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ABSTRACT 

 

Motor cortex is the main output from the brain to control the muscles. Motor cortical 

activity contains rich information about movement features. This information can be 

read out at different levels: from the activity of single neurons, to local field potentials 

(LFP) that reflect features in the electric potentials of groups of neighboring neurons. 

Researchers have leveraged this observation to develop brain-machine interfaces 

(BMIs), systems that ―decode‖ movement parameters from the neural activity and use 

them to control external devices, such as computer cursors or robots, or even allow the 

subject to control their own paralyzed limb.  

Current intracortical BMIs take as inputs ―control signals‖ from the individual activity 

of neural populations or from LFPs. Both types of decoders yield quite accurate 

performance when tested online, however it is not clear what type of movement-related 

features each of these two modalities contains and which are shared among them.  

The goal of this project is to understand what information useful for movement 

decoding is common across neural population activity and LFPs. To this end, I built 

decoders based on neural population activity and LFPs. I also used recent conceptual 

developments that assume that neural computations are based on population-wide 

activity patterns rather than on independently modulated single units. My analysis 

showed that the performance of these three types of decoders was quite similar, with 

LFP inputs providing lightly worst predictions. However, LFP-based decoders were 

more robust against input channel lost, a common challenge to BMIs. Finally, I began to 

explore the relationship between neural population dynamics and the time course of the 

LFPs, identifying an intriguing, previously unreported relationship between the two. 

These results set the basis for future comparisons of decoder inputs and, hold potential 

to enable more robust BMIs. 
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1. INTRODUCTION 
 

1.1. Motivation 
 

Nowadays, there is no fully effective cure for many neurological diseases and injuries, 

including spinal cord injury, stroke or amyotrophic lateral sclerosis. However, as 

technology develops, new solutions for these problems are starting to appear. Brain-

machine interfaces (BMI) that ―connect‖ the brain to an external device hold great 

promise to compensate for movement disabilities. Their potential applications vary from 

controlling a computer cursor or a robotic limb [1], [2], to even restoring the patient’s 

control of their paralyzed muscles with functional electrical stimulation (FES) [3]. 

 

 

 

Figure 1.1.  BMI operation scheme [1] 

 

 

However, since BMI performance is still limited, these applications are hardly 

achievable. Current BMIs face at least two main challenges. First, we need better 

technology that records from more locations in the brain with high temporal and spatial 

resolution, and that are stable over stable periods of time. Second, if we are to restore 

normal function after neurological injury or disease, we need to further our current 
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understanding of the brain in health and disease. This project lies at the intersection of 

these two challenges: it aims to improve the robustness of current BMIs by improving 

our understanding of different type of neural activity patterns that can be recorded from 

the brain.  

 

1.2. Movement-related information in cortex 
 

The central nervous system consists of the brain and the spinal cord. It is so-called 

because it integrates afferent information, coming from sensors that inform about the 

state of the body, and commands movement through efferent pathways [4]. The 

combination of afferent and efferent signals is critical for the neural control of 

movement. (Figure 1.2).  

 

 

Figure 1.2.  Human movement control scheme. Red arrows represent the paths included in a typical 

brain-machine interface, although musculoskeletal system is substituted by a decoder. 

 

Although both structures controlled a huge variety of body function, spinal cord is 

specially related to reflexes while brain is in charge of voluntary movement [4]. Since 

the project is focused on voluntary movement during a trained activity, only the brain 

will be relevant. 
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The brain is spatially organized into a number of regions that are primarily involved in 

specific functions or processes [5]. Since this project focuses on BMIs to restore 

movement, I will focus on primary motor cortex, the main output from cortex to the 

spinal motoneurons that make the muscles control [6]. The primary motor cortex (M1) 

has a number of interesting properties, for example, it is somatotopically organized, 

meaning that different regions are more implicated in controlling different parts of the 

body[7]. 

 

 

 

Figure 1.3.  Typical action potential representation. Neural membrane potential is represented as a 

function of time [4]  

 

The nervous system is composed of neural (i.e., neurons) and glial cells. In mammals, 

neural information exchange is mediated by action potentials fired by neurons. Action 

potentials are caused by an ion exchange in the neuron’s membrane which generates a 

potential change from the -70 mV, resting potential, to +30 mV. An action potential has 

the characteristic shape shown in Figure 1.3. Note that the action potential waveform is 

invariant to the synaptic inputs that the neuron receives; instead, strong inputs lead to 

higher firing frequency (i.e. more action potentials per unit time) [4]. To digitalize the 

neuron activation implies detecting when the neuron is firing an action potential and 

adding a 1 to an otherwise 0 recorded vector. In other words, neuronal activity is 

interpreted as a binary system that can be either activated or deactivated 
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1.3. From single neurons to neural manifolds 
 

The activity of individual neurons in the motor cortex –and the entire brain– can be 

recorded by inserting electrodes that detect the occurrence of action potentials. The 

most commonly accepted view is that information is encoded as the firing frequency of 

individual neurons, although alternative theories exist, including one that posits that the 

precise timing of each action potential is critical [8].  

Focusing on motor cortex, for decades, neuroscientists sought to understand what 

variables M1 neurons encoded [9] [10]. As experiments became more sophisticated, it 

became apparent that there M1 does not merely encode movement parameters in a 

robust context-independent manner.  

 

Figure 1.4.  Neural manifold hypothesis. A: The neural population of two neural modes (green and 

blue). B: The relation between neurons N1, N2 and N3 firing rates and the two obtained neural 

modes (u1 and u2). C illustrates the linear manifold (grey) formed by the neural nodes u1 and u2. 

Activation dynamics in B correspond to the black curve in C. [11] 

 

An interesting observation is that even though primate motor cortex is made up of 

millions of neurons, movement can be well described based on the activity of only a few 

tens of hundreds of neurons. This observation implies that neural activity is ―low 

dimensional,‖ and that the activity of different neurons should be related to each other. 

Many believe that this low-dimensionality, which follows from the correlations across 
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neurons, arises from the ―constraints‖ imposed by the thousands of connections that 

cortical neurons make onto other neurons [11] (Figure 1.4A). 

Based on these ideas an increasing number of scientists are exploring the idea that 

neural computation is based on population-wide activity patterns rather than on the 

activity of individual neurons [12] [13]. Each covariation pattern has been called a 

―neural mode‖ and, the combination of all the neural modes defines a neural manifold 

(Figure 1.4C), which includes all possible activity patterns of the recorded neural 

population. The time-varying activation of a neural mode is often referred to as a ―latent 

variable‖ (Figure 1.4B). 

Mathematically, this neural manifold is a low-dimensional surface within a high 

dimensional space in which each axis is the activity of one recorded neuron. The neural 

manifold can be estimated using dimensionality reduction methods, such as principal 

component analysis (PCA), factor analysis (FA), or local linear embedding [14]. All 

these methods find patterns underlying the neural mypopulation activity. 

The experiment that perhaps provides the strongest evidence for the neural manifold 

capturing some aspect of neural connectivity was performed by Sadtler et. Al. [13]. The 

authors built a mathematical mapping from the latent variables to the hand movements 

(a BMI ―decoder,‖ as discussed below). After the monkeys had performed a few 

hundreds of trials using this mapping to move the cursor with their thoughts, the authors 

applied one of two types of perturbation to the decoder. In the first type of perturbation, 

they rotated this intuitive decoder within the manifold, whereas in the second type of 

perturbation, they rotated the decoder so it lied outside the manifold (Figure 1.5C). The 

monkeys only had to adapt to one of these two perturbations in each experimental 

session. Interestingly, for the within manifold perturbations, the monkeys learned quite 

easily how to modulate the neural activity, achieving performance levels comparable to 

those observed when they used the intuitive decoders after approximately 10 trials 

(Figure 1.5A). In stark contrast, the monkeys were not able to generate the new activity 

patterns required by the outside manifold perturbations to complete the task. This study 

thus provides strong evidence that the manifold may indeed capture some intrinsic 

aspect of the neural circuitry, as it is not possible to learn new activity patterns that may 

require the formation of new synapses. 
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Figure 1.5. C: Simplified representation of a three neuron’s manifold and the within and outside 

perturbations. A and B: monkey’s performance after each type of perturbation in the decoder.[13] 

 

1.4. Local field potentials 
 

Although our most detailed characterization of ―neural processing‖ comes from reading 

out the activity of many neurons simultaneously, current technologies present two 

limitations that hamper their use in BMIs. First, chronically implanted electrodes often 

record from different neurons on different days; for example, some estimate that 50 % 

of the neurons recorded with a state of the art 100-channel microelectrode array change 

after one week. Second, electrodes eventually lose the ability to record single neurons 

due to body reaction [9].  

Local field potentials (LFP), extracellular changes in voltage arising from transient 

imbalances in ions around the recording electrode, it can often be detected when the 

activity of single neurons cannot be resolved. This robustness makes them a potentially 

appealing input signal for BMIs. It must be noted, however, that although it is 

commonly accepted that LFPs reflect shared synaptic inputs to neural populations [10], 

their origin is still controversial [11].  
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LFPs are often analyzed by calculating their power in a series of frequency bands, 

which are traditionally associated with different brain processes. These bands usually 

are: delta (0 - 5 Hz), theta (5 - 8 Hz), alpha (8 - 15 Hz), beta (15 - 30 Hz), and gamma 

(>30 Hz), with the latter often divided into low (30 – 100 Hz) and high gamma 

frequencies (> 100 Hz).  

 

Figure 1.5. LFP visualization at different frequency bands. [12] 

 

LFPs in the motor cortex are modulated by a number of movement parameters, 

including target location [10] or how animals contract their muscles [13]. Several 

groups have built BMIs based on LFPs rather than the activity of neural populations, 

which achieve often comparable performance [14].  

In this project, I will further this comparison of neural signals as BMI inputs.  

 

 

1.5. Brain-machine interfaces: State of the art, and looming challenges 
 

A brain-machine interface (BMI) typically estimates or ―decodes‖ movement-related 

information in the neural activity and uses it as a control signal to command an external 

device [18] or electrical stimulation of specific pathways [19]. Historically, Eb Fetz 

unknowingly set the foundation for BMIs in 1969, when he demonstrated that monkeys 
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could voluntarily increase or decrease the firing rate of a cortical neuron to get a 

reward[20]. Besides their appeal as scientific tool, BMIs hold great promise to restore 

movement to patients with severe motor disabilities, effectively bypassing their 

impaired injuries.  

A brain-machine interface finds the contribution of each neural parameter to the 

movement. Once the contribution has been determined, the BMI can ―translate‖ the 

neural activity to movement.   

 

Figure 1.7. Ideal bidirectional BMI for a robotic arm control, that is, that considers both sensory and 

motor information to control de device, as the natural movement control [21] 

 

BMIs read out neural information using either intracortical electrodes [21], electrodes 

sitting on the surface of the brain [1] or electrodes placed on the scalp 

(electroencephalogram; EEG). EEG offers a simple, inexpensive, and non-invasive way 

of recording neural activity; however its resolution is spatially limited due to the 

filtering properties of the scalp and the soft tissues. Besides, inverse modeling of the 

sources that underlie the recorded activity is extremely challenging. Despite these 

limitations, several groups have made quite impressive demonstrations of EEG-based 

BMIs [22]. In contrast, intracortical electrodes are an invasive, yet effective technique 

to measure localized neuronal activity with high spatial and temporal resolution [23]. 
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They have been used for over two decades in rodents, monkeys, and in an increasing 

number of human patients, to record the activity from tens to hundreds of neurons [24], 

[25]. 

Most intracortical BMIs (from now on, simply BMIs) are time-invariant linear model 

fitted using least squares [15], [24], [26], [27], although some non-linear BMI decoders 

have also been developed [28]. Among these non-linear decoders, some recent studies 

leveraged modern machine learning techniques to improve decoder performance [29]. 

The improvement provided by using non-linear decoders seems to be largely dependent 

on the specific application.  

Regarding the ―output‖ signals of the decoders, many BMI predict kinematic variables, 

typically the velocity of the hand [11], [16], [24], although there is an increasing 

number of BMIs that decode muscle activity [27], [30]. These types of decoders rely on 

the notion that M1 neural activity is most strongly related to muscle activation than to 

movement kinematics. Selection of the appropriate output is primarily based on the 

application, e.g., it seems more intuitive to move a computer cursor based on kinematic 

outputs, and to control the stimulation of a paralyzed limb with muscle-like control 

signals. 

Despite their successes, current intracortical BMIs do face important challenges. 

Foremost, they suffer the important drawback that recording quality decreases over time 

due to foreign body reaction and gliosis [31]. The time course of this degradation 

typically happens as follows: the number of resolvable neurons declines over time, until 

it is only possible to record LFPs. Moreover, for reasons yet unknown, chronically 

implanted intracortical electrodes typically record from different neurons on different 

days.  

Thus, although neural population-based decoders are the most accurate type of decoders 

[32], this change in recorded neurons or ―neural turnover‖ poses a formidable challenge 

for bringing them into the clinic: as decoder inputs change, the BMI feels different, 

which forces users to learn how to wield a new tool. The drastic decline in BMI 

performance due to neural turnover is illustrated by the green trace in Figure 1.8.  
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Figure 1.8. Performance of decoders across days. Green line represents the spike based decoder 

trained just on the first day, gray line is the spike based decoder trained each day, and blue line is the 

latent variable based decoder trained the first day. [26] 

 

In a recent breakthrough, a group of researchers has been able to capitalize on the latent 

variable to build BMI decoders that are stable over months or even years [26] (blue 

trace in Figure 1.8). Using similar ideas, another group has been able to stitch neural 

activity across days to build better decoders [33].  

An alternative approach to achieve robust BMI performance is to circumvent neural 

turnover by using LFPs rather than neural population activity as decoder inputs (Figure 

1.9). It must be noted that with well-functioning electrode arrays, LFP-based decoders 

typically perform worse than neural population-based decoders [32]. Several recent 

studies have focused on increasing LFP decoding quality [15], [27]. For example, 

Jhuang et al. used high frequency gamma LFP activity for decoding, based on the 

assumption that these higher frequencies correlate with the activity of single neurons 

[16]. Others have combined LFPs and neural population firings to build hybrid 

decoders: Stavinsky et al. combined the low frequency LFP component with neural 

population spiking to compute hybrid decoders, which performed slightly better 

compared to decoders based neural population activity along [34]. 
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Figure 1.9. Performance of LFP based decoders across days. Decoders were trained on day 1 (gray 

dots) and on each day (black dots). [34] 

 

In this project, I developed and studied BMI decoders based on neural population 

activity, latent variables, and LFPs, all recorded using intracortical electrodes [35]. I 

took a biomimetic approach, building decoders that mapped neural activity onto 

movement kinematics. Using multivariate analysis techniques, I showed for the first 

time why LFP-based decoders yield quite reliable prediction of movement kinematics: 

because their dynamics are similar to those of the latent variables. This observation 

opens the door for new developments, including stabilizing the dynamics of LFP-based 

decoders to achieve several-year robust control in the absence of single cell recordings. 
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2. METHODS 
 

2.1. Subjects and experimental protocol 
 

I used neural and behavioral data recorded from a monkey (macaca mulatta) at 

Northwestern University (Chicago, IL, USA). All surgical and experimental procedures 

were approved by Northwestern’s Animal Care and Use Committee. 

The monkey was seated in a primate chair and had to control a computer cursor with a 

manipulandum, performing an instructed-delay two dimensional center-out reaching 

task. In this task, the monkey had to move a computer cursor from the center target to 

an outer target located in circle of 8 cm radius. The targets were circles of 2 cm radius 

located at eight different angles with respect to the horizontal: 0, π/4, π/2, 3π/4, π, 5π/4, 

3π/2, 7π/4, 2π.  

 

 

Figure 2.1. Scheme of the experimental protocol. a shows the set up and b a representation of 

the task to target π/2, including approximate times and labels of important times. [36] 

  

In each session, the monkey performed several hundreds of trials. The trials were 

structured as follows: first, the monkey had to hold the manipulandum in the center 

target between 0.5 and 1.5 seconds for the target to appear; then, once one of the 

eight possible targets was illuminated, the monkey had to wait for an auditory go 

cue during a variable delay period of 0.5 - 1.5 ms. After this cue, the monkey moved 

the manipulandum to the outer target, where he had to hold the cursor for 0.5 ms to 

obtain a reward. After that, the monkey had to return the manipulandum to the 

center position and wait for a new trial to begin. For more information about the 

subject or the behavioral task, see Refs.[36], [26]. 
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2.2. Behavioral and neural recordings 
 

Hand movement was recorded by encoders in the manipulandum at a sampling 

frequency of 1 kHz. From this measurements, hand kinematics were obtained (i.e. 

position, velocity and acceleration at x and y directions).  

Neural recordings were simultaneously obtained using a 96-channel chronic 

microelectrode array (―Utah Array,‖ Blackrock Microsystems, Salt Lake City, UT) 

implanted in the arm area of primary motor cortex (M1). Array location was identified 

intraoperatively using micro stimulation of the cortical surface. This array provided two 

types of output.  

Neural activity was simultaneously recorded (30 kHz) using a standard acquisition 

system (Cerebus, Blackrock Microsystems, Salt Lake City, UT). The recordings on each 

channel were digitized, band-pass filtered (250–5000 Hz), and then converted to spike 

times based on threshold crossings. The threshold was selected according to the root 

mean squared (RMS) activity in each channel (-5.5*RMS). An expert user performed 

offline neuron sorting, i.e. identified putative single neurons in each electrode, using 

off-the-shelf software (Offline Sorter v3, Plexon, Inc, Dallas, TX).   

At the same time, the local field potential (LFP) in each microelectrode channel was 

recorded at a sampling frequency of 2 kHz. For more information regarding data 

acquisition, see[36], [26]. 

 

2.3. Data preprocessing 
 

All neural (i.e. spikes, local field potentials) and behavioral signals (i.e. hand position 

and velocity) were synchronized and binned into 10 ms bins. However, time bins were 

further down sampled to 20 ms bins, unless said otherwise. 

The recording time began before even the target is on, and ended almost a seconds after 

the trial had finished. Since I was interested in comparing different forms of movement 

decoding, I analyzed data from the go cue, to the end of the trial. Among the 286 trials 

used, a variety of duration is found, since monkey’s velocity and holding times vary 

from trial to trial. However, in this project I trimmed all the trials to the shortest one, 

which was 1.25 seconds. Finally, al the unified trials were time concatenated and a final 

dataset of K bins of duration is obtained, were K is the number of time bins per trial 

(125 bins) times the number of trials (286 trials).  
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Furthermore, I smoothed these time-varying firing rates using a Gaussian kernel: 

 

       ( )   
 

√    
 
   

    (1) 

 

Where t is the time position of kernel samples and σ is the standard deviation, in this 

case was, 0.05. 

An example of this smoothing is shown in Figure 2.2.  

 

 

 
Figure 2.2. Firing rate of neuron 41 before (black) and after (red) smoothing with a Gaussian kernel 

of 0.05 standard deviation. Time window goes from the go cue to the end of the trial. Data has been 

down sampled to 50 ms per time bin to get more than one spike per time bin. 

 

The smoothing of the spike signal was useful for further analysis of the firing rates and 

it also acted as a low pass filter to reduce noise. 

The LFP signals were first de-referenced by computing their common average, and then 

detrended to eliminate any low frequency drifts. Power line interference was eliminated 

using a notch filter (zero-phase Butterworth, 2
nd

 order, fc = 60 Hz). After this pre-

processing, I computed the LFP power in the following frequency bands, obtained using 

zero-phase filters (2nd order Butterworth): 0-5 Hz, 5-15 Hz, 15-30 Hz, 30-50 Hz, 50-

100 Hz, 100 - 200 Hz, and 200 - 400 Hz. Amplitude was obtained using Short Time 

Fourier Transform with a 2000 samples Hamming window. 
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2.4. Neural activity and movement analysis 
 

 

I used multiple analyses to study the relationship between the neural activity and the 

kinematic parameters recorded. 

 

Correlation matrices 

I computed the correlation across firing rate profiles of individual neurons, which is 

defined by the following equation: 
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Where x(t) and y(t) correspond to the signals to correlate at each time t; and  T refers to 

the total timing of both signals. This analysis required that both signals have the same 

length.  

Results of these correlations were presented as a symmetric matrix in which each 

position indicated the correlation of the row signal with the column one (Figure 3.7). 

Thus, the diagonal of this matrix was always 1 (i.e. maximum correlation) because it 

corresponded to the correlation of a signal with itself.  

 

Tuning curves analysis 

In this project, I performed and analysis originally done by Georgopoulos AP, 1982 

[37], which consisted in computing the average activity of each neuron during the 

movement time, to obtain a single value indicating how much activity has the neuron 

had. This was done separately to each target, so at the end I had one single value, 

representing the mean activity aiming that target. For a reaching task, this function often 

takes a sinusoidal form.  

To get a numerical value of the results I performed a sinusoidal fitting with the first 

term of a Fourier series as follows: 
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Where x is the aimed angle, y is the resulted neural activity, and ao a1 b1 and w are the 

coefficients computed by the fitting. 

The r-square value of the fitting will determine how tuned the neuron was. 

 

2.5. Decoding 
 

 

I used standard methods to decode hand velocity in the x and y directions. These 

decoders are Multiple Input Single Output systems (MISO). 

The algorithm used to decode hand velocity from brain activity was the same for all 

input types: firing rates, latent variables, and LFPs. This decoder is a model that linearly 

predicts hand velocity with the specific neural input, as follows: 

 

  ( )   ∑   ( )     

 

   

 (4) 

 

Where yj(k) represents the velocities at j = x and j = y at each discrete time bin k up to 

the total of time bins (K); xn(k) represents the n-th input variable (neurons, latent 

variables or frequency bands) at k, with a total of N input variables; and wn represents 

the contribution of the n-th input variable to the output velocity. 

In matrix form, the previous equation is expressed as: 

  

Y = XW (5) 

 

Where Y is a K by 2 matrix, with K being the total number of time bins; X is a matrix of 

K by N, being N the total number of input variables; and W is a matrix of dimensions N 

by 2 that indicates the contribution of each input variable to the output. 

Notice that matrices Y and W have two columns because I am computing two MISO 

decoders, one for the x velocity component and other one for the y component.  
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Addition of history bins 

Motor cortical activity maximally correlates with movement parameters with a few tens 

of milliseconds delay, from 50 ms to 100 ms on average according to Morrow and 

Miller [30]. Thus, hand velocity is likely to be better predicted if the model considers 

not only neural activity during the present time bin, but also activity in the previous 

bins. Accordingly, I extended the previous model to include past neural activity 

(―history‖) at the input. This was done by concatenating delayed versions of the inputs 

as additional variables (Figure 2.3).  

 

 

Figure 2.3. Scheme showing the input matrix transformation when history bins are added. 3 history 

bins has been added to a matrix of one neural input (n1) in three times (k, k+1, k+2). 

 

However, this is a simplified model, in reality I am adding up to 5 history bins 

(corresponding to 100 ms) to the total number of neural inputs. This new decoder with 

history will be obtained as: 
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Variables in this formula are already explained in Eq.4., except for b which is the 

specific bin of history added up to a total of B history bins. Thus, the new input matrix, 

X, had dimensions T times Nx(B+1). 
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Static nonlinearity  

When fitting a linear model to decode movement variables, there is often a nonlinear 

estimation error [38]. Thus, I also explored whether decoder performance could be 

improved by adding a static nonlinearity to its output. This is known as Wiener cascade 

model [39] and operates as follows: 

 

 

Figure 2.4: Wiener cascade box diagram 

 

The static nonlinearity was computed by fitting a polynomial that captured the 

relationship between the actual data and the output of the linear decoder. Polynomial 

fitting was performed using least squares error minimization. Since velocity signals take 

positive and negative values, odd order polynomials are likely to yield better fits. The 

fitted polynomial takes the following form:   

 

  ̂  ∑   ̂
 

 

   

 (7) 

 

Where i is the polynomial order, ai are the polynomial coefficients from the fitting, p is 

the polynomial order, ŷ is the estimated velocity obtained directly from the linear 

model, and ŷ’ is the estimated velocity after applying the static nonlinearity to ŷ. 

 

 

2.6. Latent variables 

As explained in the Introduction, recent models propose that cortical processing is best 

described based on dominant covariance patterns across individual neurons than based 

on the activity of the individual neurons themselves ([40], [41]). These patterns are 

often called latent variables [5].  
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To obtain these latent variables, I applied principal component analysis (PCA) to the 

neural population firing rates, following standard methods [11][14][42]. PCA is a linear 

dimensionality reduction method that identifies orthogonal directions in the input data 

that explain most variance. These vectors, often called principal directions, are sorted 

based on the amount of variance they explain. Then, the data set is projected to these 

new directions, obtaining the so called principal components. Since projections onto the 

last principal directions often explain little variance, they can be removed. This way, a 

huge dimensional data set can be reduced, maintaining the majority of the data variance.  

Consider de neural data matrix X with dimensions K by N, where N is the number of 

recorded neurons and K is the number of time bins. Thus, applying PCA implies finding 

the N principal directions. To do so, I used Singular Value Decomposition (SVD) which 

diagonalizes de covariance matrix as follows: 

 

C = V S V
T 

(8) 

 

 

Where C is the covariance matrix defined as C = X
T
X, V is an N by N matrix 

containing the eigenvectors, and S is a diagonal matrix containing the N eigenvalues. 

The eigenvectors obtained are to the principal directions. 

Projections of the data set are the new input variables for our linear system, which can 

be obtained by a matrix multiplication: 

 

X’d = XVd (9) 

 

Where Vd is a N by d matrix containing the top d principal directions, X is 

aforementioned data matrix, and X’d is a K by d matrix containing the data projected to 

d principal directions, i.e. the latent variables. 

The parameter d determines the dimensionality of the neural manifold and number of 

latent variables. 

Figure 2.5. shows a simplified example of Principal Component Analysis over a data 

set. In this case only two neurons activity is considered, creating a two dimensional 

space, although I am actually using the neural activity of more than 80 neurons, which 

defines a huge multi-dimensional space. Principal component 1 is the one including the 
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more variance of the dataset so, ideally, one could reduce the dimensionality of this 

dataset by projecting all the points exclusively into the first principal component, 

eliminating the second one, thus, converting the two dimensional data into a one 

dimensional space. Equivalently, in this project case, I converted a more than 80 

dimensional data into a lower dimensional space, depending on the number of latent 

variables considered.  

 

Figure 2.5: Illustration of PCA algorithm in a simplified 2 dimensional dataset (black dots). The 

original variables (activity of neuron 1 and 2) is changed by the principal direction or neural modes 

obtained from PCA (purple axis). 

 

2.7. Decoder validation 
 

In this project, I computed several decoders changing the input variables and the 

parameters previously explained (history bins, static nonlinearity, smoothing of the 

input signal, etc). Decoders were validated using leave one out multifold cross-

validation, maintaining the parameters of the model through the cross-validation. I 

separated the data into two sets: a training set and a testing one, with the purpose of 

validating a model computed with the training data, by using testing data only. This 

tests decoder performance in a more realistic situation, and makes over fitting less 

likely. The test set was chosen randomly from all the recorded trials and corresponds to 

the 10% of the total number. The remaining trials were used as training sets.  
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Assessing decoder performance 

I calculated the similarity between actual and decoded hand velocity based on their 

variance accounted for (VAF).  

VAF will return two numbers corresponding to the similarity of the estimated and actual 

velocities in the x and y directions. VAF is defined as: 
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Where SSE is the sum of the squared difference between the actual and predicted signals 

and SS is the sum of squares of the actual signal; y is the mean value of the actual 

velocity, y(k) and y’(k) are the respectively actual and predicted velocity values at each 

time bin, and K is the total number of time bins.  

The values obtained in each fold of the multifold cross-validation were either averaged, 

to get a single value indicating the performance, or represented as a histogram, which 

gave a good representation of the results distribution. 

 

2.8. Statistics 
 

When comparing the performance of different types of decoders, I assessed whether 

their distributions of cross-validated VAF metrics were statistically different using a 

Wilcoxon rank sum test.  

I used this test with the desired histogram (a distribution) and a null distribution 

obtained with random observations. This null distribution was obtained differently 

depending on the histogram I am testing. This procedure is commonly known as 

Bootstrapping.  

Wilcoxon rank sum test, checks the null hypothesis over two distributions. The 

hypothesis is that both distributions are similar, so the rejection of this null hypothesis 

means that the two distributions are significantly different.  

A 0.1% significance level was set, which means that it will reject the null hypothesis if 

p-value < 0.001. 

Throughout this report, results are reported as mean ± standard deviation, when 

available.  
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2.9. Simulating channel loss 
 

The goal of this analysis was to simulate electrode failure by removing input signals to 

the decoder.  For the decoders based on neural population firing rates, I progressively 

removed the input neurons in steps of 10 % of the total number of neurons. Similarly, 

for the decoders based on LFPs, I progressively removed 10 % of the input channels 

(i.e., all seven frequency bands for those channels). Finally, for the decoders based on 

latent variables, I removed the corresponding percentage of neurons and, re-computed 

the latent variables based on the remaining population. For each input signal type, I 

repeated this procedure 5 times and report the mean decoder accuracy. 

 

2.10. Relationship between local field potentials and latent variables 
 

To investigate a potential association between LFPs and latent variables, I used 

canonical correlation analysis (CCA). In brief, CCA finds linear transformations that 

applied to each of two sets of signals, make them maximally correlated. Thus, in the 

context of this project, it compares the dynamics of the LFPs and the latent variables. 

Consider the LFP matrix A, that has dimensions K by N1, where K is the total number 

time bins per trial times the number of trials, and N1 is the number of frequency bands 

included times the number of recorded channels. Also consider the latent variable 

matrix B, had dimensions K by N2, where N2 was the number of latent variables 

included. CCA performs a QR decomposition of the previous matrices and obtain the 

new matrices QA and QB. Then the inner product matrix is constructed an a singular 

value decomposition is performed [43]: 

 

QA
T 

QB = U S V
T 

(11) 

 

Where S was a diagonal matrix with min(N1,N2) diagonal elements, which contains the 

correlation coefficients between the columns of QA and QB. The elements of S, which 

are sorted by value as they are computed, using singular value decomposition, quantify 

the similarity between the LFP and latent variable dynamics.  
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3. RESULTS 
 

3.1. Behavioral analysis 
 

From the total of 330 trials, I only analyzed the 286 in which the monkey successfully 

completed the required movement. The mean reaction time (time to move after the go 

cue) was 270 ± 60 ms (mean ± s.d.), and the time it took the monkey to complete the 

task was, on average, 880 ± 90 ms. Thus, the monkey’s behavior was very consistent 

across trials (Figure 3.1). Furthermore, the time course of hand velocity and position 

was very similar across all the trials to a specific target, as exemplified in Figure 3.2. 

Figure 3.3. shows the mean hand velocity to each target.  

 

 

 

 

Figure 3.1. Hand trajectories of the subject during all the trials of one session, represented as the 

position of the manipulandum in the y axis vs the position in that moment in the x axis. Trajectories 

are color coded by target proximity. 
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Figure 3.2. All the hand positions and velocities recorded towards target 3 /4 in both directions, x 

and y. Data shown in window from 100 ms before movement onset to the end of the trial. The 

individual trials are represented as thin color lines; the average of the trials is represented as a dark 

thick line. Color is chosen following the previous palette. 

 

 

 

Figure 3.3. Mean hand velocity to each target, from 100 ms before go cue to the end of the trial. 

Light line corresponds to the x component of the velocity while dark line corresponds to the y 

component. The targets are colored coded by proximity as in Figure 3.1. 
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3.2. Single neural activity 
 

3.2.1. Analysis of the neural activity and movement relationship 
 

As a first step to build decoders for movement prediction, I examined the activity of 

each neuron of the registered population and they relation with the corresponding 

movement. Figure 3.4. shows the main characteristics of the neural population. 

 

 

 

Figure 3.4. Mean activity of each neuron when the monkey reached to each target. Each subplot 

corresponds to the different targets. In each subplot, each row represents a different neuron (of a 

total of 84). Data are represented from the go cue until the end of the trial. The number of action 

potentials in each time bin is indicated in the colorbar to the right. 

 

When looking at the activity to different targets, there are variations in activity for each 

target. A neuron tends to modulate its firing rate when the monkey reaches to different 

targets. Moreover, its firing rate profile tends to be similar when the monkey repeatedly 

performs the same movement. This is exemplified in Figure 3.5: this neuron’s activity 

pattern is very consistent across reaches to the same target, but different across the 

different targets. 
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Figure 3.5. Neural activity patterns during firing rates of neuron 41 in all the trials ordered by target 

location. Data is shown from go cue to trial end. Each colored trace represents one trial; the average 

neural activity for each target is also represented as a dark line. Firing rate is measured in pulses per 

second (pps), and targets are color coded according to proximity. 

 

 

Given the consistency of the neural activity patterns to each target, firing rate profiles 

were averaged across trials to the same target. Figure 3.6 shows some representative 

examples of these averaged firing rates. These examples show the complexity of neural 

activity patterns: some neurons are clearly target-modulated (Figure 3.6A and 3.6B) 

while others not (Figure 3.6C and 3.6D). They also illustrate that the firing rate of motor 

cortical neurons can vary very dramatically across cells, e.g. Neuron 41 fires at a >100 

Hz for some targets, whereas the other example neurons do not go above 15 pps. 
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Figure 3.6. Mean neural activity of neuron 3 (A), 41 (B), as examples of target-modulated neurons, 

and neurons 19 (C) and 83 (D), as non target-modulated neurons, during reaches to the eight 

different targets. Data shown in a window from the go cue to trial end.  

 

To quantify the consistency of a neuron’s activity when the monkey reached to the same 

target, I computed the correlation between its firing rates across all pairs of trials to the 

same target. Figure 3.5A shows the correlation between the firing rate profiles of a 

neuron with highly consistent activity across all combinations of reaches to the same 

target.  

The large correlation between firing rate profiles across trials to the same target relates 

to the large correlation between hand kinematics across those same trials (Figure 3.7B 

and 3.7C). In fact, the kinematics correlation for those trials with low firing rate 

correlations, were also low, as evidenced by the linear relationship between firing rate 

and kinematic correlations (Fig. 3.7D). 

 

A 

D C 

B 



Page 28 of 56 

 

 

Figure 3.7. A: Correlation matrix of the neuron 2 firing rates of all the trials aiming target 3 /4. B 

and C: Correlation matrices of velocities in x and y directions (respectively) between all the trials 

aiming target 3 /4. D: Relationship between correlation coefficients of x (red) and y (blue) velocity 

components with neural activity correlation. 

 

How can we interpret those apparently high neural correlations? To obtain a lower 

bound for these inter-trial correlations, I performed the same analysis but comparing 

firing rate profiles across trials to different, randomly selected targets. Figure 3.8A 

shows one example correlation matrix when comparing trials to different targets. 

Notably, this ―null distribution‖ of neural correlations is very different to the 

distribution of correlations to trials to the same target (Fig. 3.8B; Wilcoxon rank sum 

test, p ~ 0). Consequently, for this example target and neuron, neural activity is 

significantly more consistent than when reaching to any other target.  

A 

D C 

B 
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Figure 3.8. A: Correlation matrix of neuron 2 firing rate profiles to random targets. B: Histogram of 

the correlation coefficients of neuron 2 to the same target (Figure 3.7A) and different target (A) 

represented in red and gray respectively. 

 

Figure 3.9. Histograms ordered by target containing the correlation coefficients distributions 

between firing rates to the same target (red) and to random ones (gray). This is a generalized case 

from Figure 3.8B. 

B 
A 
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Figure 3.9. replicates this result for all the targets, and shows that even though there are 

some differences in the consistency of neural activity across repetitions, neural activity 

was always significantly consistent (Wilcoxon rank sum test, p < 0.001). Thus, for this 

example neuron, the firing rates are highly correlated when the monkey is reaching to 

the same target, independently of which one. 

I then repeated this analysis for all recorded neurons, adding up all the inter-trial 

correlation and null distributions shown in Figure 3.9 and computing their means. These 

comparisons are shown in Figure 3.10. For all neurons (individual dots), the firing rate 

was more consistent when the monkey reached to the same target than expected by 

chance. 

 

 

 

Figure 3.10. Average between the correlation coefficients of firing rates to the same target and to 

random ones. Each dot represents a neuron. Average correlation is obtained by using the correlation 

distributions (Figure 3.9) and computing its average value. mean. The black line indicates the limit at 

which the same-target correlation outvalues the random-target one. 
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Tuning curve analysis 

 

I studied how neural activity varies as a function of target direction using the classical 

concept of a ―tuning curve.‖ In brief, a tuning curve represents how the activity of a 

neuron relates to the location of the targets (see Methods for further details). Figure 

3.11. shows the activity patterns of two example neurons (top) and their tuning curves 

(bottom). These are the best and worst cosine-fitted neurons in the entire population. 

 

 

                 

  

Figure 3.11. Tuning curve of two representative neurons. A: Firing rate profiles to each target of the 

most tuned neuron (number 50). B: mean firing rate profiles to each target of the less tuned neuron 

(number 13). C,D: Sinusoidal fit of the mean activity to each target indicating the R
2
 of the fitting. 

Mean activity is obtained by averaging the each target curve in A and B. 

 

Overall, the activity of the majority of neurons (60 out of 84) was well described by a 

sinusoidal tuning curve (R
2
 > 0.8). This implies that most recorded neurons contain 

information of the spatial location of the targets.  

 

D C 

A B 
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Figure 3.12. Distribution of sinusoidal tuning fit quality (R
2
) across all recorded neurons. 

 

3.2.2. Decoders based on neural population activity  

 

Given that the activity of individual neurons has movement-related information, I next 

built linear decoders that took as inputs this neural population activity [44] (see 

Methods).  

 

 

   

Figure 3.13. A: Example of one trial input matrix of smoothed firing rates from all the 84 neurons. 

Data is trimmed from the go cue to the end of the trial. B: Example of x velocity component 

predicted by the model (orange), together with the actual velocity at that time (blue). The VAF from 

this prediction was of 0.9. 

 

B A 
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The output of the decoder will be the predicted velocity of the monkey’s hand, which is 

compared with the actual velocity to estimate the decoder’s performance. I am 

generating two independent decoders, one for each velocity component; hence, all the 

results will be duplicate. Figure 3.13 shows an example of decoder inputs for one trial 

(A) and its outputs for four trials (B). This decoder took the binned firing rates of all 

recorded neurons as inputs, including the current neural activity as well as activity up to 

5 bins into the past (see Methods). Comparison of the predicted velocity to the actual 

velocity showcases that the decoder predicts hand velocity with great accuracy. 

The next sections explore how different decoder parameters impact its performance. For 

all the analyses I used multi-fold cross-validation to avoid overfitting and ensure that 

the decoders will generalize to different testing sets. 

 

Moderate smoothing of the input signal improves decoder accuracy 

As explained in the Methods, smoothing the firing rates is useful for reducing Poisson 

noise, but it also eliminates data variance, which might negatively impact decoder 

performance. I thus studied how moderate smoothing with a Gaussian kernel (s.d. 0.05), 

influences the performance of a decoder with 5 bins of history into the past. 

 

               

Figure 3.14. Histograms of VAF between predicted and actual velocities at x and y components, 

obtained by a 30-folds cross validation. Red distributions correspond to decoders trained with 

smoothed firing rates, while gray distributions correspond to decoders trained with spikes. 

 

Figure 3.14. shows how this slight smoothing did significantly (Wilcoxon rank sum test; 

p-value < 0.001) improve velocity decoding of both x and y components (mean VAF 

increases from 0.75 to 0.88 in x component and form 0.78 to 0.88 in y component).  
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Addition of history to the input data improves decoder accuracy 

The decoders used in previous analysis not only took as inputs the population firing 

rates at the current time, but also in the previous bins, up to 100 ms into the past (see 

Methods). Here, I explored how decoder accuracy depends on how many bins into the 

past I included as inputs to the decoder. Adding past neural activity is motivated by 

observations that neural activity is maximally correlated with movement after adding a 

50-100 ms delay. [30] (see Methods). 

 

 

               

Figure 3.15.  Histograms of VAF between predicted and actual velocities at x and y components, 

obtained by a 30-folds cross validation. Red distributions correspond to decoders trained with 

history, while gray distributions correspond to decoders without history. 

 

Figure 3.15 shows how decoder accuracy changes when using history bins. To get this 

figure I took 5 time bins for each velocity time bin, which corresponds to 100 ms 

considering the time bin size used (20 ms). Decoder performance improved significantly 

(Wilcoxon rank sum test; P < 0.001) when adding history bins. 

Figure 3.16 summarizes the effect of the number of history bins on decoder 

performance. For the x velocity component decoder performance likely decreases for 

more than 6 history bins because it overfits due to its increasing number of parameters.  

For the y velocity component, decoder performance plateaued around 4 history bins 

(Figure 3.16B). Given that decoder performs best for an average of 5 history bins, I will 

use this number for the remainder of the project. 
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Figure 3.16. VAF between predicted and actual velocities at x and y components, obtained by a 10-

folds cross validation using different history duration. Bars in each point show the standard deviation 

of the cross validation with each time of history. 

 

Application of static nonlinearity at the decoder output 

Previous studies have shown that adding a static nonlinearity at the output of a linear 

decoder may improve decoder performance [38]. Here I explored whether this was the 

case for the velocity predictions in this dataset (see Methods).  

 

 

Figure 3.17.  Histograms of VAF between predicted and actual velocities at x and y components, 

obtained by a 30-folds cross validation. Red distributions correspond to decoders with static 

nonlinearity, while gray distributions correspond to decoders without it. 

 

Figure 3.17 compares decoder performance obtained after a 30 folds cross correlation 

with a static nonlinearity using a 3rd order polynomial. The polynomial order was 

selected because it gave the best results. Adding this nonlinearity to the decoder did not 

significantly improve decoder performance (Wilcoxon rank sum test; p-values: 0.78 and 

0.67 respectively).  
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3.3. Latent variables 
 

3.3.1. Describing neural population activity using latent  

 

As mentioned in the Introduction, a recent theoretical framework proposes that neural 

computation is based on population-wide latent variables, rather than on the 

independent modulation of individual neurons [11]. Here, I obtained the latent variables 

using PCA, the most common dimensionality reduction method [12] (see Methods). 

PCA finds the covariance patterns from the data and uses them as new directions. The 

new directions are sorted by the variance they explained, so one can easily eliminate the 

ones that barely explain variance.  

 

 

Figure 3.18. Percentage of variance explained by the dataset as a function of the number of principal 

directions considered. Arrows indicate the relevant points (approximately 50% and 75% of variance 

explained) together with the number of latent variables considered. 

 

Figure 3.18 shows how neural population activity can be reduced to a small number of 

population-wide activity patterns. For example, nine of these population-wide activity 

patterns or latent variables explain as much as 50% of the total neural variance, and 28, 

75%. This number is quite small compared to the 84 neurons included in the population.  

 

 



Page 37 of 56 

 

3.3.2. Relationship between latent variables and movement 

 

Since the latent variables obtained with PCA are linear combinations of the neural 

population firing rates (Methods), they should also include movement-related 

information. Figure 3.19 shows three example latent variables and how they are 

modulated by target location. Note that, although the latent variable activity is still 

measured in pps (pulse per second) since it is the linear combination of the activity of 

all the neurons; I use arbitrary units because it does not have conceptual sense.  

 

         

              

Figure 3.19. A, B and C: Mean activity in the first, second and 9th latent variables (respectively) for 

each aimed target. Data is shown in a window from the go cue to trial end.  D: Additional figure 

showing the individual percentage of variance explained of each latent variable. 

 

The first latent variable does not present significant tuning to target location, although it 

describes ~13 % of the total neural variance (Figure 1.19D). Instead, this latent variable 

has a steep rise at movement onset, consistent with previous reports that the dominant 

latent variable reflects the timing of movement [45]. In contrast, the second latent 

variable has dynamics that clearly depend on the location of the target. Finally, latent 

variable 9 is only slightly tuned. 

A B 

C D 
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The observed movement-related tuning of the latent variables suggests that they can be 

used to predict movement, as shown in previous studies. [12] 

     

3.3.3. Latent variable-based decoders 

 

Here I examined the performance of decoders based on latent variables, rather than the 

population firing rates as done in Section 3.2. However, I maintain the linear algorithm 

for decoders with 5 history bins from the neural activity section.  

 

Given that only 9 latent variables explain 50% of the total neural variance, I first built 

decoders that took these 9 latent variables as inputs (see Methods). Figure 3.20 

compares the performance of these decoders with that of decoders based on the neural 

population spiking. Interestingly, even though the latent variable-based decoders have 

fewer inputs than the population firing based-decoders (9 vs. 84), their performance is 

quite similar, albeit statistically different (Wilcoxon rank sum test; P < 0.001). Mean 

VAF form the distributions (both for x and y components) differs in 0.04, which implies 

only a decrease of 5% in performance.  

 

  

Figure 3.20.  Histograms of VAF between predicted and actual velocities at x and y components, 

obtained by a 30-folds cross validation. Red distributions correspond to decoders with all the latent 

variables, while gray distributions correspond to decoders with just 9 of them. 

 

To study to what extent the number latent variable inputs influence prediction accuracy, 

I computed the mean VAF for decoders from a 10 folds cross validation based on an 

increasing number of latent variables (Figure 3.21).  
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Figure 3.21.  VAF between predicted and actual velocities at x and y components, obtained by a 10-

folds cross validation from decoders with latent variables as input parameters (blue) or firing rates 

(red).  

 

Decoder performance improves rapidly for the first few latent variables and plateaus 

around ~20 latent variables, when decoding performance becomes similar to that of the 

decoder based neural population firing rates.  
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3.4. Local Field Potentials 
 

3.4.1. LFP and movement relationship 

 

In the previous sections, I have shown how neural population firing rates and latent 

variables yield accurate predictions of hand kinematics. Here, I compare their 

performance with that of decoders based on intracortical LFPs, the voltage fluctuations 

detected by each implanted electrode. 

 

 

Figure 3.22. Mean LFP amplitude at each frequency bands for channel 3 when reaching each target, 

from go cue to the end of the trial. LFP amplitude in each frequency band is obtained from STFT of 

the signal in that specific band. 

 

Figure 3.22. shows, for one representative electrode, how the mean LFP power at 

different frequency bands (see Methods) changes across targets. For some frequency 

bands, such as the 30-50 Hz band, we observe modulation by target location.  

First, I studied whether they present the same modulation in all the trials when reaching 

for the same target. To do so, I computed the correlation of the same target trials in each 

bands at the same channels. Similar to Figure 3.5. The correlation matrices are 

represented in Figure 3.23 and Figure 3.24. 
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Figure 3.23. Correlation matrices in channel 40 for all the trials which target direction was -3 /4, as 

an example of uncorrelated channel when reaching the same target. Each correlation matrix 

corresponds to a frequency band indicated in the title. 

 

 

Figure 3.24. Correlation matrices in channel 85 for all the trials which target direction was -3 /4, as 

an example of correlated channel when reaching the same target. Each correlation matrix 

corresponds to a frequency band indicated in the title. 
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For some channels, such as the one exemplified in Figure 3.23, there were large inter-

trial changes in LFP amplitude in all frequency bands, which led to low inter-trial 

correlations. For others, LFP amplitude was very consistent across reaches to the same 

target (Figure 3.24). I excluded the channels with low inter-trial correlations for the 

decoder analysis, as they would decrease decoder performance.  

Then, I check whether the modulation by target becomes more clearly when 

representing the LFP amplitude in a single frequency band. Figure 3.25 shows the LFP 

amplitude of two different channels at the delta band (0 - 5 Hz). The activity in both 

example channels is modulated by target location even though their amplitudes are quite 

different.  

 

  

Figure 3.25. A, B: Mean LFP amplitude in 0 - 5 Hz bands between all the trials reaching the eight 

different targets of channels 11 and 63 (respectively). Data is shown in a window from the go cue to 

trial end. 

 

To quantify movement tuning across all electrodes and frequency bands, I performed 

the same tuning curve analysis as for the firing rates (see Methods, and Figure 3.11). 

Figure 3.26 summarizes the quality of fit of these tuning curves for the different LFP 

frequencies The mean R
2
 among the frequency bands varied from 0.7 ± 0.19 to 0.75 ± 

0.16, indicating that there is significant tuning at all frequencies. However, this average 

tuning is ~15 % lower than for the neural firing rates (see Figure 3.12).  

 

B A 
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Figure 3.26. R-squared coefficients of the tuning curve’s sinusoidal fitting. Tuning curves where 

obtained separately for each frequency band for all the channels.  Amplitudes were averaged 

from go cue to the end of the trial  

 

 

3.4.2. LFPs-based decoders 

 

After showing that LFP activity has movement-related information, I built velocity 

decoders based on the LFP amplitude at different frequency bands. These decoders had 

a similar structure as the population firing rate- and latent variable-based decoders. As 

mentioned above, I only considered electrodes with consistent inter-trial activity 

As in the previous decoders, to maximize the performance, the following decoders will 

be computed using 100 ms of history. 

Decoder performance typically depended on the LFP frequency band chosen for the 

inputs. For example, Figure 3.27. shows two example decoders; in this case high-

frequency bands yielded more accurate predictions than low frequency bands, a 

difference that was only significant for the X axis (Wilcoxon rank sum test, p < 0.001;  

for the Y axis, Wilcoxon rank sum test, p = 0.97). 
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Figure 3.27.  Histograms of VAF between predicted and actual velocities at x and y components, 

obtained by a 30-folds cross validation. Red distributions correspond to decoders using frequencies 

30 - 400 Hz, while gray distributions correspond to decoders using frequencies 0 - 30 Hz. 

 

To further study the different LFP frequency bands, I computed decoders using only the 

time-varying amplitude at one frequency band as inputs (Figure 3.28). All these single-

band decoders yielded worse average predictions than decoders that took all frequency 

bands as inputs, probably because of the drastically decrease of the number of inputs 

(only 1 out of 7 total input variables are used). Decoders based on low gamma 

frequencies (30-50 and 50-100 Hz) were the most accurate among them.  

 

 

Figure 3.28. Mean VAF of x and y velocity components obtained by a 10-folds cross validation 

using individually each frequency band, and all the frequency bands at the end. Standard deviation 

after the cross validation is indicated as error bars. 
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3.5. Comparison of decoder inputs 
 

3.5.1. LFP and population firing rates comparison as decoder inputs  

 

When comparing LFP-based decoders and population firing rate-based decoders, the 

latter yielded significantly better performance (P<0.001, Wilcoxon rank sum test). 

However, LFPs are still useful signals for velocity decoding, since their mean VAF is 

~0.7.   

 

  

Figure 3.29.  Histograms of VAF between predicted and actual velocities at x and y components, 

obtained by a 30-folds cross validation. Red distributions correspond to decoders using firing rates, 

while gray distributions correspond to decoders using LFPs. 

 

 

 

 

Figure 3.30.  Mean VAF of x and y velocity components obtained by a 10-folds cross validation 

using either LFP, spikes or both as input for the decoder. Standard deviation after the cross 

validation is indicated as error bars. 
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To further investigate the relative predictive power of LFPs and population firing rates, 

I built hybrid decoders that combined both types of inputs [32]. LFP’s frequency bands 

and neuron’s firing rates are used as inputs. The addition of LFP inputs to the good-

performing population firing rate-based decoder decreases significantly its performance 

(Wilcoxon rank sum test; p-value < 0.001). This results are consistent with prior studies 

in hybrid decoders [32], [34]. 

 

3.5.2. Decoder robustness as function of the number of inputs 

 

Making BCI decoders that are robust to degradation of input signals is a key challenge 

in the field [21]. Thus, here I studied which among LFP-based, neural population firing 

rates-based, or latent variable-based decoders is more robust to input channel loss. To 

this end, I gradually decreased the number of input variables of the decoders and 

assessed their performance (see Methods).  

 

  

Figure 3.31.  VAF between predicted and actual velocities at x and y components, obtained by a 5-

folds cross validation at 5 different input combinations, as the number of inputs is reduced. Inputs 

considered where LFPs (Blue), neuron’s firing rates (Red) and 10 latent variables (Green). 

 

LFP-based decoders are more robust against channel loss: they maintain the same 

accuracy even after removing ~50% of the channels. However, their performance is the 

worst among the three types of decoders I studied. Both the accuracy and robustness of 

decoders based neural population firing rates and latent-variables are similar although 

only 10 latent variables are used.  
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3.5.3. Comparison of LFPs and Latent variables 

 

By definition, the latent variables and the neural population firing rates are linear 

combinations of each other (see Methods). But what is their relationship with LFPs? 

Here I examined for the first time the instantaneous relationship between the time 

course of the latent variables and the LFPs. To this end, I used Canonical Correlation 

Analysis (CCA), a method that compares point by point two sets of time-varying signals 

(see Methods) [43]. Using CCA, I studied the similarity (i.e, pairwise correlations) 

between the dynamics of the latent variables and the LFPs at different bands. 

 

  

Figure 3.32.  A: Coefficients obtained from CCA between LFP bands (independently and all 

together) and the 10 first latent variables. B: Relationship between the averages of the 5 first 

canonical correlation coefficients and the VAF of the decoders of each frequency band separately 

(Figure 3.28)  

  

CCA shows that there is a strong correlation between the LFP activity pooled across 

frequency bands and the latent variables (mean correlation of the first 5 coefficients      

> 0.9 in Figure 3.32B). In comparison, all individual LFP frequency bands show a much 

lower correlation (Figure 3.32A). Interestingly, there is an association between the 

predictive power of the LFP inputs and their similarity of the activity at that band with 

the latent variables (Figure 3.32B). This suggests an intriguing relationship between the 

activity in specific LFP bands and the neural population dynamics represented by the 

latent variables. 

  

B A 
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4. DISCUSSION 
 

In this project, I studied the relationship between motor cortical LFPs and latent 

variables, two types of neural signals known to include movement-related information. 

After replicating results in previous reports demonstrating that these two types of 

signals can be successfully used as BMI inputs, I showed that LFPs are slightly more 

robust to electrode loss than neural-based signals are. Finally, I leveraged a novel 

approach based on canonical correlation analysis to reveal that the dynamics of the 

LFPs and the latent variables are strongly related to each other. This intriguing 

unreported finding may enable the development of more robust BMI decoders to restore 

movement to neurological patients. 

 

4.1. Neural population-based and latent variable-based decoders 
 

The innovative approach explored in this project was to try and relate the dynamics of 

the LFPs with those of the latent variables that capture the activity of neural populations 

in the same brain area. Before investigating this relationship, I tested the predictive 

power of the different neural signals, mostly replicating recent results in the scientific 

literature. I found that neural population-based decoders provide the best accuracy. 

Latent variable-based decoders reached the same performance when using only 20 

neural modes, suggesting that the activity in higher (lower variance) neural modes do 

not contribute with new movement-related information for this task. Furthermore, 

decoders using only 10 latent variables as inputs achieved >80% maximum 

performance, and even outperformed the quite accurate predictions obtained with LFP-

based decoders.  

 

4.2. Local field potential-based decoders 
 

A comparison of the predictive power of LFP oscillations in different frequency bands 

showed that decoding performance changes slightly across bands. I obtained the best 

results for the low gamma bands: 30-50 Hz and 50-100 Hz, which contradicts some 

prior studies, where the best performance was obtained using high gamma LFP activity: 

50-300 Hz [34], 200-300 Hz [27]. A third study reported the 200-400 Hz band as the 

best one for decoding [32], although their decoders were not accurate as mine —note 
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that they studied a different, more complex task. Note that this strong preference for 

higher frequencies does not hold when doing online BMI control using LFPs: K. So et 

al reported that different subjects have different ―preferred LFP bands,‖ which led to 

better BMI performance than the others [15].  

In agreement with previous comparative studies, my LFP-based decoders performed 

worse than decoders based on neural population activity [27], [32] or latent variables 

[26]. The appeal of LFP-based decoders is their intrinsically longer stability over time 

[34], a topic that was out of the scope of this project. I did however simulate loss of 

recording electrodes by progressively eliminate input signals, i.e. neurons or LFPs 

channels. Interestingly, LFP-based decoders were the most robust against input channel 

lost. Latent variable-based decoders also outperformed neural population-based 

decoders, likely because movement-related information is largely population-wide [43]. 

This was the case even though, my neural population-based decoders were more robust 

than what is typically reported in prior studies [27], [34], indicating that this dataset 

contained a particularly ―movement-tuned‖ neural population.  

 

4.3. Relationship between local field potentials and latent variables 
 

To begin exploring what movement-related information is shared between LFPs and 

neural population activity, I studied how the dynamics of the latent variables and the 

LFPs at different frequency bands related to each other. I found that the dynamics of the 

combined LFP activity including all the frequency bands was strongly correlated with 

the latent variables within the neural manifold. Individual frequency also showed some 

correlation with the latent variables, although it was significantly lower for all the 

combined bands. Intriguingly, there seems to be a linear relationship between the 

predictive power of each LFP frequency band and its similarity with the latent variables 

(Figure 3.31). 
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4.4. Limitations and Future Work  
 

Although my analyses reproduced results in several published studies, and even 

suggested a previously unreported relationship between the dynamics of the LFPs and 

the latent variables, this study has several shortcomings. First, I had to discard some 

LFP signals as they were largely inconsistent across trials when the monkey reached to 

the same target, contrary to the activity of individual neurons or many LFP channels. 

Moreover, I built my decoders based on the peri-movement periods (i.e. from the go cue 

to the end of each trial), not the whole recording times. Discarding the inter-trial epochs, 

when linear decoders often yield some small false positives, tends to artificially increase 

the amount of VAF. Perhaps for this reason, the addition of a static non-linearity did not 

improve decoder performance significantly. Finally, I only analyzed one dataset, 

although I did cross-validate all the analyses to ensure the generalizability of my results. 

Importantly, all these shortcomings can be potentially solved in my future work.  

In future work, it would be interesting to replicate these analyses to investigate the 

relationship between the dynamics of the LFPs and the latent variables during 

movement preparation, the interval when the monkey plans the movement before 

executing it. I have access to several datasets that include simultaneous recordings from 

dorsal motor cortex (PMd), a ―higher‖ cortical area that integrates sensory and visual 

information and has been greatly implicated in motor planning [26], during this same 

task. Another interesting analysis would be to investigate the stability of the LFPs over 

time, by testing the performance of a decoder trained on ―Day 1‖ on subsequent days. 

This analysis could be enriched by studying whether the relationship between the LFPs 

and the latent variables is also stable across days.  

4.5. Conclusions 
 

I have used a novel analytical approach to report that the inputs to LFP-based decoders 

and neural population-based decoders have quite similar dynamics. Follow up analyses 

may further our understanding of the relationship between these two types of neural 

signals. Combining the present results with recent developments in the neural manifold 

framework may enable the development of decoders that lead to robust BMI 

performance over unprecedented periods of time. 
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5. SOCIO-ECONOMIC IMPACT 
 

5.1. Research impact 
 

This project do not constitute and important economic gain, since no monetary benefit is 

coming from it. However, it does imply an important research advance on the 

neurological field. The task of understanding brain functionality is one of the most 

difficult challenges for this new century. This individual project constitutes the first step 

of a long period of research in which actual neurological hypothesis will be proven 

right, or rejected, generating new ones. 

The relevance of the project is not restricted to the understanding of brain functionality 

for the sake of knowledge. Completely understanding the brain would give brain 

machine interfaces the proper methodology to follow to satisfactory substitute the 

natural movement control for people with motor disabilities. Moreover, understanding 

how the brain learns to develop new tasks could be the key for restoring lost brain 

functionality after a neurological accident (i.e. stroke), or even a new born disease (i.e. 

Amyotrophic lateral sclerosis (ALS)).  

 

5.2. Budget 
 

The project costs are divided in two main groups: human resources and materials. 

 

Human resources costs 

Concept Cost/hour Working hours Total cost 

Student 20 € 600 h 12,000 € 

Supervisor 40 € 180 h 7,200 € 

  Subtotal 19,200 € 

 

No lab technician was needed for this project. The total student hours are estimated 

based on the working schedule and the extra hours for writing the bachelor thesis. 

Estimation of supervisor hours is based on a 30 % of supervised time, including time for 

revisions and reunions. 
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Material costs  

Concept Initial cost Dedication Proportional cost 

Laptop 1500 € 8 months 87.5 € 

Computer 3500 € 2 months 58 € 

Matlab license 500 €/year 8 months 291.7 € 

Office 2010  100 €/year 8 months 58.3 € 

  Subtotal 495.5 € 

 

Both computer and laptop expenses are estimated by a 10 year lifetime.  

The animal care budget was not included in these estimations since the data was 

recorded long time ago and all their expenses were covered by the Northwestern 

University (Chicago, IL, USA).  

No industrial benefit comes from this project, but a general cost of 16% (of the material 

costs) and 21% taxes should be included. Thus, the final budget is: 

 

Material costs  

Type of cost Cost 

Human resources 19,200 € 

Materials 495.50 € 

General costs 74.48 € 

Total without taxes 19,769.98 € 

FINAL (Total + taxes) 23,921.68 € 
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6. LEGAL FRAMEWORK 
 

 

Regarding the software, the totality of the project was developed using Matlab with a 

student license [46]. It was not required a general license since the implemented code is 

exclusive for research purposes, thus, will not be commercialized.  

All the Matlab data was organized in a structure that comprises many functions and 

classes developed by the research group previously. The codes used for this project 

remain as intellectual property of M. G. Perich, J. A. Gallego, and R. H. Chowdhury, 

although they could be used in future researches.  

Regarding the project itself, I used neural and behavioral data recorded from a monkey 

(macaca mulatta) at Northwestern University (Chicago, IL, USA) in 2016. All surgical 

and experimental procedures were approved by Northwestern’s Animal Care and Use 

Committee [47].  
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