

Dual Degree on Computer Engineering and Business

Administration

2018-2019

Final Degree Project [TFG]

“Sentiment Analysis in Unstructured

Textual Information with Deep Learning”

Alberto García Hernández

Tutor

Miguel Ángel Patricio Guisado

Madrid, 17th June 2019

This work is licensed under a Creative Commons Attribution – NonComercial –

NonDerivs 3.0

ii

iii

Summary

This document analyses the current State-of-the-Art algorithms in the fields of

Natural Language Processing and Sentiment Analysis. It continues with a step-by-step

explication of the development process of pre-processing techniques and neural networks

architectures that allow to perform sentiment predictions (predicting rating stars) on

Amazon.com customer reviews. An accuracy comparison has been made between 4

different models to check their performance.

The second part of the project has been the development of a demo web application

to show the potential of a Product Analytics Tool, which allows to perform sentiment

predictions of any product on Amazon website. This app scrapes the reviews, loads the

previously trained model and makes the predictions, generating different insights such as

the most positive and negative features of the product based exclusively on the most

reliable and objective data, customer reviews. The source code of the app can be found

here:

https://github.com/albergar2/SA_Project

At the end of the document an appendix has been added providing information and

estimates of the cost and tasks required to replicate this project in a professional

environment.

Key Words:

− Sentiment Analysis

− Deep Learning

− Amazon reviews

− Feature extraction

− Web application.

https://github.com/albergar2/SA_Project

iv

v

Index

1. INTRODUCTION .. 1

1.1 Contextualization ... 1

1.2 Goals and objectives .. 3

1.3 Legal Framework... 4

1.4 Socio-Economic Environment... 4

1.5 Document structure ... 5

2. STATE-OF-THE-ART ... 6

2.1 Word Embeddings ... 6

2.2 State-of-the-art datasets ... 10

2.3 Related experimental results .. 10

2.3.1 Barnes et al. (2016) Experiment: Models ... 11

2.3.2 Advanced Models .. 15

3. RESEARCH AND DEVELOPMENT ... 18

3.1 Data Exploration .. 18

3.2 Data Pre-Processing... 21

3.3 Neural Networks Implemented .. 24

3.3.1 Long Short-Term Memory (LSTM) ... 24

3.3.2 Bidirectional Long Short-Term Memory (BiLSTM) ... 26

3.3.3 Simple Convolutional Neural Network (CNN) ... 28

3.3.4 Batch Normalized Convolutional Neural Network (CNN2) 29

4. RESULTS ANALYSIS .. 30

4.1 Model Training .. 30

4.2 Models Comparison... 31

5. WEB APPLICATION DEVELOPMENT .. 38

5.1 Framework ... 38

5.2 Back-end .. 39

5.2.1 Scraper.. 39

5.2.2 Cleaning, Preprocessing and Sentiment Prediction ... 40

5.2.3 Spanish Support .. 41

vi

5.2.4 Product features ... 41

5.3 Front-end ... 43

5.3.1 Homepage ... 43

5.3.2 Reviews Tab .. 44

5.3.3 Analysis Tab ... 48

6. CONCLUSIONS & FUTURE WORK GUIDELINES .. 53

6.1 Conclusions ... 53

6.2 Future Work Guidelines .. 54

7. REFERENCES .. 56

8. APPENDIX ... 65

Appendix 1: Planning .. 65

Appendix 2: Budgeting.. 67

vii

Figures Index

FIGURE 1: BOW VECTOR REPRESENTATION ... 7

FIGURE 2: NEURAL EMBEDDINGS ARCHITECTURES – CBOW VS SKIP-GRAM 7

FIGURE 3: KING WORD2VEC EXAMPLE .. 9

FIGURE 4: ALGORITHM ACCURACY COMPARISON ACROSS STATE-OF-THE-ART DATASETS 11

FIGURE 5: LSTM DIAGRAM ... 13

FIGURE 6: BILSTM DIAGRAM .. 13

FIGURE 7: CONVOLUTIONAL NEURAL NETWORK WORKFLOW ... 14

FIGURE 8: ALGORITHM ACCURACY COMPARISON ON STANFORD SENTIMENT TREEBANK 16

FIGURE 9: CONSISTENCY PARSE TREE ... 17

FIGURE 10: DATASET’S STRUCTURE OVERVIEW .. 18

FIGURE 11: SENTIMENT DISTRIBUTION .. 19

FIGURE 12: OVERFITTING EXAMPLE ... 19

FIGURE 13: EXTRACTED FEATURES DISTRIBUTIONS ... 20

FIGURE 14: EXTRACTED FEATURES - CORRELATION MATRIX ... 20

FIGURE 15: CLEANING AND PREPROCESSING WORKFLOW.. 21

FIGURE 16: ACTIVATION FUNCTIONS – SIGMOID VS RELU ... 25

FIGURE 17: LSTM MODEL’S ARCHITECTURE .. 26

FIGURE 18: BILSTM MODEL’S ARCHITECTURE.. 27

FIGURE 19: CNN’S MODEL ARCHITECTURE .. 28

FIGURE 20: CNN2’S MODEL ARCHITECTURE .. 29

FIGURE 21: EARLY STOPPING EXAMPLE .. 31

FIGURE 22: TEST ACCURACY COMPARISON Z-VALUE=0.3 .. 32

FIGURE 23: TEST ACCURACY COMPARISON Z-VALUE=0.5 .. 32

FIGURE 24: TEST ACCURACY COMPARISON Z-VALUE=0.8 .. 32

FIGURE 25: VALIDATION LOSS VS ACCURACY COMPARISON Z=0.3 .. 34

FIGURE 26: VALIDATION LOSS VS ACCURACY COMPARISON Z=0.5 .. 35

viii

FIGURE 27: VALIDATION LOSS VS ACCURACY COMPARISON Z=0.8 .. 36

FIGURE 28: RELATIONSHIPS BETWEEN APP’S FUNCTIONALITIES.. 39

FIGURE 29: APP’S HOMEPAGE STRUCTURE ... 43

FIGURE 30: EXAMPLE PRODUCT ... 45

FIGURE 31: EXAMPLE REVIEWS TAB FRONT-END ... 46

FIGURE 32: EXAMPLE REVIEWS TAB FRONT-END ... 48

FIGURE 33: TOP 5 PROS AND CONS EXAMPLE ... 49

FIGURE 34: REAL VS PREDICTED STAR DISTRIBUTION EXAMPLE ... 50

FIGURE 35: POLAR CONFUSION MATRIX EXAMPLE ... 51

FIGURE 36: CONFUSION MATRIX STARS EXAMPLE ... 52

FIGURE 37: PROJECT TASKS ... 66

FIGURE 38: GANNT DIAGRAM .. 66

FIGURE 39: TEAM COST .. 67

FIGURE 40: SOFTWARE AND HARDWARE COST .. 67

FIGURE 41: TOTAL PROJECT COST ... 67

EQUATION 1: MAX LENGTH PADDING FORMULA ... 23

1

Section 1

Introduction

1.1 Contextualization

Sentiment Analysis is a field within Natural Language Processing (NLP) which

focuses on identifying and extracting opinions from an unstructured text. According to

the studies developed by Anant Jhingrans from IBM Research (Jhingrans, A. 2018),

nearly 85% of the world’s data is unstructured (not organized in a determined manner).

Advanced Sentiment Analysis techniques are based on Machine Learning and Deep

Learning algorithms that help companies to make sense of their data, to extract actionable

insights, therefore making teams more competent and automating different business

processes. Sentiment Analysis can be understood as a text mining technique used to

identify and extract subjective insights from unstructured text to help businesses or other

organizations to monitor the social sentiment related to their products, brand or services.

The main research about Sentiment Analysis revolves around polarity classification,

which aims to classify a sentence’s opinion as expressing positive, negative or neutral

emotions. Depending on the nature of the problem, the algorithms can be applied at a

different level of scope: document, sentence or sub-sentence level.

Research about Sentiment Analysis has experienced a good amount of progress for

the last 10 years and algorithms and its text analysis’ ability has improved remarkably.

So far, researchers on the field have been focusing on five types of analysis:

2

− Polarity Classification: positive, neutral and negative emotions.

− Fine-Grained Classification: very positive, positive, neutral, negative and very

negative emotions.

− Emotions detection: happiness, frustration, anger, sadness, excitement, etc.

− Aspect-Based: features about the concept the sentiments refer to.

− Intent: detecting what people mean rather than what people say.

Despite of the progress on the field, there are some persistent limitations that have

not been solved yet and researchers still struggling with: Subjectivity and Tone, Context

and Polarity, Irony and Sarcasm, Emojis and Defining Neutral (objective texts, irrelevant

information, wishes).

Focusing on a practical approach, the main applications of Sentiment Analysis from

which companies and users can benefit from, are:

− Social Media Monitoring: analyze people’s reactions around a topic.

− Brand Monitoring: analyze mentions from different sources like social media,

news, blogs or forums to obtain a broad view of the brand.

− Customer Feedback: Net Promoter Score (NPS) classifies individuals as

promoters, passives or detractors. Sentiment Analysis can aggregate NPS and

other surveys in order to respond quicker to customers’ shifts.

− Customer Support: detect disgruntled customers and surface those tickets to the

top, gaining deep insight into what’s happening.

− Workforce Analytics and Voice of Employee: discover employee concerns from

surveys, keywords and behavior, ensuring they feel heard and valued.

− Product Analytics: analyze large quantities of product feedback surveys, social

media and online mentions about a product, keeping constant tabs on the features

people like and don’t like about the product itself.

− Market Research and Analytics: analyze product reviews vs competitors reviews,

generate weekly/monthly/daily reports, analyze market reports and business

journals for trends, social media analysis for real-time happenings.

3

The different applications identified above are fields in progress at the moment,

getting useful insights from customer reviews, tracking the advertisement’s influence on

purchasing effect as well as real-time analysis on social media are just a few tools that are

going to improve a lot in the years to come. Understanding real-time perception from

customers with a high accuracy score will be taken from granted in the future by any

company. This document has focused on Product Analytics, the most promising area of

study oriented to businesses as it’s development will be able to reproduce human level

accuracy on millions of customer interactions about a company’s product or brand by

analyzing user’s sentiment and extracting the product’s main features they are talking

about. The key steps on performing Product Analytics are:

1. Identify product’s features and aspects the customers care about.

2. Predict users’ intentions, sentiments and reactions about these features.

1.2 Goals and objectives

The main goal this project pursues is to obtain a Sentiment Analysis model trained

with unstructured text using deep learning techniques to solve a polarity classification

problem, extending the scope to a simple aspect-based sentiment analysis, which in

combination will produce a Product Analytics web application. The model has been

trained with a dataset built upon 4 million Amazon.com products’ reviews obtained from

the research and work of Xiang Zhang, PhD student at New York University (X. Zhang’s

Google Drive, 2019).

The aim of the model is to achieve an accuracy value on the test dataset close to

State-of-the-Art, using current methodologies and deep learning algorithms. Once the

model has been successfully trained, it will be loaded into a user-friendly demo web app

that will allow the user to perform a sentiment analysis on any Amazon.com product by

introducing its URL link, showing the great potential of a Product Analytics deep learning

platform.

4

1.3 Legal Framework

This section examines the key aspects that must be taken into consideration when

developing a project as the one described in this document. It’s important to revise the

current legislation related to the software licenses and the General Data Protection

Regulation (GDPR). As far as software licenses, the training section of the project has

been developed on Kaggle servers, owned by Google and free to use. The web app has

been developed using PyCharm Free Community Edition IDE and Dash by Plotly

Framework, both free to use.

The dataset used was obtained from Xiang Zhang’s Google Drive, which was open

to the public. On the other hand, the web app is loading customer reviews from any

product from Amazon.com, however, the method used to do this is basically loading each

review’s web page and reading the HTML file, therefore data which is open and not

restricted by GDPR regulation since it’s not personal data (such as name, IP, email, phone

number, etc).

1.4 Socio-Economic Environment

The field of Sentiment Analysis jointly with NLP and Artificial Intelligence are main

research topics both in academia and industry. These topics will evolve in the next few

years, integrating new languages as well as new algorithms and modified neural networks

that will increase the accuracy of the current methods.

The results achieved in this project could be used on the private sector for multiple

applications. The most straightforward tool the industry will benefit from will be a

Product Analytics tool similar to the one developed for this project to extract the key

product’s features as well as the customer sentiment from product reviews. On the other

hand, there are multiple variations of this tool that can be oriented to develop tools able

to predict sentiments on customer’ feedback to improve NPS scores or Social Media

Monitoring to track customer reaction’s to marketing campaigns, releases of new

products or news about the company’s brand or industry.

5

Solutions as the ones identified above could make a competitive strength for a

company by improving the service given to customers and being flexible to adapt its

products and marketing campaigns to respond as fast as possible to changes in trends on

the industry. According to Domo’s Data Never Sleeps 6.0 report (Domo, 2018), in 2020,

on average each person in the planet will generate 1.7MB of data per second, therefore

companies investing in technology to get insights of this unstructured and low-quality

data will obtain a significant advantage over their competitors and will increase its

revenues.

On the other hand, there are social applications of this technology, being an example

of it the ones implemented on social media. Companies like Facebook and Twitter

analyze every post looking for inappropriate content that enacts violence, drug abuse or

pornography, in order to censor it and stop it’s spread over the internet. These approaches

are not related to revenues but to social wellness.

1.5 Document structure

This document will start with an overview of Sentiment Analysis’ State-of-the-Art

to explore the current techniques, approaches and accuracies obtained from the world’s

best researchers on the field of NLP. Once the current trends and techniques to solve

similar problems have been identified, the document will explain and justify the

algorithms used and decisions taken to develop the goal solution. On the following

sections a results analysis focused on the accuracy and the perform of the output from the

web app will be showed. A final section placed at the Annexes analyzes the project

implementation costs and tasks in case a company wants to build a similar Product

Analytics tool. As a conclusion, the document will recap the results described on this

document and state future work guidelines to anyone interested in working on the field

and improving the solutions described.

6

Section 2

State-of-the-Art

Current research trends on sentiment analysis rely on unsupervised algorithms to

perform feature extraction, using pre-trained word embeddings as the most common

approach. Text pre-processing is usually more important than the neural network used on

terms of accuracy.

2.1 Word Embeddings

At the moment, computers are not able to understand the meaning and concepts

behind words. Word vectors are the standard approach to represent text in a way a

computer can use it, mapping words and phrases to vectors of real numbers, which

constitutes the previous step to the training stage as neural networks must work with

numbers rather than words.

Traditional word vectors try to capture the appearance frequency for each word on

each document. Bag of Words (BoW) links each word given in the vocabulary to a one-

hot encoded vector depending on whether the word appears on the document. This

technique doesn’t encode any information related to the actual meaning of the word and

gives the same weight to every word, even though it is proved that in most NLP problems

there are some words which are more relevant than others.

7

Figure 1: BoW vector representation

Source: D. Karani (2018)

Neural embeddings are the next step on the evolution of word embeddings.

Word2Vec is a predictive model developed by Google (Google Code Archive, 2019)

which have been trained using English Wikipedia Corpus to predict word vectors

representation and to capture the meaning of the word by taking into consideration

surrounding words. This predictive model can use two different architectures:

- Continuous bag-of-word (CBOW): the model is trained with the surrounding

words and it aims to predict the given word.

- Skip-Gram: the model is trained with single words and aims to predict its

surroundings.

Figure 2: Neural Embeddings Architectures – CBOW vs Skip-Gram

Source: D. Karani (2018)

8

The real alternative to Word2Vec is GloVe (Pennington et al., 2014), a word

embedding developed by Stanford which uses a count-based model (instead of predictive

model as Word2Vec) and a neural methodology to break down the co-occurrence counts

matrix by doing a dimensionality reduction, therefore building more expressive and dense

word vectors. It has been proved that GloVe is faster to train than Word2Vec, but

researchers haven’t found any relevant differences on results.

Neural word embeddings are able to include into their vectors most of the information

related to the vocabulary words, the most frequent surrounding words, meanings,

synonyms or antonyms by taking into consideration from 50 to 300 dimensions for each

of word in the vocabulary. As a result, we can perform operations with words similar to

those done with numbers. For example, given three words king, man and woman, we

could perform the following operation using their word vectors, and we will obtain a new

word:

(𝑘𝑖𝑛𝑔 − 𝑚𝑎𝑛) + 𝑤𝑜𝑚𝑎𝑛 = 𝑞𝑢𝑒𝑒𝑛

Similar words (even if their relationship is that they are antonyms of each other) will

be placed into a space from 50 to 300 dimensions close to each other, on contrast to

radically different words with nothing in common which will be placed far away from

each other. Google has developed a web app to explore word embeddings trained by

Google’s Wor2Vec team that can be found on the following link:

http://projector.tensorflow.org/

Continuing with the example about the word king, the example below shows the

results obtained from Word2Vec and Google’s web app for word embeddings on

representing the closest 50 neighbors. Since each neighboring word has 300 dimensions,

a PCA has been used to reduce their dimensionality into a 2D visual representation. The

example shows that the closest words to king are kingdom, battle, prince, crown and

regent. It is notable how Word2Vec has captured words’ closeness on south region

(English rulers), east region (roman numbers used to identify kings who have chosen the

same name) and west region (family kinship).

http://projector.tensorflow.org/

9

Figure 3: King Word2Vec example

Source: Projector Tensorflow. Embedding Projector – Visualization of high dimensional data

10

2.2 State-of-the-art datasets

In order to analyze the results obtained by different techniques, a replicable

environment built upon benchmark datasets is compulsory. At the moment, there are

different State-of-the-art datasets with different granularity used to compare the

performance between different algorithms.

− Stanford Sentiment (Socher et al., 2013): movies reviews from IMDB which

contain 5 levels of sentiments (SST-Fine / SST-1) (strong negative, negative,

neutral, positive and strong positive). A binary sentiment version is also available

(SST-Binary / SST-2).

− OpeNER (Agerri et al., 2013): hotel reviews and opinions, which include

annotated sentiment holders, targets and phrases.

− SenTube (Uryupina et al., 2014): comments extracted from YouTube about

tablets (SenTube-T) and automobiles (SenTube-A), usually from commercial

videos. They have been annotated for negative, neutral and positive.

− SemEval (Nakov et al., 2013): tweets collected in 2013 and annotated on three

levels of sentiment.

2.3 Related experimental results

The following table developed by Barnes et al. (2016), highlights the State-of-the-

Art accuracy on sentiment analysis’ task on every dataset stated above. Barnes and his

colleagues compared the accuracy of different algorithms across the set of datasets on

word embeddings’ dimensions ranging from 50 to 600. Marked in bold are the best

performing experiment for each dataset, while marked on blue are the results reported by

other researchers. The last column shows the average across all the dataset for every

algorithm and dimensionality combination, stating that as overall, BiLSTM is the most

successful.

11

Figure 4: Algorithm accuracy comparison across state-of-the-art datasets

Source: (Barnes et al., 2016)

2.3.1 Barnes et al. (2016) Experiment: Models

1. BOW: regularized logistic regression on a Bag of Words representation (count-

based model) of dimensionality ranging from 50 to 600. This approach is

commonly used as standard baseline on text classification tasks. Marked in blue

are the results reported by Uryupina et al. (2014) on SenTube and Lambert (2015)

on OpeNER.

2. AVE: regularized logistic regression classifier performed over the average of

word embeddings vectors trained with skip-gram algorithm (Mikolov et al., 2013).

Best results have been reported by Faruqui et al. (2015) on SST-binary.

12

3. RETROFIT: regularized logistic regression on average word embeddings vectors

from Mikolov et al. (2013) in a combination with PPDB-XL lexicon, a lexicon

database that helps NLP algorithms to be more robust against language

expressions’’ variability. This approach was taken by Faruqui et al. (2015) who

improved AVE’s results on SST-binary.

4. JOINT: this approach was performed by Tang et al. (2014) with word embeddings

trained on sentimental meaning rather than the original semantic meaning from

Mikolov et al. (2013). Concatenating the minimum, maximum and average

sentimental word embedding vectors for each sentence a training a linear SVM

(Support Vector Machine – a non-probabilistic binary linear classifier) on these,

Tang et al. (2014) obtained the best result on SemEval dataset.

5. LSTM (Long Short-Time Memory): this algorithm was first introduced by

Hochreiter and Schmidhuber (1997) and it is a kind of Recurrent Neural Network.

As on every model, words are transformed into word embeddings vectors through

an embedding layer. Then each word vector is fit into the network by the input

gate on the cell state, which is the belt that goes through the LSTM neuron,

modifying the vector as it advances through different regulated gates (input gate,

output gate, forget gate) which add or subtract information of the cell. Each word

will modify in a different amount the cell state, which gives this kind of networks

the name of recurrent, as they take into consideration previous words in the

sentence to learn to predict the output. Best results have been obtained by Tai et

al. (2015) on SST-fine and an improved version trained on 600 dimensions rather

than 300 as Tai et al. (2015) did by Barnes et al. (2016).

6. BiLSTM (Bidirectional Long Short-Term Memory): designed over the same

architecture than LSTM, the main feature is that two LSTM networks are run and

their outputs concatenated. The first LSTM network will receive the original

sequence of word embeddings vectors, while the second LSTM network will

receive the input on inverse order, therefore the model will be more concerned

about the sentimental meaning of the sentence, generally improving LSTM

results. BiLSTM has established State-of-the-Art accuracy values on several

13

datasets and has been ranked overall as the best network over the full set of

datasets by Barnes et al. (2016). This network has achieved overall best results on

SST-fine and SST-binary by Tai et al. (2015), and on OpeNER and SemEval by

Barnes et al. (2016).

Figure 5: LSTM Diagram

Source: M. Nguyen (2018)

Figure 6: BiLSTM Diagram

Source: Ceshine Lee (2017)

14

7. CNN (Convolutional Neural Network): CNN are feature extractors from a given

input focused on the fields of Computer Vision and Image Classification.

However, in recent years they have been adapted to one dimension vectors, being

capable to solve NLP tasks. CNN models take word embedding’s vectors to

perform convolutions over the sentence’s words in order to learn whether the word

is meaningful for the task. One of the biggest weakness of CNN when applied to

NLP is their lack to take into consideration the surroundings and semantic

meaning of text (where LSTM and BiLSTM outperforms). Best results following

this approach have been obtained by Kim (2014).

The following image illustrates these concepts where a window size of 2 has been

chosen for simplicity (convolution kernel).

− Stage 1: original words are represented in green, which are transformed by

the embedding layer into vectors represented in blue squares.

− Stage 2: taking the first two words’ vectors (window size) the network

performs the multiplication of vectors’ weights to obtain an output. This

process is repeated with the next word until every word of the sentence has

been convoluted. A CNN network has to specify how many neurons the

network has (filters) and each of them will perform similar convolutions for

each sentence. At the end of the convolution process, the output will be a one

dimensional array of length number of words for each of the filters.

− Stage 3: for each array obtained, a max-pooling process will be performed to

reduce its dimensionality by a factor determined by a parameter, generating

an output that can be introduced into a function to obtain a final prediction.

Figure 7: Convolutional Neural Network Workflow

Stage 1: Input Representation (Embedding Layer)

15

Stage 2: Filter Convolution

Stage 3: Max-Pooling

Source: Debajyoti Datta, Data Scientist at X.ai

2.3.2 Advanced Models

Both NLP and Sentiment Analysis are evolving really fast on recent years, and year

after year researchers manage to improve State-of-the-Art accuracy with complex

configurations, redesigned algorithms and different combinations of them. These

advanced models are usually tested on SST-fine and SST-binary as both datasets have

highlighted over the others during the last years. On the figure below are illustrated the

results obtained by several researchers doing some modifications to the networks and

algorithms explained in the previous section. This comparison has been developed by

Young et al. (2018).

16

Figure 8: Algorithm accuracy comparison on Stanford Sentiment Treebank

Paper Model SST-1 SST-2

Socher et al (2013) Recursive Neural Tensor Network 45.7% 85.4%

Kim (2014) Multichannel CNN 47.4% 88.1%

Kalchbrenner et al (2014) DCNN with k-max pooling 48.5% 86.8%

Le and Mikolov (2014) Paragraph vector 48.7% 87.8%

Tai et al (2015) Constituency Tree-LSTM 51.0% 88.0%

Yu et al (2017) Tree-LSTM with refined word embeddings 54.0% 90.3%

Yu et al (2017) Bi-LSTM with refined word embeddings 49.7% 88.6%

Yu et al (2017) CNN with refined word embeddings 48.8% 87.9%

Chen et al (2017) BiLSTM + CNN 48.5% 88.3%

Source: (Young et al., 2018).

These models have performed complex transformations, additions or combinations

to obtain State-of-the-Art accuracy values and it is out of the scope of this document to

make a deep analysis of each of them, however, a high level clarification of some of them

has been done on this document:

− Socher et al. (2013) and Tai et al. (2015) both developed recursive networks

relying on constituency-based parse trees that represent the syntactic structure of

the sentence following a phrase structure grammar. The difference between both

is the sentence modelling and preprocessing, remarking the importance of this

steps. Tree structures performed much better than linear LSTM showed on the

previous section, which implies that tress structures capture better the syntactical

features of sentences.

− Yu et al. (2017) established the State-of-the-Art by proposing a refined word

embedding vectors combined with sentiment lexicons on a Tree LSTM structure.

They also developed similar refinement to BiLSTM and CNN networks,

achieving great improvement.

− Kim (2014) and Kalchbrenner et al. (2014) proposed a CNN approach where the

former is a modified version of its own previous work and the last is a sequence

model with interweaving convolutional a max-pooling layers.

17

− Chen et al. (2017) opted for a sequence model of a BiLSTM layer combined with

a CNN layer. Performing a simple refinement this approach scored high on the

State-of-the-Art ranking.

Figure 9: Consistency Parse tree

Source: Sebastian Ruder, NLP Progress

To conclude this section, it is notable the improvement related to tree structures as

well as preprocessing and refinement techniques, that can lead to substantial

improvements. Neural networks are unquestionably the choice to make on Sentiment

Analysis tasks focusing the attention on different variations of LSTM, BiLSTM and CNN

networks.

18

Section 3

Research and development

3.1 Data Exploration

As a good practice for any data science project, a data exploration has been performed

to get to know more information about the dataset as well as extracting insights and

distributions. The full dataset contains 3.60 million reviews for training and 400k reviews

for testing, labelled as positive or negative. These reviews come from different Amazon’s

products, being labelled negative those with 1 and 2 stars and positive those with 4 and 5

stars. As a result, every review with 3 stars, which highlights by its neutrality, has been

omitted. The following figure shows the structure of the dataset.

Figure 10: Dataset’s structure overview

It is very important to know whether the dataset’s target label is balanced, to avoid

training the model with this kind of bias. The figure below illustrates the label distribution

across the dataset, resulting in a perfectly balanced set ready to work with.

19

Figure 11: Sentiment Distribution

Hidden correlations between variables and the target label can end up generating an

overfitting problem. Overfitting arises when during the training process, the model

adjusts too much to the training dataset instead of generalizing for any data, which leads

to underperform on the test dataset. Let’s make the hypothesis that any review on the

training dataset longer than 50 words is negative. During the training process the model

will realize about this and stop learning about the word embeddings or sentiments and

just focusing on the review’s length. Once the training has been completed, the model

must be tested with unseen data, which now doesn’t have this hidden correlation (there is

no link between negative reviews and review’s length). The model will just check the

review’s length to make predictions, that won’t be accurate given the circumstances.

Figure 12: Overfitting example

Source: A. Bahande, 2018

20

In order to identify the existence of this kind of hidden correlations, a feature

extraction has been done to check whether they are correlated with the target label.

− Review Length: count of the number of words in the review.

− Avg_word_length: average number of letters a word has on each review.

− Upper: count of the number of upper letters each review has.

Figure 13: Extracted Features Distributions

Figure 14: Extracted Features - Correlation Matrix

21

The strongest correlation with the Sentiment tag appears to be on the Review Length

feature with a strength of -0.07 confirming the hypothesis stated before, longer reviews

tend to be slightly more negative. This parameter must be taken into consideration when

training the model to avoid overfitting.

3.2 Data Pre-Processing

Data pre-processing is crucial on NLP tasks since different approaches can lead to

totally different results when trained the same neural network. Because all of these,

usually cleaning and preprocessing is done manually and has to be adapted to the specific

problem we aim to solve, meaning sometimes trial and error procedures. This subsection

explains the cleaning and preprocessing techniques performed that led to the best results,

leaving to the Results Analysis Section the empirical results on performance and

accuracies.

Due to the size of the dataset and all the transformations and operations required to

solve the problem, a regular laptop is not enough to run all within a reasonably time. As

a result, the code implemented has been run on Kaggle framework which gives free access

to Google’s servers to run code with a compilation time limit of 9 hours. This limit has

been overpassed in several occasions during the development of the project, so the code

has been optimized to run as fast as possible and split in chunks that were reassembled

later. The next figure summarizes the steps taken on the Cleaning and Pre-processing

process.

Figure 15: Cleaning and Preprocessing Workflow

1. Simple
Preprocessing

2. Stop-Words 3. POS-Tagging 4. Tokenizer
5. Word

Embeddings

22

1. Simple Preprocessing: Once the data has been loaded in a tabular pandas

dataframe and the review’s title has been concatenated with the review itself,

gensim library has been imported to have access to its simple_preprocessing

function, which converts each review into a list of lowercase words in a pretty

optimized way. Gensim library is focused on topic modelling (statistical models

that extract the hidden topics in documents), statistical semantics and semantic

structure analysis, areas of study that need too preprocessing techniques for text.

2. Stop-Words: the list of words is filtered to remove English stop-words, which are

those words commonly used and that doesn’t give any information (“the”, “a”,

“an”, “in”, etc.). This stop-words have been downloaded from NLTK (Natural

Language Tool Kit), a library focused on NLP tasks that makes preprocessing

linguistic data considerably easier by providing tools for text classification,

tokenization, semantic reasoning, tagging, stemming and parsing. The existence

of these tools is essential to make sense of word semantics and meanings and they

have been key for researchers to focus their efforts mainly on English language.

3. POS-Tagging: a great optimization of the cleaning process presented on this

document is to keep exclusively sentimentally meaningful syntactical categories.

This means to drop any word that belongs to syntactical categories with no

sentiment associated to them, such as determinants or pronouns. NLTK has a tool

available called Part of Speech Tagging which identifies the syntactical category

for each word on the sentence, allowing a filter process to keep the most

meaningful categories:

− Adjectives

− Nouns

− Adverbs

− Verbs

4. Tokenizer: once the cleaning is done, the text must be manipulated to fit neural

networks’ requirements, which means transforming words into numbers with

which they can operate. The first step is to tokenize each word by giving every

different word a number that represents it unmistakably adding an extra category,

23

UNK (unknown), for words that may appear and are not on the tokenizer’s index

table. Words whose occurrence is lower than 5 times have been omitted to

optimize the code and avoid training the model with non-frequent words. After

that, every review is encoded looking up to the tokenizer’s index table

(vocabulary). Every neural network has a strong requirement that must be

satisfied, each training example (reviews on this project) must have the same

length. To achieve this, a padding technique has been used fixing the length of

every sentence to the number calculated with the following formula:

Equation 1: Max Length Padding Formula

𝑀𝑎𝑥 𝐿𝑒𝑛𝑔𝑡ℎ 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑥̅ − 𝑍 · 𝜎

Where 𝑥̅ is the average reviews’ word length, 𝜎 is its standard deviation and 𝑍 is the Z’s score for

the desired percentile under a normal distribution

Assuming the sentence length across the dataset follows a normal distribution, the

z-value will fix the percentile that determines the reviews that will be fully

considered. To give an example, a z-value of for the 80% percentile will result in

a max_length value great enough to embrace 80% of all reviews, which will have

a review’s length lower or equal than max_length. Reviews with a lower length

will be filled with zeros at the end to fit the max_length variable. The remaining

20% of reviews will be truncated to max_length, losing some information.

5. At this moment, words have been mapped to numbers, but each word is not related

by any mean with any other word. Pre-trained neural word embeddings have been

used to transform those tokens into meaningful tokens, leaning towards a 100

dimensions of GloVe since is more optimized and runs faster than Word2Vec.

Therefore, each word token will be transformed into a 100 dimensions word

vector that will be given as input with the other vectors of the review to the first

layer of the neural network.

24

3.3 Neural Networks Implemented

Once data has been cleaned and preprocessed it is ready to be fitted into a neural

network model. In order to choose an appropriate model that will lead to good results a

four model comparison has been made choosing vanilla versions of LSTM, BiLSTM and

CNN as well as a modified CNN version that without increasing its complexity has

improved the accuracy of vanilla CNN. The election of the following architectures has

been done to compare the performance of vanilla networks similar to those developed by

Tai et al. (2015) and Kim (2014). Despite of its proven performance, tree structures’

networks have not been tested since there wasn’t a stable version of Tensorflow or

substitutes capable of dealing with specific architectures at the moment this project was

developed.

All the models below have been implemented using Keras Library over a TensorFlow

build and run on Kaggle servers.

3.3.1 Long Short-Term Memory (LSTM)

This model and the following ones have been defined on Keras, taking advantage of

its Sequential model API which allows to build complex models by adding and

connecting different layers with each other, obtaining an understandable and fast

workflow ready to be trained and deployed.

The first layer for every model is the Embedding layer, which will be responsible for

building the dense vectors that will be passed to the following layers. This layer is usually

initialized by random weights, learning over the training process to identify the actual

relationships between words. However, it is a common practice to used pretrained word

embeddings to speed up the training process. As explained above, pretrained GloVe word

embedding’s weights have been loaded in order to start the training process with a

complete understanding of the semantic relationships between words. This layer has the

trainable flag switched on, meaning these weights will be modified to capture not only

25

the semantic meaning but the sentimental relationships between words and semantic

structures.

The output of the previous embedding layer, which has a dimensionality of 100 since

GloVe’s weights loaded had 100 dimensions, will be fitted into a LSTM network of 100

neurons. This network has been explained on a previous section, however, there are some

parameters worth to mention.

− Dropout has been established as 0.1, which means each LSTM’s unit (neuron) has

a 10% chance to be dropped from the linear transformation process, increasing

the capacity of the network to generalize and avoid overfitting.

− Best results have been obtained with Rectified Linear Units (ReLU) as activation

function. The figure below shows the representation of ReLU vs Sigmoid (a

widely used activation function). ReLU works pretty well on Recurrent Neural

Networks as LSTM because it solves a crucial problem when dealing with

recurrent weights that are retrofitted, the vanishing gradients. This problem

usually arises when the gradients of the activation function (first derivative)

become close to zero (both Sigmoid limits), therefore the weights’ update amount

will be close to zero and making the network hard to train. On contrast, Sigmoid

avoids blowing up neuron’s activation by limiting the output between [0, 1],

avoiding great weights’ updates that will make the model hard to converge.

Figure 16: Activation Functions – Sigmoid vs ReLU

Source: S. Sharma (2017)

26

The output of the LSTM layer is not ready to be saved as the final model, as it has 100

dimensions and our model requires only 1 to determine if the sentiment of a review is

positive or negative. As a dimensionality reduction, a Dense layer with 50 neurons has

been added, followed with a dropout of 0.1 and a final Dense layer built with 1 neuron.

A Dense layer performs linear operations on the input it receives, combined with a non-

linear activation function (Sigmoid), will produce values lower than 0.5 to those reviews

identified as sentimentally negative, and values greater than 0.5 to those sentimentally

positives. The architecture of the model is illustrated on the figure below.

Figure 17: LSTM Model’s Architecture

3.3.2 Bidirectional Long Short-Term Memory (BiLSTM)

This network has been built up on the previous one. A regular unidirectional LSTM

preserves information that belongs to the past, as a human would do when reading a

review. A bidirectional LSTM (BiLSTM), will receive two sources of information, one

from the past and another one from the future (the words or phrases that are coming next

to the word the network is processing). By doing this, a BiLSTM will combine the two

hidden states and will be able to preserve information from past and future at any point

in time. Figure 6 which was showed previously illustrates how this network works. Once

input has been fed into both LSTM networks (original and inverse order), outputs are

concatenated and passed to a Dense Layer of 50 neurons to reduce the dimensionality

going through a dropout 0f 0.1 and ending up with a Dense Layer of 1 neuron activated

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2. LSTM Layer (neurons = 100, activation = ReLU, dropout = 0.1)

3. Dense Layer (neurons = 50, activation = Sigmoid)

4. Dropout = 0.1

5. Dense Layer (neurons = 1, activation = Sigmoid)

27

by a Sigmoid function which will produce outputs lower than 0.5 to reviews predicted as

negative and outputs greater than 0.5 to reviews predicted as positive.

Here is an example to understand how LSTM and BiLSTM operate on a common

problem, called text generation, where the network must predict the most suitable word

or sentence given its context. Let’s say the sentence starts with the following words:

I will try to …

A LSTM network will try to predict the next word, which could be almost anything

(get, make, call, jump, play, etc.), being able to check previous sentences to get some

context about what the text is talking about. However, a BiLSTM network will look to

the future too, obtaining a completer and more reliable vision of the context since it’s

closer on space and time, therefore more a stronger relationship between the blank and

the upcoming words exist.

I will try to …… your email tonight

Here a BiLSTM will produce more accurate predictions (reply, forward, print, read),

as the network understands what the sentence is about. A similar approach is taken when

predicting sentiments on reviews. The architecture of this model is showed on the figure

below.

Figure 18: BiLSTM Model’s Architecture

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2.BiLSTM Layer (neurons = 100, activation = ReLU, dropout = 0.1)

3. Dense Layer (neurons = 50, activation = Sigmoid)

4. Dropout = 0.1

5. Dense Layer (neurons = 1, activation Sigmoid)

28

3.3.3 Simple Convolutional Neural Network (CNN)

This model starts as usual with an Embedding Layer to build the dense vectors that

will be passed to a 1 Dimensional Convolution Layer made up by 100 filters (which will

result in an output’s dimensionality of that number), a kernel size of 5 (convolution

window) and ReLU as activation function. The output will be fit into a Max Pooling

Layer, which will down-scale the previous layer’s output by a factor represented by

pool_size parameter, therefore allowing an easier feature extraction. Then, a Flatten Layer

will concatenate Max Pooling’s output into a unique vector which will be fit into a Dense

layer activated by a Sigmoid function which will perform the final predictions. The

internal mechanism of a CNN is illustrated on Figure 7. The architecture of the model is

shown on the following figure:

Figure 19: CNN’s Model Architecture

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2. Conv1D Layer (filters = 100, kernel = 5, activation = ReLU)

3. MaxPooling1D Layer (pool_size = 2)

4. Flatten Layer

5. Dense Layer (neurons = 1, activation Sigmoid)

29

3.3.4 Batch Normalized Convolutional Neural Network

(CNN2)

This model uses the concepts explained in the previous network to perform more

complex operations that led to accuracy improvements. Right after the Embedding Layer,

it starts a block made of four 1D Convolutional Layers with a Batch Normalization layer

between each of them. This layer will normalize the weights between [0, 1] reducing the

covariance shift, which leads to reducing overfitting by a smooth regularization effect,

adding noise to each hidden layer’s activation. The output of this block will be used by

the last 1D Convolutional Layer, after which a 1D Global Average Pooling Layer outputs

an average of every incoming feature array extracted from convolutional layers

previously obtained. The architecture of this model is as follows:

Figure 20: CNN2’s Model Architecture

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2. Conv1D Layer (filters = 32, kernel = 7, activation = ReLU)

3. Batch Normalization Layer

4. Conv1D Layer (filters = 32, kernel = 3, activation = ReLU)

5. Batch Normalization Layer

6. Conv1D Layer (filters = 32, kernel = 3, activation = sigmoid)

7. Batch Normalization

8. Conv1D Layer (filters = 32, kernel = 3, activation = sigmoid)

9. Batch Normalization

10. Conv1D Layer (filters = 2, kernel = 1, activation = sigmoid)

11. Global Average Pooling Layer

12. Dense Layer (activation = sigmoid)

30

Section 4

Results Analysis

4.1 Model Training

Every model has been trained under the same parameters and using the same dataset

to be able to perform a reliable comparison between all of them. Every model has been

compiled using the following parameters:

− Loss function: Binary cross-entropy, which measures the model’s performance

and increases as the predicted label diverges from the actual label.

− Optimizer: Adam, optimization algorithm which “computes individual adaptive

learning rates for different parameters from estimates of first and second moments

of the gradients.” (Kingma & Ba, 2014). This means that on each epoch the

learning rate (learning capacity of the network for each step) is modified

according to the gradients of the loss function (first and second derivatives). This

optimizer result on a better performance than using static learning rates.

− Epochs: the model will receive the full training dataset 10 times during the training

process.

− Validation split: a 20% of the full training dataset has been used as validation data

to evaluate the model at the end of each batch of training.

− Batch size: the training dataset will be chunked into several batches made of 64

samples each.

− Early Stopping: the training process will be stopped if the loss (prediction error)

on the validation set hasn’t improved for the last 3 epochs. Therefore, the best

model that will be saved will be the one obtained 3 epochs back.

31

Figure 21: Early stopping example

Source: Santos (2012)

4.2 Models Comparison

One of the most questioned assumptions made on this research has been the relevance

on accuracy performance of the max length padding, performed during the data

preprocessing. This parameter assumes that once the sentence is exclusively formed by

Adjectives, Nouns, Adverbs and Verbs, only the first “x” words from the review will be

used for training and testing the sentiment of the full review. If a sentence is shorter than

that this value, zeros will be added at the end of it to match the padding length. As a result,

we are assuming that first “x” words are more relevant than the last ones, and only short

reviews (which have on average more sentimentally weight per word) are fully

represented. To choose max_length value Equation 1 has been used, taking z-values equal

to 0.3, 0.5 and 0.8. Each of the experiments below have been performed 5 times to ensure

reliability on results.

32

Figure 22: Test Accuracy Comparison z-value=0.3

Figure 23: Test Accuracy Comparison z-value=0.5

Figure 24: Test Accuracy Comparison z-value=0.8

33

As the accuracy values show, there is in fact an increase in accuracy with higher z-

values, however it is remarkable how well networks have performed with the z-

value=0.3, taking into consideration these values are pretty close to the State-of-the-Art

on SST2 dataset. Higher z-values increase accuracy by taking into consideration more

words per review to train and test the model, however, this leads to bigger model storage

size and a greater time for performing predictions, both key factors for the second part of

the project, a demo web application.

By analyzing the results above, it is worth to mention how the accuracy values on z-

value = 0.8 experiments are really close to the State-of-the-Art on SST2 dataset,

especially BiLSTM 90.476% accuracy value, which has improved Yu et al. (2017)

approach of Tree LSTM. It would be of high interest to check the performance of the

cleaning, preprocessing and BiLSTM model on the standard SST2 dataset, in order to

evaluate how well the approach taken on this project is. However, this goes beyond the

scope of this project and will be stated at the end of the document under the section Future

Work Guidelines.

The following figures show the importance of Early Stopping parameter, which stops

training when the loss on the validation dataset hasn’t improved for the last 3 epochs.

Every model has stopped it’s training process before reaching the limit of 10 epochs,

therefore the parameter improves training times and accuracy.

It is important to mention how LSTM, CNN and CNN2 tend to evolve in a similar

way, improving with each epoch until they start overfitting and Early Stopping comes

into play, which is usually between the second and the fourth epoch depending on the

case and the network. On the other hand, BiLSTM finds always the best accuracy model

on the first epoch, decreasing its performance until Early Stopping finishes the training

process.

34

Figure 25: Validation Loss vs Accuracy Comparison z=0.3

35

Figure 26: Validation Loss vs Accuracy Comparison z=0.5

36

Figure 27: Validation Loss vs Accuracy Comparison z=0.8

37

After analyzing the four models not only by its final accuracy but by how step by

stem the model has been trained during the training process, it is clear that BiLSTM is

the best model on terms of accuracy for any z-value and on terms of training efficiency,

since as the above figures show, on every experiment the model obtained on the first

epoch is always the best one.

The following section will explain the development of the web application, which

takes some files from the preprocessing and training steps. The first file is the vocabulary,

the tokenizer’s index table that will allow the app to make the preprocessing steps

required to obtain the model’s prediction, as every review has to be encoded following

the same rules than the ones taken on the training dataset. The second file is the model

trained, which will be the best model obtained, BiLSTM on z-value = 0.8, with a total

storage size of 154 MB.

38

Section 5

Web Application Development

5.1 Framework

The main goal of this project wasn’t just to train a sentiment analysis model with an

accuracy close to the State-of-the-Art, but to show the potential of this model by

developing a demo with which the user can interact, see the cleaning process and obtain

sentiment predictions as well as useful insight reports for any product on Amazon.com or

Amazon.es.

On web-based analytics apps, an R package called Shiny has been widely used for

the last years to build interactive web apps. However, a new framework developed by

Plotly’s team (known for its interactive data visualization package) was released recently

under the name of Dash, which could be easily integrated into the model and cleaning

process developed on a previous stage of the project as it has Python support. The

development of the web app has been made using PyCharm Free Community Edition and

can be found on the following GitHub repository:

https://github.com/albergar2/SA_Project

The web application has been split into several functionalities that will allow the

user to obtain a sentiment analysis report for any product on Amazon as well as to see the

cleaning, preprocessing, and prediction steps taken for every review of the given product.

The following figure illustrates how the different app’s functionalities relate to each other.

https://github.com/albergar2/SA_Project

39

Figure 28: Relationships between app’s functionalities

5.2 Back-end

5.2.1 Scraper

The first step once the user has introduced an Amazon product’s URL is to load the

reviews written by customers who have purchased the product into memory. This process

is constrained to the amount of pages Amazon lets a script to read before blocking its calls

to the website. Experimental results show that this number is around 500 reviews, which

translates into 50 pages from Amazon’s website and is enough for our demo purposes.

The script for scraping each web page has been a personal development, generating

from the product´s URL, every customer reviews URL, loading its HTML structure and

extracting from the class names the following information for each review:

− Star Rating [1, 5]: rating given by the customer to the product

− Title: title of the customer review

− Body: customer review

Scraper
Cleaning and
Preprocessing

Sentiment
Prediction

Spanish Support

Pros and Cons

Confusion Matrix
Evaluation

Reviews Table

Front-End

Back-End

Product Features

40

The script will return a pandas dataframe with this information for each of the reviews

loaded, which will be used as an input for the next functionality.

5.2.2 Cleaning, Preprocessing and Sentiment Prediction

A key point to remark here is that the expected input for the model has to follow the

same structure and requirements as the data it was used to train it. This makes mandatory

to clean and preprocess the customer reviews following the same steps explained earlier

on this document, encoding every review with the tokenizer’s index table (vocabulary).

Thus, the pandas dataframe received will be transformed using a similar workflow as the

one implemented for the training data, exposed on Figure 15.

Once each review has been encoded they are ready to be fed into the trained model to

obtain a prediction. The model loaded at this point is the one which obtained best results,

BiLSTM on z-value=0.8. Predictions made by this model will be a number between [0,

1], since the model has a Sigmoid function as the last layer, meaning any value lower than

0.5 will be categorized with a negative label and any value greater than 0.5 will have a

positive label. However, the reviews had 5 points rating system, so to match these

categories a discretization of the results has been done obtaining the following labels:

− 1 Star → 0 ≤ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.2

− 2 Stars → 0.2 ≤ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.4

− 3 Stars → 0.4 ≤ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.6

− 4 Stars → 0.6 ≤ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.8

− 5 Stars → 0.8 ≤ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 ≤ 1

This discretization rule has been chosen to give the same amount of Prediction Value

Points to every category, but a non-uniform distribution might be more accurate when

evaluating the confusion-matrix.

41

5.2.3 Spanish Support

Natural Language Processing research has been done mostly in English for the last

years It is difficult to find libraries and packages in other languages similar to the ones

explained above, Gensim and NLTK, with similar accuracy values, since language

semantics and syntax differ significantly between languages. Despite of the fact that a

dataset from Amazon.es customer reviews could be build using a modified version of the

script developed to scrape and load reviews, this would have been taken a considerably

amount of time and the project would have gone off on a tangent.

In order to give support for any product from Amazon.es, an integration has been

done with Google Translator Python Library, googletrans, to translate any review written

in Spanish into English. The workflow works on a similar way, once the reviews have

been translated into English, the model predicts the sentiment value for each of them and

the following functionalities continue working the same way, generating the insights in

English. At the end of all this process, the results and insights are translated again from

English to Spanish, to show to the user the content in the original language. Some people

may argue than translations made by Google are not accurate, however, for the purpose

of this project, which is to identify if the sentence is positive or negative, there is no need

for high accuracy translations, as a synonym sentimentally similar with the word will

satisfy the requirements.

As expected, these translations increase dramatically the processing time the user has

to wait since submitting the product until the results are showed on the app. Experiments

show that reviews from Amazon.com have an average processing time of 0.15 sec/review,

while reviews from Amazon.es scale up to 0.8 sec/review, which translates into a 433%

increase.

5.2.4 Product features

Nowadays the practice of checking on internet for an expert analysis before

purchasing a new smartphone, camera or any other product is widely expanded. These

analyses are time consuming for experts and often biased by their own subjectivity.

42

Amazon gives access to reviews written by customers of all its products but doesn’t offer

a tool that aggregates this customer reviews into key positive and negative features. A

naïve approach to this task has been included in this project, in the hope that some

researcher will continue with the development of more sophisticated techniques.

On the cleaning and pre-processing process, a POS-Tagging filter to extract

exclusively Adverbs, Adjectives, Verbs and Nouns was applied to every review, in order

to keep sentimentally meaningful words. This step was crucial by removing from the

training data words like Pronouns and Determinants that didn’t have any sentimental

meaning. Continuing with this approach, product’s features are Nouns surrounded by

Adjectives, Adverbs and Verbs that will determine if the sentiment about this features is

positive or negative:

“The new smartphone has a camera that works pretty well under low-light

circumstances”

The example above could be a positive review where the Nouns have been

highlighted in bold font. Assuming the model predicts with good accuracy (which

certainly it does), each of these nouns will be added to a python dictionary with a value

of +1 in case of a positive review, and a value of -1 for negative reviews. Iterating this

process over every review scraped, the resulting dictionary will contain every noun that

appeared across the set of reviews, linked to a sentiment value. Sorting this dictionary,

we can obtain the Top 5 Pros and Cons based exclusively on the most reliable and

objective data, customer reviews.

This approach has several problems, even after removing stop-words and aggregating

words by its lemmas and synonyms, the appearance of wrong written words or wrong

identified nouns by the Pos-Tagging algorithm can lead to inaccurate results. However,

these problems tend to blur when the technique is applied over a great amount of reviews,

since statistically the recurrent appearance of meaningful words is higher.

43

5.3 Front-end

The app has been developed using Dash by Plotly framework, which relies on Flask

to run easy and deployable web analytics apps. This app has been developed exclusively

as a demo of a real project that could be made integrating the model and preprocessing

techniques explained on this document. Therefore, as a demonstration web application,

this document won’t go deep into functional analysis requirements as it goes well beyond

the scope of this project.

5.3.1 Homepage

Figure 29: App’s Homepage Structure

The figure above illustrates the homepage structure that will interact with every user

interested in the project. The numbered elements are the following:

1. Demo App’s Title.

2. Simple and direct instructions on how to interact with the app.

3. Search box where the user must introduce a URL of any product from

Amazon.com or Amazon.es.

4. Total number of reviews to be loaded from that product.

1

2

3

5

4

6

7 8

44

5. Clarifying example of the input that the app is expecting

6. Submit button, which will result on the back-end into loading reviews from the

product specified, preprocessing these reviews, loading the model, predicting

their rating and showing the result.

7. Reviews Tab, each review loaded will be shown here, as well as its original rating,

preprocessing output, normalized and discretized predicted rating and keywords

(Nouns extracted from the review, useful for the Pros and Cons section).

8. Analysis Tab, where 4 plots will be shown:

a. Top 5 Pros and Cons

b. Real vs Predicted Star Distribution

c. Fine-Grained Confusion Matrix

d. Polar Confusion Matrix

The following subsections will explore the contents of both tabs, Reviews and

Analysis.

5.3.2 Reviews Tab

In order to show a full example of the app’s functionality a product from

Amazon.com has been chosen. A remarkable point here is the difficulty to find Amazon

products with a high number of negative reviews (best guess is that they must have been

removed from the site), so the available products tend to have more positive reviews.

As a personal preference, a Camping Tent1 has been chosen to be the product to test

the app’s functionalities and to evaluate model’s performance. As the figure below shows,

this product has over 2,000 reviews with unbalanced ratings towards positive ratings. This

unbalanced set of reviews is usual for any product with more than 300 reviews, which is

the minimum quantity to obtain useful insights.

1 https://www.amazon.com/Coleman-6-Person-Instant-Cabin-2000018017/dp/B004E4ERHA/

https://www.amazon.com/Coleman-6-Person-Instant-Cabin-2000018017/dp/B004E4ERHA/ref=sxin_2_ac_d_pm?keywords=tent&pd_rd_i=B004E4ERHA&pd_rd_r=e091aad6-e253-4b8c-9427-3435f0ad6c7d&pd_rd_w=jNLkC&pd_rd_wg=teDVv&pf_rd_p=64aaff2e-3b89-4fee-a107-2469ecbc5733&pf_rd_r=A9M7J4Y48EAHATBRP0R9&qid=1559557397&s=gateway&th=1

45

Figure 30: Example Product

Source: Amazon.com

By introducing the product’s link on the app and choosing 400 as the number of

reviews to load, the app will start the backend workflow and finally showing the product’s

name and a table where each row represents a single review and the columns are defined

by the following tags:

− Review: original review loaded from Amazon.com.

− Stars: rating given by the user who wrote the review.

− Clean: the original review is cleaned and preprocessed using the tools explained

in Section 3.2.

− Prediction: model’s output prediction for the review’s rating. The prediction’s

interval is [0, 1].

− Predicted Star: star prediction from a discretization of the model’s output, as

explained in Section 5.2.2.

− Keywords: main features about the product to be considered for the Pros and Cons

analysis.

The figure below illustrates the app’s status at this point, showing just 3 relevant

reviews, representing the steps taken by the app from loading the review to obtaining the

number of predicted stars and keywords. The execution time for this example has been

43.742 seconds.

46

Figure 31: Example Reviews Tab Front-End

47

As it is possible to see, the model is not always accurate on predicting the star.

Something important to note here is that the review written and the rating given to that

review by an Amazon.com user are not related in some cases and could depend on the

user’s subjectivity. All of this three review’s examples were correctly tagged on terms of

positive/negative, however the discretization process didn’t work with the precision

expected.

First review has been tagged as negative due to some words the user wrote on the

review associated with that sentiment, such as wrong, leaks, soaked, defective and

snapped. The second and third reviews have been tagged as positive due to the following

words: easy, best, quick, recommend, simple, cheap and fair.

Keywords column show the outcome from the back-end’s Product Features

functionality. Basically, the app has taken the cleaned review, keeping only Nouns, which

are the features of the product.

48

5.3.3 Analysis Tab

Continuing with the Camping Tent example, the Analysis Tab shows 4 different plots

with insights and information about the performance of the model’s output.

Figure 32: Example Reviews Tab Front-End

49

5.3.3.1 Top 5 Pros and Cons

Figure 33: Top 5 Pros and Cons Example

This plot shows the Top 5 features of the product for each sentiment (positive and

negative). The example shows 4 negative features and 4 positive features because a

threshold of appearance has been fixed to 0.005, meaning there are not more features with

an appearance probability greater than this threshold.

Due to the unbalanced ratings from this product, positive features appear more

frequently than the negative ones. By looking at the plot we can get an idea of the key

features the customers like or dislike about the product:

− Positive

− Rain: the tent is waterproof; therefore, customers talk positively about it.

− Air: good ventilation.

− Time: the tent’s main feature is its instantaneous setup.

− Room: the tent is designed for up to 6 people, so the room space is also

important.

50

− Negative:

− Brand: some customers doesn’t perceive the product as matching the

brand’s reputation.

− Repair: few customers have had problems with tent and are complaining

about the reparations needed.

− Frame: the tent’s frame seems not matching customers’ expectations.

− Return: this feature is very frequent on the negative side, as the unhappy

customers return the product and write a negative review.

5.3.3.2 Real vs Predicted Star Distribution

Figure 34: Real vs Predicted Star Distribution Example

As expected, the unbalanced star distribution is represented on this plot. The original

distribution from Amazon.com showed in Figure 30 may not match the real distribution

represented at this plot, since the former has been obtained from the 400 reviews loaded

instead of the over 2,000 written for the product on Amazon.

As the plot shows, the model predicts more negative reviews and less positive

reviews than they actually are, trying to make a more balanced prediction, as it has been

trained with a balanced dataset.

51

5.3.3.3 Polar Confusion Matrix

Figure 35: Polar Confusion Matrix Example

This confusion matrix shows the accuracy on positive, neutral and negative predicted

tags. There is a big amount of positive reviews that have been tagged as negative, as well

as an arbitrary distribution of neutrals. The dataset used to train the model had examples

of reviews with 1 and 2 stars as negative and reviews with 4 and 5 as positive, therefore

the model didn’t learn to identify neutral reviews (3 stars). To obtain neutral labels the

discretization explained on a previous section has been used, labelling as neutral any

prediction value greater or equal than 0.4 and lower than 0.6.

In fact, instead of giving the same amount of Prediction Value Points to every

category (5 star ratings), a light improvement could be performed lowering the lower

boundary beneath 0.4 and increasing the greater boundary over 0.6. By doing this the

results will improve by labelling as true negatives some of those 16 false negatives labeled

as neutrals and labelling as true positives some of those 13 false positives labeled as

neutral. However, this adjustment will be made to artificially increase the performance

on this specific example, therefore a deeper study of the discretization rules would be

needed to obtain a general model that increases improves this confusion matrix for any

product.

Taking the values from the diagonal line, the model has achieved a 71.25% accuracy

on real data. The low performance could be explained by the fact the 90.476% accuracy

was obtained on exclusively positive and negative reviews, a lack of correlation between

the customer’s rating and the customer’s review and a discretization method that can be

improved.

52

5.3.3.4 Confusion Matrix Stars

Figure 36: Confusion Matrix Stars Example

This last plot shows a detailed confusion matrix based on the real and predicted star

rating. The model used to perform the predictions has been trained using positive and

negative reviews and making a uniform discretization of the predicted value. This

approach is manifested too on this plot as the model tends to give more weight to the

extreme values (1 star and 5 stars) than to others. Taking the values represented on the

diagonal line, the model has obtained a real accuracy of 47.25%, which for a 5 label

prediction model, as illustrated on Figure 8, is close to the State-of-the-Art on SST-1. The

discretization approach seems to be a feasible option, despite of some refinement would

be needed to improve the results.

53

Section 6

Conclusions & future work
guidelines

6.1 Conclusions

This document has described the development process of training a sentiment

analysis model, a detailed comparison between different deep learning architectures,

preprocessing steps on unstructured textual data, development of a web application for

demonstration purposes of how to integrate the model into a Product Analytics Tool as

well as the insights and reports produced by the web app.

The first part of the project was focused on obtaining the best results possible on the

sentiment analysis dataset obtained from the researcher Xiang Zhang using different deep

learning architectures. A four model comparison was done with a vanilla LSTM, a vanilla

BiLSTM, a vanilla CNN and modified version of CNN. Best results were obtained with

BiLSTM model when taking into consideration the padding length of the reviews as a

value that makes that 80% (z-value=0.8) of them are fully represented. The accuracy

obtained with this model was 90.476%, however, is notable how other models achieved

similar but slightly lower performances. Taking into consideration the State-of-the-Art

accuracy values, the models developed for this project have achieved pretty accurate

predictions on polar sentiment analysis (positive and negative).

The second part of the project was to integrate the best model into a web application

to show the potential of a Product Analytics Tool that can predict ratings and generate

reports and insights for any product at Amazon. The app was developed using Dash, a

web analytics app framework. It allows the user to introduce any product from

54

Amazon.com or Amazon.es, explore the cleaning and preprocessing steps for any review,

obtain the Top 5 Pros and Cons features of the product and check the performance of the

model with two confusion matrix. The model has been trained on negative and positive

reviews, therefore to obtain a 5 stars prediction model to test the real product’s reviews,

a discretization method has been implemented. Finally, the naïve approach taken to

extract the main product features by keeping only Nouns from the original reviews has

been a good idea that gave interesting results.

The model’s performance has been evaluated on two confusion matrix, the former

evaluated positive, negative and neutral accuracy and achieved a 71.25%, while the last

one evaluated the 5 stars rating system from amazon, obtaining a 47.25% accuracy. Fine-

grained sentiment analysis State-of-the-Art on SST1 is at 54.00% (Yu et al., 2017),

therefore there is room for improvement. Overall, this project has achieved its goal, by

obtaining accurate predictions on a creative dataset and showing its potential by a demo

web application.

6.2 Future Work Guidelines

This project can be expanded by future researchers in several ways:

− The discretization method used to transform predictions in range [0, 1] into three

or five labels has been done giving the same amount of prediction value points to

every category. However, has showed on both confusion matrix, a fine tuning can

be made to adjust the boundaries for every category, therefore substantially

increasing the accuracy. It would be of high interest a deeper development on this

by analyzing whether it is more accurate to train a model in 5 different possible

targets or a post discretization has the one exposed on this document is a better

option.

55

− The neural network models trained on this project have been pretty basic and more

effort has been put into cleaning, preprocessing and parameter tuning rather than

on designing complex architectures. Results can be improved taking State-of-the-

Art networks such as Tree-LSTM (Yu et al., 2017) which wasn’t implemented on

this project since there wasn’t a stable build for Tensorflow or similar framework

that gave support to tree structure networks.

− Focusing on the second part of the project, the web application has been developed

as a demo to show the potential of a tool based on Sentiment Analysis and could

be interesting to build it in a scalable way to which new features, reports and

analysis can be added. The naïve approach taken to extract the most positive and

negative features of the product from customer reviews has a good performance

but could be improved a lot by introducing a neural feature extractors and making

a better pre-processing of the reviews than the one explained in this document.

− The Spanish support approach using Google Translate taken on the project has

been very simple and scalable since it can be extended to any language and still

using English trained models to make the predictions. However, the processing

times are a great deal nowadays and it could be a better option to train models on

Spanish and other languages to get the most out of the Product Analytics Tool.

− This project has focused exclusively on Amazon reviews, but once trained the

model can be useful for other purposes such as customer feedback, ticketing,

social media monitoring, brand monitoring, market analysis, etc.

56

References

[1] N. Ackermann. “Introduction to 1D Convolutional Neural Networks in Keras for Time

Sequences.” Medium, 2018. [Online].

Available:https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-

keras-for-time-sequences-3a7ff801a2cf

 [Accessed March 2019]

[2] A. Bhande. “What is underfitting and overfitting in machine learning and how to deal with it.”

 Medium, 2018. [Online].

Available:https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-

and-how-to-deal-with-it-6803a989c76

[Accessed May 2019]

[3] Agerri, Rodrigo & Cuadros, Montse & Gaines, Seán & Rigau, German. “OpeNER: Open polarity

enhanced named entity recognition”. Procesamiento de Lenguaje Natural. 51. 215-218. 2013

[4] J. Barnes, R. Klinger, and S. Schulte im Walde. “Assessing State-Of-The-Art Sentiment Models On

State-Of-The-Art Sentiment Datasets”. University of Stuttgart. 2016 [Online].

Available: https://arxiv.org/abs/1709.04219

[Accessed January 2019]

[5] J. Brownlee. “Gentle Introduction to the Adam Optimization Algorithm for Deep Learning”. Machine

Learning Mastery. 2017. [Online].

Available: https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

[Accessed March 2019]

[6] BOE. Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los

derechos digitales. 2018. [Online].

Available: https://www.boe.es/buscar/doc.php?id=BOE-A-2018-16673

[Accessed May 2019]

https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://arxiv.org/abs/1709.04219
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://www.boe.es/buscar/doc.php?id=BOE-A-2018-16673

57

[7] Chen T, Xu R, He Y and Wang X. “Improving sentiment analysis via sentence type classification

using BiLSTM-CRF and CNN. Expert Systems with Applications.” 2017. [Online].

Available: https://dl.acm.org/citation.cfm?id=3138681

[Accessed January 2019]

[8] C. Olah. “Understanding LSTM Networks”. Cristopher Olah Blog. 2015. [Online].

Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[Accessed February 2019]

[9] D. Datta. “Understanding Convolutions in Text”. Blick. 2016. [Online].

Available:http://debajyotidatta.github.io/nlp/deep/learning/word-

embeddings/2016/11/27/Understanding-Convolutions-In-Text/

[Accessed March 2019]

[10] A. Dertat. “Applied Deep Learning - Part 4: Convolutional Neural Networks”. Towards Data Science.

2017. [Online].

Available:https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-

networks-584bc134c1e2

[Accessed March 2019]

[11] D. Karani. “Introduction to Word Embedding and Word2Vec”. Towards Data Science. 2018.

[Online].

Available:https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-

networks-584bc134c1e2

[Accessed March 2019]

[12] Domo. Data Never Sleeps Report 6.0. Domo. 2018. [Online]

Available: https://www.domo.com/solution/data-never-sleeps-6

[Accessed May 2019]

[13] European Union Law. “General Data Protection Regulation”. European Union Law. 2016. [Online].

Available:https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX%3A32016R0679&from=ES&lang3=choose&lang2=choose&lang1=

EN

[Accessed May 2019]

https://dl.acm.org/citation.cfm?id=3138681
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://debajyotidatta.github.io/nlp/deep/learning/word-embeddings/2016/11/27/Understanding-Convolutions-In-Text/
http://debajyotidatta.github.io/nlp/deep/learning/word-embeddings/2016/11/27/Understanding-Convolutions-In-Text/
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://www.domo.com/solution/data-never-sleeps-6
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&from=ES&lang3=choose&lang2=choose&lang1=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&from=ES&lang3=choose&lang2=choose&lang1=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&from=ES&lang3=choose&lang2=choose&lang1=EN

58

[14] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith. “Retrofitting Word Vectors

to Semantic Lexicons”. [Online].

Available: https://arxiv.org/abs/1411.4166

[Accessed January 2019]

[15] Github. Github: Pricing. 2019. [Online].

Available: https://github.com/pricing

[Accessed May 2019]

[16] “Gensim: utils – Various utility functions”. Gensim Topic Modelling for Humans. 2019. [Online].

Available: https://radimrehurek.com/gensim/utils.html

[Accessed Febreuary 2019]

[17] “Word2Vec”. Google Code Archive. 2019. [Online].

Available: https://code.google.com/archive/p/word2vec/

[Accessed March 2019]

[18] S. Hochreiter and J. Schmidhuber. “Long short-term memory. Neural computation” 9(8):1735–1780.

1997. [Online].

Available: https://www.researchgate.net/publication/13853244_Long_Short-term_Memory

[Accesed January 2019]

[19] “Pycharm: Toolbox Subscription.” JetBrains PyCharm. 2019. [Online].

Available: https://www.jetbrains.com/pycharm/buy/#edition=personal

[Accessed May 2019]

[20] A. Jhingrans. “Dynamic Warehousing Around Unstructured Data”. 2018. [Online].

Available: https://jhingran.typepad.com/anant_jhingrans_musings/2007/04/dynamic_warehou.html

[Accessed December 2018]

[21] N. Jumhare, R. Rajeswari, B. Jayakrishnan. “Sentiment analysis based on Twitter data on violence”.

Asian Journal of Pharmaceutical and Clinical Research. 2017. [Online].

Available: https://innovareacademics.in/journals/index.php/ajpcr/article/view/20521

[Accessed May 2019]

https://arxiv.org/abs/1411.4166
https://github.com/pricing
https://radimrehurek.com/gensim/utils.html
https://code.google.com/archive/p/word2vec/
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.jetbrains.com/pycharm/buy/#edition=personal
https://jhingran.typepad.com/anant_jhingrans_musings/2007/04/dynamic_warehou.html
https://innovareacademics.in/journals/index.php/ajpcr/article/view/20521

59

[22] “Kaggle: Your Home for Data Science”. Kaggle. 2019. [Online].

Available: https://www.kaggle.com/

[Accessed February 2019]

[23] A. Bittlingmayer. “Amazon Reviews for Sentiment Analysis”. Kaggle Dataset. 2017. [Online].

Available:https://www.kaggle.com/bittlingmayer/amazonreviews/kernels?sortBy=hotness&group=e

veryone&pageSize=20&datasetId=1305&turbolinks%5BrestorationIdentifier%5D=87982a73-73c6-

4182-90ab-94e2e7550c4b

[Accessed February 2019]

[24] “RNNNLP - @madhurimaganguly” Kaggle Kernel. 2018. [Online].

Available: https://www.kaggle.com/madhurimaganguly/rnnnlp

[Accessed February 2019]

[25] “Sentiment Analysis with Bidirectional LSTM - @liliasimeonova” Kaggle Kernel. 2017. [Online].

Available: https://www.kaggle.com/liliasimeonova/sentiment-analysis-with-bidirectional-lstm

[Accessed February 2019]

[26] “LSTM_With_1M_reviews - @arnabd2002”. Kaggle Kernel. 2018. [Online].

Available: https://www.kaggle.com/arnabd2002/lstm-with-1m-reviews

[Accessed February 2019]

[27] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. “A convolutional neural network for modelling

sentences”. In Proc. 52nd Annu. Meeting Association Computational Linguistics, 2014, vol. 1, pp.

655–665. [Online].

Available: https://www.aclweb.org/anthology/P14-1062

[Accessed January 2019]

[28] “Keras: The Python Deep Learning Library”. Keras. 2019. [Online].

Available: https://keras.io/

[Accessed February 2019]

[29] “The Sequential model API”. Keras Documentation. 2019. [Online].

Available: https://keras.io/models/sequential/

[Accessed February 2019]

https://www.kaggle.com/
https://www.kaggle.com/bittlingmayer/amazonreviews/kernels?sortBy=hotness&group=everyone&pageSize=20&datasetId=1305&turbolinks%5BrestorationIdentifier%5D=87982a73-73c6-4182-90ab-94e2e7550c4b
https://www.kaggle.com/bittlingmayer/amazonreviews/kernels?sortBy=hotness&group=everyone&pageSize=20&datasetId=1305&turbolinks%5BrestorationIdentifier%5D=87982a73-73c6-4182-90ab-94e2e7550c4b
https://www.kaggle.com/bittlingmayer/amazonreviews/kernels?sortBy=hotness&group=everyone&pageSize=20&datasetId=1305&turbolinks%5BrestorationIdentifier%5D=87982a73-73c6-4182-90ab-94e2e7550c4b
https://www.kaggle.com/madhurimaganguly/rnnnlp
https://www.kaggle.com/liliasimeonova/sentiment-analysis-with-bidirectional-lstm
https://www.kaggle.com/arnabd2002/lstm-with-1m-reviews
https://www.aclweb.org/anthology/P14-1062
https://keras.io/
https://keras.io/models/sequential/

60

[30] Kingma, Diederik & Ba, Jimmy. “Adam: A Method for Stochastic Optimization”. International

Conference on Learning Representations. 2014. [Online].

Available: https://arxiv.org/abs/1412.6980

[Accessed March 2019]

[31] Y. Kim. “Convolutional neural networks for sentence classification”. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. [Online].

Available: https://www.aclweb.org/anthology/D14-1181

[Accessed January 2019]

[32] P. Lambert. “Aspect-level cross-lingual sentiment classification with constrained SMT”. In

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL).

2015. [Online].

 Available: https://www.aclweb.org/anthology/P15-2128

[Accessed January 2019]

[33] “Lenovo ThinkPad T480”. Lenovo. 2019. [Online].

 Available: https://www.lenovo.com/es/es/laptops/thinkpad/t-series/ThinkPad-T480/p/22TP2TT4800

[Accessed May 2019]

[34] T. Mikolov, G. Corrado, K. Chen, and J. Dean. “Efficient estimation of word representations in vector

space”. In Proceedings of the International Conference on Learning Representations (ICLR 2013).

2013. [Online].

Available: https://arxiv.org/abs/1301.3781

[Accessed January 2019]

[35] V. Nair and G. Hinton. “Rectified linear units improve restricted boltzmann machines”. In

Proceedings of the 2010 International Conference on Machine Learning (ICML). 2010.

Available:https://www.researchgate.net/publication/221345737_Rectified_Linear_Units_Improve_

Restricted_Boltzmann_Machines_Vinod_Nair

[Accessed January 2019]

[36] “NLTK 3.4.1 documentation”. Natural Language Toolkit. 2019. [Online].

Available: https://www.nltk.org/

[Accessed February 2019]

https://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/P15-2128
https://www.lenovo.com/es/es/laptops/thinkpad/t-series/ThinkPad-T480/p/22TP2TT4800
https://arxiv.org/abs/1301.3781
https://www.researchgate.net/publication/221345737_Rectified_Linear_Units_Improve_Restricted_Boltzmann_Machines_Vinod_Nair
https://www.researchgate.net/publication/221345737_Rectified_Linear_Units_Improve_Restricted_Boltzmann_Machines_Vinod_Nair
https://www.nltk.org/

61

[37] P. Nakov, S. Rosenthal, Z. Kozareva, V. Stoyanov, A. Ritter, and T. Wilson. “Semeval-2013 task 2:

Sentiment analysis in twitter”. In Second Joint Conference on Lexical and Computational Semantics

(*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation

(SemEval 2013). 2013. [Online].

 Available: https://www.aclweb.org/anthology/S13-2

[Accessed January 2019]

[38] M. Nguyen. “Illustrated Guide to LSTM’s and GRU’s: A step by step explanation”. Towards Data

Science. 2018. [Online].

Available:https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-

explanation-44e9eb85bf21

[Accessed Febreruary 2019]

[39] “Constituency Parsing”. NLP Progress. 2019. [Online].

Available: http://nlpprogress.com/english/constituency_parsing.html

[Accessed May 2019]

[40] “Pandas: Python Data Analysis Library”. Pandas. 2019. [Online].

Available: https://pandas.pydata.org/

[Accessed February 2019]

[41] “Lexpanded-PPDB: Lexically-Expanded Paraphrase Database”. Paraphrasing. 2019.

Available: http://paraphrasing.org/~fujita/resources/lexpanded-PPDB.html

[Accessed March 2019]

[42] “Embedding Projector – Visualization of high dimensional data”. Projector Tensorflow. 2019.

[Online].

Available: http://projector.tensorflow.org/

[Accessed June 2019]

[43] J. Pennington, R. Socher, C. Manning. “Empirical Methods in Natural Language Processing. GloVe:

Global Vectors for Word Representation”. 2014. [Online].

Available: http://www.aclweb.org/anthology/D14-1162

[Accessed February 2019]

https://www.aclweb.org/anthology/S13-2
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
http://nlpprogress.com/english/constituency_parsing.html
https://pandas.pydata.org/
http://paraphrasing.org/~fujita/resources/lexpanded-PPDB.html
http://projector.tensorflow.org/
http://www.aclweb.org/anthology/D14-1162

62

[44] B. Plank, A. Søgaard, and Y. Goldberg. “Multilingual part-of-speech tagging with bidirectional long

short-term memory models and auxiliary loss”. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (ACL). 2016. [Online].

Available: https://arxiv.org/abs/1604.05529

[Accessed January 2019]

[45] “Dash: Python framework for building analytical web applications”. Plotly Dash. 2019.

Available: https://plot.ly/products/dash/

[Accessed April 2019].

[46] “Googletans 2.4.0”. Python Software Foundation. 2019. [Online].

Available: https://pypi.org/project/googletrans/

[Accessed May 2019]

[47] G. Rachiele. “Tokenization and Parts of Speech(POS) Tagging in Python’s NLTK library”. Medium.

2018. [Online].

Available:https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-tagging-in-

pythons-nltk-library-2d30f70af13b

[Accessed February 2019]

[48] J. Santos. “Data classification with neural networks and entropic criteria”. 2012

Available:https://www.researchgate.net/publication/37655851_Data_classification_with_neural_net

works_and_entropic_criteria

[Accessed May 2019]

[49] S. Sharma. “Activation Functions in Neural Networks”. Towards Data Science. 2017. [Online].

Available: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

[Accessed May 2019]

[50] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. “Recursive Deep Models

for Semantic Compositionality Over a Sentiment Treebank”. Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing. 2013. [Online]

Available: https://www.aclweb.org/anthology/D13-1170

[Accessed January 2019]

[51] “Shiny from R Studio”. Shiny 2019. [Online].

Available: https://shiny.rstudio.com/

[Accessed May 2019]

https://arxiv.org/abs/1604.05529
https://plot.ly/products/dash/
https://pypi.org/project/googletrans/
https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-tagging-in-pythons-nltk-library-2d30f70af13b
https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-tagging-in-pythons-nltk-library-2d30f70af13b
https://www.researchgate.net/publication/37655851_Data_classification_with_neural_networks_and_entropic_criteria
https://www.researchgate.net/publication/37655851_Data_classification_with_neural_networks_and_entropic_criteria
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.aclweb.org/anthology/D13-1170
https://shiny.rstudio.com/

63

[52] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. “Learning sentiment-specific word embedding

for twitter sentiment classification”. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (ACL). 2014. [Online].

Available: https://www.aclweb.org/anthology/P14-1146

[Accessed January 2019]

[53] S. Tai, R. Socher, and C. Manning. “Improved semantic representations from tree-structured long

short-term memory networks”. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics (ACL). 2015. [Online].

Available: https://www.aclweb.org/anthology/P15-1150

[Accessed January 2019]

[54] “Tensorflow: An end-to-end open source machine learning platform”. Tensorflow. 2019. [Online].

Available: https://www.tensorflow.org/

[Accessed March 2019]

[55] O. Uryupina, B. Plank, A. Severyn, A. Rotondi, and A. Moschitti. “Sentube: A corpus for sentiment

analysis on youtube social media”. In Proceedings of the Ninth International Conference on Language

Resources and Evaluation (LREC’14). 2014. [Online].

Available: http://www.lrec-conf.org/proceedings/lrec2014/pdf/180_Paper.pdf

[Accessed January 2019]

[56] Xiang Zhang Google Drive. Amazon Reviews dataset. [Online]

Available:https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZ

UZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M

[Accessed January 2019]

[57] X. Zhang, J. Zhao, Y. LeCun. Character-level convolutional networks for text classification. In

Advances in neural information processing systems , pages 649–657. 2015. [Online].

Available: https://arxiv.org/abs/1509.01626

[Accessed April 2019]

[58] Xiang Zhang Webpage. [Online].

Available: http://xzh.me/

[Accessed January 2019]

https://www.aclweb.org/anthology/P14-1146
https://www.aclweb.org/anthology/P15-1150
https://www.tensorflow.org/
http://www.lrec-conf.org/proceedings/lrec2014/pdf/180_Paper.pdf
https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
https://arxiv.org/abs/1509.01626
http://xzh.me/

64

[59] T. Young, D. Hazarika, S. Poria, E. Cambria. “Recent Trends in Deep Learning Based Natural

Language Processing”. IEEE Computational Intelligence Magazine. 2018. [Online].

Available: https://arxiv.org/abs/1708.02709

[Accessed January 2019]

[60] L. Yu, J. Wang, K. R. Lai, and X. Zhang. “Refining word embeddings for sentiment analysis”. In

Proc. Conf. Empirical Methods Natural Language Processing, 2017, pp. 545–550. 2017. [Online].

Available: https://dl.acm.org/citation.cfm?id=3186455

[Accessed January 2019]

[61] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and Bo Xu. “Text classification improved by integrating

bidirectional LSTM with two-dimensional max pooling”. In Proceedings of COLING 2016, the 26th

International Conference on Computational Linguistics: Technical Papers. 2016. [Online]

Available: https://arxiv.org/abs/1611.06639

[Accessed January 2019]

https://arxiv.org/abs/1708.02709
https://dl.acm.org/citation.cfm?id=3186455
https://arxiv.org/abs/1611.06639

65

APPENDIX

APPENDIX

Appendix 1: Planning

This section explores how a company could develop a similar product as the one

detailed in this document. To start with, a team with experts on different fields is needed:

− Software Engineer: requirements engineering, project leader.

− Data Scientist: data extraction, model’s architecture and configuration, and

training.

− Back-end Developer: application’s back-end functionalities, integration with

model’s output and front end.

− Front-end Developer: visualization tools, tables and figures, application user

interface.

Tasks have been grouped into 5 groups: Initiation, Planning, Design, Execution and

Deployment. By using Microsoft Excel, a Gantt model has been developed, focusing on

each task definition, an estimate of the duration to complete it, dependencies between

tasks and team members time constrains. As a result, the project is expected to be

developed by a team of four members in 24 days.

66

Figure 37: Project Tasks

Figure 38: Gannt Diagram

Task ID Task Name Duration (days) Previous Task ID Assigned to

1 Requirement definition 2 - Software Engineer

2 Use case modelling 2 - Software Engineer, Data Scientist

3 System requirements specification 1 1, 2 Software Engineer, Back-End Developer

4 Problem definition 1 - Software Engineer

5 Project organization and management 1 4 Software Engineer

6 Alternatives and viability study 2 5 Data Scientist, Back-End Developer, Front-End Developer

7 Risk analysis 1 5 Software Engineer

8 System definition 1 4 Back-End Developer

9 Estimation and prioritization 1 8 Software Engineer

10 Testing plan 2 8 Back-End Developer, Front-End Developer

11 Deployment plan 1 9 Software Engineer, Front-End Developer

12 System architecture 2 8 Back-End Developer

13 UI design 2 8 Front-End Developer

14 Data Extraction 1 8 Data Scientist

15 Data Exploration 3 14 Data Scientist

16 App functionlities development 5 12 Software Engineer, Back-End Developer

17 App UI implementation 5 13 Front-End Developer

18 Data preprocessing 1 15 Data Scientist

19 Model architecture and training 3 18 Data Scientist

20 Integration and Test 3 16, 17, 19 Software Engineer, Back-End Developer, Front-End Developer

20 Back-End Developer, Front-End Developer

EX
EC

U
TI

O
N

D
EP

LO
YM

EN
T

21 Deployment 2

IN
IT

IA
TI

O
N

PL
A

N
N

IN
G

D
ES

IG
N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 Requirement definition 1 2 0 0 0%

2 Use case modelling 1 2 0 0 0%

3 System requirements specification 3 1 0 0 0%

4 Problem definition 4 1 0 0 0%

5 Project organization and management 5 1 0 0 0%

6 Alternatives and viability study 6 2 0 0 0%

7 Risk analysis 6 1 0 0 0%

8 System definition 8 1 0 0 0%

9 Estimation and prioritization 9 1 0 0 0%

10 Testing plan 10 2 0 0 0%

11 Deployment plan 10 1 0 0 0%

12 System architecture 12 2 0 0 0%

13 UI design 12 2 0 0 0%

14 Data Extraction 12 1 0 0 0%

15 Data Exploration 13 3 0 0 0%

16 App functionlities development 14 5 0 0 0%

17 App UI implementation 14 5 0 0 0%

18 Data preprocessing 16 1 0 0 0%

19 Model architecture and training 17 3 0 0 0%

20 Integration and Test 20 3 0 0 0%

21 Deployment 23 2 0 0 0%

Real

Start

Real

Duration

PCT

Completed

Period
Task ID Task Name

Planned

Start

Planned

Duration

67

Appendix 2: Budgeting

Once an estimation plan has been developed, this section will analyze the costs of

the project, taking into consideration the time required per team member as well as

software and hardware costs.

Figure 39: Team Cost

In order to estimate the material costs, I’ve considered the ones needed when

developed this project, taking into consideration that some software licenses are not valid

for professional development and is required to purchase the appropriate license.

Figure 40: Software and Hardware Cost

Figure 41: Total Project Cost

As a result, if a company would like to replicate this project with a similar outcome,

the estimated costs would be 9,811.85 €.

Description Unit Price Units Months Depreciation Cost

Laptop ThinkPad T480 1,239.00 € 4 1 25.81 € 103.25 €

GitHub Team License 25.00 € 1 1 - € 25.00 €

Pycharm Proffesional 8.90 € 4 1 - € 35.60 €

Kaggle - € 1 1 - € - €

TOTAL 163.85 €

Description Cost

Team Cost 9,648.00 €

Software and Hardware Cost 163.85 €

TOTAL 9,811.85 €

Member Hourly wage Days Total Hours Cost

Software Engineer 20.00 € 18 144 2,880.00 €

Data Scientist 18.00 € 12 96 1,728.00 €

Back-End Developer 18.00 € 18 144 2,592.00 €

Front-End Developer 18.00 € 17 136 2,448.00 €

TOTAL 9,648.00 €

	Introduction
	1.1 Contextualization
	1.2 Goals and objectives
	1.3 Legal Framework
	1.4 Socio-Economic Environment
	1.5 Document structure

	State-of-the-Art
	2.1 Word Embeddings
	2.2 State-of-the-art datasets
	2.3 Related experimental results
	2.3.1 Barnes et al. (2016) Experiment: Models
	2.3.2 Advanced Models

	Research and development
	3.1 Data Exploration
	3.2 Data Pre-Processing
	3.3 Neural Networks Implemented
	3.3.1 Long Short-Term Memory (LSTM)
	3.3.2 Bidirectional Long Short-Term Memory (BiLSTM)
	3.3.3 Simple Convolutional Neural Network (CNN)
	3.3.4 Batch Normalized Convolutional Neural Network (CNN2)

	Results Analysis
	4.1 Model Training
	4.2 Models Comparison

	Web Application Development
	5.1 Framework
	5.2 Back-end
	5.2.1 Scraper
	5.2.2 Cleaning, Preprocessing and Sentiment Prediction
	5.2.3 Spanish Support
	5.2.4 Product features

	5.3 Front-end
	5.3.1 Homepage
	5.3.2 Reviews Tab
	5.3.3 Analysis Tab
	5.3.3.1 Top 5 Pros and Cons
	5.3.3.2 Real vs Predicted Star Distribution
	5.3.3.3 Polar Confusion Matrix
	5.3.3.4 Confusion Matrix Stars

	Conclusions & future work guidelines
	6.1 Conclusions
	6.2 Future Work Guidelines

	References
	APPENDIX
	Appendix 1: Planning
	Appendix 2: Budgeting

