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ABSTRACT

In this project we have reviewed a dimension-reduction technique named t-Stochastic
Neighbour Embedding (t-SNE). This technique has produced a huge impact in the ma-
chine learning community due to its capabilities and its flexibility to reduce the dimen-
sionality of a dataset. It has become a direct competitor of classical, linear, dimension-
reduction techniques such as principal component analysis and multidimensional scaling.
Following the original paper of Van der Maaten and Hinton (2008) in Journal of Machine
Learning Research we have implemented a pedagogic version of t-SNE algorithm that
allowed us to explain the technique in detail. Our version gives outcomes that are compa-
rable to the state-of-the-art implementation. We have studied t-SNE in synthetic data with
different patterns and have applied t-SNE to a variety of real datasets. In this process, we
have analysed the main benefits and drawbacks of t-SNE.

All the code developed in this project is openly available in the following GitHub
repository:

https://github.com/100346868/TSNE

Keywords: t-SNE, PCA, MDS, dimension-reduction, algorithm.
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1. INTRODUCTION

1.1. Dimension-reduction techniques

Nowadays everything is related to data, it have become really important in our lives,
they contain a lot of information about us. Even all the companies are storing lots of
information about processes they carry out and the information they gather about their
clients among others. Therefore, this is producing that the quantity of data is growing
exponentially and we are using computers to store these huge quantities of information.
Since we have this information gathered, there appear the idea of analyse it in order to
obtain patterns and look for solutions to the problems may be originated. Computers
are prepared to process and interpret data that depends on several variables but we can
not. Then, to use this data for our purpose, we need to visualize it and understand it.
Sometimes we need to obtain conclusions from a huge data set that depends on lots of
variables that we will call dimensions. When this situation occurs, we can not visualize
our data set since a sample that depends on several variables needs several dimensions to
represent the points, in order to visualize it there appears new dimensional objects we can
not think of. To solve this problem, dimension-reduction techniques, such as t-SNE, have
been developed. This algorithm allows to reduce dimensions, which means that we are
going to simplify our data into two or three dimensions, so we can perfectly visualize the
same original data as the expense of some information, but preserving enough important
information being faithful to the original data.

Eyesight is very important for human, since it is going to give us the very first impres-
sion of anything. Supposing we have data, we are trying to simplify it so we can use it
to understand how is it behaving or to obtain some relations among the different samples.
To take some advantage of data, we will need to represent it on a way we can visualize
it. Firstly we may wonder, what is the shape of this dataset? Supposing we have one
dimension we can represent it in a straight line, if we have two dimensions, we are able
to visualize them using a plane, even if we have three components we can also represent
it in a cube. However, as the number of variables increases it is more difficult to picture it
mentally. Although we have some tricks to represent them, for example the pairwise plot,
there is some loss of information. We are looking for an algorithm that really help to the
human to reach this goal. In this project we are going to deepen in t-SNE, which will help
us to reduce dimensions so we can obtain an image of the data we can visualize, it will
have some loss of information.

Moreover, these techniques will help us to reduce our data and this implies that our
computational cost will be lower without losing relevant information. This fact is very
important when we manage huge data that takes too long to process it, because we are
able to use less resources to obtain nearly the same results. Sometimes we may think
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that the more information we have the better, nevertheless, when we have more data we
have to process it, then we are interested in reducing this computational cost because the
time to process the data can take very long. By reducing the dimensions we will reduce
considerably this time, besides we will understand better the data we are processing and
will obtain better conclusions when we picture it. Even we may use this output as an input
of an algorithm that help us to classify our data.

As in real life, when we find a complex situation, we always try to simplify the prob-
lem so we can solve it in a feasible way. Once we have simplified it, we can go backwards
to give a solution to each individual problem and finally solve the big one. The same sit-
uation can be found when we manage big data. Thanks to this algorithm, simplifying a
problem will be possible. Using this clustering technique will allow us to visualize the
multidimensional data in fewer dimensions. Clustering means to divide the individual
data in groups that are more similar to each other than to those in other groups or clus-
ters. Otherwise, if we do not apply this dimension-reduction techniques it would not be
possible to have an idea of how the data is.

Explaining what is reduction of dimensions in a naive/nontechnical way, people use
the well-known example of the television. When we watch a program on the screen, we
are seeing it in two dimensions, however, it was recorded in real life, what means in 3D.
Therefore, we are visualizing the event without losing relevant information. Although
we have lost a dimension we preserve the original. So a dimension has been reduced,
obviously, this algorithm will allow to visualize bigger and more complex data.

There are several techniques to reduce dimensions nowadays, the most noteworthy
of these are: MultiDimensional Scaling (MDS) and principal component analysis (PCA).
Depending on the situation it will be more suitable to use one or the other. A brief analysis
of each technique is given next for these two.

1.1.1. Multidimensional scaling

MDS seeks to express a distance matrix n× n as the Euclidean distance matrix associated
to a p-dimension data.

Multidimensional scaling is a multivariate analysis technique that starting from a ma-
trix of similarities between observations in a dataset produces a representation of the sam-
ples in an Euclidean space so the distances are the more approximated to the distances of
the original dataset.

So thanks to the eigenvalues and eigenvectors obtained from that matrix, MDS con-
struct some variables, typically two or three in order to plot them. So these new distances
represent faithfully the the distances of the original dataset. These new variables are going
to be called principal coordinates.

MultiDimensional Scaling (MDS) can be considered as a generalization of PCA, to
dive in this concept we are basing on Peña (2002). MDS is a dimension-reduction tech-
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nique based on the similarity, this concept will be used indistinctly as the distance between
the points of the dataset. MDS is going to obtain the similarity matrix D which is squared
n×n , being n the number of elements, by calculating how similar are the variables among
them so we will be able to represent them in a reduced dimension.

MDS is going to represent this similarity matrix thanks to orthogonal variables x1, ..., xp

where p < n, then, we have to ensure that Euclidean distances among the coordinates of
the elements with respect to these variables is equal or at least approximately equal to the
distances among the original matrix. Summarising, from a matrix D, we are obtaining a
matrix X of dimensions n × p that can be interpreted as the matrix where the Euclidean
distances of the original matrix are reproduced faithfully.

This technique is going to describe and interpret the data as the other dimension-
reduction techniques we are seeing. In order to construct the similarity matrix we have to
produce the variables in function of the distances, thanks to the equation

X̃ = (I −
1
n

11′)X = PX P = (I −
1
n

11′), (1.1)

where we can see that the I is the identity matrix and 1 represents a vector of ones and
the apostrophe denotes transposition. This is subtracting the mean of each value giving
to us variables with zero mean. Thanks to this matrix we are able to compute other
matrices such as the covariance matrix, S = X̃′X̃/n or the cross product matrix that we
are interpreting as the similarity matrix among the n elements, Q = X̃′X̃. The terms of
this matrix are composed by the scalar product of each pair of elements:

qi j =

p∑
s=1

xisx js = x′ix j, (1.2)

where x′i is the i-th row of the matrix X̃, finally we can interpret X̃′X̃ as the similarity
matrix among the elements. The distances among the observations can be obtained from
this matrix of similarity. Square Euclidean distance can be computed using

d2
i j =

p∑
s=1

(xis − x js)2 = ∥xi − x j∥
2, (1.3)

that can be calculated in terms of the Q by the expression

d2
i j = qii + q j j − 2qi j. (1.4)

In conclusion, given a matrix X̃ we are able to construct the matrix of similarities Q = X̃′X̃
and finally, thank to this one we are computing the matrix of D distances that will given
by

D = Diag(Q)1′ + 1Diag(Q)′ − 2Q, (1.5)

where Diag is going to extract the associated diagonal of the matrix.

Once we have computed this D matrix of n × n elements we have to go backward in
the process by constructing the Q matrix.

3



Since distances between two points d2
i j will not vary if we express the variables in

deviations to the mean, we can assume that our variables will have zero mean.

We have that:

d2
i j =

p∑
s=1

(xis − x js) =
p∑

s=1

[(xis − x̃s) − (x js − x̃s)]2. (1.6)

To solve this indetermination we are looking for a matrix X̃ composed by variables with
zero mean. By adding the rows in the Equation (1.4):

n∑
i=1

d2
i j =

n∑
i=1

qii + nq j j = t + nq j j, (1.7)

where t =
∑n

i=1 qii. If we sum the columns we obtain:

n∑
j=1

d2
i j = t + nqii, (1.8)

and if we add the rows again we obtain:

n∑
i=1

n∑
j=1

d2
i j = 2nt, (1.9)

and substituting in the previous equations and solving for qi j as we can see in Peña (2002),
we finally obtain that:

qi j = −
1
2

(d2
i j − d2

i − d2
j + d2

...). (1.10)

Once we obtain this matrix, we must calculate the eigenvalues and eigenvectors and the
matrix X given Q. Assuming that our distances matrix is defined positive it can be repre-
sented by:

Q = VΛV′, (1.11)

where V is n× p dimensions and it contains the eigenvectors corresponding to the non null
eigenvalues of Q, we can see that Λ is of p× p dimensions and it contains the eigenvalues
and obviously V is the transpose with dimensions p × n. This can be expressed as

Q =
p∑

i=1

λiviv′i , (1.12)

where we can see that λi are the eigenvalues and vi are the corresponding eigenvectors.
Therefore, defining yi =

√
λivi then we can finally state that

Yr = Vr

√
Λr. (1.13)
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Obtaining then the principal coordinates associated, giving to us a result matrix with
uncorrelated variables and the similar dimensions as the original. We notice that we
are not going to obtain the exact values as the ones as when we started the technique,
but its principal components, we are going to obtain conclusions from these components
by plotting them. Finally what we have reached is to reduce the original dimension by
preserving the original data losing irrelevant information.

MultiDimensional Scaling is very related to principal component analysis. Reducing
the dimension of the data is the main objective of both techniques, as we will see in next
section. However, a difference between MDS and PCA is that MDS works with the matrix
of similarities.

1.1.2. Principal component analysis

One of the most commonly used technique is PCA. There is a lot of studies explaining this
technique. We are going to explaining basing on Jolliffe (1986). It has become popular
with the development of the computers, because they can perform lots of computations
and represent the results. PCA is a linear transformation that establish a new coordi-
nate system. This technique will describe the information given by a big data set n × p
with a small set of variables (principal components) which are linear combinations of the
former variables. These components are uncorrelated and the first one will be the most
important. PCA will look for the projection in a line where the variance is maximum (1st
component). Secondly, it will look for a perpendicular line that will keep the rest of the
variability. We can have as much components as variables we have, assuming that n > p,
being p the dimension of the data and n the number of samples. However, we expect
that the first two components contain as much information as possible. PCA will give us
a scatter diagram where we can see the samples with respect the principal components.
PCA is commonly used to discover which are the important variables of a large data set. It
helps us to reveal relationship that we might not have seen on a first sight. PCA is mainly
used as an intermediate step in data analysis, to solve the problem that we have a large
number of variables that make difficult our analysis.
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Fig. 1.1. Principal component analysis: In a large data set two components are assigned to the
vectors that points to the maximum variance (Datascience, 2017).

The main objective of PCA is going to represent huge data in a dimension that human
beings can obtain conclusions. This algorithm is assigning the data to a matrix taking into
account that each column of the matrix is going to be a dimension. The first thing we
have to obtain is the mean of the data matrix,

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x11 x12 . . . x1p

x21 ... . . . x2p
...

...
. . .

...

xn1 xn2 . . . xnp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (1.14)

x̄ =
(
x̄11 x̄12 . . . x̄1m

)
. (1.15)

Once we have obtained the mean, we need to obtain the covariance matrix of the
whole dataset.

S =
∑n

i=1(Xi − x̄)(Yi − ȳ)
n − 1

. (1.16)

Using the above formula, we can find the covariance matrix of X. Also, the result
would be a square matrix of d × d dimensions. We have to take into account that this
matrix is symmetric. This covariance matrix is composed by the variance and covariance
among the different variables. The diagonal is formed by the variances of the variables,
whereas the outer elements are the covariance among all the pair of variables.
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The next step in PCA is to obtain the eigenvalues and the eigenvectors of this covari-
ance matrix. The eigenvalues of X are roots of the characteristic equation. Disclaimer,
we are using X to design the covariance matrix.

det(X − λI) = 0 (1.17)

Which can be equivalently expressed as

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x11 x12 . . . x1p

x21 ... . . . x2p
...

...
. . .

...

xn1 xn2 . . . xnp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − λ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...
...
. . .
...

0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1.18)

So the equation we have to solve to obtain the eigenvalues is:

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x11 − λ x12 . . . x1p

x21 x22 − λ . . . x2p
...

...
. . .

...

xn1 xn2 . . . xnp − λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1.19)

Once we have obtained the eigenvalues, we go back to the original expression and
obtain the vector that solves the equation for each eigenvalue:

(X − λI)v = 0 (1.20)

The next step we should follow is to sort the eigenvectors by decreasing values and choose
the number of eigenvectors with the largest eigenvalues that we are using to reduce our
dimensions forming a matrix. The main idea of PCA is to project the space onto a smaller
subspace, eigenvectors are going to form the axes of this new subspace. But we have to
notice that these vectors only define the direction of the new axis, we have to remember
their length is 1. Therefore, we need to decide which eigenvectors we are dropping for our
low-dimensional space. We are going to drop the eigenvectors associated to the lowest
eigenvalues since they have less information about the distribution of the data. Imagine
we have used the two highest eigenvalues and these are its associated eigenvectors.

W =
(
w1 w2

)
. (1.21)

Once we have kept the number of eigenvectors(associated to the higher eigenvalues) that
we want to reduce our dimension to, we need to transform the samples onto the new space.
We use this new matrix to transform our data to. To do so, we use the equation Y = WX
Peña (2002) .

Finally, recall that This procedure can specially be done thanks to the Spectral De-
composition Theorem, which says that a symmetric real matrix can be expressed as:

A = λ1v1v′1 + ... + λpvpv′p, (1.22)
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where λ are the real eigenvalues of A and v are the normalized eigenvectors associated
to the eigenvalues of A. This guarantees the existence of λ1, ..., λp ∈ IR, whose non-
negativity is ensured since S is semi-positive definite.

Therefore, we have reduced the dimension using the PCA technique, preserving the
variation we had at the original dataset. If we plot the result, we could extract conclusions
that otherwise we could have not.

1.2. What is t-SNE?

These techniques we have introduced (MDS and PCA) are linear, since they are based
on linear algebra. However, there exist non-linear techniques. In this project we are
focusing on one of them which is called: t-Stochastic Neighbour Embedding. All of
these techniques have brought several benefits to the human beings. They can be used for
different purposes as: Visualization/Interpretation of the data, clustering or Discriminant
Analysis, discovering interesting characteristics of the data (patterns) or even to create
several variables in order to perform a linear regression. So this data is not reduced
only for human beings but also for different algorithms that will be faster thanks to this
simplification.

t-SNE is a non-linear technique that is going to reduce the dimension following a
different procedure than the previous techniques we described. As we explained before,
PCA obtains the covariance matrix and computes the eigenvalues and eigenvectors so we
can preserve the direction of the data. However, t-SNE works on a different way: imagine
we have a cloud of points in a high dimension we want to move this cloud to a lower
dimension that is also simpler, trying to preserving the structure of this points, specially
the relation among the neighbours.

To obtain the probability of all the points, it will center a t-Student distribution to
each value of the input, so it will use its density to obtain it. Therefore, it will convert
the Euclidean distance between data points into conditional probabilities. t-SNE will
minimize a cost function using a gradient descent method to retain the structure of the
data in the low dimensional map. Using some tuneable parameters and optimising the
objective function it will obtain a reasonable visualization of the data. In this, we see the
a considerable reduction of dimensions without losing information.

There was a previous algorithm that was called simply SNE by Hinton and Roweis
(2003). The main difference between these two algorithms is that SNE was employing
a Gaussian distribution instead of t-Student when computing the similarity between two
points in low-dimensional space. There are other differences that we will dive in section
2.2, such as the cost function will also vary from one technique to other. However, this
differences made t-SNE stronger and easier to use than SNE (Van der Maaten and Hinton,
2008).
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Fig. 1.2. Final stage of t-SNE applied to MNIST dataset. It can be seen that the numbers has been
separated in clusters.

This figure shows a final stage of t-SNE applied to the well-known dataset MNIST.
We can see a visual separation among the different digits that the set contains. t-SNE
has reduced the dimensions of the dataset by creating these clusters that represent in two
dimensions the original data, helping us to identify the different numbers at a glance.

In 2012, t-Distributed Stochastic Neighbour Embedding was chosen to win Merck Viz
Challenge due to its incredible characteristics and its innovation.

1.3. Project objectives

The main objective of this project is to understand what are dimension-reduction tech-
niques, why is it necessary to reduce the dimensions, to understand t-SNE technique
perfectly, what is t-SNE applied to, knowing what is every parameter used for, how they
behave when we tune them and implement our own version of the code.

The outline of the project will be as follows, in Chapter 2 we are deepening into the
algorithm, we have learnt about the behaviour of the technique. Besides, we will follow
the steps on the paper in order to learn and understand how is the complete process of
the algorithm. Moreover, we will get in touch with the parameters that the algorithm
will use and we will learn how to use them so we can see what are the consequences of
modifying them, such as perplexity and learning rate. In this chapter we will also
compare t-SNE with other techniques we mentioned in the introduction such as SNE,
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PCA and MDS. In Chapter 4, we are using all the knowledge we have acquired about
this algorithm in order to show it in practical experiments. We are going to compare
the difference between the function we have created for this project and the one that is
provided by the authors in their GitHub Laurens Van der Maaten (2008). With the help
of synthetic data (multivariate Gaussian mixtures), we test how the algorithm behaves in
particular situations including more than two dimensions. We have also run the algorithm
with the iris dataset. In Chapter 3 we are explaining the implementation of the algorithm
we have developed for this project. In Chapter 5 we have applied our knowledge in t-
SNE to a real dataset. We have used the well-known MNIST dataset so we can extract
conclusions from the result, besides, we are using a a dataset that contains lots of people
photograph, in order to see if t-SNE is able to reduce it dimension. We have analysed
the regulatory framework in Chapter 6 in order to see how are we affected by law when
studying and applying this technique. We have also prepared a planning of this project
in Chapter 7 and we have included a Gantt Diagram that shows all the activities we are
going to develop in order to reach our main goal. Finally we have studied an economical
budget in Chapter 8 that evaluates how much is the cost of carrying this project out.
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2. T -SNE EXPLAINED IN DETAIL

Nowadays, the amount of data has increased considerably, every application we down-
load, every page we visit on the internet is storing data. There are computers storing all
the information related to human, what do we buy or sell, which places do we visit most.
Our smartphones are gathering lots of information that we can not see, because it depends
on too many variables. So, the question is, how can we visualize this data, since it can
be very useful to see patterns in the society, it can help to determinate which factors leads
to a disease. Well, technology is evolving very fast, there exist algorithms that allows us
to see this patterns created. It perform clusters in the data so we can see different groups
that before applying this we may have not seen.

In this project, we are going to focus on t-student stochastic neighbour embedding
(t-SNE). This algorithm takes this high dimensional data and creates a low dimensional
space that preserves the neighbourhood among points. It will take into account several pa-
rameters to perform the algorithm. We have developed a code that imitates the behaviour
of the real algorithm. The language we have selected to develop this algorithm is R (R
Development Core Team, 2019). This programming language is very flexible calculating
statistical analysis, is open-source and we can manage big quantities of data. The code is
attached at the next chapter.

2.1. Learning process

Data: Data set X = (x1 + x2, ...xn) ∈ IRn×p

1 cost function parameters: perplexity Equation (2.2)
2 optimization parameters: number of iterations T , learning rate η, momentum α(t)

Result: low dimensional data representation Y = (y1, y2, ..., yn) ∈ IRn∗q

3 begin
4 Compute pairwise affinities p j|i with perplexity.
5 Set pi j =

p j|i+pi| j

2n Equation (2.10)
6 Initial solution Y(0) from N(0, 10−4I)
7 for t = 1 to T : do
8 Compute low dimensional affinities qi j Equation (2.5)
9 Compute gradient ∂C

∂Y
Equation (2.13)

10 Set Yt = Yt−1 + η ∂C
∂Y
+ α(t)(Yt−1 − Yt−2) equation (2.14)

11 end
12 end
13 end
14 end
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In Van der Maaten and Hinton (2008), the authors suggested this pseudocode we are
following to explain the algorithm in detail. It contains all the parameters we have to
compute in order to obtain a correct development.

In this pseudocode we can see that the first thing we are computing is the high di-
mensional matrix Pi j and after that we are computing the low dimensional matrix Qi j in a
loop that takes into account three versions of the low dimensional matrix in three different
instants of time. As we can see it is going to depend on several parameters such as a cost
function that has been minimized δC

δY
that is also affected by a learning rate η, reaching

at the end a solution Yt for the low dimensional matrix that preserves the neighbourhood
that had the high dimensional data , besides it depends on a momentum α that will also
vary depending on the iteration as we will see.

2.1.1. Starting with the high-dimensional data: Pi j matrix

Imagine we have a large dataset that depends on several variables, using t-SNE, we are
going to obtain a visualization in a low dimension, to do it, the algorithm starts by com-
puting the conditional probabilities Pi| j of xi "being a good neighbour" of x j, these are all
the points from the original dataset x1, ..., xn in IRn. For data points that remain close, Pi| j

is going to be high, whereas for points that are very separated, Pi| j will be almost zero.
The mathematical quantification of this idea is the probability:

p j|i =
exp (−||xi − x j||

2/2σ2)∑
k,i exp (−||xi − xk||

2/2σ2)
, (2.1)

Where σ2 is the variance that represents the variability of the data with respect to its
mean. The method we have followed to determine this σ2 will be explained in section
2.1.2 when perplexity is introduced and as we will see they are very related. Notice that
this matrix is going to have the same size as the data matrix.

What the algorithm is really applying is a softmax function which is being used to con-
vert distances into probabilities, since the softmax function (Gao and Pavel, 2017) helps
to reduce the data in the real space into values in the range [0,1]. When we developed the
code, we had some troubles to compute the result, due to a number instability, which we
will dive in later in section 2.3. However, we manage to fix it by using a function that
takes this instability into account so we can perform the operations.
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Fig. 2.1. Representation of the probability that x1 chooses x2 of being a neighbour.

As the author says in the paper: “The similarity of datapoint x1 to datapoint x2 is
the conditional probability, p2|1, that x1 would pick x2 as its neighbour if were picked in
proportion to their probability density under a Gaussian centered at x1” (Van der Maaten
and Hinton, 2008). In this figure generated with the Geogebra software Hohenwarter
et al. (2018), we can see that the points are the center of the Gaussian probability density
and we see the arrow as the probability that x1 could choose x2 as a “good neighbour”,
understanding this concept as there is a high probability of being chosen as a neighbour.

The conditional probabilities we are calculating along this algorithm can be calculated
thanks to Bayes Theorem:

P(a|b) = P(a∩b)
P(b) =

P(b|a)P(a)
P(b) .

As we saw in the Equation (2.1), we will be able to compute the P j|i matrix.

The σ2 of this matrix is behaving as a tuning parameter that will be affected by the
perplexity, this will be explained in the next section. Before continuing with the algorithm,
Perplexity parameter must be introduced to understand the correct computation of the Pi| j

matrix. As we will see later, we will use Pi j =
pi| j+p j|i

2n .

2.1.2. Introducing perplexity and its relation to σ2

Perplexity is a fixed parameter introduced by the user by argument of the function. As we
said before, this parameter is very important, since it is going to make modifications in
the matrix previously introduced. This tuneable parameter is going to increase or decrease
depending on our data. Perplexity is calculated by using:

Pi = 2H(Pi), (2.2)
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where (H(Pi)) is :

H(Pi) = −
n∑

j=1

p j|i log2 p j|i (2.3)

With the help of the Shannon entropy we are able to compute the perplexity. This entropy
will be non negative and this is obvious since the logarithm of a probability between 0 and
1 will be negative and corrected by the minus sign. The basic concept of this entropy is
related to the uncertainty. It is the sum of the quantity of information that is given by the
probabilities. The measure of information must be linear, if we change any probability a
little, the entropy should also experience a small change. If all of the elements of our data
are equally-likely then the entropy is going to be maximum.

What is perplexity going to be used for? It will be used to calculate an optimum σ2 to
calculate the values of Pi j matrix. The procedure we have followed is to define a function
Perpfixed − Perpcalculated = 0 and we use an optimiser to minimize the equation. Recall we
saw in Equation (2.1) that Pi j values depend on σ2 and in Equation (2.2) that perplexity
depends on these values. We are calculating the value of perplexity that this σ2 would
produce and we want to make it equivalent to the perplexity that the user set by argument.
With the help of a function, we are obtaining the σopt that will produce that the Pi j matrix
has the perplexity fixed. This suppose that the σ2 depends directly on the perplexity fixed
by the user and therefore the matrix of Pi j is depending on it also. This is the reason why
choosing a correct perplexity is really important.

Therefore, with some iterations we are obtaining the complete matrix of σ2 that leads
to obtain the perplexity user fixed as an argument. Using the perplexity calculated in each
iteration and the one given as a parameter we can continue the algorithm.

This perplexity parameter indicates a guess about the number of close that each point
has. As we will see, this perplexity will have a complex impact on the visualizations. By
reading the original paper, we know that best performance will be produced when values
are between 5 and 50. Otherwise, the behaviour will not be the one expected (Van der
Maaten and Hinton, 2008). However, the value of perplexity depends on the number of
samples we have, in order to obtain a good performing, we need that perplexity is less
than the number of samples.

Fig. 2.2. For different values of perplexity we can see different behaviours of t-SNE, if we do not
satisfy the condition that Perplexity < n the algorithm will not converge (Wattenberg
et al., 2016).
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When using the algorithm in R, the function does not let us to use a value of perplexity
higher than the number of points, we had to use an online tool that did allow us to do some
experiments tuning the perplexity (Wattenberg et al., 2016). As we can see in the figure,
for two Gaussian mixtures of 30 points each, for the different values of the perplexity we
are obtaining different results. The first capture indicates how is distributed the data before
applying the algorithm. Once we have applied the algorithm with a value of perplexity
inside the operable range we can see that the points are taking into account the Euclidean
distances. However, when the perplexity is above 50 and also bigger than the number of
points, we can see that the algorithm can not converge the points leaving giving a poor
quality result.

Once we have computed these parameters we are able to compute the matrix of Pi| j.
We have to take into account that since we are interested in modelling pairwise similarities
we will set the values of Pi|i and P j| j to zero. However, this conditional matrix is not going
to be the final one in t-SNE. Since t-SNE uses a symmetrized version of the conditional
probabilities, we use Pi j =

pi| j+p j|i

2n that in fact, this solve a problem that occurred in SNE.

2.1.3. Obtaining the low-dimensional data: qi j

Now we have obtained the high-dimensional matrix, we have to compute the low-dimensional
matrix that will vary in the algorithm to reach the final result as we explained in the pseu-
docode. The main question to solve is how this matrix is computed. This low dimensional
matrix preserves the neighbourhood of the high dimensional matrix, so it will be a faithful
representation of the high one thanks to maintain this neighbourhood untouched.

When SNE was developed, the formula was used to compute the low dimensional data
was the one as follows:

q j|i =
exp (−||yi − y j||

2)∑
k,i exp (−||yi − yk||

2)
. (2.4)

The low dimensional part implemented in SNE started centering in a Gaussian distri-
bution with variance σ2 equal to 1

√
2

to model the similarity of map point y j to map yi. If
the map correctly model the similarities between the high dimensional points, then, the
conditional probabilities qi| j and pi| j will be equal. Then, the main objective of SNE is to
minimize the mismatch between those two.

This two matrices, low and high dimensional, will be used to minimize the cost func-
tion that we will deepen later.

When the Gaussian was used in SNE, there appeared a problem that is called the
’crowding problem’. When we were trying to calculate the equidistant probabilities in a
high-dimension data, for example ten dimensions, we may have a huge number of points
that there are equally distant in that dimension, however, there is no feasible way to model
it in two dimensions. When we try to do this, the algorithm tends to ’crowd’ the data in
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one point, since is the only way the algorithm calculates the minimum distance among
them.

However, in the paper the authors came up with some ideas to solve the problems of
SNE, firstly, he uses a symmetrized version of the cost function with simpler gradients and
it will be used a Student-t distribution rather than a Gaussian when we want to calculate
the similarity between two points in the low-dimensional space.

The employment of this t-distribution will modify the low-dimensional matrix qi j:

qi j =
(1 + ||yi − y j||

2)−1∑
k,l(1 + ||yk − yl||

2)−1 . (2.5)

Notice that in t-SNE we are using joint probabilities instead of using conditional prob-
abilities. This is due to a concept of symmetry we will explain in next section.

The author says in the pseudocode that we can implement the matrix of the low dimen-
sion, initialized in an Normal distribution with zero mean and variance equal to 10−4. In
t-SNE, we employ a Student t-distribution with one degree of freedom as the heavy-tailed
distribution in the low-dimensional mapping. It has a property that approaches an inverse
square law for large pairwise distances in low dimension. This will solve the problem
we mentioned before, because large clusters that are far apart interact the same way as
individual points. This can be theoretically proved because Student t-distribution is an
infinite mixture of Gaussians. Since it does not involve an exponential is much faster to
evaluate the density in the new one.

2.1.4. Cost function: Kullback–Leiber divergence

In SNE, the algorithm uses the Kullback–Leiber divergence to measure the distance be-
tween the conditional probabilities of the two matrices. This divergence is commonly
used to indicate the similarity between two functions. In information theory, it is known
as the divergence of the information or relative entropy. We have to take into account that
is a divergence and not a metric because it has no symmetry. Since we want to make them
as similar as possible, we are trying to minimize this cost function. The Kullback–Leiber
divergence has some interesting properties:

• it is always positive.

• it is null only if Pi| j = Qi| j

Therefore, the cost function C is given by:

C =
∑

i

∑
j

pi| j log
pi| j

qi| j
. (2.6)
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Interpreting this divergence we can see that if Pi increases, then this means that the object
is closer. Besides, if Qi increases whereas Pi is decreasing, this means that we are ap-
proaching two objects that were far. This approximation is not good, however, the error
we are obtaining is inappreciable, since our Q-ith element is weighted by P j|i. Then, t-
SNE preserves the structure of the neighbourhood without taking into account the global
structure (Otterbach, 2016).

However, t-SNE is using a symmetric version of SNE, then the algorithm is using the
joint probabilities instead of the conditional probabilities. It is also possible to minimize
a Kullback–Leiber between joint probability distribution:

C =
∑

i

∑
j

pi j log
pi j

qi j
. (2.7)

Moreover, we have some interesting properties at this point, because pi j = p ji and qi j =

q ji. Besides we experiment some changes in the calculation of high and low dimensional
matrices:

pi j =
exp (−||xi − x j||

2/σ2)∑
k,l exp (−||xk − xl||

2/σ2)
, (2.8)

qi j =
exp (−||yi − y j||

2)∑
k,l exp (−||yk − yl||

2)
. (2.9)

But this can occasion problems when a high-dimensional datapoint xi is an outlier.
When this happens, the value of pi j is very small for all j. Therefore, the new location
on the low dimension have a small effect on the cost function. The authors of the paper
define the joint probability of high dimension:

Pi j =
pi| j + p j|i

2n
, (2.10)

this will ensure that makes a big contribution to the cost function. We can see that this
can be reached by adding the conditional probability matrix and its transposed.

With this solution, we have computed the high dimensional matrix of the data so we
can minimize the cost function. To perform this operation, we are using a gradient descent
method, which broadly consist on seek for the minimal point by going in the direction of
the slope of the function we are minimizing by doing several iterations. Since we have
used a symmetric version of SNE we will experience a simplification of the gradient. The
gradient in SNE has this form:

∂C
∂yi
= 2
∑

j

(p j|i − q j|i + pi| j − qi| j)(yi − y j). (2.11)

It can be seen that the Kullback–Leiber divergence is used over the conditional prob-
abilities. We can experience a long time to converge, since we are using exponentials for
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all the probabilities for point i and j. We may experience a big trouble to optimize this
gradient.

By using a symmetric version of SNE, in t-SNE we see a simplification in the gradient:

∂C
∂yi
= 4
∑

j

(pi j − qi j)(yi − y j). (2.12)

Since we are using a t-distribution, the formula of the gradient we are using will
introduce another term:

∂C
∂yi
= 4
∑

j

(pi j − qi j)(yi − y j)(1 + ||yi − y j||
2)−1. (2.13)

This equation for the gradient will be the one in charge to minimize the cost function.

2.1.5. Gradient update

Once we have obtained all the parameters needed to compute the gradient, the algorithm
will perform a gradient update. This will take into account some parameters as the mo-
mentum or the learning rate. For some iterations the gradient will be updating its value
and so the low dimensional matrix. Using the previous calculation the algorithm will
make that the difference between the matrix P and Q gets smaller. Mathematically, the
procedure we must follow is given by

Y(t) = Y(t−1) + η
∂C
∂yi
+ α(t)(Y(t−1) − Y(t−2)) (2.14)

We are repeating this procedure for a number of T repetitions, depending on what the
user set by argument in the function. Although it is recommended a high value, there may
reach a point where there is no sense in increasing anymore this value since it is already
stabilized and more iteration will not mean better convergence.

It is important to recall that the gradient update will be repeating that procedure for
each iteration. The low dimensional matrix is initialized by using a random Gaussian
distribution with zero mean and variance 10−4, however, it is being affected each itera-
tion by the low dimensional matrix in the previous two instants and some optimization
parameters: number of iterations T, learning rate: η, momentum α(t). Thanks to these
parameters, the low dimensional matrix is going to reach an optimal value that reduces
the dimension of the high dimensional matrix. Therefore, they are decisive for the correct
implementation of the algorithm.

The learning rate is a tuning parameter that will affect the behaviour of the algorithm.
If the cost function gets stuck in a bad local minimum increasing the learning rate may
help.
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Fig. 2.3. We can see how different η will affect the behaviour of t-SNE when applied on multivari-
ate Gaussian mixtures just changing the perplexity and using the same parameters for the
different runs.

As we can see in the plots, if the learning rate is too high, the data may look like
very compressed in clouds of points. On the other hand, if the learning rate is too low,
most points may look like very spread with any point approximately equidistant from its
nearest neighbours.

The other interesting parameter that infers directly in the algorithm is the momentum
(α), the author says in the paper that it is usually initialized to 0.5 for the first 250 iterations
and it is set to 0.8 after these iterations.

2.2. Relation to other techniques

2.2.1. Comparing t-SNE with SNE

In this section we are going to compare t-SNE algorithm with other techniques. We have
to take into account that t-SNE is the advanced version of SNE, that has been introduced
when explaining several parameters.

Notice, t-SNE corrected some troubles that were found in SNE, for example it solved
the well-known crowded problem, which occurred when trying to compute the probabil-
ities in a high dimensional data. When there were a lot of dimensions there could be so
many points so when the algorithm tried to reduce the dimensions we found that it was
not possible, and the algorithm crowded the data in one point. In the paper, the authors
say that the slight repulsion is created by introducing a uniform background model with
small mixing proportion ρ (Van der Maaten and Hinton, 2008). Therefore, no matter how
far are two map points, qi j can never fall below 2ρ

n(n−1) . We can see that datapoints that are
far in high dimension, qi j is larger than pi j which causes a slight repulsion. This technique
is called UNI-SNE. Although the optimization is difficult, the authors say in the paper that
the best optimization method is to start by setting the background mixing proportion to
zero. After this, it can be increased to allow some gaps to form between natural clusters
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(Van der Maaten and Hinton, 2008).

Other problem that t-SNE solves from SNE is the difficult optimization that the cost
function had, this time, t-SNE is using a symmetric version, that will have the interesting
property that the probability pi j = p ji and qi j = q ji for ∀i, j. Now we are going to use
the matrix Pi j =

P j|i+Pi| j

2n . This will also ensure that
∑

j Pi j >
1
2n . Therefore, instead of

minimizing the Kullback–Leiber divergences of the conditional probabilities, t-SNE will
minimize the joint probabilities. This modification modified the cost function, simplifying
the optimization and obtaining even better results than SNE.

Besides, other trouble that t-SNE improves over SNE is that mismatched tails can
compensate for mismatched dimensionalities, that is the reason why t-SNE is using a
Student t-Distribution with one degree of freedom instead of using a Gaussian distribution
as we saw in SNE. Therefore, in low dimensional we find a heavier tail and we will
alleviate the crowding problem. The authors justify this change by affirming that these
two distributions are closely related, since the Student t-distribution is an infinite mixture
of Gaussians. An important property is that we are reducing the computational time,
because it does not involve an exponential. Then the gradient will be much easier based
on joint probabilities:

∂C
∂yi
= 4
∑

j

(pi j − qi j)(yi − y j)(1 + ||yi − y j||
2)−1 (2.15)

If we compare both algorithms applied to a classical dataset as MNIST numbers,
which contains lots of handwritten digits, after using both algorithms we obtain two dif-
ferent results (LeCun and Cortes, 2010):
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Fig. 2.4. In this figure we can see how SNE applied to MNIST numbers, we see that it has sepa-
rated the different digits that the dataset contains (Hinton and Roweis, 2003).

Fig. 2.5. t-SNE final stage applied to MNIST dataset, where we can see the different numbers
separated in clusters by different colours.

If we pay attention to this two figures, we can see how t-SNE has improved consid-
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erably its performance. We can see very well differentiated clusters while preserving the
neighbour structure. However, if we use the previous algorithm we can see also differ-
entiated clusters but the performance is a little worse. Also the computational cost was
higher on SNE.

2.2.2. Comparing t-SNE with PCA and MDS

Other algorithm that also reduces the dimension and that we have introduced is PCA.
There is a huge different between these two algorithms, firstly, as we explained before,
PCA is a linear transformation focus that will calculate the maximum variability in a
dataset and will assign it to a principal component where later we will project the orig-
inal data. Alternatively, t-SNE is computing a whole new space with the condition of
preserving the neighbourhood of the original data.

Due to its computation, t-SNE is going to take several hours when trying to reduce
million sample datasets, on the other hand, PCA will finish in a few minutes, since the
calculus are not as complex. Notice that when we specified that we have to compute the
σ2 optimum if there is a huge dataset, this optimization can take too long. PCA is based
on linear algebra, is a mathematical technique based on calculating the eigenvectors and
the eigenvalues, on the other side, t-SNE is a probabilistic one, it is using the probabilities
to preserve the high dimensional space. Another special difference we can notice is that
PCA tends to place dissimilar points far apart in a lower dimension representation (Smith,
2002). However, when we have to represent high dimension on a low dimension, non
linear algorithms can represent similar data points close together, in this case PCA can
not perform this operation. We have notice that when running t-SNE different times with
same parameters we may obtain different results while this not occurs when using PCA,
this occurs because t-SNE is having a random initialization.

For example, comparing the results obtained applying these two algorithms to MNIST
numbers:
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Fig. 2.6. Using PCA to reduce the dimension of MNIST dataset, we can see that numbers are
represented in two dimensions, but we do not see a clearly differentiation among the
numbers.

We can see different behaviours between the algorithms, on one hand we can see how
t-SNE has cluster the different numbers preserving the neighbourhood of the datapoints.
On the other hand, it can be seen that PCA has obtained the maximum variability and
projected the data onto the principal components calculated. PCA is preserving the long
distances to maximize the variance, so when two number are very different they are very
separated. This can lead to a deficient visualization specially when we use non linear
structures, where t-SNE works very well, such as cylinders or curves. Instead of that, t-
SNE preserves small pairwise distances (Miao, 2015). We can see that PCA is not clearly
separating all the numbers in different clusters and t-SNE does.

On the other hand if we compare t-SNE with MDS we notice that MDS is a gener-
alized concept of PCA so the results obtained with both techniques are going to differ.
However, we can think that MDS and t-SNE have some ideas that are similar. As we
explained before, MDS is obtaining what we call a ’similarity matrix’ based on squared
distances and as we have explained, t-SNE is basing its computing also in distances among
datapoints. However, the development of the algorithm will be pretty different. MDS is a
linear technique that is going to compute the covariance matrix and like PCA it is going to
compute the eigenvalues and the eigenvectors in order to reconstruct the original matrix
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but preserving the distances among the datapoints (Peña, 2002). As we have explained
before, t-SNE is computing the new low dimensional matrix that will preserve the neigh-
bourhood of the high dimensional matrix. Another difference we notice is that t-SNE is
preserving better the global neighbour structure, whereas MDS works better in local pairs
of datapoints.

If we compare both techniques development on MNIST dataset (LeCun and Cortes,
2010), we obtain the following results:

Fig. 2.7. MDS is being applied to MNIST dataset, representing in two dimensions the original
data but there is not a clearly differentiation among the digits (Olah, 2014).

We can spot huge differences between these two interpretations of the dataset, MDS
has not separated the handwritten digits, although it has managed to differentiate some
digits, the definition is not as well as when we use t-SNE.

2.3. Practical issues

On our learning process of t-SNE we have spot that it has some troubles that might diffi-
cult the correct development of the algorithm. One of the main problems we have noticed
is the moment we introduce a new point in our dataset, the algorithm can not conserve all
the computations it did for the first time. Since when we introduce a new point, t-SNE
must calculate all the distances in order to create a correct low dimensional matrix that
preserves the neighbourhood of the original dataset. Due to the development of the al-
gorithm, when we introduce a new point, t-SNE must be run again in order to obtain the
correct results.
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Other practical issue we have noticed is that due to the optimization process of the
cost function, the computational cost is increasing when we use a dataset that contain a
vast amount of samples and dimensions. Therefore, for a huge number of dimensions,
the time we have to wait in order to see results is going to be really large. This is caused
because in practice, it means to compute lots of loop for, which is traduced in increasing
the time. However, Van der Maaten (2014) came up with the idea of using Barnes Hut
implementation and Tree-based algorithm in order to reduce considerably the time. When
we were evaluating the optimization of the gradient, it was running an O(N2), which is
considerably increasing the computational cost, with the Barnes–Hut approximation, now
it runs on O(N log N) by treating clusters of faraway objects as single particles(Barnes
and Hut, 1986). It requires O(N) memory and it is proved that is considerably faster than
the original t-SNE. It accelerates the computations. Some drawbacks that are mentioned
are that Barnes–Hut–SNE does not provide error bounds and that it can only be used to
embed data in two or three dimensions. On the other hand the author mentions that Dual-
tree is computing cell-cell interactions whereas Barnes–Hut was point-cell interactions.
Therefore, it brings as a consequence a speed up in the algorithm. However, dual-trees
needs to store a list for each node during tree construction which means an increase on
the cost and memory. The author suggest that Barnes–Hut is better in terms of trade-off
between accuracy and speed (Van der Maaten, 2014).

We have to mention another issue we have noticed during the development of the
algorithm and it is related to the perplexity. As we have explained, this interesting pa-
rameter is going to be fixed when we start the algorithm. As user, we are going to set it,
depending on our data, to a higher or lower value. At the beginning we may not know
which is a correct value, the author suggest that the optimal values must be between 5 and
50, however depending on our data we may need a higher value. Besides, we had a small
problem when we were programming the algorithm and it is number stability. Since we
are performing an optimization for the whole matrix with a specific value of perplexity,
there are some values that can be optimised in order to obtain that perplexity, as we ex-
plained in the development of the Pi j matrix, but there are others that can not, leading to
an infinite value. This problem is caused due to the universal perplexity. For the future,
we may use different perplexity values for different clusters in order to solve this problem.

One last thing we want to mention as a little issue is that if we pay attention to the plot
of the result of the algorithm, we may see that cluster sizes are different, independently of
the input data. If we introduce two mixture of Gaussian distributions with different dis-
persion, we may expect that in the result they are also with different dispersion, however,
the algorithms only takes into account distances, so the resulting clusters are not affected
by the original dispersion.
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3. IMPLEMENTATION OF THE ALGORITHM

In this chapter, we are going to expose the implementation of the code we have de-
veloped. Disclaimer: this implementation is a pedagogic version and it is not the optimal
solution, just an implementation meant to illustrate how the theory materializes into code.
We have developed some functions in order to simplify the calculations of the algorithm.

3.1. Auxiliar functions

We have developed some auxiliar functions that are going to be useful for the correct
development of the algorithm. Since we have used well-known functions as softmax in
Equation (2.1).

1 # This functions will compute the softmax function in a numerically

2 # stable way. The equation 2.1 will be implemented using this

3 # concept.

4

5 logsumexp <- function (x) {

6 y <- max(x)

7 y + log(sum(exp(x - y)))

8 }

9

10 softmax <- function (x) {

11 exp(x - logsumexp(x))

12 }

3.2. Internal functions

To continue the performance of the algorithm, we had to develop some functions that
helped us to compute the high dimensional matrix. In this part, we are calculating the
optimal σ2 that is going to help us to calculate the matrix of Pi j, with the help of the
perplexity. To do so, we have come up with the following idea, solving the Equations
(2.1) and (2.10):

3.2.1. Matrix Pi j

This part of the code is really important, since we are obtaining the optimal σ2 that will
make that our perplexity is the same as the value we introduced by argument in our t-
SNE function. We have used the optimizer optim that has given to us good results apart
from handling the number instability we obtained when we tried to use other optimizer
functions.
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1 # This function is in charge of computing the sigma optimal

2 # parameters to calculate the P_{ij} Matrix with the values

3 # adapted to the perplexity fixed by argument. This part of the

4 # code refers to the Equation (2.1) and (2.10).

5

6 calcP <- function(X, perplex) {

7 n <- nrow(X)

8 # This is the optimal $\sigma ^ 2$ that we are computing

9 # according to the perplexity fixed.

10 sigma2_opt <- rep(1,n)

11 sigma2_opt <- sapply(1:n, function(i) {

12

13 # The following function performs the optimization in order to

14 # obtain the sigma associated. This is explained in Section

15 # 2.2.

16 optim(par = 0.75,

17 fn = function(s2) {

18 res <- (calc_perplexity(X = X, i = i,

19 sigma2 = s2) - perplex)^2

20 ifelse(is.finite(res), res, 1e6)

21 },

22 method = "L-BFGS-B", lower = 0.1)$par

23

24 })

25

26 # We are computing the Equation (2.1) with the sigma optimized

27 # previously calculated. We use the auxiliar functions we

28 # developed in the first section in order to satisfy the

29 # equation.

30 P_i_cond_j <- matrix(0,n,n)

31 P_i_cond_j <- sapply(1:n, function(i) {

32 softmax(-rowSums(t(t(X) - X[i, ])^2)/

33 (2 * sigma2_opt[i]))

34

35 })

36

37 # Equation (2.10).

38 P_ij <- (P_i_cond_j + t(P_i_cond_j)) / (2 * n)

39 return(P_ij)

40

41 }

Returning as a final value the complete high dimensional matrix Pi j.

3.2.2. Perplexity

In this code, we obtain a solution to calculate the perplexity with the help of the auxiliary
functions we developed before. Coding the Equation (2.1) we will be able to compute this
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parameter. This parameter is being obtained thanks to a sigma given by argument. So the
perplexity will depend directly on the value we are introducing. In the previous function
we were calculating the optimal sigma that will make that the perplexity is the same as
the value we introduced by argument in the t-SNE function.

1 # This function is computing the perplexity for the sigma^2 given

2 # for a particular i.

3

4 calc_perplexity <-function(X, i, sigma2) {

5

6 # Dimensions

7 n <- nrow(X)

8 p <- ncol(X)

9

10 # it computes the equation (2.1) for a value of sigma given by

11 # argument.

12 P_i_cond_j <- softmax(-rowSums(t(t(X) - X[i, ])^2)/

13 (2 * sigma2))

14

15 # We are calculating the entropy

16 # with the Equation (2.3).

17 H_i <- -sum(P_i_cond_j * log2(P_i_cond_j))

18

19

20 # returns the perplexity given in Equation (2.2).

21 return(2^H_i)

22

23 }

3.3. Complete algorithm

In this part we are computing the whole t-SNE algorithm. We have followed the pseudoal-
gorithm described in Chapter 2 and explained in the paper Van der Maaten and Hinton
(2008).

Firstly we can see the declaration of the function, we can introduce as a parameter all
the arguments we have explained.

1 # Main function in which we will have to introduce the parameters

2 # we want to use to develop the algorithm

3

4 tsne <- function(X, q = 2, T = 1e3, learning_rate = 100,

5 momentum = 0.5, perplexity = 35,

6 cols = 1) {

7 # Dimensions

8 n <- nrow(X)

9 p <- ncol(X)
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3.3.1. Generating high-dimensional matrix

In this part of the code we are generating the high dimensional matrix: Pi j, we have
applied the functions we developed in the previous section. This matrix is composed by
n samples and p variables.

1 # This P is calculated using the perplexity given by argument by

2 # the user. Using the previous code is obtaining an adequate

3 # matrix of P

4

5 P_ij <- calcP(X, perplex = perplexity)

3.3.2. Generating low-dimensional matrix

To generate the low dimensional matrix Qi j we have to set the matrix with n rows and q
columns. Being n the same number of samples as the data in the high-dimensional matrix.
However, this q is the number of the dimensions we want to reduce to. It is initialized, as
is described in Van der Maaten and Hinton (2008), with a Gaussian distribution with zero
mean and variance 10−4.

1 # Initial configuration of the low dimensional data given in the

2 # pseudocode.

3 set.seed(123456)

4 Y_t <- mvtnorm::rmvnorm(n = n, mean = rep(0, q),

5 sigma <- diag(rep(1e-4, q)))

6 # We initialize the three instances at the begining.

7 Y_t_1 <- Y_t_2 <- Y_t

8

9 # The gradient is initialized as a matrix nxq where n is the rows

10 # of the data and q the columns of the reduced dimension.

11 gradient <- matrix(0, nrow = n, ncol = q)

12 for (t in 1:T) {

13

14 # Compute the low-dimensional affinities q_{ij}’s

15 # We use the following formula (1 + ||y_i - y_j||^2)^{-1} given

16 # in the equation 2.5.

17 Q <- as.matrix(1 / (1 + dist(Y_t)^2))

18 # Q_ij

19 # Sum for rows, except for the diagonal

20 v <- sum(Q)

21 # Quotient with an implicit column recycling

22 # Obtaining the low dimensional matrix.

23 Q_ij <- Q / v
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3.3.3. Following the algorithm

To perform the algorithm, the previously generated low dimensional matrix is going to
be varied in several iterations. As we explained in the Equation (2.14), we can see that
the gradient is affecting directly depending on the learning rate parameter. Besides, the
momentum introduced by argument is going to vary the solution taking into account the
low dimensional matrix in two different instants of time.

1 # Gradient used in the equation (2.13)

2 # p_ij - q_ij

3 dif_P_Q <- P_ij - Q_ij

4

5 # Fill gradient

6 for (i in 1:n) {

7 gradient[i, ] <- 4 * colSums(dif_P_Q[i, ] * t(t(Y_t)

8 - Y_t[i, ]) * Q[i, ]) }

9 # Update the Y following the algorithm described in the paper.

10 # It is described in the equation (2.14).

11 Y_t <- Y_t_1 + learning_rate * gradient

12 + momentum * (Y_t_1 - Y_t_2)

13 Y_t_2 <- Y_t_1

14 Y_t_1 <- Y_t

15 if(t > 700) {

16 momentum <- 0.8

17 }

3.3.4. Plotting the results

Since the algorithm is converging depending on the situation, we have plotted the results
each 200 iterations, so we can see how it is evolving until it finally reaches a solution.

1 # There is a plot each 200 iterations to show the development of

2 # the algorithm.

3 if ((t %% 200) == 0) {

4 message("Iteration #", t)

5 plot(Y_t, pch = 15, col = cols)

6 }

7 }

8 return(Y_t)

9 }

10 # The resulted obtain is the data divided in clusters preserving

11 # the neighbourhood of points.

As a result, we would see how the points are spreading and approaching among them
to finally reach a solution. If the algorithm has been applied correctly we would see the
data separated in clusters. Once we have reduced the dimensions of visualization we
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can obtain conclusions. This reduction of dimension has implicated some loss of data,
however, the results we can see are faithful to the original data.

Fig. 3.1. Figure that shows the stages of the t-SNE version we have implemented in this chapter.

In this figure we can see at first the original iris dataset (Fisher, 1936) and then a plot
of the state every 200 iterations of the algorithm. Notice that t-SNE is converging until it
reaches an optimal result where we can see clearly differentiated clusters. We can see in
the upper part of the sixth plot how there is a black point really close to the red and green
clusters and as the algorithm perform operations, the black point is moving until it finally
reaches the black cluster.

The code is available on GitHub:

https://github.com/100346868/TSNE
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4. NUMERICAL EXPERIMENTS

Nowadays, t-SNE has gained reputation among the other algorithms, due to its ver-
satility, speed and easy visualization of the results obtained. This algorithm has been
implemented in the most common programming languages such as Java (Lejon, 2018),
Python (Pedregosa et al., 2011), R (R Development Core Team, 2019) or Matlab (MAT-
LAB, 2010) and so more languages as we can see in the original GitHub page of the
authors (Laurens Van der Maaten, 2008). The language we have decided to implement
our version is R because its flexibility and its collection of state-of-the art of statistical
packages

In order to compare our code with the original implementation, we have used the well-
known version of the implementation that is called Rtsne (Krijthe, 2015). Just including
a library in R-Studio we can fully use t-SNE algorithm.

1 Rtsne(X, dims = 2, perplexity = 30, pca = TRUE, max_iter = 1000,

2 Y_init = NULL, pca_center = TRUE, pca_scale = FALSE,

3 momentum = 0.5, final_momentum = 0.8,

4 check_duplicates = TRUE, eta = 200,

5 exaggeration_factor = 12)

The first parameter we introduce in the function is our data, we have to notice that
it does not contains duplicates for a better performance of the algorithm. However, the
algorithm includes a parameter so we can check if our data has duplicates.

In this function already implemented, we can perform a PCA operation before apply-
ing t-SNE, this is going to be really useful when we manage a huge dataset, since it is
going to simplifies our data by reducing the dimension of the data so t-SNE can perform
its operations in a reduced time. The next interesting parameter we can use is dims, we
can introduce in it the number of dimensions we want to reduce to, a usual value is 2 or
3 dimensions, this typical values are giving to us a representation humans can interpret
easily.

As it was explained in the previous sections, the algorithm must perform some itera-
tions, we can modify this number so it suits to our needs. Notice that a higher number does
not implicate a better representation, there is a situation when the algorithm converges so
it does not suffer from bigger variations. Some typical values for this parameters should
be between 1000 and 5000 iterations.

Other parameter we can also modify is the momentum, besides the author in the paper
suggest to modify it when we reach a determined number of iterations, it is really useful
in order to speed up the optimization and to avoid poor local minima. As it is specified in
the paper it is set to α(t) = 0.5 for T < 250 and we see a change that makes α(t) = 0.8 for
T > 250.
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This function includes also the learning rate η as a parameter, and it is updated after
every iteration by means of the adaptive learning rate as it is described by Jacobs (1987)
where we know it gradually increases the learning rate in directions in which the gradient
is stable (Van der Maaten and Hinton, 2008).

The algorithm is optimizing following a trick is called early-exaggeration, which
uses a real value (factor) to multiply all the points pi j when we start the optimizations.
This will produce that almost all the qi j points, which still add up to 1 are too small to
model the pi j corresponding. The effect that this produces is that it is going to create
widely separated clusters in the low dimension. Due to the empty spaces that is created it
is going to be easier to move the points to find a correct distribution. This exaggeration
factor can be modified in the original function, so we can fix it to a proper value (Van der
Maaten and Hinton, 2008).

Our version of the code has the following parameters:

1 tsne(X, q = 2, T = 1e3, learning_rate = 100, momentum = 0.5,

2 perplexity = 35, cols = 1)

To develop our code we have followed the idea Rtsne function, so we have set the same
parameters. We have explained it deeply in the next chapter.

4.1. Applying to synthetic data

4.1.1. Gaussian mixtures in IR2

We are going to test both functions with synthetic data, we have prepared several multi-
variate Gaussian mixtures in different positions with different sizes and variances.

In order to prepare the synthetic data we have used the following function:

1 data <- mvtnorm::rmvnorm(n = 200, mean = c(-3, -3),

2 sigma= rbind(c(1, 0.2), c(0.2, 1)))

We can modify the parameters in order to vary different specifications of the mixtures.
Parameter n will be the number of points of the mixture, mean will define the center of
the mixture, sigma will represent the covariance matrix.

On the first row we have prepared two Gaussian mixtures with same sizes and different
positions. On the second row there are three Gaussian mixtures and the one in the middle
has different variance, however, they have the same sizes. For the next row we have four
Gaussian mixtures, and they all have different sizes but the same variance. Finally, in the
last row, there are four Gaussian mixtures with different variances and sizes. As we can
see in the next figure:
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Fig. 4.1. The figure shows the behaviour of two different versions of the algorithm with synthetic
data. On the first column we can see the original data plotted, the second column rep-
resent a final stage of our implementation of t-SNE and the last column shows the final
stage of Rtsne package

In this experiment we have used the same values for both functions, we have also
used the same low-dimensional initialization for both functions, since Rtsne function by
Krijthe (2015) has a parameter to modify this value. perplexity has been assigned to a
value of 35, the dimension we have reduced is 2 in order to see a plane representation we
can interpret, learning rate (η) has been tuned to 200. We have decided those values
by doing some iterations and we saw that when we used perplexity equal to 35, all the
results gave a “good global” geometry, which means that the neighbourhood is preserved
in all the stages and looks pretty similar. If we used other value we would have obtained
other values.

Notice that both algorithms have obtained very similar results, although the distribu-
tion is not equal, we can see that the neighbourhood is preserved. The objective function
is invariant to rotations and translations hence the output of t-SNE may differ due to ro-
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tation or translation. Notice that although we have used different Gaussian distributions
the size of the clusters may not mean anything, the algorithms is only working to pre-
serve the neighbour distances, but not the size of the clusters. Furthermore, the distances
among clusters might not mean anything, what t-SNE is worrying about is to preserve
the distance, but not to establish a determined distance. When we vary the parameters we
can see several differences. We also have to mention that if we added more points to this
Gaussian distributions we would have to vary the perplexity in order to compensate this
increasing, however, in this experiment we have used the same number of points so we
are able to use the same perplexity. Besides, we have noticed that every time we include
a new mixture we have to recalculate the algorithm again, we can not reuse the previous
calculations.
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4.1.2. Gaussian mixtures in IRP

In this section, we have decided to go a step beyond by trying the algorithm for Multivari-
ate Gaussian mixtures that are in more than two dimensions.

Firstly, we have tried t-SNE on 3 dimension mixtures:

Fig. 4.2. We can see t-SNE applied to 3 dimension mixtures with the two different functions. On
the first column we have the original data, in the second column we have our version of
t-SNE applied to the data, whereas in the third column we can see the Rtsne version.
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In this situation we have applied both versions of the algorithm by finding that both
have obtained a very similar result. Notice we have the same behaviour we obtained
in the case of two dimensions, we can see that t-SNE is preserving the distances of the
neighbours. We have used the same parameters in both functions, moreover, we have used
the same initialization in both versions.

If we go one step beyond, we have prepared a four dimension Gaussian mixtures in
order to see how the algorithm approximate it to three dimensions. Since we do not have a
natural way to represent four dimensions, we have used a matrix of scatter plots depending
on each variable.

Fig. 4.3. Matrix of scatter plots for three Gaussian mixtures of dimension 4, we can see that yellow
and purple mixture have different variances. The matrix of plots help us to visualize the
data.

We have reduced the dimension to three in order to obtain a better representation,
when we used the matrix of scatter plots we could have an idea of how our data is dis-
tributed. However, after applying the algorithm we can see that we have obtained a faithful
representation that is more simple to understand to the human.
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Fig. 4.4. We have applied t-SNE applied to 4 dimension Gaussian mixtures in order to reduce
dimensions, the left column belongs to the version we have developed and the right one
is with Rtsne package.

We can see that we have obtained a very similar result when we use the Rtsne function
and when we use the version we developed, the algorithm has preserved the distance
among the datapoints although we have simplified the data.

Notice everything is reproducible, we have uploaded all the code to GitHub so you
can do your own tests.
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5. APPLICATION TO REAL DATASETS

In this part of the project we are going to apply the algorithm to well-known databases
like the iris dataset (Fisher, 1936) and MNIST (LeCun and Cortes, 2010). We have chosen
real datasets in order to show the application of t-SNE in real life and to see how it behaves
when we manage a more complex data.

5.1. Iris dataset

The iris dataset contains 50 samples of three different flowers from the iris Species (setosa,
virginica and versicolor). There have been measured four different variables: sepal length,
sepal width, petal length and petal width. Basing on the combination we can differentiate
these species Fisher (1936).

Fig. 5.1. The iris dataset represented in two dimensions depending on different pairs of variables.

By using an R function that is called Pairs R Development Core Team (2019), we
can plot the dataset, however, as we can see in the figure, since it depends on 4 variables,
we have to divide the plots in order to see correctly how variables affect. With the help of
t-SNE we are obtaining a faithful representation in 2 dimensions.
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With the help of the function we have developed in R (R Development Core Team,
2019) we obtain the result in Figure 5.2.

Fig. 5.2. t-SNE applied to Iris dataset using our the version we have developed and also the Rtsne
version.

As we can see in the figures, t-SNE has separated the three kinds of flowers preserving
the neighbourhood, if we compare our version of the algorithm to the Rtsne function by
Krijthe (2015), we can see that the behaviour is mostly equal. In both figures we can see
how there are two different species that are more similar: virginica and versicolor, so their
clusters are closer and there is another kind of iris flower more separated: setosa.

Recall we have used the same values for the parameters in both functions, also to be
more optimal we have used the same initialization in both versions.

If we compare the behaviour of t-SNE applied to the iris dataset Fisher (1936) in three
dimension, the result we obtain is the one as follows.
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Fig. 5.3. t-SNE applied to Iris in three dimensions where the left column is the result of applying
the version we developed and the right column belongs to the Rtsne version.

Watching the results, t-SNE can help us to choose among the different type of flowers.
Both implementations have separated the different species easily. We have obtained a
good representation of the data, reducing the dimensions we originally had and preserving
the distance of the nearest neighbours.
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5.2. MNIST dataset

MNIST is a very well-known dataset that contains images of handwritten digits in dif-
ferent ways. It is very used nowadays with classification algorithms. In order to see how
powerful is t-SNE we are going to apply the algorithm to this dataset by LeCun and Cortes
(2010).

Recall that in Figure 2.6 we saw what happened to this database when we applied
PCA on it. It did not manage very well to identify and separate the different numbers.

When we use t-SNE we can see a huge improvement in the clustering over PCA. We
can see clearly how the numbers are separated in different colours.

Fig. 5.4. We can see a final stage of t-SNE applied to MNIST dataset, we can see the clearly
differentiated numbers in different colours.

We have applied firstly PCA over the MNIST dataset and later we have applied again
t-SNE, although the computational time has been extremely large, we have obtained a
more defined clustering than when we used directly t-SNE.
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Fig. 5.5. Result of applying t-SNE over MNIST dataset but firstly applying PCA on it.

We can see that these techniques do not compete against, but they can be used together
in order to obtain better results.

As we explained in the previous chapters, t-SNE is based on the concept of similar-
ity, which means the distance among the points. As we saw in the paper, the similarity
between xi and x j is the conditional probability that xi chooses x j as it neighbour when
neighbours are chosen proportionally to its density under the Gaussian distribution curve
centered in the point xi. Therefore, t-SNE has chosen as neighbours digits that are more
similar. However, we have to remember that t-SNE is taking the high dimensional points
to the low dimensional space initializing on a random way. Then, different runs of the
algorithm should lead to different results.

Moreover, since the algorithm runs in a random initialization, one interesting fact
that we have to mention is that to choose the correct output we have followed the same
procedure that it is done in K-Means. It consist on running several times the algorithm
with different values and keeping the values that produce the minor cost.
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5.3. Glass identification dataset

This dataset is known as “glass identification dataset” (German, 1987). It suggest that we
are situated in a scene where a murder have occurred. We have different kind of glasses
and we have to correctly identify them in order to use it as an evidence (Dua and Graff,
2017).

Analysing the different characteristics of each glass and thanks to t-SNE, we can sepa-
rate in groups the different kind of glass that we have found. The dataset contains a total of
214 samples of glass with a total of 10 attributes each. These attributes are chemical com-
ponents such as magnesium, aluminium, sodium silicon, iron among others. Depending
on the quantity of each chemical there is produced one type of glass or another.

Fig. 5.6. t-SNE applied to the glass identification dataset where we can see that each cluster belong
to a different kind of glass in function of its characteristics.

As we can see above, t-SNE has managed to separate the different kind of glass using
the composition of each sample. Depending on the amount of chemical components it
will belong to one type or another. Therefore, we can extract as a conclusion from the
graphs that there are some kind of glass that are more similar than the others. The yellow,
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purple and cyan present characteristics resemblance to them, whereas the other types are
separated.

Fig. 5.7. Rtsne applied to the glass dataset reducing the dimension to three. We can see different
clusters depending on the type of glass.

Although the visualization is good enough when we reduce to two dimensions, when
we reduce the dimension of the data into three dimensions we can see how t-SNE has
managed to create different clusters with the different type of glass. Thanks to this al-
gorithm we can reduce the dimension in order to identify different types that in other
situations would be really difficult.
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5.4. Wines dataset

We have applied t-SNE on a wines dataset (Forina, 1991). This wine dataset is composed
by the result of the three different wines that belong to the same region in Italy. These
wines are composed by 13 different chemicals that constitute each individual wine. The
dataset is composed by 178 samples of 13 attributes.

Fig. 5.8. Rtsne applied on the wines dataset where we can see the three different kind of wines
depending on its characteristics.

If set the algorithm to represent the data in three dimensions:
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Fig. 5.9. We can see the different types of wine separated in three different groups depending on
its characteristics.

When we want to have an idea of how our data is distributed, we can not do a simple
plot. Since each sample of this dataset is depending on 13 variables, we would need a
13 dimension figure in order to represent it. We could put in practice some well-known
techniques such as using a pairs plot, however it is going to be very difficult since it
depends on a huge quantity of variables. This dimension-reduction technique allows us to
have a faithful visualization of the original data,although as a consequence it loses some
information.

When we apply the algorithm, as we can see in the plots, t-SNE has managed to
correctly identify each type of wine depending on the characteristics similarities. We
can consider it as a powerful tool that using just a few characteristics of the wine is able
to identify its similarities and create clusters with the different existing types. We can
conclude that the red and green color wines have more similar characteristics than the
black color wine, due to its proximity in Figure 5.8.
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5.5. Echocardiogram dataset

In this section of the project, we have decided to combine our technical knowledge with
the health field. We have analysed a dataset that contains data of patients that have suffered
from a heart attack in the past year (Kinney, 1989). Some of them are alive, but others are
not. The main goal of this dataset is to classify the patients whether if they are going to
survive for at least one year or not depending on different attributes. This dataset contains
132 sample of different people and 12 different attributes. The dataset contains attributes
such as the month the person has survived until his death, if he is still alive or not, the age
he suffered from the heart attack among others.

Fig. 5.10. We can see two different groups of people that have suffered from a heart attack in the
last year separated in function if they are alive or not one year later.

We can also see how t-SNE has reduced the dimension of the original data in three
dimensions:
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Fig. 5.11. We have applied t-SNE to reduce the dimension on the data onto three dimension to
have a different view of the data. We can see that Rtsne has managed to differentiate
the clusters to identify both groups.

As we can see in the picture, t-SNE has differentiated correctly whether if the person
has survived for at least one year or not. We can identify that red points represent the
people that have survived whereas black points represent the people who have not. If we
add data of another person who has suffered from a heart attack, we can predict if it is
going to survive or not if he belongs to the red group or the black group. Depending on its
characteristics, t-SNE is going to recalculate the clusters by grouping in this two different
groups. If we try to have an idea of our data at first, we find that is nearly impossible
to extract relations or conclusions because of the multiple dimensions. Once we have
applied the algorithm, we find that it is easier to create patterns of the data. We can see
how t-SNE has found a relation among the people who has survived for at least one year
and those who has not by creating different clusters.
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6. REGULATORY FRAMEWORK

In this part of the project, we are going to explain how the different laws are applied
to our work. Since we have used different software in order to develop our work, we have
been affected by these. The main law we identified at first was related to the usage of the
software.

6.1. Software

Firstly, the programming language we selected to develop this code was R. It is an open
source code and a package of GNU, which is a recursive acronym of GNU is not Unix,
GNU is commonly used with a kernel Linux. It is distributed freely under the license
GNU GPL, which means “General Public License” (R Development Core Team, 2019).

This license is widely used nowadays when we use software open source. The main
advantage of this software is that we can freely study, share and modify the software
we need for the development of our project. This has been really useful to us when we
needed to develop our application. By using these open source functions, for example,
the one to read images, we have been able to develop ours in order to use it as the way
we desired. On the other hand, the original function of t-SNE, Rtsne package, (Krijthe,
2015) is also free to use, this has helped us a lot in order to do our experiments, allowing
to us to compare with the function we developed.

Open source license protects the rights of the developers, it is going to offer the user
the decision to copy, distribute and modify the software.

Intellectual property law is going to give these rights we have just explained simply
for the fact of creating the code. It is going to assign the author the full disposition and
the exclusive right to explode the software only limited by the law Intellectual Property
no 28 (1995).

Therefore, this law does not guarantee that the software is fully protected. However,
if the software is modified and redistributed, it is ensuring that the future users know it is
not a original copy.

6.1.1. R environment

The environment we have used to develop the code is RStudio (RStudio Team, 2019) it
is distributed under the Affero GNU GPL v3. The Affero GNU is an open source license
that is going to guarantee that the user can freely share and distribute the software and
it ensures that the software is free for the user who want to employ this software. The
company offer two open source versions, these are RStudio Desktop and RStudio Server.
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As its names define them, we can download a version to work in our computers locally
and other version to work within the servers they provide. Besides, the company has other
paid versions which could give us support and other tools, however, we have not find
them interesting to this project. These versions works both in MacOS and in Microsoft
Windows. As we specified before, the packages we have used in this project are also open
source.

6.1.2. Overleaf and TexStudio for LaTeX

To write the final project we have used the scientific text editor LaTeX (LaTeX, 1984).
We selected this programming language due to its stability its design and it is really useful
for science since it has an elegant way to display equations. It is going to adjust the sizes
of the parenthesis, integrals, subindex and superindex. This software is an open source
code distributed under the license LPPL LaTeX Project Public License (LaTeX, 1984).

In order to write the latex code we have used two different platforms:

• TexStudio under the GPL license (TexStudio, 2019).

• Overleaf under personal license (Hammersley, 2019).

We have used these two different tools in order to write this project. At home, we
have used Tex Studio software due to its robustness and efficient work. When we needed
to add a minor change while we were not at home we have used the online tool Overleaf.
The license we have used in this project is free for one person, however, if we need up to
ten developers we can pay for the collaborative version.

In order to obtain a good bibliography, we have used the famous application JabRef
(JabRef, 2018), which is distributed under the MIT license. The application is open source
and can be downloaded directly from its webpage. It is programmed in Java and it is
available for Windows, Mac or Linux. Thanks to this, we simply manage the standard
LaTeX bibliography format: BibTeX.

6.2. Data set

When we use other people’s data, we need to ensure that we comply the law GDPR
(General Data Protection Regulation, 2016) of the European Union. Thanks to this law
we have control above our personal data. We have three basic rights:

1. Right of access: Physical people can demand to an organization why are they stor-
ing his personal data, where and what for.

2. Right to forgetfulness: An individual can demand to delete his personal data if
they are no longer necessary.
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3. Right to migrate data: A person can demand his data to a company in a format he
can migrate to other company.

This law is protecting the personal data so we can not “attack” to the honor nor per-
sonal and family privacy. In this project we are using real datasets. In order to comply
with the law, we are not broadcasting any information about the information we have used
for the study, only the different relations among them we have found.

52



7. PLANNING

The development of this project is going to take from November to July, so we can
present our work the first of July, a total of nine months. We have prepared a Gant Di-
agram where we are going to show how are we developing this project. These are the
activities that compose the whole project:

• Establish objectives: We prepared an initial planing to fix our objectives.[1 month]

• Analyse Regulatory framework: We analysed the regulatory framework in order to
see we comply with the law in our studies [1 week].

• Cost plan: We have analysed how much would cost our project to see if it is prof-
itable [1 week].

• Get familiar with the software we use in the project: R and LaTeX [1 month].

• Analyse state of the art: We need to study how is the problem actually [2 months].

• Deepen in the t-SNE: Perform a complete study in detail of the algorithm how it
works, how it behaves in different situations [3 months].

• Do some experiments: We have used synthetic data to see it behaviour, and other
simple datasets [2 months].

• Prepare the application to real dataset: We have used a real dataset in order to see
how the algorithm works with real data [2 months].

• Analyse results: Obtain conclusions of how the algorithm has worked with the data
[1 month].

• Prepare final memory: Once we have finished the study, we have to prepare a doc-
ument with the whole development of the project [2 months].

• Prepare a presentation of the project [3 weeks].

The planning of this project is estimated, however it could suffer some changes during
the development. We have prepared a continence plan, leaving a free final week for each
activity just in case we have some delay.
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Fig. 7.1. Gantt Diagram that shows the development of our project. It shows the estimated time
every activity is going to take.

In order to calculate the total hours we are going to invest in this project, we are
assuming we are going to work a total of 1 hour in average per day, seven days a week for
4 weeks a month, which is a total of 28 hours per month, in nine months is a total of 252
hours.
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8. ECONOMICAL BUDGET

In this chapter of the project, we have calculated a budget to show how much would
cost to hire our service. In this cost we have explained in detail a price breakdown. We
have different kind of costs.

8.1. Personnel costs

Taking into account the number of hours we are going to dedicate to this project, that we
previously specified in the previous chapter we are going to calculate how much does the
personnel cost.

We assume that this work is under the Disposición 542 del BOE núm. 15 de 2017
which regulates the minimum salary range for engineering companies Disposición 542
del BOE núm. 15 (2017) .

Fig. 8.1. Capture of Disposición 542 del BOE núm. 15 (2017) where shows the minimum salary
depending on the charge.

In this Article, it is established that the maximum quantity of hours that an employee
can work is 1.800 hours. We can calculate how much do we have to pay for hour. In this
project there are different work position that will have different costs. We can see in the
table as follows:
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Fig. 8.2. Table that shows the salaries of the different charges we are taking in this project.

We have decided to increase the salary compared to BOE’s recommendation because
we thought it was too low. In this cost/hour we have included the legal taxes and the social
insurance.
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Fig. 8.3. Table that represent the total cost of the personnel taking into account the different hours
we have worked.

In this figure we show the estimated number of hours that we are going to work de-
pending on the charge in the project. We have calculated the total cost by charge by using
the estimated number of hours and the fixed cost/hour. We can see that the total personnel
cost is 4.180 e.

8.2. Hardware and software costs

In order to determine the material resources we have to take into account the amortization
of the computers and the software used. We are going to divide the total price by the
useful estimated life and we are going to multiply by the months that the project last.
In terms of software, since we are using open-source programs the cost is going to be
minimum. The hardware cost will be an amount of 200 e.
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Fig. 8.4. Table that represents the hardware cost we have acquired for the development of the
project.

In this figure we can see a price breakdown of the software cost, as we mentioned
before, it is going to be zero due to the fact that we are using open-source programs. On
the other hand, the windows license is coming included with the computer.

Fig. 8.5. Table that shows the software cost for this project, as we can see it is zero cost since we
have used open-source software.

8.3. Other costs

In this section we have included other costs such as office supplies, pen drives, paper,
printings and bindings, electricity, WiFi connection, a daily substance allowance and
transports for the meetings.

Since we have done the project at home and at the university we have reduced the cost
of renting an office.
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Fig. 8.6. Othercosts we have to take into account for the development of this project.

In this table we have included also the transports cost and the daily substance al-
lowance. Although most of the work is done on remote, it is necessary to attend some
project manager meetings in order to take decisions and to explain how is the develop-
ment of the project going.

Moreover, we have included all the cost associated to the place of work such as WiFi
connection and electricity consumed.

8.4. Total costs

Once we have calculated all the partial costs we are going to show the total cost and
include how much would it cost including the legal taxes. The total cost raise to an
amount of 5.540 e.
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Fig. 8.7. Table that shows the total project cost including all the costs we have previously calcu-
lated.

Assuming that the total cost is 5.540 e, we estimate this would be the final budget
for the development of this project. We have include a small amount that we will use for
unexpected events. Besides, we have included how much are we going to earn with the
development of this project.

Fig. 8.8. Table that presents the final budget for this project, including the breakdown of taxes we
must pay.
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The final budget for this project is 9.137 e.

Nine thousand one hundred thirty seven euro.

Signed by

Alfonso Albacete Zapata
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9. CONCLUSIONS

In this project we have reviewed t-SNE technique in depth, achieving our main goal
of being able to implement our version of the algorithm, joining theory and practice. We
have done lots of experiments that have helped us to know how t-SNE works. We have
understood why it has been very notorious in the machine learning community. We have
seen that it is very flexible and manage to preserve structures where other algorithms that
were used for the same purpose did not work as well. It has become the direct competitor
of classical dimension-reduction techniques. Studying this algorithm we have seen that
the method is applicable in a wide range of fields.

Unfortunately, it has some negative aspects, its flexibility make that sometimes it is
hard to interpret the data. Perplexity is a tuneable parameter that will give this flexibility,
however, there is no fully objective guide in order to choose a value or other. The only
option we have is to try new values and check which value produces the minimum cost.
Besides, when we have a huge dataset the computational cost is really large, if we have to
try several values of perplexity it can take a long time in order to determine the optimal
value. We have performed some experiments with the MNIST database, seeing that it
took more than 20 minutes to obtain an optimal solution. Other negative aspect is that
if we computed t-SNE for a huge dataset but we decided to insert a new sample, t-SNE
needs to recalculate everything again. It can not reuse the previous calculation easily,
which would speed it up. The fact that it is based on randomness is not very efficient,
since if we run the algorithm two times in a row we are going to obtain different results,
it will preserve the original structure but in a different way, which could make us difficult
to interpret the results.

One interesting experiment that we would have liked to implement if we had more
time is to use t-SNE as a clustering algorithm and later use it as an input to a classification
method such as a Support Vector Machine (SVM) to see if the joining of these two tech-
niques lead to better results. Recalling that when we have more dimensions, it is easier
to separate our data, besides, there are techniques that allow us to create new “artificial”
dimensions to see if we can separate better our data. Otherwise, t-SNE is trying to do the
contrary and doing so it gives an important characteristic we have mentioned the whole
project and it is visualization. The more dimensions you have the more difficult is to ob-
tain a way to visualize the data. t-SNE is going to help on visualizing the classification
procedure by providing a faithful visualization so we can have an idea of how is our data
and extract conclusions from it.

Along this project we have performed several tests using the algorithm, we have up-
loaded the code in an open repository to GitHub.
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