reduction or time reduction
and with the cost of mission designed, since the optimal solution could be reached faster
and easier.

Putting specific numbers for this improvements is very difficult due to the variety of
mission types and prices in the space industry, however, its main effect has been explained
wide enough.
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2. THE OPTIMIZER

The tool used during all the project is a MATLAB based program called DMG tool [4].
Likewise, this tool is based in an open software called GPOPS which corresponds to
Gauss Pseudospectral Optimization Software.

This program was developed by the union of MIT, Draper laboratory and the University
of Florida and published under a Simple Public License. This tool works mainly with
a Gauss Pseudospectral Collocation Method, which shortly is defined as an orthogonal
method where the collocation methods are the Legendre-Gauss points2.

On the other side, the DMG tool was a modified software which implements the Hermite
Simpson Collocation Method for obtaining a Non linear Optimization Problem from the
continuous optimal control problem.

2.1. Structure of the program

The structure of this report is based on the structure of the program itself. This software
as sketched in Figure 2.1 is composed mainly by three pillars: Initial Guess, dynamics of
the problem and Mathematical method used.

The two first elements will be explained in detail at Chapters 3 and 4 respectively. The
mathematical method used, as said before, is the Hermite Simpson Collocation method.

Fig. 2.1. Inputs for the DMG tool

2The basis for this method is not needed to know for the understanding of the work done since other method
will be used, however, a brief description was done. For more information please go to [5].
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2.2. The Hermite Simpson Collocation method

This method requires a set of equations to state the dynamics of the problem and an initial
guess. This initial guess is divided in intervals where its limits are called nodes, therefore,
the number of intervals will depend on the number of nodes chosen. These intervals are
produced in the state and control variables of the problem, leading to the intervals shown
in Figure 2.2.

Fig. 2.2. Hermite Simpson Collocation method sketch from [6]

The blue dots of Figure 2.2 represent those nodes having a set of points [xk, uk, xk+1, uk+1].
These represent the state variable as x, and the control variable as u, for the interval of
time [tk, tk+1]. The dynamics provided are used for obtaining the time derivatives of the
nodes ending with four pieces of information that gives the possibility of coming up with
a third order Hermite polynomial. However, this polynomial is not able to satisfy the
dynamics provided for the whole interval [tk, tk+1], since it is only able to solve the ones
at the nodes.

Let [xc, uc] at tc the middle point between the nodes, called the collocation point,
represented at Figure 2.2 as the red diamond. Making ∆ = ẋc− f (xc, uc) = 0, a polynomial
can be obtained that satisfies all the points from the whole interval [tk, tk+1].

The detailed procedure of the method is derived as follows [6]. The function 2.1
represents the state variable in the interval chosen [tk, tk+1], in a third order form:

x(t) = a0 + a1t + a2t2 + a3t3 (2.1)

yielding with its time derivative,

ẋt = a1 + 2a2t + 3a3t2 (2.2)
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where [a0, a1, a2, a3] are the coefficients of the polynomial.

In order to simplify the notation, the time interval will be [0, h], giving that the values of
the nodes for the state variable are x (0) and x (h) and its time derivatives are ẋ (0) and
ẋ (h). Using equations 2.1 and 2.2 yields with:


x(0)
ẋ(0)
x(h)
ẋ(h)

 =


1 0 0 0
0 1 0 0
1 h h2 h3

0 1 2h 3h2



a0

a1

a2

a3

 (2.3)

This system helps to obtain the coefficients for the interpolated polynomial:


a0

a1

a2

a3

 =


1 0 0 0
0 1 0 0
− 3

h2 −
2
h − 3

h2 −1
h

2
h3

1
h2 − 2

h3 −
1
h2



x(0)
ẋ(0)
x(h)
ẋ(h)

 (2.4)

Then, the coefficients can be obtained since the values for the nodes are known and the
parameter h also. With them, the collocation point and its time derivative can be obtained
as the next formulas:

xc = x
(
h
2

)
=

1
2

(xk + xk+1) +
h
8

[ f (xk, uk) − f (xk+1, uk+1)] (2.5)

ẋc = ẋ
(
h
2

)
= −

3
2h

(xk − xk+1) −
1
4

[ f (xk, uk) + f (xk+1, uk+1)] (2.6)

At the same time, the control variable at the collocation point is calculated with linear
interpolation,

uc =
uk + uk+1

2
(2.7)

To conclude, as set at the beginning of the section, the solver tries to reduce to 0 the
integration defect, ∆ = ẋc − f (xc, uc), which using the information given in equation 2.6
can be expressed as:

∆ = ẋc − f (xc, uc) = xk − xk+1 +
h
6

[ f (xk, uk) + f (xk+1, uk+1) + 4 f (xc, uc)] (2.8)

The NPL solver will use the values [xk, uk, xk+1, uk+1] for achieving its objective
of minimizing the integration defect and therefore, the polynomial obtained will be
approximated to the true dynamics of the problem within the accuracy of numerical
integration.
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To sum up, the optimizer requires several elements in order to work such us the dynamics
of the problem, the initial conditions and final conditions of the problem and the
mathematical method. But what is more critical for the optimizer is the initial guess.

The initial guess is so important due to the direct effect into the capacity of the optimizer
for obtaining a solution. If the initial guess introduced does not fulfil the dynamics used
at the beginning, the first iteration of the program, which is this input guess, will produce
that the optimizer gets away from the solution in the beginning, requiring more time for
the convergence of the solution. Generally, for a bad initial guess,3 the optimizer does not
reach a solution.

Next all the basis needed for the development of the initial guess will be shown. This was
one of key point for the development of the project.

3i.e. a transfer designed for two body problem and the dynamics introduced are for three body problem, or
a transfer where the initial conditions given to the optimizer are not the ones at the guess.
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3. INITIAL GUESS

As sketched before, new trends in space industry are moving forward optimization, low
cost, economically friendly projects and multifunction missions. They can perform a
wide variety of objectives for a single mission, implying that the mission performed must
be optimized at maximum. Generally, after analysing all the variables involved in the
mission, it ends up with two main variables for optimizing: minimizing the fuel mass
consumed during the mission, or minimizing the time that the execution lasts. Both have
its strengths and weaknesses.

The aim of this chapter is to define properly the initial base of the project, since later, it
will prove the validity of the optimization tool.

3.1. Choosing the main objective

Minimizing the fuel mass implies that the spacecraft needed is lighter and therefore its
launch cost is lower, but it has a main drawback. Usually, the execution time for this type
of mission increases significantly, which implies mainly in an increase of two important
costs of the project: the cost in spacecraft systems since they need to last longer and be
more reliable, and the cost of the workforce since they will need to get involved in the
mission more time.

On the other side, minimizing time has other type of consequences on the cost. Since
fuel mass is less taken into account, the spacecraft will be heavier raising the price of the
launch but, probably, systems will last shorter being more cheaper.

In this particular mission and following the objectives used by Fantino & Castelli in [3],
time spent in the transfer will be the one minimized. Nevertheless, the optimization
problem has been designed for taking into account both objectives, minimizing time and
mass in the case that both cases want to be analysed. However, in this study, only time
reduction will be studied.

Before introducing the initial guess given and the method used to obtain it, it seems
convenient to introduce the system and the elements used for designing the input data
used.

3.2. Lagrange Points

One of the singularities when studying the orbital dynamics of a system are the Lagrange
Points. This particular points are obtained when the third body in a Three Body problem
(explained in depth at Chapter 4, Section 4.1.1) moves with the same frequency as the
primaries, the bodies of higher mass. In those points there exist an equilibria between all
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the elements of the problem, where from the point of view of the third body the system is
motionless.

Fig. 3.1. Example of a general Planet-Moon system with its Lagrange Points from [7]

In Figure 3.1, the 5 possible Lagrange Points that a system as the one used in the study
can have, are plotted. However, for the project its self only the two first points L1 and
L2 are going to be used since the other three of them, are not accessible due to potential
energy issues. This not accessible region is represented as the grey zone at Figure3.1.

The concept of Lagrange points is significant for space exploration, mainly for
investigation. Missions such us LISA among others [8], use the stability of these
singularities to observed different objects and phenomena in Universe. However, this
positions are very difficult to be maintained among time and therefore expensive.
Extremely accurate systems are needed to achieve this goal, such us Micro-Propulsion
or very accurate Real Time positioning.

3.3. Lyapunov orbits

Although using Lagrange Points, LP, seems very suitable for observing and mapping the
Jovian moons following the main objective of the mission, it adds a significant amount of
complexity to the problem.

At this point, a concept in line with the Lagrange Point appears. As specified before an
special interest comes for Points L1 and L2, which in addition as specified in Figure 3.1,
are the closest coordinates to the moon, and advantage for the mission.

These points after a linearised analysis of the potential equation, appears as saddle points.
This ends in the Lyapunov theorem which states that: "there is a family of periodic orbits
surrounding each of these points; one can think of this as meaning that one can ’go into
orbit about these points’"[7].
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Those orbits can provide the same advantages as the ones given by the LPs but adding one
more advantage, reaching and maintaining those orbits are easier than LP. Maintaining the
orbit is similar to a conventional orbit around a celestial body hence, is easier since there
exist a wide amount of knowledge and practice in this area.

Reaching the trajectory is easier since there exist some ballistic movements that can end
in those Lyapunov Orbits, the invariant manifolds.

3.4. Invariant manifolds

L1 and L2 points as saddle points of the system, experiment two different behaviours: a
tendency of getting closer to the point and a tendency of getting away from it. Those
tendencies are:

• Heteroclinic behaviour which is defined as the movement that makes a mass getting
away from the main LP to the other. This can be defined as the non stable part of
the saddle point. This trajectory is useful for getting away from one LP.

• Homoclinic trajectory. This element, on the contrary of hetereoclinic trajectories,
tends to move the mass to the LP and in particular to the Lyapunov’s orbit, LO. This
is the stable behaviour of the system and is useful for trying to reach a LO of the
desire Lagrange Point, since is an stable manifold.

Fig. 3.2. Example of an invariant Manifold for the Earth-Moon system

Figure 3.2, shows an stable manifold, homoclinic trajectory as the green coloured and an
unstable manifold as the red coloured. Both types of trajectories are really important for
the method used on the initial guess since a combination of both trajectories are the one
used.
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3.5. The basis for the method

Now, that the concept of invariant manifold has been given, let’s introduce the
methodology used at [3], in order to design its proposal for a transfer mission.

3.5.1. Transfer design

Knowing in depth the basis of invariant manifolds dynamics, it can be concluded that
joining an heteroclinic and homoclinic manifolds from different systems could derivative
in an interesting solution for a transfer.

Fig. 3.3. Example ofthe method used in a different system, in this case, a transfer from Earth-Sun
L2 to Moon-Earth L1.[3]

For example, let be the red mapping of Figure 3.3, the unstable manifold of L2 of an
Earth-Sun system and the green path, the stable manifold of the L1 for a Earth-Moon
system. By a manoeuvre, ∆V , at the matching point between both manifold, both paths
can be connected and by a ballistic trajectory, the moon can capture the spacecraft, ending
in a Lyapunov orbit at Earth-Moon L1, since is the stable path.

However, this matching paths are not always as easier to match as sketched in Figure
3.3. Since both systems have its own rotatory systems, the possible manifolds trajectories
will not always coincide, or if they coincide, the manoeuvre at the Patch Point required
will not always be as easier as shown. Specially for a Jovian transfer, where the moons
rotates significantly faster than in an interplanetary system as Earth-Sun system. Figure
3.4 shows perfectly that depending on the value of that α0 angle which is a function of
time, the system can be aligned or not.
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Fig. 3.4. An example for the Jovian system with its Lyapunov orbits drawed [3].

Therefore in order to be able to design a solution for a Jovian transfer using manifolds
it seems convenient to analyse the different possible positions for the path point and
choosing one feasible solution. Figure 3.5 shows those possibilities:

Fig. 3.5. Different positions of the manifolds trajectories [3].

• First option disables the opportunity of having a patch point between both transfers,
since there not exist a conection between both trajectories. So it will not be a
possible solution.

• Second option, a tangent intersection between both trajectories, reflects a common
point between both transfers and insinuates that this solution could be the most
easier for the patch point manoeuvre, since a low ∆V would be needed for switching
trajectories.

• Finally, the last option, an intersection between both trajectories, comes up with
the possibility of having two different manoeuvres for reaching the destiny but with
more abrupt changes in the trajectory.
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In conclusion, the tangent path seems to be the most suitable solution for the transfer
shortly presented, since requires less complexity and a lover value of ∆V and therefore
lower fuel mass required. This fact ends with a cheaper manoeuvre. Nevertheless, this
implies that the trajectory designed will be limited by the positions of both primaries and
therefore time. In consequence, the design should look for the exact moment of action.

3.5.2. The trajectory design

After knowing all the possibilities of joining two different manifolds trajectories from
different systems, the designing of the mission can be finally defined as a transfer which
goes from L1 point of Callisto-Jupiter system through an unstable invariant manifold, to
L2 of Ganymede-Jupiter system through an stable manifold, ending in a Lyapunov orbit
at L2.

In order to proceed, 4 different phases were proposed since different dynamics should
appear during the transfer:

1. The dynamics under the sphere of influence, CI, of the first Moon and the Lyapunov
orbit.

2. A CR3BP where the system is Spacecraft-Callisto-Jupiter. This region goes from
the CI of the first moon until the Patch manoeuvre.

3. A CR3BP where the system is Spacecraft-Ganymede-Jupiter. This region goes from
the Patch manoeuvre to the CI of the second moon.

4. Finally, in this last region, the dynamics under the sphere of influence, CI, of the
second Moon and the Lyapunov orbit of L2 will appear.

To conclude, for proving the validity of the optimizer, the second and third phase will be
the ones studied, and therefore its designed trajectory will be the initial guess used for the
project.

3.6. The initial guess and the trajectory designed

Before introducing all the mathematical background employed in this study, it seems
convenient to present the solution of the method previously named and also, the initial
guess used:
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(a) X coordinate vs time in days (b) Y coordinate vs time in days

Fig. 3.6. Initial position vectors respect to the inertial frame

The frame chosen for plotting this is the inertial frame exposed at 4.1.1. Furthermore,
the propulsion of the spacecraft in this problem is also significant, later explained at 4.2.
Bellow, the graph for the initial guess of the thrust orientation is plotted. It is significant to
sign that these angles represent the thrust orientation with respect to the inertial reference
frame previously stated.

Fig. 3.7. Thrust orientation vs time in days

3.7. Q-LAW optimisation as an alternative input

Working with the initial guess is one of the tests that the designed tool must pass.
However, for completing this analysis and encouraging its validity, other guess was
analysed.

This guess was an optimal solution obtained by the Q-LAW optimization tool. Since this
solution is already optimized taking into account time, it will be difficult for the optimizer
to return a better solution. But if the optimizer is able to give the same solution or almost
it, it will be an extra argument that could prove the validity of the program.
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This optimization method provides the optimal thrusting angles and the coast phases for
a transfer between two orbits around a central body. This fits perfectly with the problem
description. Although the functionality of the algorithm is not needed4, it is defined as
"efficient and robust to generate an optimal, well-spread Pareto-front of the transfer time
versus the required propellant mass for an orbit transfer between two arbitrary orbits" at
[9], concluding the suitability of the method.

3.7.1. Q-LAW solution

Before introducing the solution given, it is important to highlight that there exits some
differences between the solutions provided. As it can be seen at first sight, if a
comparison is done between the previous and the following graphs, these differences later
explained in Chapter 5, can be mainly summarized in a difference of mission endurance
of approximately 20 days.

However, these solutions have common initial and final conditions. This configuration
was done in order to obtain feasible conclusions after the optimization process.

As it was done for the initial guess, the plots of the solution used for the optimizer as input
should be known.

(a) X coordinate vs time in days (b) Y coordinate vs time in days

Fig. 3.8. Initial position vectors respect to the inertial frame for the Q-LAW

4For mote information of this method, the reader can find it at [9]

22



Fig. 3.9. Thrust orientation vs time in days for the Q-LAW method

To conclude this chapter, it seems that the Q-LAW solution is simpler than the initial
solution since it needs less revolutions for reaching its target destination. Hence, probably
solving this with the optimizer could end with a faster solution.
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4. DYNAMICAL MODEL

The objective of this chapter is to explain all the physical background used to develop this
study. Firstly the main theoretical dynamics of the problem. Secondly, the assumptions
taken during the project will be shown. Then, the main approaches of the reference
systems used for the problem will be explained, and lastly the optimizer and its methods
will be explained.

4.1. Dynamics of the problem

One of the key factors for developing the optimizer is the dynamics of the system. This
element will be strongly dependent on the tool’s ability of reaching a solution.

4.1.1. Three Body problem

The Three Body Problem (3BP) is one of the most used methods for calculating a transfer
orbit, which involves mainly two massive bodies (primaries) such as planets, stars or
moons, and finally, the spacecraft. This approximation of mechanical orbits is established
under the following assumptions:

• All the bodies involved in the problem are assumed to be point masses.

• The mass of the spacecraft can be simplified as a massless object, since the
primaries of the problem are extremely more massive than it.

• All the elements are contained in the same plane for this case, therefore all the
transfer is done at the XY plane.

• The two primaries rotate with constant angular velocity through the center of the
system, the barycentre.

• An inertial reference frame can be placed at the barycentre of the system.

• An non-inertial rotating reference frame called the synodic reference frame can be
used. This rotating frame has its origin at the barycentre of the system and it is
rotating with a speed which produces that the X axis is always collinear to the
vector that connects the two primaries.
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Fig. 4.1. This figure obtained from [7] shows the 3BP and its transformation to a synodic reference
frame which has a counter clockwise rotation. The z-axis points out the plane, not
represented in this image since the problem is simplified to a planar XY system.

4.1.2. Assumptions taken into account

For this study, further approximations of the 3BP were done in order to simplify the
problem and earning time from the simulations5. This are the assumptions considered:

1. Since the mass of Jupiter is significantly larger than the Jovians moons, Jupiter is
placed at the origin as the barycentre:

mJupiter ∼ 1027 kg � mCallisto ≈ mganymede ∼ 1023 kg

2. The orbits of the two moons are considered to be circular and contained in the
same plane, therefore the problem ends to be a Planar Circular Restricted 3 Body
Problem, PCR3BP.

3. The Transfer proposed in the study has its origin out of the sphere of influence
of Callisto, and ends in a Lyapunov orbit at L2 of the Ganymede-Jupiter system.
Therefore, the primaries of the problem are Jupiter and Ganymede, since Callisto
will not have influence on the dynamics of the problem.

4. The possible synodic reference frame of the system rotates at the same speed as
Ganymede, hence, it will have a period of approximately 7 days and 3 hours.

In conclusion, with all these previous assumptions and taking into account the Newtonian
physics, the dynamics used through the study could be divided in two different groups:

5As it can be seen in Table 5.2 time has been one of the main threads of the study. In order to develop
suitable results, simplifications were needed.
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4.2. Dynamics for the inertial reference frame

In this part, since all the dynamics are done in the inertial frame no accelerations terms
due to the rotation of the moon should be taken into account, hence the dynamics could
be simplified using Newtonian Dynamics as follows:

∑
F = mS/C r̈S/C = −G

mS/CmJ

ρ3
1

~ρ1 −G
mS/CmG

ρ3
2

~ρ2 (4.1)

Therefore the dynamics can be simplified as:

r̈S/C = −G
mJ

ρ3
1

~ρ1 −G
mG

ρ3
2

~ρ2 (4.2)

Since the optimizer used, needs a dynamical system well defined for proceeding, the
dynamics should be decomposed in the two axis of the problem, X and Y. This
decomposition can be seen in Equations 4.3, 4.4, 4.5, 4.6.

In addition, for improving the accuracy of the model proposed, the mass variation
with time was taken into account, introduced in the dynamical system by equation 4.7.
Although it is a low thrust manoeuvre, the propulsion is taken into account and therefore
its contribution on the mass variation. This effect is reflected in equations 4.5 and 4.6.
Finally the dynamical system remains like:

ṙx = vx (4.3)

ṙy = vy (4.4)

v̇x = −G
mJ

ρ3
1

ρx1 −G
mG

ρ3
2

ρx2 +
T cos(α) π

mS/C(t)
(4.5)

v̇y = −G
mJ

ρ3
1

ρy1 −G
mG

ρ3
2

ρy2 +
T sin(α) π

mS/C(t)
(4.6)

ṁS/C =
Tπ

goIsp
(4.7)

Where:

• ~r is the position vector in the Cartesian coordinates of the spacecraft.

~r = rx1~i + ry1~j

• ~ρ1 stands for the vector respect to the first primary, Jupiter, ~r1.

~ρ1 = ~r − ~r1 = ρx1~i + ρy1~j = (rx + (1 − ζL))~i + r2
y
~j

• ~ρ2 stands for the vector respect to the second primary, Ganymede, ~r2.

~ρ2 = ~r − ~r2 = ρx2~i + ρy2~j = (rx + ζL)~i + r2
y
~j
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Being:

– L = ‖~r1‖ + ‖~r2‖ and it is the distance between the two primaries.

– ζ = mG
mG+mJ

is a non dimensional parameter that relates both primaries

This dynamics are used during all the study for the cases where the inertial reference
frame was decided to be used. In the other cases, an synodic reference frame was used.

4.3. Synodic reference frame, an alternative solution

The manoeuvre proposed and the ones obtained, are a multi-revolution transfer. As
showed at Figures 3.6a, 3.6b, 3.7 the duration of the transfer is significantly long,
approximately 230 days, producing that the complexity of the position graphs is high,
due to the numerous turns around the main primary, Jupiter. The number of revolutions
in the initial guess is 20 and in the Q-LAW solution 19.

In consequence, a synodic reference frame apparently seems to simplify the initial guess
by reducing the number of turns, thanks to its rotation, and therefore, it should be easier
to obtain a solution, since the complexity is lower, the optimizer used should arrive to a
solution faster. In addition, since the computation is faster, another opportunity appears,
the accuracy of the model could be increased.

Before analysing the dynamics of the synodic frame, this premise should be proved. The
following graphs will show the same data exposed in Figures 3.6a, 3.6b, 3.7 respect to
this non-inertial reference frame, which has the same period as Ganymede:

(a) X coordinate vs time in days (b) Y coordinate vs time in days

Fig. 4.2. Initial position vectors respect to the synodic frame
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Fig. 4.3. Thrust orientation vs time in days

These plots agree with the premise presented before. Although it seems to be some
instabilities on Figures 4.2a and 4.2b, the number of revolutions are reduced. Hence,
it comes the opportunity of comparing both types of solution with the two initial guesses.
An advantage that later could be used for obtaining conclusions and setting future work
for the tool.

4.3.1. Dynamics for the synodic reference frame

After proving the validity of the synodic reference frame, its dynamics should be
established. Like is a non-inertial reference frame and following the procedure done at
Section 4.2, Non-inertial contributions should be taken into account in Equation 4.2:

r̈S/C = −G
mJ

ρ3
1

~ρ1 −G
mG

ρ3
2

~ρ2 − ~ω ×
(
~ω × ~r

)
+ 2~ω × ~̇r (4.8)

With this information as main premise, the dynamical system for the synodic reference
frame can be summarized in these equations:

ṙx = vx (4.9)

ṙy = vy (4.10)

v̇x = −G
mJ

ρ3
1

ρx1 −G
mG

ρ3
2

ρx2 +
T cos(α) π

mS/C(t)
+ ω2rx + 2ωṙy (4.11)

v̇y = −G
mJ

ρ3
1

ρy1 −G
mG

ρ3
2

ρy2 +
T sin(α) π

mS/C(t)
ω2ry − 2ωṙx (4.12)

ṁS/C =
Tπ

goIsp
(4.13)
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4.4. Non dimensional approach for the solutions

As the study was advancing with time, other main issue appeared while computing the
solution, it was the computation time. This item although was tried to reduced with the
change of reference frame to the synodic, at one point it was not enough.

For minimizing the computation time, the optimizer requires that all the variables of the
dynamic system should be at the same magnitude. In space dynamics, the variety of values
is significant: masses, distances, gravitational fields are some of the variables involved in
the system and all of them have different order of magnitude.

In consequence, reducing all the variables to the same order of magnitude was crucial for
the progress of this project. The best procedure to achieve this objective was to make all
the variables non dimensional.

In order to complete this objective, one main variable was tended to stay as 1, the
gravitational constant of Jupiter, µJupiter. Taking this statement as true for all the process
the following definitions where done:

u =
rx

lc
v =

ry

lc
τ =

t
tc

µ̄ =
µ

µJupiter
(4.14)

Where the c sub index reflects the characteristic variables of the problem. The
characteristic distance is the orbit radius of Ganymede for the circular motion and the
time is the one required for being µJupiter = 1:

Characteristic Variable Value
Distance, lc 1.0704 106 [km]
Time, tc 9.8391 104 [s] ≈ 1 day and 8 hours
Mass(S/C mass) mC 1000 [kg]

TABLE 4.1. CHARACTERISTIC VARIABLES FOR
NON-DIMENSIONALISATION

With these definitions the main variables are sketched: length, time, mass. Hence, it is
possible reduce all the variables of the problem to dimensionless parameters following
the Burckingham Π Theorem of dimensional analysis.
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4.4.1. Non dimensional dynamics for the inertial frame

Applying the dimensionless changes taken into account at Equation 4.14 and the variables
set at Table 4.1, the dynamical system showed at equations 4.3, 4.4, 4.5, 4.6 and 4.7 is
changed as follows:

u̇ = v̄x (4.15)

v̇ = v̄y (4.16)

ü =
1
‖ρ̄1‖

3 u −
µG

‖ρ̄2‖
3 v +

T̄ cos(α) π
m̄S/C(τ)

(4.17)

v̈ =
1
‖ρ̄1‖

3 u −G
mG

‖ρ̄2‖
3 v +

T̄ sin(α) π
m̄S/C(τ)

(4.18)

ṁS/C =
T̄π

ḡo Īsp
(4.19)

Where:
ρ̄1 =

ρ1

L

ρ̄2 =
ρ2

L

This process simplified significantly the complexity of the dynamic system and the
computation time was reduced importantly.

4.4.2. Non dimensional dynamics for the synodic frame

Next, the synodic system should be non dimensional, leading with the following formulae:

u̇ = v̄x (4.20)

v̇ = v̄y (4.21)

ü =
1
‖ρ̄1‖

3 u −
µG

‖ρ̄2‖
3 v +

T̄ cos(α) π
m̄S/C(τ)

+ u + 2v̇ (4.22)

v̈ =
1
‖ρ̄1‖

3 u −G
mG

‖ρ̄2‖
3 v +

T̄ sin(α) π
m̄S/C(τ)

+ v − 2u̇ (4.23)

ṁS/C =
T̄π

ḡo Īsp
(4.24)

Finally, the main physical background for the study has been exposed and the following
step will be the presentation of all the results obtained and the validation of the tool.
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5. RESULTS

Through all this section, the simulations done during the project will be shown. Two
main groups of simulations can be differentiated as set at Chapter 3: the first taking as
input the trajectory proposed at [3] and the one obtained with the Q-LAW program.

Both trajectories will be introduced in the optimizer in order to improve this solution or
at least to reach it, proving that the optimizer is able to produce a more optimal solution
or that the solution designed should be the best and the optimizer can reach the same
output than other optimization tools, such us Q-LAW optimization.

In order to follow the same structure as the one used at Chapter 3, first, the solution based
on the Solution proposed at [3] will be analysed, later the one designed by the Q-LAW
program will be studied.

5.1. First simulations with the initial guess

In the beginning, it is convenient to describe which are the main assumptions taken for
performing this very first analysis:

• The main objective of the transfer is to end up in a stable homoclinic invariant
manifold for ending in a planar Lyapunov orbit of L2 Jupiter-Ganymede, with a
final orbital radius of 1.0704 106km away from Jupiter6.

• The trajectory proposed ends after 231.84 days which approximately is 231 days
and 20 hours.

• The available thrust acceleration is 5 10−8 km/s. This fact is controlled thanks to
the maximum available thrust force and the mass of the spacecraft lately exposed.

• Since the main objective is minimizing endurance of the mission, this manoeuvre
is done at maximum available thrust.

• For this very first attempts, the influence of Ganymede will be assumed to be
zero. This simplification will help to not having initial noise perturbations for the
optimizer and reaching a solution faster for a one phase optimization.

6Note that this value is a 2-D approximation of the Ganimede’s orbit.
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As matter of fact, these assumptions will be the same for all the simulations done at
this study. Keeping these variables constant for all the simulations such us mass of the
spacecraft, initial position or final orbital elements, will help lately to perform a more
complete analysis of the solutions.

In addition, the main numerical specifications for the mission derived from the
assumptions, are exposed in the following table:

Variable Value
S/C mass 1000 [kg]
Specific Impulse 2500 [s]
Maximum available thrust 0.5 [N]
Gravitational constant of Jupiter 1.2668 [m3/s2]
Initial radius, Callisto‘s orbital radius 1.8827 106 [km]
Final radius, Ganymede‘s orbital radius 1.0704 106 [km]

TABLE 5.1. MAIN PARAMETERS FOR THE MISSION

After setting the main parameters specified in table 5.1 and introducing the initial guess
and the dynamics for the system specified in Chapters 3 and 4, the optimizer was run
and the following results were obtained. Both solutions were analysed: the one with an
inertial reference frame an the one with the synodic reference frame.

5.1.1. Initial guess optimization for the inertial reference frame

The order to proceed in all the sections where the solutions are plotted will be, first, a
double plot of the evolution of the coordinates x and y with time and finally, a double plot
of the evolution with time of the orbital radius and the thrust orientation.

(a) X coordinate vs time in days (b) Y coordinate vs time in days

Fig. 5.1. Initial position values of the position vector
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(a) Thrust orientation vs time in days (b) Orbital radius vs time in days

Fig. 5.2. Thrust orientation and orbital radius evolution

The exact value for the endurance of the mission after the optimizer is 232.33 days which
approximately is 232 days and 8 hours. Therefore, the optimizer has return a solution that
is almost similar to the one proposed.

Although it seems that the solution is nearly similar, this affirmation should demonstrated.
One possibility is to show the difference between the values of the thrust orientation and
the orbital radius for the initial guess and the solution obtained.

The orbital radius comparison figure will be plotted respect to relative values, in order to
see clearly if the difference between solutions is significant. The initial guess value will
be the reference value, since is the one to be optimized.

(a) Relative comparison between the orbital
radius

(b) Comparison between the thrust orientation
angles

Fig. 5.3. Thrust orientation and orbital radius comparison

Both figures show that the performances of both missions are very similar until the
last part of the mission. This ending phase which corresponds with the manoeuvre for
reaching the ending position, apparently, has a different solution for the optimizer.
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Analysing both graphs individually some aspects must be highlighted:

1. Figure 5.3a shows that the difference in the orbital radius do not exceed a 10% in
all the mission. Moreover, in the first halve of the mission duration, this difference
does not surpass the 2%.

2. Before analysing Figure 5.3b , it should be pointed out that those values that seemed
to be away from the main set of points should not be taken into account. This
difference is caused by the interpolation that was needed to do in order to being
able to compare both solutions. This method makes that between each revolution7,
a higher number of points are located in this interval, therefore, when comparing
both solutions some points are cut off from the original solution.

5.1.2. Initial guess optimization for the synodic reference frame

At first sight, it seems that the optimizer at least, is able to stablish the initial guess as the
more optimal solution. The next step is to see if analysing the system respect to a synodic
reference frame gets a solution in less time, since this method according to Chapter 4
should simplify calculations to the optimizer, since the initial guess itself is simpler.

After applying the change of reference system and the non inertial dynamics, the
optimizer returned a solution whose mission endurance was 231 days and 16 hours
approximately, which is sorter than the one acquired with the problem studied with an
inertial reference frame.

(a) X coordinate vs time in days (b) Y coordinate vs time in days

Fig. 5.4. Initial position values of the position vector for the synodic method

7Here represented with the abrupt change in the graph from 180 degrees to -180 degrees
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(a) Thrust orientation vs time in days (b) Orbital radius vs time in days

Fig. 5.5. Thrust orientation and orbital radius evolution for the synodic method

Apparently, this method seems to follow the main objective of this study, showing the
validity of the designed tool. Nevertheless, as performed previously, it seems convenient
to observe the evolution of both solutions along time and its comparison. Hence, as
sketched previously in Figure 5.3, both comparing plots were obtained.

(a) Relative comparison between the orbital
radius

(b) Comparison between the thrust orientation
angles

Fig. 5.6. Thrust orientation and orbital radius comparison for the synodic method

At first sight, the difference between one solution and the other seems to be even more
similar than the previous solution, reaching a maximum relative difference between both
solutions at the orbital radius of a 3.5%.

At Figure 5.6b, again these remote points appear. However, if the graph is precisely
evaluated it appears that the difference between the initial guess and the synodic solution
is significantly small except at the ending part of the mission. Another time, the solution
gives a different approach for the approximation to the final position.
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5.2. The Q-LAW optimization

After analysing the initial guess proposed and ending with a solution slightly better, the
second possible solution should pass through the optimizer and see its effects.

As stated previously, this solution improves considerably the initial guess having a
mission endurance of 214 days and 13 hours. This implies a 8% reduction of mission
time respect to the initial guess.

For this process the optimizer was only able to reach a plausible solution for the synodic
method proving again, that using this reference system, helps the optimizer to work under
better conditions.

The optimizer was not able to converge into a solution for the inertial problem, but with
the same internal configuration and only changing the dynamics from an inertial problem
to the non-inertial, the program finally reach the next solution.

(a) X coordinate vs time in days (b) Y coordinate vs time in days

Fig. 5.7. Initial position values of the position vector for the synodic method of the Q-LAW

(a) Thrust orientation vs time in days (b) Orbital radius vs time

Fig. 5.8. Thrust orientation and orbital radius evolution for the synodic method of the Q-LAW
solution

38



The solution extracted from the optimizer gave a mission endurance of 215 days, slightly
worse than the original extracted from the Q-LAW. However, in order to confirm if both
solutions are similar, again, a comparison between input and output should be done. This
will show if at least the optimizer is able to give a similar solution to the one given8. Next,
the same comparison done at previous sections is shown.

(a) Relative comparison between the orbital
radius

(b) Comparison between the thrust orientation
angles

Fig. 5.9. Thrust orientation and orbital radius comparison for the synodic method of the Q-LAW
solution

Finally, these Figures show that the solution tends to be very similar to the one proposed
by the Q-LAW. In addition, for the final part of the mission, the solution extracted is
similar to the one proposed, on the contrary to the first solutions obtained.

5.3. Difference between both solutions

Before taking considerations about the solutions obtained, first, the difference between
both solutions and in consequence the difference between initial guesses should be
defined.

The initial solution is more an heuristic and analytical solution which means that although
for its design was optimized, the trajectory used increments significantly its complexity,
appearing different solutions with lower endurance. In addition, these types of solutions
fits worse with the optimizer method, complicating the production of a solution. However,
as results show, the solution seems to be suitable for the dynamics given.

Moreover, it is important to see that the solution proposed at [3] has an academic purpose,
and for the industry point view probably will be less recommended than the Q-LAW
solution.

8Please note that the Q-LAW is a well known method which already gives an optimized solution

39



On the other hand, Q-LAW guess is a numerical solution of the transfer program, which
does not take into account the invariant manifolds dynamics. In consequence, it fits better
with the optimizer tool not only because of its numerical nature, but also because of the
fact that this solution is simpler than the previous one given, since it has less revolutions.

This factor makes a faster and more accurate solution for the same number of nodes
chosen at the optimizer configuration, which in the end is a great advantage. This enables
also to increase the number of nodes for reaching a more accurate solution.

For supporting this last assertion, a table of the time spent by the tool in order to produce
a solution is given for all the solutions done in the study.

Reference frame Input used Nº of nodes Nº of nodes per revolution Computation time
Inertial Initial Guess 600 30 50 - 60 minutes
Synodic Initial Guess 500 25 30 - 40 minutes
Inertial Q-LAW 650 34 Did not converge
Synodic Q-LAW 500 26 10 - 20 minutes

TABLE 5.2. PERFORMANCE OF THE OPTIMIZER

This table sets the main limitation of the tool, time of computation. This limitation
probably is given by the low capacity of computation of the device used.

Moreover, this table also represents two important facts:

• The synodic solution is easier to be produced as stated in Chapter 4. Lower number
of nodes needed and lower computation time

• The Q-LAW initial guess is easier to be computed having a significant lower
computation time.
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6. CONCLUSIONS

After all the simulations done, it is time to analyse what has been obtained. So first, let’s
see which were the objectives proposed at the very beginning.

The main objective was to design an optimizing tool to then prove its capability of
providing an efficient solution for a transfer problem.

Although during all the simulations a simplification of this problem was done ending with
a two body problem, the solutions provided by the tool were near to the ones proposed,
hence, it seems that the tool could achieve those solutions if the 3 Body dynamics were
implanted.

In addition, it should be taken into account that the initial guess used was designed in order
to be a very optimal solution, and the second guess obtained from the Q-LAW program is
also an optimal solution, where time was tried to be minimized. Therefore, if a solution,
which initially was not designed to be optimal, is introduced at the optimizer as an initial
guess, it should end up with its optimal form.

Apart from that, it is important to highlight that the optimizer has been working under
high restrictions, founded after the deep analysis done to the obtained data, such us:

• The initial and final positions were continuously fixed according to the initial and
final values of the initial guess, being very difficult to reduce the endurance of the
mission.

For reducing significantly this parameter, typically a revolution of the trajectory
should be avoided. This fact implies high computing duties for the tool, since it
will need to get away from the initial guess in order to converge. In addition,
the configuration of the program should be slightly modified for adapting to this
change.

Other possible option is to set as free the final position, but this will end with an
incongruence with the method done for the first initial guess. However, for the
initial guess from the Q-LAW optimization this alternative could be suitable, since
its trajectory is not designed for a specific method.

• Since the computation time for each simulation9 lasted significant period of time
as sketched in Table 5.2 , some simplifications in the optimizer configuration were
needed to be done, such us the number of nodes parameter.

Since the computation time of the tool is directly related with the number of nodes
that the optimizer used in order to achieve the optimal solution, the number of them
were reduced for all the computations.

9The reader should take into account that the converged simulations were not done all at first try, adding a
significant amount of time to the computing hours of the project.
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This parameter is not only related with time, it is also strongly related with the
capability of the optimizer to reach a solution and its quality. The number of nodes
used make that the program divides the initial guess introduced in different intervals
and then, tries to vary those intervals in order to achieve a solution.

For a multi-revolution problem as the one proposed, the parameters do oscillate
several times during the whole mission life, specifically 20 times. Hence, and
according to the experience obtained during the simulation process and expressed
in Table 5.2, for providing at least a suitable solution, it should have 20 nodes for
each revolution, what ends to a minimum number of 400 nodes.

In addition, the optimizer can perform multi-phase problems. This method divides
the mission in different parts, where different configurations can be used such us
dynamics, number of nodes and mathematical method.

This increases significantly the complexity of the problem but at the same time,
it gives the opportunity of using a wide set of combinations for reaching different
types of solutions. This element confirms that the tool is able to reach an answer for
a widespread set of statements and gives to the program an important development
capacity.

Finally, it can be stated that the study has reached its main objective, setting the
DMG tool as a useful program for Mechanical dynamics optimization, even with
the limitations given to the solutions proposed. These yields with a significant
amount of future projects with this tool.

6.1. Future work

Before introducing this section where some of the possibilities that the DMG tool can
have for the future is exposed, it is significant to highlight one important fact.

This program should have together with, it a good computation capacity, not only to
improve the accuracy of the solution but also for reducing the computation duration. One
of the most significant weaknesses of the study has been the computation time. This has
handicapped significantly the possibility of improving the tool.

After that, the future works should be divided in order of complexity, ending with at first
sight, the best solution that the optimizer can reach.

6.1.1. Adding the 2-D ephemerides of the primaries to the problem

There exists different tools that can provide the characteristics of celestial bodies along
different periods of time, this includes variables such as position and velocities. Although
generally these data is in three dimensions, a least squares solution should be able to give
exact accurate data for the state of the primaries in the 2-D space.
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This improvement opens new possible solutions for the system since the initial and final
conditions can be replaced with positions depending on time, instead of fixed values.
Hence, the optimizer could have more flexibility for reaching solutions than for the
previous methods used.

On the other hand, this adds complexity to the calculations, therefore the equipment
required for running the tool should improve as well.

6.1.2. Implementing the 3-D model to the model

All the study and the previous improvement has been done under the planar motion. One
significant improvement, specially if it is desired to be extremely accurate according to
reality, is the implementation of a 3-D system and a 3-D dynamics.

This possible solution, again increases complexity and probably more than the one
stated before, but at the same time, opens more possibilities for reaching solutions,
specially for the first initial guess. Having the 3-D model for the joins of the invariant
manifolds together with the 3-D ephemerides, could give more possibilities for joining
the trajectories than the ones specified in Figure 3.5, ending with a different designed
mission, easier to be optimized.

6.1.3. Dividing the problem in different phases

This solution probably is the most convenient for this tool and it can works also for 2-D.

As set at the beginning of Chapter 5, the solution was needed to be reduced to a 2 Body
problem in order to achieve a solution, since the noise data produce by the Final moon
made some perturbations to the dynamics of the system that the optimizer could not lead
with the, although it was not under the sphere of influence of the moon.

In addition, as set in Chapter 3 the initial guess had four phases where different dynamics
were taken into account. The initial guess was an approximation of two different CR3BP
where the two moon contributions were considered.

Hence, by dividing the problem in different phases, where the dynamics and configuration
can be modified in each phase, it can open the optimizer to a new procedures.

6.1.4. The interplanetary problem

The main motivation of this study was to design a tool for a Mars-Earth transfer, a fact
that finally was not able to be proved in the study.

An interplanetary mission by definition has different parts where different dynamics and
different assumptions should be taken into account. Hence, in addition with the previous
section, this need fits perfectly with a multiphase approach by the optimizer.
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6.1.5. Reaching a complete optimization tool

Finally, the result after implementing these proposals, ends with a tool that could deal
with any type of transfer mission.

In consequence, any designed transfer can end up with an optimization, which at the end
could save high quantities of money to the trajectories developers, the university and the
space industry.
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ANNEX A. GLOSARY

GPOPS Gauss Pseudospectral Optimization Software
LEO Low Earth Orbit
GEO Geosynchronous Equatorial Orbit
L1 First Lagrange point of the system
L2 Second Lagrange point of the system
3BP Three Body Problem
CR3BP Circular Restricted Three Body Problem
NLP Non Linear Problem
LP Lagrange Point
LO Lyapunov Orbit
S/C Spacecraft
rS/C Position vector o the spacecraft
G Universal Gravitational constant
mJ Mass of Jupiter
ms/c Mass of the spacecraft
mG Mass of Ganymede
~ρ Spacecraft-Primary position vector
v Velocity vector
α Thrust Angle respect to the reference system
t Time variable
T Thrust
π Throttle
go Gravitational acceleration of the Earth
Isp Specific impulse of the spacecraft
L Distance between primaries
ζ Primaries mass non dimensional parameter
ω Angular velocity of the reference system
u Non-dimensional x component of the position vector
lc Characteristic length
v Non-dimensional y component of the position vector
τ Non-dimensional time variable
µ̄ Non-dimensional gravitational constant
tc Characteristic time
µJupiter Gravitational Constant of Jupiter
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