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Summary 
  

 

This document analyses the current State-of-the-Art algorithms in the fields of 

Natural Language Processing and Sentiment Analysis. It continues with a step-by-step 

explication of the development process of pre-processing techniques and neural networks 

architectures that allow to perform sentiment predictions (predicting rating stars) on 

Amazon.com customer reviews. An accuracy comparison has been made between 4 

different models to check their performance.  

 

The second part of the project has been the development of a demo web application 

to show the potential of a Product Analytics Tool,  which allows to perform sentiment 

predictions of any product on Amazon website. This app scrapes the reviews, loads the 

previously trained model and makes the predictions, generating different insights such as 

the most positive and negative features of the product based exclusively on the most 

reliable and objective data, customer reviews. The source code of the app can be found 

here: 

  

https://github.com/albergar2/SA_Project 

 

At the end of the document an appendix has been added providing information and 

estimates of the cost and tasks required to replicate this project in a professional 

environment. 

 

Key Words:  

− Sentiment Analysis 

− Deep Learning  

− Amazon reviews 

− Feature extraction 

− Web application. 

 

https://github.com/albergar2/SA_Project
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Section 1 

Introduction 

1.1 Contextualization 

Sentiment Analysis is a field within Natural Language Processing (NLP) which 

focuses on identifying and extracting opinions from an unstructured text. According to 

the studies developed by Anant Jhingrans from IBM Research (Jhingrans, A. 2018), 

nearly 85% of the world’s data is unstructured (not organized in a determined manner). 

Advanced Sentiment Analysis techniques are based on Machine Learning and Deep 

Learning algorithms that help companies to make sense of their data, to extract actionable 

insights, therefore making teams more competent and automating different business 

processes. Sentiment Analysis can be understood as a text mining technique used to 

identify and extract subjective insights from unstructured text to help businesses or other 

organizations to monitor the social sentiment related to their products, brand or services.  

 

The main research about Sentiment Analysis revolves around polarity classification, 

which aims to classify a sentence’s opinion as expressing positive, negative or neutral 

emotions. Depending on the nature of the problem, the algorithms can be applied at a 

different level of scope: document, sentence or sub-sentence level.  

 

Research about Sentiment Analysis has experienced a good amount of progress for 

the last 10 years and algorithms and its text analysis’ ability has improved remarkably. 

So far, researchers on the field have been focusing on five types of analysis:  
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− Polarity Classification: positive, neutral and negative emotions.  

− Fine-Grained Classification: very positive, positive, neutral, negative and very 

negative emotions.  

− Emotions detection: happiness, frustration, anger, sadness, excitement, etc.  

− Aspect-Based: features about the concept the sentiments refer to.  

− Intent: detecting what people mean rather than what people say.  

Despite of the progress on the field, there are some persistent limitations that have 

not been solved yet and researchers still struggling with: Subjectivity and Tone, Context 

and Polarity, Irony and Sarcasm, Emojis and Defining Neutral (objective texts, irrelevant 

information, wishes).  

 

Focusing on a practical approach, the main applications of Sentiment Analysis from 

which companies and users can benefit from, are:  

 

− Social Media Monitoring: analyze people’s reactions around a topic.  

− Brand Monitoring: analyze mentions from different sources like social media, 

news, blogs or forums to obtain a broad view of the brand.  

− Customer Feedback: Net Promoter Score (NPS) classifies individuals as 

promoters, passives or detractors. Sentiment Analysis can aggregate NPS and 

other surveys in order to respond quicker to customers’ shifts.  

− Customer Support: detect disgruntled customers and surface those tickets to the 

top, gaining deep insight into what’s happening.  

− Workforce Analytics and Voice of Employee: discover employee concerns from 

surveys, keywords and behavior, ensuring they feel heard and valued.  

− Product Analytics: analyze large quantities of product feedback surveys, social 

media and online mentions about a product, keeping constant tabs on the features 

people like and don’t like about the product itself.  

− Market Research and Analytics: analyze product reviews vs competitors reviews, 

generate weekly/monthly/daily reports, analyze market reports and business 

journals for trends, social media analysis for real-time happenings. 
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The different applications identified above are fields in progress at the moment, 

getting useful insights from customer reviews, tracking the advertisement’s influence on 

purchasing effect as well as real-time analysis on social media are just a few tools that are 

going to improve a lot in the years to come. Understanding real-time perception from 

customers with a high accuracy score will be taken from granted in the future by any 

company. This document has focused on Product Analytics, the most promising area of 

study oriented to businesses as it’s development will be able to reproduce human level 

accuracy on millions of customer interactions about a company’s product or brand by 

analyzing user’s sentiment and extracting the product’s main features they are talking 

about. The key steps on performing Product Analytics are:  

 

1. Identify product’s features and aspects the customers care about.  

2. Predict users’ intentions, sentiments and reactions about these features. 

1.2 Goals and objectives 

The main goal this project pursues is to obtain a Sentiment Analysis model trained 

with unstructured text using deep learning techniques to solve a polarity classification 

problem, extending the scope to a simple aspect-based sentiment analysis, which in 

combination will produce a Product Analytics web application. The model has been 

trained with a dataset built upon 4 million Amazon.com products’ reviews obtained from 

the research and work of Xiang Zhang, PhD student at New York University (X. Zhang’s 

Google Drive, 2019). 

 

The aim of the model is to achieve an accuracy value on the test dataset close to 

State-of-the-Art, using current methodologies and deep learning algorithms. Once the 

model has been successfully trained, it will be loaded into a user-friendly demo web app 

that will allow the user to perform a sentiment analysis on any Amazon.com product by 

introducing its URL link, showing the great potential of a Product Analytics deep learning 

platform. 
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1.3 Legal Framework 

This section examines the key aspects that must be taken into consideration when 

developing a project as the one described in this document. It’s important to revise the 

current legislation related to the software licenses and the General Data Protection 

Regulation (GDPR). As far as software licenses, the training section of the project has 

been developed on Kaggle servers, owned by Google and free to use. The web app has 

been developed using PyCharm Free Community Edition IDE and Dash by Plotly 

Framework, both free to use. 

 

The dataset used was obtained from Xiang Zhang’s Google Drive, which was open 

to the public. On the other hand, the web app is loading customer reviews from any 

product from Amazon.com, however, the method used to do this is basically loading each 

review’s web page and reading the HTML file, therefore data which is open and not 

restricted by GDPR regulation since it’s not personal data (such as name, IP, email, phone 

number, etc). 

1.4 Socio-Economic Environment 

The field of Sentiment Analysis jointly with NLP and Artificial Intelligence are main 

research topics both in academia and industry. These topics will evolve in the next few 

years, integrating new languages as well as new algorithms and modified neural networks 

that will increase the accuracy of the current methods.  

 

The results achieved in this project could be used on the private sector for multiple 

applications. The most straightforward tool the industry will benefit from will be a 

Product Analytics tool similar to the one developed for this project to extract the key 

product’s features as well as the customer sentiment from product reviews. On the other 

hand, there are multiple variations of this tool that can be oriented to develop tools able 

to predict sentiments on customer’ feedback to improve NPS scores or Social Media 

Monitoring to track customer reaction’s to marketing campaigns, releases of new 

products or news about the company’s brand or industry.  
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Solutions as the ones identified above could make a competitive strength for a 

company by improving the service given to customers and being flexible to adapt its 

products and marketing campaigns to respond as fast as possible to changes in trends on 

the industry. According to Domo’s Data Never Sleeps 6.0 report (Domo, 2018), in 2020, 

on average each person in the planet will generate 1.7MB of data per second, therefore 

companies investing in technology to get insights of this unstructured and low-quality 

data will obtain a significant advantage over their competitors and will increase its 

revenues.  

 

On the other hand, there are social applications of this technology, being an example 

of it the ones implemented on social media. Companies like Facebook and Twitter 

analyze every post looking for inappropriate content that enacts violence, drug abuse or 

pornography, in order to censor it and stop it’s spread over the internet. These approaches 

are not related to revenues but to social wellness. 

1.5 Document structure 

This document will start with an overview of Sentiment Analysis’ State-of-the-Art 

to explore the current techniques, approaches and accuracies obtained from the world’s 

best researchers on the field of NLP. Once the current trends and techniques to solve 

similar problems have been identified, the document will explain and justify the 

algorithms used and decisions taken to develop the goal solution. On the following 

sections a results analysis focused on the accuracy and the perform of the output from the 

web app will be showed. A final section placed at the Annexes analyzes the project 

implementation  costs and tasks in case a company wants to build a similar Product 

Analytics tool. As a conclusion, the document will recap the results described on this 

document and state future work guidelines to anyone interested in working on the field 

and improving the solutions described. 
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Section 2 

State-of-the-Art 

Current research trends on sentiment analysis rely on unsupervised algorithms to 

perform feature extraction, using pre-trained word embeddings as the most common 

approach. Text pre-processing is usually more important than the neural network used on 

terms of accuracy.  

2.1 Word Embeddings  

At the moment, computers are not able to understand the meaning and concepts 

behind words. Word vectors are the standard approach to represent text in a way a 

computer can use it, mapping words and phrases to vectors of real numbers, which 

constitutes the previous step to the training stage as neural networks must work with 

numbers rather than words.  

 

Traditional word vectors try to capture the appearance frequency for each word on 

each document. Bag of Words (BoW) links each word given in the vocabulary to a one-

hot encoded vector depending on whether the word appears on the document. This 

technique doesn’t encode any information related to the actual meaning of the word and 

gives the same weight to every word, even though it is proved that in most NLP problems 

there are some words which are more relevant than others. 
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Figure 1: BoW vector representation 

 

 

 
 

Source: D. Karani (2018) 
 

 

Neural embeddings are the next step on the evolution of word embeddings. 

Word2Vec is a predictive model developed by Google (Google Code Archive, 2019) 

which have been trained using English Wikipedia Corpus to predict word vectors 

representation and to capture the meaning of the word by taking into consideration 

surrounding words. This predictive model can use two different architectures: 

 

- Continuous bag-of-word (CBOW): the model is trained with the surrounding 

words and it aims to predict the given word. 

- Skip-Gram: the model is trained with single words and aims to predict its 

surroundings. 

 

Figure 2: Neural Embeddings Architectures – CBOW vs Skip-Gram 

 

 
 

 

 

 

 

 

 
 

Source: D. Karani (2018) 
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The real alternative to Word2Vec is GloVe (Pennington et al., 2014), a word 

embedding developed by Stanford which uses a count-based model (instead of predictive 

model as Word2Vec) and a neural methodology to break down the co-occurrence counts 

matrix by doing a dimensionality reduction, therefore building more expressive and dense 

word vectors. It has been proved that GloVe is faster to train than Word2Vec, but 

researchers haven’t found any relevant differences on results.  

 

Neural word embeddings are able to include into their vectors most of the information 

related to the vocabulary words, the most frequent surrounding words, meanings, 

synonyms or antonyms by taking into consideration from 50 to 300 dimensions for each 

of word in the vocabulary. As a result, we can perform operations with words similar to 

those done with numbers. For example, given three words king, man and woman, we 

could perform the following operation using their word vectors, and we will obtain a new 

word: 

 

(𝑘𝑖𝑛𝑔 − 𝑚𝑎𝑛) + 𝑤𝑜𝑚𝑎𝑛 = 𝑞𝑢𝑒𝑒𝑛 

 

Similar words (even if their relationship is that they are antonyms of each other) will 

be placed into a space from 50 to 300 dimensions close to each other, on contrast to 

radically different words with nothing in common which will be placed far away from 

each other. Google has developed a web app to explore word embeddings trained by 

Google’s Wor2Vec team that can be found on the following link: 

 

http://projector.tensorflow.org/ 

 

Continuing with the example about the word king, the example below shows the 

results obtained from Word2Vec and Google’s web app for word embeddings on 

representing the closest 50 neighbors. Since each neighboring word has 300 dimensions, 

a PCA has been used to reduce their dimensionality into a 2D visual representation. The 

example shows that the closest words to king are kingdom, battle, prince, crown and 

regent. It is notable how Word2Vec has captured words’ closeness on south region 

(English rulers), east region (roman numbers used to identify kings who have chosen the 

same name) and west region (family kinship). 

http://projector.tensorflow.org/
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Figure 3: King Word2Vec example 

 

 
 

 

Source: Projector Tensorflow. Embedding Projector – Visualization of high dimensional data 
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2.2 State-of-the-art datasets 

In order to analyze the results obtained by different techniques, a replicable 

environment built upon benchmark datasets is compulsory. At the moment, there are 

different State-of-the-art datasets with different granularity used to compare the 

performance between different algorithms.  

− Stanford Sentiment (Socher et al., 2013): movies reviews from IMDB which 

contain 5 levels of sentiments (SST-Fine / SST-1)  (strong negative, negative, 

neutral, positive and strong positive). A binary sentiment version is also available 

(SST-Binary / SST-2).  

− OpeNER (Agerri et al., 2013): hotel reviews and opinions, which include 

annotated sentiment holders, targets and phrases.  

− SenTube (Uryupina et al., 2014): comments extracted from YouTube about 

tablets (SenTube-T) and automobiles (SenTube-A), usually from commercial 

videos. They have been annotated for negative, neutral and positive.  

− SemEval (Nakov et al., 2013): tweets collected in 2013 and annotated on three 

levels of sentiment.  

2.3 Related experimental results 

The following table developed by Barnes et al. (2016), highlights the State-of-the-

Art accuracy on sentiment analysis’ task on every dataset stated above. Barnes and his 

colleagues compared the accuracy of different algorithms across the set of datasets on 

word embeddings’ dimensions ranging from 50 to 600. Marked in bold are the best 

performing experiment for each dataset, while marked on blue are the results reported by 

other researchers. The last column shows the average across all the dataset for every 

algorithm and dimensionality combination, stating that as overall, BiLSTM is the most 

successful. 

  



 

 

 

 

11 

Figure 4: Algorithm accuracy comparison across state-of-the-art datasets 

Source: (Barnes et al., 2016) 

2.3.1 Barnes et al. (2016) Experiment: Models 

1.  BOW: regularized logistic regression on a Bag of Words representation  (count-

based model) of dimensionality ranging from 50 to 600. This approach is 

commonly used as standard baseline on text classification tasks. Marked in blue 

are the results reported by Uryupina et al. (2014) on SenTube and Lambert (2015) 

on OpeNER.  

 

2.  AVE: regularized logistic regression classifier performed over the average of 

word embeddings vectors trained with skip-gram algorithm (Mikolov et al., 2013). 

Best results have been reported by Faruqui et al. (2015) on SST-binary.  
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3. RETROFIT: regularized logistic regression on average word embeddings vectors 

from Mikolov et al. (2013) in a combination with PPDB-XL lexicon, a lexicon 

database that helps NLP algorithms to be more robust against language 

expressions’’ variability. This approach was taken by Faruqui et al. (2015) who 

improved AVE’s results on SST-binary.  

 

4. JOINT: this approach was performed by Tang et al. (2014) with word embeddings 

trained on sentimental meaning rather than the original semantic meaning from 

Mikolov et al. (2013). Concatenating the minimum, maximum and average 

sentimental word embedding vectors for each sentence a training a linear SVM 

(Support Vector Machine – a non-probabilistic binary linear classifier) on these, 

Tang et al. (2014) obtained the best result on SemEval dataset.  

 

5. LSTM (Long Short-Time Memory): this algorithm was first introduced by 

Hochreiter and Schmidhuber (1997) and it is a kind of Recurrent Neural Network. 

As on every model, words are transformed into word embeddings vectors through 

an embedding layer. Then each word vector is fit into the network by the input 

gate on the cell state, which is the belt that goes through the LSTM neuron, 

modifying the vector as it advances through different regulated gates (input gate, 

output gate, forget gate) which add or subtract information of the cell. Each word 

will modify in a different amount the cell state, which gives this kind of networks 

the name of recurrent, as they take into consideration previous words in the 

sentence to learn to predict the output.  Best results have been obtained by Tai et 

al. (2015) on SST-fine and an improved version trained on 600 dimensions rather 

than 300 as Tai et al. (2015) did by Barnes et al. (2016).  

 

6. BiLSTM (Bidirectional Long Short-Term Memory): designed over the same 

architecture than LSTM, the main feature is that two LSTM networks are run and 

their outputs concatenated. The first LSTM network will receive the original 

sequence of word embeddings vectors, while the second LSTM network will 

receive the input on inverse order, therefore the model will be more concerned 

about the sentimental meaning of the sentence, generally improving LSTM 

results. BiLSTM has established State-of-the-Art accuracy values on several 
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datasets and has been ranked overall as the best network over the full set of 

datasets by Barnes et al. (2016). This network has achieved overall best results on 

SST-fine and SST-binary by Tai et al. (2015), and on OpeNER and SemEval by 

Barnes et al. (2016).  

Figure 5: LSTM Diagram 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Source: M. Nguyen (2018) 

 

Figure 6: BiLSTM Diagram 

 

  

 

 

 

 

 

 

 

 
Source: Ceshine Lee (2017)  
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7. CNN (Convolutional Neural Network):  CNN are feature extractors from a given 

input focused on the fields of Computer Vision and Image Classification. 

However, in recent years they have been adapted to one dimension vectors, being 

capable to solve NLP tasks. CNN models take word embedding’s vectors to 

perform convolutions over the sentence’s words in order to learn whether the word 

is meaningful for the task. One of the biggest weakness of CNN when applied to 

NLP is their lack to take into consideration the surroundings and semantic 

meaning of text (where LSTM and BiLSTM outperforms). Best results following 

this approach have been obtained by Kim (2014).  

 

The following image illustrates these concepts where a window size of 2 has been 

chosen for simplicity (convolution kernel).  

− Stage 1: original words are represented in green, which are transformed by 

the embedding layer into vectors represented in blue squares.  

− Stage 2: taking the first two words’ vectors (window size) the network 

performs the multiplication of vectors’ weights to obtain an output. This 

process is repeated with the next word until every word of the sentence has 

been convoluted. A CNN network has to specify how many neurons the 

network has (filters) and each of them will perform similar convolutions for 

each sentence. At the end of the convolution process, the output will be a one 

dimensional array of length number of words for each of the filters.   

− Stage 3: for each array obtained, a max-pooling process will be performed to 

reduce its dimensionality by a factor determined by a parameter, generating 

an output that can be introduced into a function to obtain a final prediction.  

 

Figure 7: Convolutional Neural Network Workflow 

Stage 1: Input Representation (Embedding Layer) 
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Stage 2: Filter Convolution 

 

 
Stage 3: Max-Pooling 

 

 

 

 

 

 
Source: Debajyoti Datta, Data Scientist at X.ai 

2.3.2 Advanced Models 

Both NLP and Sentiment Analysis are evolving really fast on recent years, and year 

after year researchers manage to improve State-of-the-Art accuracy with complex 

configurations, redesigned algorithms and different combinations of them. These 

advanced models are usually tested on SST-fine and SST-binary as both datasets have 

highlighted over the others during the last years. On the figure below are illustrated the 

results obtained by several researchers doing some modifications to the networks and 

algorithms explained in the previous section. This comparison has been developed by 

Young et al. (2018).  
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Figure 8: Algorithm accuracy comparison on Stanford Sentiment Treebank 

Paper Model SST-1 SST-2 

Socher et al (2013) Recursive Neural Tensor Network 45.7% 85.4% 

Kim (2014) Multichannel CNN 47.4% 88.1% 

Kalchbrenner et al (2014) DCNN with k-max pooling 48.5% 86.8% 

Le and Mikolov (2014) Paragraph vector 48.7% 87.8% 

Tai et al (2015) Constituency Tree-LSTM 51.0% 88.0% 

Yu et al (2017) Tree-LSTM with refined word embeddings 54.0% 90.3% 

Yu et al (2017) Bi-LSTM with refined word embeddings 49.7% 88.6% 

Yu et al (2017) CNN with refined word embeddings 48.8% 87.9% 

Chen et al (2017) BiLSTM + CNN 48.5% 88.3% 

 

Source: (Young et al., 2018). 

 

These models have performed complex transformations, additions or combinations 

to obtain State-of-the-Art accuracy values and it is out of the scope of this document to 

make a deep analysis of each of them, however, a high level clarification of some of them 

has been done on this document:  

 

− Socher et al. (2013) and Tai et al. (2015)  both developed recursive networks 

relying on constituency-based parse trees that represent the syntactic structure of 

the sentence following a phrase structure grammar. The difference between both 

is the sentence modelling and preprocessing, remarking the importance of this 

steps. Tree structures performed much better than linear LSTM showed on the 

previous section, which implies that tress structures capture better the syntactical 

features of sentences.  
 

− Yu et al. (2017) established the State-of-the-Art by proposing a refined word 

embedding vectors combined with sentiment lexicons on a Tree LSTM structure. 

They also developed similar refinement to BiLSTM and CNN networks, 

achieving great improvement.  

− Kim (2014) and Kalchbrenner et al. (2014) proposed a CNN approach where the 

former is a modified version of its own previous work and the last is a sequence 

model with interweaving convolutional a max-pooling layers.  
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− Chen et al. (2017) opted for a sequence model of a BiLSTM layer combined with 

a CNN layer. Performing a simple refinement this approach scored high on the 

State-of-the-Art ranking.  

 

Figure 9: Consistency Parse tree  

 

 

 

 

 

 

 
 

 

Source: Sebastian Ruder, NLP Progress 

 

To conclude this section, it is notable the improvement related to tree structures as 

well as preprocessing and refinement techniques, that can lead to substantial 

improvements. Neural networks are unquestionably the choice to make on Sentiment 

Analysis tasks focusing the attention on different variations of LSTM, BiLSTM and CNN 

networks.  
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Section 3 

Research and development 

3.1 Data Exploration 

As a good practice for any data science project, a data exploration has been performed 

to get to know more information about the dataset as well as extracting insights and 

distributions. The full dataset contains 3.60 million reviews for training and 400k reviews 

for testing, labelled as positive or negative. These reviews come from different Amazon’s 

products, being labelled negative those with 1 and 2 stars and positive those with 4 and 5 

stars. As a result, every review with 3 stars, which highlights by its neutrality, has been 

omitted. The following figure shows the structure of the dataset. 

 

Figure 10: Dataset’s structure overview 

 
 

It is very important to know whether the dataset’s target label is balanced, to avoid 

training the model with this kind of bias.  The figure below illustrates the label distribution 

across the dataset, resulting in a perfectly balanced set ready to work with. 
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Figure 11: Sentiment Distribution 

 

 

Hidden correlations between variables and the target label can end up generating an 

overfitting problem. Overfitting arises when during the training process, the model 

adjusts too much to the training dataset instead of generalizing for any data, which leads 

to underperform on the test dataset. Let’s make the hypothesis that any review on the 

training dataset longer than 50 words is negative. During the training process the model 

will realize about this and stop learning about the word embeddings or sentiments and 

just focusing on the review’s length. Once the training has been completed, the model 

must be tested with unseen data, which now doesn’t have this hidden correlation (there is 

no link between negative reviews and review’s length). The model will just check the 

review’s length to make predictions, that won’t be accurate given the circumstances.  

 

Figure 12: Overfitting example 

 
Source: A. Bahande, 2018 
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In order to identify the existence of this kind of hidden correlations, a feature 

extraction has been done to check whether they are correlated with the target label.  
 

− Review Length: count of the number of words in the review.  

− Avg_word_length: average number of letters a word has on each review. 

− Upper: count of the number of upper letters each review has.  

 

Figure 13: Extracted Features Distributions 

 

 

 

 

 

 

 

 

Figure 14: Extracted Features - Correlation Matrix 
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The strongest correlation with the Sentiment tag appears to be on the Review Length 

feature with a strength of -0.07 confirming the hypothesis stated before, longer reviews 

tend to be slightly more negative. This parameter must be taken into consideration when 

training the model to avoid overfitting.  

3.2 Data Pre-Processing 

Data pre-processing is crucial on NLP tasks since different approaches can lead to 

totally different results when trained the same neural network. Because all of these, 

usually cleaning and preprocessing is done manually and has to be adapted to the specific 

problem we aim to solve, meaning sometimes trial and error procedures. This subsection 

explains the cleaning and preprocessing techniques performed that led to the best results, 

leaving to the Results Analysis Section the empirical results on performance and 

accuracies.   

 

Due to the size of the dataset and all the transformations and operations required to 

solve the problem, a regular laptop is not enough to run all within a reasonably time. As 

a result, the code implemented has been run on Kaggle framework which gives free access 

to Google’s servers to run code with a compilation time limit of 9 hours. This limit has 

been overpassed in several occasions during the development of the project, so the code 

has been optimized to run as fast as possible and split in chunks that were reassembled 

later. The next figure summarizes the steps taken on the Cleaning and Pre-processing 

process.  

 

 

Figure 15: Cleaning and Preprocessing Workflow 

 

 

  

1. Simple 
Preprocessing

2. Stop-Words 3. POS-Tagging 4. Tokenizer
5. Word 

Embeddings
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1. Simple Preprocessing: Once the data has been loaded in a tabular pandas 

dataframe and the review’s title has been concatenated with the review itself, 

gensim library has been imported to have access to its simple_preprocessing 

function, which converts each review into a list of lowercase words in a pretty 

optimized way.  Gensim library is focused on topic modelling (statistical models 

that extract the hidden topics in documents), statistical semantics and semantic 

structure analysis, areas of study that need too preprocessing techniques for text.  

 

2. Stop-Words: the list of words is filtered to remove English stop-words, which are 

those words commonly used and that doesn’t give any information (“the”, “a”, 

“an”, “in”, etc.). This stop-words have been downloaded from NLTK (Natural 

Language Tool Kit), a library focused on NLP tasks that makes preprocessing 

linguistic data considerably easier by providing tools for text classification, 

tokenization, semantic reasoning, tagging, stemming and parsing. The existence 

of these tools is essential to make sense of word semantics and meanings and they 

have been key for researchers to focus their efforts mainly on English language.  

 

3. POS-Tagging: a great optimization of the cleaning process presented on this 

document is to keep exclusively sentimentally meaningful syntactical categories. 

This means to drop any word that belongs to syntactical categories with no 

sentiment associated to them, such as determinants or pronouns. NLTK has a tool 

available called Part of Speech Tagging which identifies the syntactical category 

for each word on the sentence, allowing a filter process to keep the most 

meaningful categories:  

− Adjectives 

− Nouns 

− Adverbs 

− Verbs 

 

4. Tokenizer: once the cleaning is done, the text must be manipulated to fit neural 

networks’ requirements, which means transforming words into numbers with 

which they can operate. The first step is to tokenize each word by giving every 

different word a number that represents it unmistakably adding an extra category, 
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UNK (unknown), for words that may appear and are not on the tokenizer’s index 

table. Words whose occurrence is lower than 5 times have been omitted to 

optimize the code and avoid training the model with non-frequent words. After 

that, every review is encoded looking up to the tokenizer’s index table 

(vocabulary). Every neural network has a strong requirement that must be 

satisfied, each training example (reviews on this project) must have the same 

length. To achieve this, a padding technique has been used fixing the length of 

every sentence to the number calculated with the following formula:  

 

Equation 1: Max Length Padding Formula 

 

𝑀𝑎𝑥 𝐿𝑒𝑛𝑔𝑡ℎ 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 =  �̅� − 𝑍 · 𝜎 

 
Where �̅� is the average reviews’ word length, 𝜎 is its standard deviation and 𝑍 is the Z’s score for 

the desired percentile under a normal distribution 

 

Assuming the sentence length across the dataset follows a normal distribution, the 

z-value will fix the percentile that determines the reviews that will be fully 

considered. To give an example, a z-value of for the 80% percentile will result in 

a max_length value great enough to embrace 80% of all reviews, which will have 

a review’s length lower or equal than max_length. Reviews with a lower length 

will be filled with zeros at the end to fit the max_length variable. The remaining 

20% of reviews will be truncated to max_length, losing some information.  

 

5. At this moment, words have been mapped to numbers, but each word is not related 

by any mean with any other word. Pre-trained neural word embeddings have been 

used to transform those tokens into meaningful tokens, leaning towards a 100 

dimensions of GloVe since is more optimized and runs faster than Word2Vec. 

Therefore, each word token will be transformed into a 100 dimensions word 

vector that will be given as input with the other vectors of the review to the first 

layer of the neural network.  

  



 

 

 

 

24 

3.3 Neural Networks Implemented 

Once data has been cleaned and preprocessed it is ready to be fitted into a neural 

network model. In order to choose an appropriate model that will lead to good results a 

four model comparison has been made choosing vanilla versions of LSTM, BiLSTM and 

CNN as well as a modified CNN version that without increasing its complexity has 

improved the accuracy of vanilla CNN. The election of the following architectures has 

been done to compare the performance of vanilla networks similar to those developed by 

Tai et al. (2015) and Kim (2014). Despite of its proven performance, tree structures’ 

networks have not been tested since there wasn’t a stable version of Tensorflow or 

substitutes capable of dealing with specific architectures at the moment this project was 

developed.  

 

All the models below have been implemented using Keras Library over a TensorFlow 

build and run on Kaggle servers.  

3.3.1 Long Short-Term Memory (LSTM) 

This model and the following ones have been defined on Keras, taking advantage of 

its Sequential model API which allows to build complex models by adding and 

connecting different layers with each other, obtaining an understandable and fast 

workflow ready to be trained and deployed.   

 

The first layer for every model is the Embedding layer, which will be responsible for 

building the dense vectors that will be passed to the following layers. This layer is usually 

initialized by random weights, learning over the training process to identify the actual 

relationships between words. However, it is a common practice to used pretrained word 

embeddings to speed up the training process. As explained above, pretrained GloVe word 

embedding’s weights have been loaded in order to start the training process with a 

complete understanding of the semantic relationships between words. This layer has the 

trainable flag switched on, meaning these weights will be modified to capture not only 
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the semantic meaning but the sentimental relationships between words and semantic 

structures. 

 

The output of the previous embedding layer, which has a dimensionality of 100 since 

GloVe’s weights loaded had 100 dimensions, will be fitted into a LSTM network of 100 

neurons. This network has been explained on a previous section, however, there are some 

parameters worth to mention.  

 

− Dropout has been established as 0.1, which means each LSTM’s unit (neuron) has 

a 10% chance to be dropped from the linear transformation process, increasing 

the capacity of the network to generalize and avoid overfitting. 

 

− Best results have been obtained with Rectified Linear Units (ReLU) as activation 

function. The figure below shows the representation of ReLU vs Sigmoid (a 

widely used activation function). ReLU works pretty well on Recurrent Neural 

Networks as LSTM because it solves a crucial problem when dealing with 

recurrent weights that are retrofitted, the vanishing gradients. This problem 

usually arises when the gradients of the activation function (first derivative) 

become close to zero (both Sigmoid limits), therefore the weights’ update amount 

will be close to zero and making the network hard to train. On contrast, Sigmoid 

avoids blowing up neuron’s activation by limiting the output between [0, 1], 

avoiding great weights’ updates that will make the model hard to converge.  

Figure 16: Activation Functions – Sigmoid vs ReLU 

 
Source: S. Sharma (2017) 
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The output of the LSTM layer is not ready to be saved as the final model, as it has 100 

dimensions and our model requires only 1 to determine if the sentiment of a review is 

positive or negative. As a dimensionality reduction, a Dense layer with 50 neurons has 

been added, followed with a dropout of 0.1 and a final Dense layer built with 1 neuron. 

A Dense layer performs linear operations on the input it receives, combined with a non-

linear activation function (Sigmoid), will produce values lower than 0.5 to those reviews 

identified as sentimentally negative, and values greater than 0.5 to those sentimentally 

positives. The architecture of the model is illustrated on the figure below.  

 

Figure 17: LSTM Model’s Architecture 

 

 

3.3.2 Bidirectional Long Short-Term Memory (BiLSTM) 

This network has been built up on the previous one. A regular unidirectional LSTM 

preserves information that belongs to the past, as a human would do when reading a 

review. A bidirectional LSTM (BiLSTM), will receive two sources of information, one 

from the past and another one from the future (the words or phrases that are coming next 

to the word the network is processing). By doing this, a BiLSTM will combine the two 

hidden states and will be able to preserve information from past and future at any point 

in time. Figure 6 which was showed previously illustrates how this network works. Once 

input has been fed into both LSTM networks (original and inverse order), outputs are 

concatenated and passed to a Dense Layer of 50 neurons to reduce the dimensionality 

going through a dropout 0f 0.1 and ending up with a Dense Layer of 1 neuron activated 

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2. LSTM Layer (neurons = 100, activation = ReLU, dropout = 0.1)

3. Dense Layer (neurons = 50, activation = Sigmoid)

4. Dropout = 0.1

5. Dense Layer (neurons = 1, activation = Sigmoid)
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by a Sigmoid function which will produce outputs lower than 0.5 to reviews predicted as 

negative and outputs greater than 0.5 to reviews predicted as positive.  

 

Here is an example to understand how LSTM and BiLSTM operate on a common 

problem, called text generation, where the network must predict the most suitable word 

or sentence given its context. Let’s say the sentence starts with the following words:  

 

I will try to … 

 

A LSTM network will try to predict the next word, which could be almost anything 

(get, make, call, jump, play, etc.), being able to check previous sentences to get some 

context about what the text is talking about. However, a BiLSTM network will look to 

the future too, obtaining a completer and more reliable vision of the context since it’s 

closer on space and time, therefore more a stronger relationship between the blank and 

the upcoming words exist.  

  

I will try to …… your email tonight 

 

Here a BiLSTM will produce more accurate predictions (reply, forward, print, read), 

as the network understands what the sentence is about. A similar approach is taken when 

predicting sentiments on reviews. The architecture of this model is showed on the figure 

below. 

Figure 18: BiLSTM Model’s Architecture 

 

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2.BiLSTM Layer (neurons = 100, activation = ReLU, dropout = 0.1)

3. Dense Layer (neurons = 50, activation = Sigmoid)

4. Dropout = 0.1

5. Dense Layer (neurons = 1, activation Sigmoid)
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3.3.3 Simple Convolutional Neural Network (CNN) 

This model starts as usual with an Embedding Layer to build the dense vectors that 

will be passed to a 1 Dimensional Convolution Layer made up by 100 filters (which will 

result in an output’s dimensionality of that number), a kernel size of 5 (convolution 

window) and ReLU as activation function. The output will be fit into a Max Pooling 

Layer, which will down-scale the previous layer’s output by a factor represented by 

pool_size parameter, therefore allowing an easier feature extraction. Then, a Flatten Layer 

will concatenate Max Pooling’s output into a unique vector which will be fit into a Dense 

layer activated by a Sigmoid function which will perform the final predictions. The 

internal mechanism of a CNN is illustrated on Figure 7. The architecture of the model is 

shown on the following figure:  

 

Figure 19: CNN’s Model Architecture 

 

 
 

  

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2. Conv1D Layer (filters = 100, kernel = 5, activation = ReLU)

3. MaxPooling1D Layer (pool_size = 2)

4. Flatten Layer

5. Dense Layer (neurons = 1, activation Sigmoid)
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3.3.4  Batch Normalized Convolutional Neural Network 

(CNN2)  

This model uses the concepts explained in the previous network to perform more 

complex operations that led to accuracy improvements. Right after the Embedding Layer, 

it starts a block made of four 1D Convolutional Layers with a Batch Normalization layer 

between each of them. This layer will normalize the weights between [0, 1] reducing the 

covariance shift, which leads to reducing overfitting by a smooth regularization effect, 

adding noise to each hidden layer’s activation. The output of this block will be used by 

the last 1D Convolutional Layer, after which a 1D Global Average Pooling Layer outputs 

an average of every incoming feature array extracted from convolutional layers 

previously obtained. The architecture of this model is as follows: 

 
 

Figure 20: CNN2’s Model Architecture 

 

1. Embedding Layer (neurons = 100, weights = GloVe, trainable = True)

2. Conv1D Layer (filters = 32, kernel = 7, activation = ReLU)

3. Batch Normalization Layer

4. Conv1D Layer (filters = 32, kernel = 3, activation = ReLU)

5. Batch Normalization Layer

6. Conv1D Layer (filters = 32, kernel = 3, activation = sigmoid)

7. Batch Normalization

8. Conv1D Layer (filters = 32, kernel = 3, activation = sigmoid)

9. Batch Normalization

10. Conv1D Layer (filters = 2, kernel = 1, activation = sigmoid)

11. Global Average Pooling Layer

12. Dense Layer (activation = sigmoid)
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Section 4 

Results Analysis 

4.1 Model Training 

Every model has been trained under the same parameters and using the same dataset 

to be able to perform a reliable comparison between all of them. Every model has been 

compiled using the following parameters:  

 

− Loss function: Binary cross-entropy, which measures the model’s performance 

and increases as the predicted label diverges from the actual label.  

− Optimizer: Adam, optimization algorithm which “computes individual adaptive 

learning rates for different parameters from estimates of first and second moments 

of the gradients.” (Kingma & Ba, 2014). This means that on each epoch the 

learning rate (learning capacity of the network for each step) is modified 

according to the gradients of the loss function (first and second derivatives). This 

optimizer result on a better performance than using static learning rates.  

− Epochs: the model will receive the full training dataset 10 times during the training 

process.  

− Validation split: a 20% of the full training dataset has been used as validation data 

to evaluate the model at the end of each batch of training.  

− Batch size: the training dataset will be chunked into several batches made of 64 

samples each.  

− Early Stopping: the training process will be stopped if the loss (prediction error) 

on the validation set hasn’t improved for the last 3 epochs. Therefore, the best 

model that will be saved will be the one obtained 3 epochs back.   
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Figure 21: Early stopping example 

 

 

 

 

 

 

 

 

 

 
 

Source: Santos (2012) 

4.2 Models Comparison 

One of the most questioned assumptions made on this research has been the relevance 

on accuracy performance of the max length padding, performed during the data 

preprocessing. This parameter assumes that once the sentence is exclusively formed by 

Adjectives, Nouns, Adverbs and Verbs, only the first “x”  words from the review will be 

used for training and testing the sentiment of the full review. If a sentence is shorter than 

that this value, zeros will be added at the end of it to match the padding length. As a result, 

we are assuming that first “x”  words are more relevant than the last ones, and only short 

reviews (which have on average more sentimentally weight per word) are fully 

represented. To choose max_length value Equation 1 has been used, taking z-values equal 

to 0.3, 0.5 and 0.8. Each of the experiments below have been performed 5 times to ensure 

reliability on results.  
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Figure 22: Test Accuracy Comparison z-value=0.3 

 

 

 

 

 

 

 

 

 

 

Figure 23: Test Accuracy Comparison z-value=0.5 

 

 

Figure 24: Test Accuracy Comparison z-value=0.8 
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As the accuracy values show, there is in fact an increase in accuracy with higher z-

values, however it is remarkable how well networks have performed with the z-

value=0.3, taking into consideration these values are pretty close to the State-of-the-Art 

on SST2 dataset. Higher z-values increase accuracy by taking into consideration more 

words per review to train and test the model, however, this leads to bigger model storage 

size and a greater time for performing predictions, both key factors for the second part of 

the project, a demo web application.  

 

By analyzing the results above, it is worth to mention how the accuracy values on z-

value = 0.8 experiments are really close to the State-of-the-Art on SST2 dataset, 

especially  BiLSTM 90.476% accuracy value, which has improved Yu et al. (2017) 

approach of Tree LSTM. It would be of high interest to check the performance of the 

cleaning, preprocessing and BiLSTM model on the standard SST2 dataset, in order to 

evaluate how well the approach taken on this project is. However, this goes beyond the 

scope of this project and will be stated at the end of the document under the section Future 

Work Guidelines.  

 

The following figures show the importance of Early Stopping parameter, which stops 

training when the loss on the validation dataset hasn’t improved for the last 3 epochs.  

Every model has stopped it’s training process before reaching the limit of 10 epochs, 

therefore the parameter improves training times and accuracy.  
 

It is important to mention how LSTM, CNN and CNN2 tend to evolve in a similar 

way, improving with each epoch until they start overfitting and Early Stopping comes 

into play, which is usually between the second and the fourth epoch depending on the 

case and the network. On the other hand, BiLSTM finds always the best accuracy model 

on the first epoch, decreasing its performance until Early Stopping finishes the training 

process.  
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Figure 25: Validation Loss vs Accuracy Comparison z=0.3 
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Figure 26: Validation Loss vs Accuracy Comparison z=0.5 
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Figure 27: Validation Loss vs Accuracy Comparison z=0.8 
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After analyzing the four models not only by its final accuracy but by how step by 

stem the model has been trained during the training process, it is clear that BiLSTM is 

the best model on terms of accuracy for any z-value and on terms of training efficiency, 

since as the above figures show, on every experiment the model obtained on the first 

epoch is always the best one.  

 

The following section will explain the development of the web application, which 

takes some files from the preprocessing and training steps. The first file is the vocabulary, 

the tokenizer’s index table that will allow the app to make the preprocessing steps 

required to obtain the model’s prediction, as every review has to be encoded following 

the same rules than the ones taken on the training dataset. The second file is the model 

trained, which will be the best model obtained, BiLSTM on z-value = 0.8, with a total 

storage size of 154 MB.  
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Section 5 

Web Application Development 

5.1 Framework 

The main goal of this project wasn’t just to train a sentiment analysis model with an 

accuracy close to the State-of-the-Art, but to show the potential of this model by 

developing a demo with which the user can interact, see the cleaning process and obtain 

sentiment predictions as well as useful insight reports for any product on Amazon.com or 

Amazon.es.  

  

On web-based analytics apps, an R package called Shiny has been widely used for 

the last years to build interactive web apps. However, a new framework developed by 

Plotly’s team ( known for its interactive data visualization package) was released recently 

under the name of Dash, which could be easily integrated into the model and cleaning 

process developed on a previous stage of the project as it has Python support. The 

development of the web app has been made using PyCharm Free Community Edition and 

can be found on the following GitHub repository: 

 

https://github.com/albergar2/SA_Project 

 

The web application  has been split into several functionalities that will allow the 

user to obtain a sentiment analysis report for any product on Amazon as well as to see the 

cleaning, preprocessing, and prediction steps taken for every review of the given  product. 

The following figure illustrates how the different app’s functionalities relate to each other.  

 

https://github.com/albergar2/SA_Project
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Figure 28: Relationships between app’s functionalities 

5.2 Back-end 

5.2.1 Scraper 

The first step once the user has introduced an Amazon product’s URL is to load the 

reviews written by customers who have purchased the product into memory. This process 

is constrained to the amount of pages Amazon lets a script to read before blocking its calls 

to the website. Experimental results show that this number is around 500 reviews, which 

translates into 50 pages from Amazon’s website and is enough for our demo purposes.  

 

The script for scraping each web page has been a personal development, generating 

from the product´s URL, every customer reviews URL, loading its HTML structure and 

extracting from the class names the following information for each review:  

 

− Star Rating [1, 5]: rating given by the customer to the product 

− Title: title of the customer review 

− Body: customer review 
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The script will return a pandas dataframe with this information for each of the reviews 

loaded, which will be used as an input for the next functionality.  

5.2.2 Cleaning, Preprocessing and Sentiment Prediction 

A key point to remark here is that the expected input for the model has to follow the 

same structure and requirements as the data it was used to train it. This makes mandatory 

to clean and preprocess the customer reviews following the same steps explained earlier 

on this document, encoding every review with the tokenizer’s index table (vocabulary). 

Thus, the pandas dataframe received will be transformed using a similar workflow as the 

one implemented for the training data, exposed on Figure 15.  

 

Once each review has been encoded they are ready to be fed into the trained model to 

obtain a prediction. The model loaded at this point is the one which obtained best results, 

BiLSTM on z-value=0.8. Predictions made by this model will be a number between [0, 

1], since the model has a Sigmoid function as the last layer, meaning any value lower than 

0.5 will be categorized with a negative label and any value greater than 0.5 will have a 

positive label. However, the reviews had 5 points rating system, so to match these 

categories a discretization of the results has been done obtaining the following labels:  

 

− 1 Star → 0 ≤  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.2 

− 2 Stars →  0.2 ≤  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.4 

− 3 Stars → 0.4 ≤  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.6 

− 4 Stars → 0.6 ≤  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 < 0.8 

− 5 Stars → 0.8 ≤  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 ≤ 1 

 

This discretization rule has been chosen to give the same amount of Prediction Value 

Points to every category, but a non-uniform distribution might be more accurate when 

evaluating the confusion-matrix.  
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5.2.3 Spanish Support 

Natural Language Processing research has been done mostly in English for the last 

years It is difficult to find libraries and packages in other languages similar to the ones 

explained above, Gensim and NLTK, with similar accuracy values, since language 

semantics and syntax differ significantly between languages. Despite of the fact that a 

dataset from Amazon.es customer reviews could be build using a modified version of the 

script developed to scrape and load reviews, this would have been taken a considerably 

amount of time and the project would have gone off on a tangent.  

 

In order to give support for any product from Amazon.es, an integration has been 

done with Google Translator Python Library, googletrans, to translate any review written 

in Spanish into English. The workflow works on a similar way, once the reviews have 

been translated into English, the model predicts the sentiment value for each of them and 

the following functionalities continue working the same way, generating the insights in 

English. At the end of all this process, the results and insights are translated again from 

English to Spanish, to show to the user the content in the original language. Some people 

may argue than translations made by Google are not accurate, however, for the purpose 

of this project, which is to identify if the sentence is positive or negative, there is no need 

for high accuracy translations, as a synonym sentimentally similar with the word will 

satisfy the requirements.  

 

As expected, these translations increase dramatically the processing time the user has 

to wait since submitting the product until the results are showed on the app. Experiments 

show that reviews from Amazon.com have an average processing time of 0.15 sec/review, 

while reviews from Amazon.es scale up to 0.8 sec/review, which translates into a 433% 

increase.  

5.2.4 Product features 

Nowadays the practice of checking on internet for an expert analysis before 

purchasing a new smartphone, camera or any other product is widely expanded. These 

analyses are time consuming for experts and often biased by their own subjectivity. 
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Amazon gives access to reviews written by customers of all its products but doesn’t offer 

a tool that aggregates this customer reviews into key positive and negative features. A 

naïve approach to this task has been included in this project, in the hope that some 

researcher will continue with the development of more sophisticated techniques.  

 

On the cleaning and pre-processing process, a POS-Tagging filter to extract 

exclusively Adverbs, Adjectives, Verbs and Nouns was applied to every review, in order 

to keep sentimentally meaningful words. This step was crucial by removing from the 

training data words like Pronouns and Determinants that didn’t have any sentimental 

meaning. Continuing with this approach, product’s features are Nouns surrounded by 

Adjectives, Adverbs and Verbs that will determine if the sentiment about this features is 

positive or negative:  

 

“The new smartphone has a camera that works pretty well under low-light 

circumstances” 

 

The example above could be a positive review where the Nouns have been 

highlighted in bold font. Assuming the model predicts with good accuracy (which 

certainly it does), each of these nouns will be added to a python dictionary with a value 

of +1 in case of a positive review, and a value of -1 for negative reviews. Iterating this 

process over every review scraped, the resulting dictionary will contain every noun that 

appeared across the set of reviews, linked to a sentiment value. Sorting this dictionary, 

we can obtain the Top 5 Pros and Cons based exclusively on the most reliable and 

objective data, customer reviews.  

 

This approach has several problems, even after removing stop-words and aggregating 

words by its lemmas and synonyms, the appearance of wrong written words or wrong 

identified nouns by the Pos-Tagging algorithm can lead to inaccurate results. However, 

these problems tend to blur when the technique is applied over a great amount of reviews, 

since statistically the recurrent appearance of meaningful words is higher.  
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5.3 Front-end 

The app has been developed using Dash by Plotly framework, which relies on Flask 

to run easy and deployable web analytics apps. This app has been developed exclusively 

as a demo of a real project that could be made integrating the model and preprocessing 

techniques explained on this document. Therefore, as a demonstration web application, 

this document won’t go deep into functional analysis requirements as it goes well beyond 

the scope of this project.  

5.3.1 Homepage 

Figure 29: App’s Homepage Structure 

 

 

The figure above illustrates the homepage structure that will interact with every user 

interested in the project. The numbered elements are the following:  

1. Demo App’s Title. 

2. Simple and direct instructions on how to interact with the app. 

3. Search box where the user must introduce a URL of any product from 

Amazon.com or Amazon.es.  

4. Total number of reviews to be loaded from that product.  

1

2

3

5

4

6

7 8
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5. Clarifying example of the input that the app is expecting 

6. Submit button, which will result on the back-end into loading reviews from the 

product specified, preprocessing these reviews, loading the model, predicting 

their rating and showing the result.  

7. Reviews Tab, each review loaded will be shown here, as well as its original rating, 

preprocessing output, normalized and discretized predicted rating and keywords 

(Nouns extracted from the review, useful for the Pros and Cons section).  

8. Analysis Tab, where 4 plots will be shown: 

a. Top 5 Pros and Cons 

b. Real vs Predicted Star Distribution 

c. Fine-Grained Confusion Matrix 

d. Polar Confusion Matrix 

 

The following subsections will explore the contents of both tabs, Reviews and 

Analysis.  

5.3.2 Reviews Tab 

In order to show a full example of the app’s functionality a product from 

Amazon.com has been chosen. A remarkable point here is the difficulty to find Amazon 

products with a high number of negative reviews (best guess is that they must have been 

removed from the site), so the available products tend to have more positive reviews.  

 

As a personal preference, a Camping Tent1 has been chosen to be the product to test 

the app’s functionalities and to evaluate model’s performance. As the figure below shows, 

this product has over 2,000 reviews with unbalanced ratings towards positive ratings. This 

unbalanced set of reviews is usual for any product with more than 300 reviews, which is 

the minimum quantity to obtain useful insights.   

  

                                                 
1 https://www.amazon.com/Coleman-6-Person-Instant-Cabin-2000018017/dp/B004E4ERHA/  

 

https://www.amazon.com/Coleman-6-Person-Instant-Cabin-2000018017/dp/B004E4ERHA/ref=sxin_2_ac_d_pm?keywords=tent&pd_rd_i=B004E4ERHA&pd_rd_r=e091aad6-e253-4b8c-9427-3435f0ad6c7d&pd_rd_w=jNLkC&pd_rd_wg=teDVv&pf_rd_p=64aaff2e-3b89-4fee-a107-2469ecbc5733&pf_rd_r=A9M7J4Y48EAHATBRP0R9&qid=1559557397&s=gateway&th=1
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Figure 30: Example Product 

 

 

 

Source: Amazon.com 

 

By introducing the product’s link on the app and choosing 400 as the number of 

reviews to load, the app will start the backend workflow and finally showing the product’s 

name and a table where each row represents a single review and the columns are defined 

by the following tags: 

− Review: original review loaded from Amazon.com. 

− Stars: rating given by the user who wrote the review. 

− Clean: the original review is cleaned and preprocessed using the tools explained 

in Section 3.2.  

− Prediction: model’s output prediction for the review’s rating. The prediction’s 

interval is [0, 1]. 

− Predicted Star: star prediction from a discretization of the model’s output, as 

explained in Section 5.2.2. 

− Keywords: main features about the product to be considered for the Pros and Cons 

analysis.  

 

The figure below illustrates the app’s status at this point, showing just 3 relevant 

reviews, representing the steps taken by the app from loading the review to obtaining the 

number of predicted stars and keywords. The execution time for this example has been 

43.742 seconds.  
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Figure 31: Example Reviews Tab Front-End 

 

  



 

 

 

 

47 

As it is possible to see, the model is not always accurate on predicting the star. 

Something important to note here is that the review written and the rating given to that 

review by an Amazon.com user are not related in some cases and could depend on the 

user’s subjectivity. All of this three review’s examples were correctly tagged on terms of 

positive/negative, however the discretization process didn’t work with the precision 

expected.  

 

First review has been tagged as negative due to some words the user wrote on the 

review associated with that sentiment, such as wrong, leaks, soaked, defective and 

snapped. The second and third reviews have been tagged as positive due to the following 

words: easy, best, quick, recommend, simple, cheap and fair.  

 

Keywords column show the outcome from the back-end’s Product Features 

functionality. Basically, the app has taken the cleaned review, keeping only Nouns, which 

are the features of the product.  
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5.3.3 Analysis Tab 

Continuing with the Camping Tent example, the Analysis Tab shows 4 different plots 

with insights and information about the performance of the model’s output.  
 

Figure 32: Example Reviews Tab Front-End 
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5.3.3.1 Top 5 Pros and Cons 

Figure 33: Top 5 Pros and Cons Example 

 

This plot shows the Top 5 features of the product for each sentiment (positive and 

negative). The example shows 4 negative features and 4 positive features because a 

threshold of appearance has been fixed to 0.005, meaning there are not more features with 

an appearance probability greater than this threshold.  

 

Due to the unbalanced ratings from this product, positive features appear more 

frequently than the negative ones. By looking at the plot we can get an idea of the key 

features the customers like or dislike about the product:  

 

− Positive 

− Rain: the tent is waterproof; therefore, customers talk positively about it.  

− Air: good ventilation. 

− Time: the tent’s main feature is its instantaneous setup. 

− Room: the tent is designed for up to 6 people, so the room space is also 

important.  
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− Negative: 

− Brand: some customers doesn’t perceive the product as matching the 

brand’s reputation.  

− Repair: few customers have had problems with tent and are complaining 

about the reparations needed.  

− Frame: the tent’s frame seems not matching customers’ expectations. 

− Return: this feature is very frequent on the negative side, as the unhappy 

customers return the product and write a negative review.  

5.3.3.2 Real vs Predicted Star Distribution 

Figure 34: Real vs Predicted Star Distribution Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

As expected, the unbalanced star distribution is represented on this plot. The original 

distribution from Amazon.com showed in Figure 30 may not match the real distribution 

represented at this plot, since the former has been obtained from the 400 reviews loaded 

instead of the over 2,000 written for the product on Amazon.  

 

As the plot shows, the model predicts more negative reviews and less positive 

reviews than they actually are, trying to make a more balanced prediction, as it has been 

trained with a balanced dataset.  
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5.3.3.3 Polar Confusion Matrix  

Figure 35: Polar Confusion Matrix Example 

 

This confusion matrix shows the accuracy on positive, neutral and negative predicted 

tags. There is a big amount of positive reviews that have been tagged as negative, as well 

as an arbitrary distribution of neutrals. The dataset used to train the model had examples 

of reviews with 1 and 2 stars as negative and reviews with 4 and 5 as positive, therefore 

the model didn’t learn to identify neutral reviews (3 stars). To obtain neutral labels the 

discretization explained on a previous section has been used, labelling as neutral any 

prediction value greater or equal than  0.4 and lower than 0.6.  

 

In fact, instead of giving the same amount of Prediction Value Points to every 

category (5 star ratings), a light improvement could be performed lowering the lower 

boundary beneath 0.4 and increasing the greater boundary over 0.6. By doing this the 

results will improve by labelling as true negatives some of those 16 false negatives labeled 

as neutrals and labelling as true positives some of those 13 false positives labeled as 

neutral. However, this adjustment will be made to artificially increase the performance 

on this specific example, therefore a deeper study of the discretization rules would be 

needed to obtain a general model that increases improves this confusion matrix for any 

product.  

 

Taking the values from the diagonal line, the model has achieved a 71.25% accuracy 

on real data. The low performance could be explained by the fact the 90.476% accuracy 

was obtained on exclusively positive and negative reviews, a lack of correlation between 

the customer’s rating and the customer’s review and a discretization method that can be 

improved.   
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5.3.3.4 Confusion Matrix Stars 

Figure 36: Confusion Matrix Stars Example 

 

This last plot shows a detailed confusion matrix based on the real and predicted star 

rating. The model used to perform the predictions has been trained using positive and 

negative reviews and making a uniform discretization of the predicted value. This 

approach is manifested too on this plot as the model tends to give more weight to the 

extreme values (1 star and 5 stars) than to others. Taking the values represented on the 

diagonal line, the model has obtained a real accuracy of 47.25%, which for a 5 label 

prediction model, as illustrated on Figure 8, is close to the State-of-the-Art on SST-1. The 

discretization approach seems to be a feasible option, despite of some refinement would 

be needed to improve the results.   

 

  



 

 

 

 

53 

Section 6 

Conclusions & future work 
guidelines 

6.1 Conclusions 

This document has described the development process of training a sentiment 

analysis model, a detailed comparison between different deep learning architectures, 

preprocessing steps on unstructured textual data, development of a web application for 

demonstration purposes of how to integrate the model into a Product Analytics Tool as 

well as the insights and reports produced by the web app.   

 

The first part of the project was focused on obtaining the best results possible on the 

sentiment analysis dataset obtained from the researcher Xiang Zhang using different deep 

learning architectures. A four model comparison was done with a vanilla LSTM, a vanilla 

BiLSTM, a vanilla CNN and modified version of CNN. Best results were obtained with 

BiLSTM model when taking into consideration the padding length of the reviews as a 

value that makes that 80% (z-value=0.8) of them are fully represented. The accuracy 

obtained with this model was 90.476%, however, is notable how other models achieved 

similar but slightly lower performances.  Taking into consideration the State-of-the-Art 

accuracy values, the models developed for this project have achieved pretty accurate 

predictions on polar sentiment analysis (positive and negative). 

  

The second part of the project was to integrate the best model into a web application 

to show the potential of a Product Analytics Tool that can predict ratings and generate 

reports and insights for any product at Amazon. The app was developed using Dash, a 

web analytics app framework. It allows the user to introduce any product from 
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Amazon.com or Amazon.es, explore the cleaning and preprocessing steps for any review, 

obtain the Top 5 Pros and Cons features of the product and check the performance of the 

model with two confusion matrix. The model has been trained on negative and positive 

reviews, therefore to obtain a 5 stars prediction model to test the real product’s reviews, 

a discretization method has been implemented. Finally, the naïve approach taken to 

extract the main product features by keeping only Nouns from the original reviews has 

been a good idea that gave interesting results.  

 

The model’s performance has been evaluated on two confusion matrix, the former 

evaluated positive, negative and neutral accuracy and achieved a 71.25%, while the last 

one evaluated the 5 stars rating system from amazon, obtaining a 47.25% accuracy. Fine-

grained sentiment analysis State-of-the-Art on SST1 is at 54.00% (Yu et al., 2017), 

therefore there is room for improvement.  Overall, this project has achieved its goal, by 

obtaining accurate predictions on a creative dataset and showing its potential by a demo 

web application. 

6.2 Future Work Guidelines  

This project can be expanded by future researchers in several ways:  

 

− The discretization method used to transform predictions in range [0, 1] into three 

or five labels has been done giving the same amount of prediction value points to 

every category. However, has showed on both confusion matrix, a fine tuning can 

be made to adjust the boundaries for every category, therefore substantially 

increasing the accuracy. It would be of high interest a deeper development on this 

by analyzing whether it is more accurate to train a model in 5 different possible 

targets or a post discretization has the one exposed on this document is a better 

option.  
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− The neural network models trained on this project have been pretty basic and more 

effort has been put into cleaning, preprocessing and parameter tuning rather than 

on designing complex architectures. Results can be improved taking State-of-the-

Art networks such as Tree-LSTM (Yu et al., 2017) which wasn’t implemented on 

this project since there wasn’t a stable build for Tensorflow or similar framework 

that gave support to tree structure networks.  

 

− Focusing on the second part of the project, the web application has been developed 

as a demo to show the potential of a tool based on Sentiment Analysis and could 

be interesting to build it in a scalable way to which new features, reports and 

analysis can be added.  The naïve approach taken to extract the most positive and 

negative features of the product from customer reviews has a good performance 

but could be improved a lot by introducing a neural feature extractors and making 

a better pre-processing of the reviews than the one explained in this document.  

 

− The Spanish support approach using Google Translate taken on the project has 

been very simple and scalable since it can be extended to any language and still 

using English trained models to make the predictions. However, the processing 

times are a great deal nowadays and it could be a better option to train models on 

Spanish and other languages to get the most out of the Product Analytics Tool.  

 

− This project has focused exclusively on Amazon reviews, but once trained the 

model can be useful for other purposes such as customer feedback, ticketing, 

social media monitoring, brand monitoring,  market analysis, etc.  
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APPENDIX  
 

APPENDIX 

Appendix 1: Planning 

This section explores how a company could develop a similar product as the one 

detailed in this document. To start with, a team with experts on different fields is needed: 

− Software Engineer: requirements engineering, project leader. 

− Data Scientist: data extraction, model’s architecture and configuration, and 

training.  

− Back-end Developer: application’s back-end functionalities, integration with 

model’s output and front end.  

− Front-end Developer: visualization tools, tables and figures, application user 

interface.  

 

Tasks have been grouped into 5 groups: Initiation, Planning, Design, Execution and 

Deployment. By using Microsoft Excel, a Gantt model has been developed, focusing on 

each task definition, an estimate of the duration to complete it, dependencies between 

tasks and team members time constrains. As a result, the project is expected to be 

developed by a team of four members in 24 days.  
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Figure 37: Project Tasks 

 
 

 

 

Figure 38: Gannt Diagram 

 

  

Task ID Task Name Duration (days) Previous Task ID Assigned to

1 Requirement definition 2 - Software Engineer

2 Use case modelling 2 - Software Engineer, Data Scientist

3 System requirements specification 1 1, 2 Software Engineer, Back-End Developer

4 Problem definition 1 - Software Engineer

5 Project organization and management 1 4 Software Engineer

6 Alternatives and viability study 2 5 Data Scientist, Back-End Developer, Front-End Developer

7 Risk analysis 1 5 Software Engineer

8 System definition 1 4 Back-End Developer

9 Estimation and prioritization 1 8 Software Engineer

10 Testing plan 2 8 Back-End Developer, Front-End Developer

11 Deployment plan 1 9 Software Engineer, Front-End Developer

12 System architecture 2 8 Back-End Developer

13 UI design 2 8 Front-End Developer

14 Data Extraction 1 8 Data Scientist

15 Data Exploration 3 14 Data Scientist

16 App functionlities development 5 12 Software Engineer, Back-End Developer

17 App UI implementation 5 13 Front-End Developer

18 Data preprocessing 1 15 Data Scientist

19 Model  architecture and training 3 18 Data Scientist

20 Integration and Test 3 16, 17, 19 Software Engineer, Back-End Developer, Front-End Developer

20 Back-End Developer, Front-End Developer
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 Requirement definition 1 2 0 0 0%

2 Use case modelling 1 2 0 0 0%

3 System requirements specification 3 1 0 0 0%

4 Problem definition 4 1 0 0 0%

5 Project organization and management 5 1 0 0 0%

6 Alternatives and viability study 6 2 0 0 0%

7 Risk analysis 6 1 0 0 0%

8 System definition 8 1 0 0 0%

9 Estimation and prioritization 9 1 0 0 0%

10 Testing plan 10 2 0 0 0%

11 Deployment plan 10 1 0 0 0%

12 System architecture 12 2 0 0 0%

13 UI design 12 2 0 0 0%

14 Data Extraction 12 1 0 0 0%

15 Data Exploration 13 3 0 0 0%

16 App functionlities development 14 5 0 0 0%

17 App UI implementation 14 5 0 0 0%

18 Data preprocessing 16 1 0 0 0%

19 Model  architecture and training 17 3 0 0 0%

20 Integration and Test 20 3 0 0 0%

21 Deployment  23 2 0 0 0%
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Appendix 2: Budgeting 

Once an estimation plan has been developed, this section will analyze the costs of 

the project, taking into consideration the time required per team member as well as 

software and hardware costs.  

 

Figure 39: Team Cost 

 

 

 

 

 

In order to estimate the material costs, I’ve considered the ones needed when 

developed this project, taking into consideration that some software licenses are not valid 

for professional development and is required to purchase the appropriate license.  

 

Figure 40: Software and Hardware Cost 

 
 

Figure 41: Total Project Cost 

 

 

 

 

As a result, if a company would like to replicate this project with a similar outcome, 

the estimated costs would be 9,811.85 €.  

 

Description Unit Price Units Months Depreciation Cost

Laptop ThinkPad T480 1,239.00 € 4 1 25.81 €      103.25 €    

GitHub Team License 25.00 €      1 1 -  €          25.00 €      

Pycharm Proffesional 8.90 €        4 1 -  €          35.60 €      

Kaggle -  €          1 1 -  €          -  €          

TOTAL 163.85 €    

Description Cost

Team Cost 9,648.00 € 

Software and Hardware Cost 163.85 €    

TOTAL 9,811.85 € 

Member Hourly wage Days Total Hours Cost

Software Engineer 20.00 €        18 144 2,880.00 €   

Data Scientist 18.00 €        12 96 1,728.00 €   

Back-End Developer 18.00 €        18 144 2,592.00 €   

Front-End Developer 18.00 €        17 136 2,448.00 €   

TOTAL 9,648.00 €   
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