
Informatics Engineering Degree

Bachelor Thesis

“Development of an Augmented
Reality musical instrument”

Author: Alejandro Rey López

Tutor/s: Telmo Agust́ın Zarraonandia Ayo

Leganés, Madrid, Spain

June 2019

This paper is subject to the license Creative Commons.
Reconocimiento - No Comercial - Sin Obra Derivada

Dedication

This piece of work has been a great experience, sometimes a pain in the neck while
others incredibly satisfactory. Over these few work-intensive months, and all along
the university phase of my life, special people have been by my side, taking care of
me and ensuring my welfare.

In the first place, I would like to acknowledge the relentless support of my parents,
economically and regarding affection. They express feelings in a strange way, there
is no doubt about that, but in contrast to that, they have always trusted on me
regardless of what I pursued in life.
Special thanks shall be expressed to my sister, Paula. I undoubtedly cannot conceive
a life without her. She is my perfect waste of time, and time is all I got, even though
my job is, unfortunately, all about racing the clock.
I would like to express my wholehearted gratitude to Julia, the target of my eyes,
the chopper of my burnouts and as of today, my best utterly purposeful would-
definitely-do-it-again mistake ever. As you can see, in special occasions, I do not
care about English correctness anymore.
I must mention here my primitive workmate, friend and number one backer Mara,
an incredible person that is capable of helping others regardless of her own pain.
That been said, do not talk to her about politics, just as a recommendation.
In addition to those, I would like to thank my tutor, Telmo, who embraced my
initial idea and gave me as many opportunities he could to help me along the way,
regarding this dissertation and beyond. I am extremely grateful for your advice and
help, as well as your teaching.
Last but not least, I must mention the one person that had the greatest impact in
my professional career to date. This project would have never come to life this soon
if I had not met José Cabrero during the Informatics Engineering degree.
Problems have been half as tough these last few years just because of him, and I
have finally felt good at something after the uncountable number of times I have
heard him saying so in every project we have been working on.
He has embraced my will when I did not feel like doing anything at all, and we
both have built an amazing coding team via Skype. Being sat all day could have
definitely been much more painful otherwise. I appreciate and admire him beyond
words can describe.

2

Development of an Augmented Reality musical instrument

Bachelor Thesis

Alejandro Rey López

Abstract

Nowadays, Augmented Reality and Virtual Reality are concepts of which people
are becoming more and more aware of due to their application to the video-game
industry (speceially in the case of VR). Such raise is partly due to a decrease in
costs of Head Mounted Displays, which are consequently becoming more and more
accessible to the public and developers worldwide.
All of these novelties, along with the frenetic development of Information Technolo-
gies applied to essentially, all markets; have also made digital artists and manufac-
turers aware of the never-ending interaction possibilities these paradigms provide
and a variety of systems have appeared, which offer innovative creative capabilities.
Due to the personal interest of the author in music and the technologies surrounding
its creation by digital means, this document covers the application of the Virtuality-
Reality-Continuum (VR and AR) paradigms to the field of interfaces for the musi-
cal expression. More precisely, it covers the development of an electronic drumset
which integrates Arduino-compatible hardware with a 3D visualisation application
(developed based on Unity) to create a complete functioning instrument musical
instrument,
The system presented along the document attempts to leverage three-dimensional vi-
sual feedback with tangible interaction based on hitting, which is directly translated
to sound and visuals in the sound generation application. Furthermore, the present
paper provides a notably deep study of multiple technologies and areas that are ul-
timately applied to the target system itself. Hardware concerns, time requirements,
approaches to the creation of NIMEs (New Interfaces for Musical Expression), Vir-
tual Musical Instrument (VMI) design, musical-data transmission protocols (MIDI
and OSC) and 3D modelling constitute the fundamental topics discussed along the
document.
At the end of this paper, conclusions reflect on the difficulties found along the
project, the unfulfilled objectives and all deviations from the initial concept that
the project suffered during the development process. Besides, future work paths
will be listed and depicted briefly and personal comments will be included as well as
humble pieces of advice targeted at readers interested in facing an ambitious project
on their own.

Keywords: MIDI Controllers, VMI, NIME, Arduino, Serial2Midi, Unity3D, Drums,
3D Modelling, Blender, AR

4

Desarrollo de un instrumento musical de Realidad
Aumentada

Trabajo Fin de Grado

Resumen

En la actualidad, los conceptos de Realidad Aumentada (AR) y Realidad Virtual
(VR) son cada vez más conocidos por la gente de a pie, debido en gran parte a su
aplicación al ámbito de los videojuegos, donde el desarollo para dispositivos HMDs
está en auge. Esta popularidad se debe en gran parte al abaratamiento de este tipo
de dispositivos, los cuales son cada vez más accesibles al público y a los desarrol-
ladores de todo el mundo.
Todas estas novedades sumadas al frenético desarrollo de la industria de IT han
llamado la atención de artistas y empresas que han visto en estos paradigmas (VR
and AR) una oportunidad para proporcionar nuevas e ilimitadas formas de inter-
acción y creación de arte en alguna de sus formas. Debido al interés personal del
autor de este TFG en la música y las tecnoloǵıas que posiblitan la creación musical
por medios digitales, este documento explora la aplicación de los paradigmas del
Virtuality-Reality Continuum de Milgram (AR y VR) al ámbito de las interfaces
para la creación musical. Concretamente, este TFG detalla el desarrollo de una
bateŕıa electrónica, la cual combina una interfaz tangible creada con hardware com-
patible con Arduino con una aplicación de generación de sonidos y visualización,
desarrollada utilizando Unity como base. Este sistema persigue lograr una inter-
acción natural por parte del usuario por medio de integrar el hardware en unas
baquetas, las cuales permiten detectar golpes a cualquier tipo de superficie y con-
vierten estos en mensajes MIDI que son utilizados por el sistema generador de sonido
para proporcionar feedback al usuario (tanto visual como auditivo); por tanto, este
sistema se distingue por abogar por una interacción que permita golpear f́ısicamente
objetos (e.g. una cama), mientras que otros sistemas similates basan su modo de
interacción en “air-drumming”. Además, este sistema busca solventar algunos de
los inconvenientes principales asociados a los bateŕıas y su normalmente conflictivo
instrumento, como es el caso de las limitaciones de espacio, la falta de flexibilidad
en cuanto a los sonidos que pueden ser generados y el elevado coste del equipo.
Por otro lado, este documento pormenoriza diversos aspectos relacionados con el
sistema descrito en cuestión, proporcionando al lector una completa panorámica
de sistemas similares al propuesto. Asimismo, se describen los aspectos más impor-
tantes en relación al desarrollo del TFG, como es el caso de protocolos de transmisión
de información musical (MIDI y OSC), algoritmos de control, gúıas de diseño para
interfaces de creación musical (NIMEs) y modelado 3D. Se incluye un ı́ntegro pro-
ceso de Ingenieŕıa de Software para mantener la formalidad y tratar de garantizar
un desarrollo más organizado y se discute la metodoloǵıa utilizada para este pro-
ceso. Por último, este documento reflexiona sobre las dificultades encontradas, se
enumeran posibilidades de Trabajo Futuro y se finaliza con algunas conclusiones
personales derivadas de este trabajo de investigación.

5

Contents

Dedication 2

Abstract 4

Resumen 5

List of Figures 14

List of Tables 19

1 Introduction 19

1.1 Preamble . 19

1.2 Objectives . 21

1.3 Document Structure . 22

1.4 Background concepts . 23

2 State of the Art 27

2.1 History of Synthesizers and the origin of MIDI 27

2.2 Overview of the MIDI protocol . 30

2.2.1 What is MIDI? Fundamentals 31

2.2.2 How does Serial relate to MIDI? 33

2.2.2.1 MIDI Sound generation and MIDI messages 34

2.2.3 MIDI concerns regarding the project 39

2.2.4 Main MIDI Limitations and the future of MIDI 43

7

2.2.4.1 MIDI 2.0. 45

2.3 Virtual Reality and Augmented Reality Musical Instruments 45

2.4 State of the Art Conclusions . 57

3 Analysis of the problem 63

3.1 General Description . 63

3.1.1 General capabilities of the system 64

3.1.2 User Characteristics . 66

3.1.3 General Constraints . 67

3.1.4 Operational environment . 69

3.1.5 Product Perspective . 74

3.1.6 Assumptions and dependencies 74

3.2 User Requirements . 74

3.2.1 Capability Requirements . 76

3.2.2 Constraint Requirements . 83

3.3 System Requirements . 88

3.3.1 Use cases . 89

3.3.2 Software Requirements Specification 91

3.3.3 Functional Requirements . 93

3.3.4 Non-Functional Requirements 104

3.3.5 System Requirements Specification 117

3.4 Traceability Matrix . 117

4 Design of the Solution 121

4.1 Evaluation of complexity and design alternatives 121

4.1.1 MIDI Controller Subsystem alternatives 122

4.1.2 Software subsystem (Sound Generator) alternatives 123

4.1.3 Integration Mechanisms . 124

8

4.2 Architectural Design . 126

4.2.1 Bare Bones Build . 126

4.2.1.1 Bare Bones Build Concept 127

4.2.1.2 Hardware Design: Arduino-Based MIDI Controller . 128

4.2.1.2.1 Selection of an Arduino-compatible board . 128

4.2.1.2.2 Sensor selection and circuitry design 131

4.2.1.2.3 Design of the control algorithm 134

4.2.1.2.4 Hi-hat interaction handling 135

4.2.1.3 Software: Unity-based Sound generator 138

4.2.1.3.1 About MIDI Jack: 138

4.2.1.3.2 Architectural design of the videogame-alike
program . 141

4.2.1.3.3 User Interface and visualization 146

4.2.2 Modest Build . 149

4.2.2.1 Modest Build Concept 149

4.2.2.2 Hardware Design: Arduino-Based MIDI Controller . 150

4.2.2.2.1 Tangible Interface Design 150

4.2.2.2.2 CC Hihat output design (improvement) . . 152

4.2.2.3 Software: Unity-based Sound generator 153

4.2.2.3.1 Architectural Design 153

4.2.2.3.2 User Interface and Visualization 160

5 Evaluation 163

5.1 Requirements fulfilment analysis . 163

5.2 Evaluation Traceability matrices . 182

6 Project plan 184

6.0.1 Methodology selection concerns 184

9

6.0.2 Methodology depiction . 190

6.1 Division of tasks and formal planning 191

7 Socio-Economic Environment 196

7.1 Project Budget . 196

7.1.1 Software Resources . 197

7.1.2 Equipment Costs . 198

7.1.3 Human Resources . 199

7.1.4 Consumable expenses . 199

7.1.5 Indirect costs . 200

7.1.6 Total Costs . 200

7.2 Socio-economic Impact . 200

8 Legal Framework 202

8.1 Legal concerns . 202

8.2 Applicable Licensing . 203

9 Conclusions 205

9.1 Project Retrospective . 205

9.2 Future Work . 206

9.3 Personal Conclusions . 208

A Side Notes 210

A.1 How to configure Blender to work with real world units 210

A.2 Baking for Unity . 213

A.2.1 Bake Troubleshooting . 218

A.3 Panoramic view of the development process 221

10

List of Figures

1.1 Schema of the Reality-Virtuality Continuum 24

2.1 Sketch of the Electric Harpsichord ; source [10] 28

2.2 Gray’s Musical Telegraph; source [11] 28

2.3 Hammond Novachord; source [13] . 29

2.4 Electronic Sackbut available at: [14] 29

2.6 Serial Communication example; transmitting ”Hi” 32

2.7 Data to ASCII to binary encoding . 33

2.8 MIDI byte types . 35

2.9 Note On and Note Off messages . 36

2.10 System RealTime and Polyphonic Pressure message schemes 37

2.11 Channel Pressure and Pitch Bend message schemes 37

2.12 Control Change and Program Change message schemes 38

2.13 System Messages variations . 39

2.14 Computer Sequencer topology; source [15] 40

2.15 MIDI Channels scheme . 41

2.16 MicroKeyboard project developed to settle down MIDI concepts prag-
matically. 42

2.17 C Maj 7 (4,11) chord on a Novation MIDI Keyboard 43

2.18 ALMA project instruments, extracted from [26] 47

2.19 Robert Hamilton’s musical videogames 48

2.20 The Virtual flute, from [34] . 49

11

2.21 Examples of reactive widgets from [37] 50

2.22 Piivert device for gestural interaction from [37] 50

2.23 Leonard et al. Piano Model and 12 DOF haptic interface from [38] . 51

2.24 V-Drum : An Augmented Reality drumset from [39] 52

2.25 Virtual Drum from [41] . 52

2.26 Airstic drum from [42] . 53

2.27 Mixed Reality Keyboard from [43] . 54

2.28 Virtual Xylophone and Virtual Drumset from [44] 55

2.29 V-beat image via https://www.coolthings.com/ 56

2.30 Aerodrums tangible interface; image via https://www.amazon.com/ 56

2.31 The music view in-app image; image via http://www.musicroomvr.com/
. 57

3.1 Sketch of the devised system . 65

3.2 Laptop Specifications . 67

3.3 Ideal operational set-up . 70

3.4 Context Diagrams . 72

3.5 Block diagram . 73

3.6 Use Case Diagram . 90

3.7 Use Cases vs System Requirements traceability matrix 119

3.8 System Requirements vs User Requirements traceability matrix . . . 120

4.1 Example of Hologram projected using image target; via https://library.vuforia.com/articles/Training/Image-
Target-Guide . 123

4.2 Arduino Boards Comparison from [73] 129

4.3 Arduino-Based MIDI Controller Schematic v1.0 (Bare Bones Build) 133

4.4 MIDI Jack execution logic diagram . 140

4.5 (Sound generator) Component Diagram for Bare Bones Build 142

4.6 (Sound generator) Class Diagram for Bare Bones Build 145

12

4.7 Bare Bones Build 3D visuals . 147

4.8 Midi Mappings in Bare Bones Build 148

4.9 Tangible interface designed for DrumVR 151

4.10 Component Diagram Modest Build . 156

4.11 Class Diagram Modest Build . 159

4.12 Configuration menu implemented in Modest Build using Unity . . . 161

4.13 Drummer’s viewport . 162

5.1 SR against Test Cases Traceability matrix 183

6.1 Software Lifecycle Waterfall approaches 186

6.2 Incremental Delivery Lifecycle approaches 187

6.3 Spiral model . 188

6.4 Project Plan GANTT Diagram . 192

A.1 Metric Submenu . 211

A.2 Blender 3D Grid for a Unit Scale of 0.001 212

A.3 MeasureItAddon . 213

A.4 Final render using MeasureIt Blender addon 213

A.7 Render of Modeled Drumset after Baking 218

A.8 Baking Issues: Fixing Normals . 219

A.9 Image textures for the whole drumset 220

A.10 Initial Idea Draft . 221

A.11 Initial Unity Project . 222

A.12 Early version of MIDI Controller . 223

A.13 Tangible interface without USB wiring 224

A.14 USB soldering . 224

A.15 Piece-by-piece drumset renders . 225

A.16 Work in progress . 226

13

List of Tables

2.1 Comparison among types of drumsets 60

3.1 Template for user requirements . 76

3.2 Capability User Requirement 01 . 77

3.3 Capability User Requirement 02 . 77

3.4 Capability User Requirement 03 . 77

3.5 Capability User Requirement 04 . 78

3.6 Capability User Requirement 05 . 78

3.7 Capability User Requirement 06 . 78

3.8 Capability User Requirement 07 . 79

3.9 Capability User Requirement 08 . 79

3.10 Capability User Requirement 09 . 79

3.11 Capability User Requirement 10 . 80

3.12 Capability User Requirement 11 . 80

3.13 Capability User Requirement 12 . 81

3.14 Capability User Requirement 13 . 81

3.15 Capability User Requirement 14 . 82

3.16 Capability User Requirement 15 . 82

3.17 Capability User Requirement 16 . 82

3.18 Constraint User Requirement 01 . 83

3.19 Constraint User Requirement 02 . 83

14

3.20 Constraint User Requirement 03 . 84

3.21 Constraint User Requirement 04 . 84

3.22 Constraint User Requirement 05 . 84

3.23 Constraint User Requirement 06 . 85

3.24 Constraint User Requirement 07 . 85

3.25 Constraint User Requirement 08 . 85

3.26 Constraint User Requirement 09 . 86

3.27 Constraint User Requirement 10 . 86

3.28 Constraint User Requirement 11 . 86

3.29 Constraint User Requirement 12 . 87

3.30 Constraint User Requirement 13 . 87

3.31 Constraint User Requirement 14 . 87

3.32 Constraint User Requirement 15 . 88

3.33 Constraint User Requirement 16 . 88

3.34 Template for Functional Software requirements 93

3.35 Template for Software requirements . 93

3.36 SR-FR-01 . 94

3.37 SR-FR-02 . 94

3.38 SR-FR-03 . 95

3.39 SR-FR-04 . 95

3.40 SR-FR-05 . 96

3.41 SR-FR-06 . 96

3.42 SR-FR-07 . 97

3.43 SR-FR-08 . 97

3.44 SR-FR-09 . 98

3.45 SR-FR-10 . 98

3.46 SR-FR-11 . 99

15

3.47 SR-FR-12 . 99

3.48 SR-FR-13 . 100

3.49 SR-FR-14 . 100

3.50 SR-FR-15 . 101

3.51 SR-FR-16 . 101

3.52 SR-FR-17 . 102

3.53 SR-FR-18 . 102

3.54 SR-FR-19 . 103

3.55 SR-FR-20 . 103

3.56 SR-FR-21 . 104

3.57 SR-FR-22 . 104

3.58 SR-NF-01 . 105

3.59 SR-NF-02 . 105

3.60 SR-NF-03 . 106

3.61 SR-NF-04 . 106

3.62 SR-NF-05 . 107

3.63 SR-NF-06 . 107

3.64 SR-NF-07 . 108

3.65 SR-NF-08 . 108

3.66 SR-NF-09 . 109

3.67 SR-NF-10 . 109

3.68 SR-NF-11 . 110

3.69 SR-NF-12 . 110

3.70 SR-NF-13 . 111

3.71 SR-NF-14 . 111

3.72 SR-NF-15 . 112

3.73 SR-NF-16 . 112

16

3.74 SR-NF-17 . 113

3.75 SR-NF-18 . 113

3.76 SR-NF-19 . 114

3.77 SR-NF-20 . 114

3.78 SR-NF-21 . 115

3.79 SR-NF-22 . 115

3.80 SR-NF-23 . 116

3.81 SR-NF-24 . 116

3.82 SR-NF-25 . 117

3.83 SR-NF-26 . 117

4.1 Component Specification Template . 143

4.2 Component 2 Specification Bare Bones Build 143

4.3 Component 3 Specification Bare Bones Build 144

4.4 Component 2 Specification Modest Build 157

4.5 Component 3 Specification Modest Build 157

4.6 Component 7 Specification Modest Build 158

5.1 Test Cases template . 164

6.1 Planned Dates vs Actual Dates . 195

7.1 Overall labour time required by the project 197

7.2 Software Costs Summary . 197

7.3 Software Costs Summary . 198

7.4 Costs regarding Hardware assembly utensils 199

7.5 Human Resources expenses . 199

7.6 Caption . 199

7.7 Indirect Costs . 200

17

7.8 Total cost . 200

18

Chapter 1

Introduction

1.1 Preamble

One of the handicaps for musicians all over the world is space.
Musical instruments usually require a decent amount storage space and additional
cares so that their sound quality remains intact. Therefore, owning an instrument
often either implies expensive rents for assumable wide flats or requires the owner
to rent additional room for them outside its own house (r.g. rehearsal rooms).
In particular, drummers and percussionists are specially sensitive to the afore-
mentioned problem, as the dimensions of a conventional drum-set are very space-
demanding; even for a basic drum setup, such as the commonly referred to as “four
piece drum-kit” (which is a basic but versatile kit composed by snare-drum, hi-
hat, bass drum, a floor tom and two cymbals [usually ride and crash]). Such simple
drum configuration, including a throne to sit on and play can take about 7’ wide x
5’ deep (2,1336 m x 1,524 m) optimistically.

In addition to the trivially spotted issue related to space, learning to play drums
involves many other concerns and headaches. Percussion is loud and this imposes
various limitations on practising periods, which need to be adapted to avoid prob-
lems with your neighbours if you cannot afford a sound-proof studio room.
By now, I have covered the ground for those musicians who already own a drum-set,
either an acoustic drumset or an electronic one and have actual access to those.
However, this is not always the case; being the author to this paper an example of
such misfortune. The author himself owns a drumset that he has not played for ages
because of the constraints imposed by living in a small flat in Madrid, as he began
the Informatics Engineering degree. And this was the main reason for this project
to be devised in the first place.

For those that may be looking forward to joining the drum world, there are, as
evidenced here, many obstacles that will potentially discourage you from bracing
the pair of sticks you bought, since there are even more concerns to consider before

19

getting started.
Drums are likely to make you bankrupt easily; both drum-set alternatives (acous-
tic or electronic) are highly expensive, as the price of any drum accessory you can
imagine easily surpasses one hundred euros. In particular, a basic cost-quality bal-
anced acoustic drum-set is in the region of 450 euros, equipped with very poor
quality cymbals, which by the way, generally constitute the most expensive piece
of any drum-set. A single cymbal, which after all is piece of metal you hit fairly
frequently, can cost more than 300 euros. Consequently, breaking a cymbal is for
certain something you do not want to do, and if you are just starting out and you
are not confident about whether you may eventually get tired of drums, you may
look into other options.
Regarding electronic alternatives, disparate basic sets are in the region of 400 e,
which have an acceptable feel and are suitable for beginners too.
In any case, the reader may have noticed it is still a lot of money and portability
is limited for both kinds of instruments. For those that inhabit small rooms such
as the author of this dissertation, the use of practice pads is a commonality, since
these products can be placed in barely any surface and make practice easier on the
go.
As an illustration, people often place practice pads on their bed, and complement
the hand-hitting pad with a a pedal pad, so that practice can get as realistic as pos-
sible. However, there is still a problem regarding the limited amount of sounds you
can get from practice pads; since they only allow you to practice rudiments, with
no more similarities with regard to real drumming than hitting a chair. In addition,
practising limb independence of movement becomes complex due to the fact that
understanding what is going on with your hands and feet without a direct mapping
with sounds is cognitively overloading. The practice experience easily turns into
frustration or boredom, specially if you rarely sit in front of a real drum-kit and
prove your hours of practice have been worth.
All that been said, recording has not been mentioned yet; this matter is threatening
as well. Recording your drums involves even more space and money; either you get
a quite expensive electronic drum-set that you can connect to a DAW1 or you will
be spending hundreds of euros in a set of microphones in order to capture the sound
of your drums with a decent quality. This is an outstanding source of frustration
for the author himself, inasmuch as he would come up with lots of musical ideas but
,unfortunately, never owned the gear to record them properly.
Of course, there are manifold VST (Virtual Studio Technologies) such as Addictive
Drums [1] that make a really good job simulating drums and offering a great amount
of pre-recorded beats that you can modify yourself or control using a MIDI keyboard
controller, assuming you own a MIDI keyboard controller in the first place. Pur-
chasing a MIDI keyboard controller implies yet another outlay, even though they
are more affordable than electronic drums, but the cost of a home drum set-up for
recording seems like growing exponentially.
On top of that, many musicians would agree that it is not pleasant to record drums
by hitting keyboard keys that provide no guide for playing, specially once you are
used to sticks and foot coordination that are skills you have developed over the years
with an actual drum-kit in front of your eyes. In addition, key pressing precision is
not comparable to seamless playing and the recording process for keyboard-shaped

1DAW: stands for Digital Audio Workstation, a program to record and mix music tracks.

20

MIDI controllers often gets so tedious that in order to get a result that sounds far
from robotic you may need to spend a whole day editing MIDI tracks.

Driven by everyday issues regarding drummers, the whole point of this dissertation
is to present a complete drum-set that enables a musician to overcome many prob-
lems regarding sound-proving, costs associated to recording equipment and the space
limitation without compromising the ”hit feeling” without the need of any kind of
real drum-set pieces but a pair of custom drumsticks and the system which will
be detailed through this paper. DrumVR has been conceived to allow a natural
drumming experience, whose scope goes from practising to recording, powering the
otherwise easily tiring experience by means of the tools offered by the Augmented
Reality paradigm (visual feedback, holographic visualisation, 3D sound...etc) and
the help of physical interfaces.
Having a visual guide for practising is known to be very helpful, as it allows for
a complete training without requiring a musician to carry an actual drum-set with
them wherever they go. In addition to visual feedback, DrumVR is to be providing
sound effects so that the user can focus in the drumming experience and the possi-
bilities, mostly regarding flexibility, enabled by musical instrument virtualization.
It is important to note that the system has been devised as a proof-of-concept system
toward which further expansion is to likely be carried out in even after the com-
pletion of the dissertation itself. The author believes that building a market-ready
product would be too challenging for only one person, considering the relatively
tiny amount of know-how a Computer Science undergraduate has beyond the basics
on many different inter-related topics. Therefore, the objectives presented in the
following section constitute a set of goals that are, ideally, to be implemented, yet
may end up going far beyond feasibility, or may be left out as future work.
In order to the development, the hardware of the system will be based on the Arduino
hardware, which is an extensively used set of prototyping technologies; alternatively,
the 3D visualisation environment will be created with the tools that the Unity3D
framework provides. The instrument virtualisation system will be used to provide
auditory and visual feedback to the user in addition to allowing for configuration, so
that the basics feedback loop present within a real-world musical instrument (e.g. a
drumset) can be effectively replicated in virtual space.

1.2 Objectives

This sections aim to enumerate and briefly enlighten the main higher level milestones
which are to be approached in the following sections for completion.

As it was mentioned in the Preamble, this document aims to build a prototype of a
musical instrument with custom assembled and programmed hardware that allows
for a user to trigger a sound on the computer and provides means of visualisation
while interaction is enabled. However, I believe it makes more sense to modularize
the objectives further so that the chief purpose of this document is stated in a more
concise way from the very beginning; avoiding extra drifting due to a vague general

21

description about what is to be achieved.

• Objective 1: Creation of a physical interface for musical generation:
a tangible interface that resembles that of real drum playing and effectively
transmits and processes musical interaction messages is to be designed. The
idea is that it is based upon a set of drumsticks that users can use to hit a
random surface and generate sounds in response.

• Objective 2: Creating a 3D visualisation application that repre-
sents the drumset in virtual space and enables triggering sounds
associated to the different present components: a software system that
processes input obtained from the physical interface mentioned earlier is to be
create. This application is the one whose responsibility is bound to provide
some kind of response to the user input, that is, it shall at least provide sonic
and visual feedback.

Even though the previous objectives effectively delimit the scope of the project,
there are extra considerations that can be heeded as well as a must for the success
and utter usefulness of the system described herein.:

• Performance and Usability: due to the capital time requirements that mu-
sical performance imposes, delay shall be minimised and covered in depth. A
system that does not allow real-time interaction constitutes a completely un-
usable and annoying musical instrument whose usefulness is largely restricted;
in other words, it serves as a mere demonstration of the practical potential a
well-performing system similar to the presented one would have. Such lack of
practical usability is not desirable and will be avoided to the extent possible.
In this sense, it is known that percussion musicians are particularly sensitive
to sonic delay and thus, performance is even more constrained due to this
fact. Additionally, usability is a goal to be achieved by means of, among other
things, flexibility regarding the range of sounds that can be generated with
the system, in addition to portability, which must be taken seriously.

• Aesthetic and ergonomic design: An extra effort shall be made towards
providing both a good-looking and functional whole, since it is intended to be
used by musicians, which are accustomed to aesthetically appealing real-world
instruments and hence, beauty becomes part of the experience. Moreover, it
is an important aspect to consider ergonomics and musical instrument design
guidelines when it comes to build or system, regardless of the fact that the
system to be build is a proof-of-concept.

1.3 Document Structure

For the sake of clarity, the present document is divided into chapters, all of which
are briefly summarised next, to provide with an overview of what the reader can
expect from this work.

22

• Chapter 1, Introduction, presents an overview of the contents of the document,
including the main issues that motivated the project, the main objectives that
are to be achieved and a summary of the structure of the dissertation.

• Chapter 2, State of the Art, provides with a brief panoramic of the history
of synthesizers, discusses the MIDI protocol 1.0 in some detail and elaborates
on the most notable Virtual Musical instruments and Virtual Reality Musical
instruments created to date by researchers all over the world. All of this infor-
mation is then used to assess the approaches that can be used for this project
to come to life in a comprehensive digest (see Section 2.4 ,which constitutes a
feasibility study on its own regarding the creation of the system.

• Chapter 3, Analysis of the Problem, defines the scope of the project in for-
mal terms, building on the main idea and progressively making it more and
more precise. Eventually, it depicts the definition of requirements into two
abstraction levels, User Requirements and System Requirements.

• Chapter 4, Design of the solution, starts off by evaluating the alternatives
that were looked into as possible solutions for the requirements detailed before.
From those approaches , only some are chosen to proceed with the architectural
design and implementation details, which are provided immediately after.

• Chapter 5, Evaluation, details the testing plans that have been elaborated to
assure the created system complies with the requirements defined during the
elicitation process.

• Chapter 6, Project Plan, elaborates on the methodology used for the project,
including the foundations upon which that selection was made as opposed to
others. It also plots the formal planning performed at the very beginning of
the project and compares it to the actual project schedule, so that such data
can be used as a reference for similar projects.

• Chapter 7, Socio-Economic Environment, summarises the monetary and time
resources that the completion of the project involved, along with a discussion
on the impact the project may have in this matter.

• Chapter 8, Legal Framework, debates about the laws that concern the project
and the different licences under which third-party software used extensively
herein are released.

• Chapter 9, Conclusions, condenses the main outcomes from the project and
provides with future work proposals as well as some personal comments re-
garding the experience obtained from the completion of this project.

1.4 Background concepts

This section aims to provide a quick overview of concepts that may be used widely
along this dissertation. It is targeted at providing a clear but concise knowledge

23

base to readers that are not familiar with the Computer Science or musical jargon,
so that a better understanding of this document can be achieved.

• Virtual Reality, Augmented Reality and Mixed reality: both concepts
of Virtual Reality and Augmented reality are tightly related and it is useful
to present them together so that we can understand their differences in an
appropriate context.
The RV Continuum was a concept introduced by Milgram et al. in an attempt
to provide a universal definition for these a priori abstract concepts [2]. The
distinction between a ”pure” Real Environment and a ”pure” Virtual Envi-
ronment lays in the nature of the objects that compose these environments;
that is, a real environment contains solely real objects (those that exist in the
real world); while a Virtual environment is made of a completely synthetic
world, which may or may not mimic the real-world appearance of objects, but
is essentially non-real, where physical laws characterising a real environment
no longer hold.
Everything that lays between those two ”pure” environments is called Mixed

Figure 1.1: Schema of the Reality-Virtuality Continuum
[2]

Reality (also referred as XR). Therefore, a Mixed reality application or dis-
play is simply overlaying real-world objects or elements with virtual or CG
(Computer generated) ones. According to the importance of the physical and
virtual objects in the environment of the application respectively (referred by
Milgram as substract) we may further classify a display as VR or AR.
In a broad sense, an Augmented reality application would be one which
blends virtual objects into reality; that is, the real-world is added some virtual
objects to it to expand its reach and the capabilities offered by it. Aug-
mented Virtuality (AV), on the other hand, is based upon a synthetic
world to which real world’s elements are added (e.g. hand control of virtual
objects).
Virtual Reality , on the other side, is in the right-hand corner of the Contin-
uum, so it corresponds to a pure virtual world representation. These definitions
are oversimplified and discussed in more detail by Milgram et al. They dis-
tinguish three dimensions that allow a better classification of devices and ap-
plications within the Mixed Reality Continuum, which are briefly summarised
next:

– Reality: degree of virtuality or reality in the sense that the displayed
objects are primarily real or computer-generated.

24

– Immersion: level of success in making the user actively feel as part of
the environment it is being displayed.

– Directness: level of naturality with which users visualise the mixed
reality world (i.e. objects may be directly visible through optical HMDs
or processed prior to display).

• Reproduction fidelity (RF): degree of accuracy achieved by a system ac-
cording to either the quality of the images it displays or the immersion level
offered by it with respect to providing practical usefulness. Thus, fidelity can
refer to how realistic imagery looks in both temporal and spatial resolutions;
the goal is to make the user feel as there is no screen between it and the reality
being watched, a concept which is usually referred to as ”unmediated reality”.
Immersion, on the other hand, relates to the degree to which the user can feel
as within the environment; in other words, immersion does not necessarily de-
pend on realistic looking graphics, but it is a concept based on a combination
of how well the displayed objects enable the sensation of “being there”.

• Application Data or “useful data”: in relation to data transmission pro-
tocols, we refer to application data as the information that concerns an specific
application and has to be conveyed between two ends. This data often requires
encapsulation in order to be transmitted between ends that are not just ran-
dom, but instead have some way to be identified. For example, in the case
of communication over the network, a set of protocols are used to allow the
information to be sent towards a specific computer within the network; for
that, more data than the message to be transmitted (e.g. a webpage) needs
to be transmitted along with the message itself [3].

• Tuple: and n-tuple, in mathematics and computer science refers to a list of
n ordered elements. These are often parenthetical expressions, even though
other delimiters such as square brackets “[]”. An example of a 2-tuple could
be (1,3); thus, tuples can be used to describe other mathematical objects (e.g.
vectors) [4]. In this dissertation, we will refer to tuples as data values that
belong together (as it is the case of time-stamps and a MIDI message, for
instance).

• New Interfaces for Musical Expression (NIME): is an international con-
ference devoted to scientific research that plays a role in musical expression and
artistic performance. Within this important event, concerts, workshops and
talks regarding innovative approaches to musical interfaces take place. Muti-
ple research areas converge in these conferences, including muscal education,
protocol design, real-time computer systems...etc [5].

• Digital Audio Workstation (DAW): it is a device or software applcation
that is used for recording, editing and producing audio files. Among the most
notable commercial DAWs we can find Ableton Live, Adobe Audition and
Cubase [6].

• Virtual Studio Technology (VST): it is a software interface developed by
Steinberg (an e-instruments brand), which is used to interconnect synthesizers
and effect plugins to different recording systems (such as DAWs). Generally,

25

a VST is used to refer to an audio processing plugin that is used either alone
or in conjunction with other sound processing software, referred to as VST
host; at the end of the day, VST these are just libraries which provide audio
processing functionality [7].

• Tangible Interface (TUI): it is a User Interface with which the user interacts
with the digital information through physical objects. These leverage the the
human ability to grasp and manipulate physical objects and materials [8].

• Proprioception: it a sense that drives the ability to control one’s body and
its movement by figuring out the relative position of the contiguous body
parts. The proprioception sense is responsible for equilibrium and coordination
among other things [9].

26

Chapter 2

State of the Art

There have been many attempts to apply the relatively new Virtual Reality and
Augmented Reality paradigms to the music environment and the creation of highly
flexible musical instruments. However, the concept of computer-aided musical com-
position has been around for centuries, and research has settled the very basics for
the upcoming generations of music and computer-science enthusiasts to keep ex-
ploring the uncountable possibilities that computers can provide traditional music
with.

Along this section, the reader will be presented with a brief overview of the history
of electronic musical instruments, more precisely synthesizers (Section 2.1).
Afterwards, and following the mention to the revolutionary MIDI protocol in his-
torical terms, the reader will be guided through a comprehensive explanation of the
MIDI protocol itself, thus, accounting for its selection, yet considering its limitations
(see Section 2.2)
Next,in Section 2.3, an analysis of the recent efforts made to integrate technologies
belonging to the Milgram’s Reality-Virtuality Continuum [2] with the creation of
music will be discussed.
As a summary, an stress will be made to clearly define the virtues and disadvantages
presented by most of the proposed solutions (that is to say, virtual and augmented
instruments developed to date), and general conclusions regarding the discussed
material will be depicted in Section 2.4.

2.1 History of Synthesizers and the origin of MIDI

In order to find the very first footprint of electric musical instrument, we must look
back not years but centuries, back to the 18th century.
The first electric-powered musical instrument dates from 1759, when Jesuit priest
Jean-Baptiste Delaborde (France) built the Clavecine Électrique, also known as the
‘Electric Harpsichord’ .Instead of being a stringed instrument, it looked more
like a carillon type keyboard, which used a static electrical charge (supplied by an
early form of capacitor) to vibrate metal bells. The early instrument allowed to

27

generate a series of sustained notes, similarly to an organ [10].

Figure 2.1: Sketch of the Electric Harpsichord ; source [10]

Later, entered the nineteenth century, Elisha Gray created the first purely electrical
sound generator, the “Musical Telegraph” (see Figure 2.2), which was inspired by
Gray witnessing his nephew playing with around with his equipment. The child had
connected one end of a battery to himself and the other to a bathtub; by rubbing his
hand on the bathtub’s surface he created an audible humming tone proportional to
the electric current as input.The idea of the inventor was allowing to send multiple
telegraphic messages encoded as different pitches simultaneously over the same line,
so that these could be decoded at the receiving end. Thus, this device was capable
of remotely transmitting the generated music when connected through telephone
cable along more than 200 miles [11].
Later discoveries were based on Gray’s device, such as the Telharmonium , in-

Figure 2.2: Gray’s Musical Telegraph; source [11]

vented by Thaddeus Cahill in 1895 and considered the first actual synthesizer; it was
conceived by the inventor as an ”“Apparatus for Generating and Distributing Music
Electrically” and designed as to enable the generation of perfect pitches (notes),
whose sound could be altered to match the timbre and characteristics of other in-
struments as well; making it a versatile instrument [12].
The popular Theremin appeared in 1922, which exploited the Heterodyning effect,
discovered shortly before. This phenomena allowed to generate a monophonic sound

28

whose pitch could be controlled manually by the substraction of similar waves, gen-
erating a wide range of audible frequencies.
Rapid advances in subsequent decades regarding analog signal manipulation con-
veyed to the assembly-line production of the first synths that were commercialised,
such as the Novachord (see Figure 2.3), manufactured by the Hammond Organ Co
in the USA from 1939 to 1942, which introduced simple pressure sensitive system
that allowed control over the attack and timbre of the notes, and which was played
using an interface like a common piano [13].

Figure 2.3: Hammond Novachord; source [13]

Time brought novel capabilities to basic electronic instruments, which allowed the
development of the Electronic Sackbut (see Figure 2.4) by Canadian Hugh Le
Caine in the late 40s. This was the first musical instrument enabling real-time
control of sound’s volume, tone and timbre.

Figure 2.4: Electronic Sackbut available at: [14]

After WorldWar II, the first recording studios appeared, and with them, the modular
synthesizers arised, which were also programmable (the first one was the Mark II
Sound Synthesizer, which was the size of a room and interconnected many different
pieces); these new modular devices allowed for an increased flexibility of synths to
date.
Around the 60s, with the newly emerging transistor technology, the first portable
modular synths entered the stage (i.e. Moog [1964]), although they did not become
commercial until the development of really tiny solid-state components (the 80s),

29

which allowed synthesizers to become self-contained and truly portable instruments.
By then, analog voltages were controlling how sound behaved, regardless of the brand
producing electronic instruments. Nevertheless, compatibility was a massive issue,
as each manufacturer was implementing its own variant of an analog interface for
synthesizer modules. This was a problem in the sense that a performer could not
know whether the assembled modules, when connected, would result in the sound
obtained from an equivalent module from a different brand, and it was hard to build
up complex heterogeneous systems that could be controlled by a master keyboard,
for example.

To solve this mess, Bryan Bell (a sound engineer) created a common interface that
enabled the connection of heterogeneous modules and their configuration to achieve
desired sounds in an automated way, constituting the first step for interface ho-
mogenisation in the musical industry.
By the end of the 70’s, many synthesizers implemented a digital microprocessor,
controlling the analogue signals that manipulated sound, and implementing fea-
tures such as automatic tuning, pattern generation and sound storage.
To allow interconnection of their synthesizers, Roland introduced a technology called
DCB (Digital Control Bus) to enable interconnection of their products, along with
a special connector, the DIN-SYNC, which was designed so that it was impossible
to mis-connect devices.
In the early 1980’s, in an attempt to standardise a digital protocol for commu-

(a) MIDI ports and cables (b) MIDI association Logo

nicating between synthesizer modules from different manufacturers, leaders of the
digital instrument industry co-developed MIDI (Musical Instrument Digital Inter-
face), which was introduced at the 1983 NAMM trade show [15]. MIDI lays the
most basic foundation of this project, and will be discussed briefly next.

2.2 Overview of the MIDI protocol

This section covers the fundamentals of MIDI, which is the most widely used commu-
nication protocol for electronic musical instruments. Note that other communication
protocols exist, as we will discuss later in Section 2.3; but this one was chosen to be
used in development because of its ubiquitously.

30

2.2.1 What is MIDI? Fundamentals

MIDI is a standard communication protocol; this means it is simply a clearly defined
step-by-step communication procedure between two machines, or in other words, a
set of steps for two machines to make sense of the messages being exchanged between
them at a given point in time.
In particular, MIDI is a Serial Communication protocol, precisely meaning that
communication can be performed with only two cables (or even one only), one con-
trolling the timing of the data exchanges (CLK) and the other being used for the
actual data exchange (IN/OUT); therefore, the same bus is used to transmit data
from one end to the other, so they must agree upon the use of their common link to
transmit information.
In fact, there is a special serial communication protocol which is asynchronous,
meaning that no clock signal is used to control the timing of the data exchanges,
allowing us to use a single cable for the whole transmission process. This is the real
protocol used by the MIDI specification as lower-level transmission control mecha-
nism. From now on, we will be focusing on the insights of this asynchronous variety,
and we will describe how it works roughly.

Let’s say we want to transmit the word ”Hi” from S1 to S2. We could be using
MIDI for that, or any other serial communication protocol. However, it is easy
to spot a problem with uncontrolled data transmission, data from both ends may
easily collide and get tangled. Owing to that problem, there are some mechanisms
targeted at avoiding it:

• Baud rate: the clock bus or independent end configuration is the main syn-
chronisation mechanism, it specifies how fast data is to be sent over the serial
data bus. The units of the baud rate are usually bps (bits per second even
though they are often referred to as bauds), so if you raise those units to the
power of minus one, you can easily obtain the time it takes for the protocol
to transmit a single bit based solely in the send time (neglecting the time to
transmit over the serial bus itself).
Example: 9600 bauds (bps)

1
9600bps = 1,041666667−4s = 0,10467 ms = 104μs

The ”useful” data each frame carries is often 8 bits, and then, we have special
bits (namely Start and stop bits, discussed next) which tell the other end
when data has been already transmitted, so that the other machine can read
the line. Then, the upper layer protocol may impose more rules and reduce
the amount of bits that are usable or fixed, as we will see with MIDI.

• Synchronisation bits: System 1 and System 2 (namely S1 and S2 in Figure
2.6) must know when one has finished transmitting, so that the other can read
whatever zeroes and ones lay in the receiving bus. For knowing so, there are

31

2 or 3 special bits that are added to the app data notifying whether the data
chunk being sent is complete or not.
The Start bit is always a zero, notifying the other end that it is going to
start the transmission of a packet (the bus state changes thus from one to
zero meaning ”I start communicating”). When the data transmission is to
be finished because the packet has been fully sent, one Stop Bit is sent (or
occasionally two), with value 1, so that the other end can now process the
message accordingly (extracting the application information contained in the
packet; i.e. ”Hi”).

• Parity bits: parity is a very rudimentary way of low-level error checking,
which consists of adding up the data bytes and storing as a bit the evenness of
the sum. Often, if the data byte contains an odd number of ones, the parity
bit gets set to 1; to make the whole thing even. In the case the data byte
contains an already even number of ones, then, the parity bit is zero.
This allows for discarding packets with tiny errors, but it is an very unreliable
mechanism overall, so it is not used very frequently. Neither is it used in MIDI,
so it doesn’t appear in the examples, but it was mentioned for completeness.

Figure 2.6: Serial Communication example; transmitting ”Hi”

Referring back to our example, Figure 2.7 shows the required steps to be performed
so that application data can be transmitted, suffering different transformations and
encapsulations along the way to allow transmission (often referred as Marshalling1

or Serialization):

If we aim to transmit ”Hi” using a Serial protocol, we will need to convert the
characters independently into its encoded equivalent, and then send those in two
separate packets, due to the 8-bit “useful data” length limitations imposed by data
framing. The Baud rate must be adjusted in the same way in both ends (S1 and S2)
for the communication to work, otherwise, you will notice communication errors all
the time, since no end will be able to understand what the other is trying to express
(they would be de-synchronised).
In the example, when aiming to transmit ”Hi”, we would need more bits other than

1 https://en.wikipedia.org/wiki/Marshalling (computer science)

32

Figure 2.7: Data to ASCII to binary encoding

those from the content itself, which are start and stop bits. Once we converted the
expression ”Hi” into numeric values that can be understood by a computer (binary
encoding), the resulting chains of zeroes and ones will be sent over the Serial bus.
Note that d0 and d1 in Figure 2.6 are those obtained from the transformation
pipeline described later in Figure 2.7.

2.2.2 How does Serial relate to MIDI?

MIDI is focused in the transmission of the data necessary to generate sounds, not
vain greetings like we saw in the example. MIDI is used to transmit whether live
sounds (which are triggered by a musician on an electronic keyboard) or sounds
stored in files, which gather information of the sounds constituting a song (tempo,
notes, duration of each note, instruments....) so that it can be played back.
MIDI messages comprise a set of application data bytes sent over Serial, which are
logically arranged in order to make sense of their meaning. The different types and
lengths of these messages will be described shortly .
There is a possibility that you have heard about Standard MIDI Files; these are
related to the MIDI protocol because they are created by storing a set of events
(MIDI message receipt), which appear within the file as a timestamp-MIDI message
tuple. Each tuple simply specifies which sound to trigger (encoded in the MIDI
message) and when to generate it when played back, which is specified by the time
component of the message. Moreover, files record the time to wait before the next
sound is generated, so that the musical ”performance” can be defined solely as a set
of events triggered sequentially with silence among different events.
With these concatenated tuples, we are able to play back a MIDI file that maintains
tempo and sound characteristics recorded in the first place. In this dissertation we
are not largely interested into how MIDI files work, but instead, we are concerned
about live MIDI sound generation, so we will stop the discussion about this topic
here. You can take a look at [15] for a more detailed discussion on the encoding and
the limitations of Standard MIDI file encoding.

33

Even though there is plenty of room for other applications falling within the MIDI
specification, MIDI was not conceived for data transmissions out of the scope of
music, and other applications may neither fit nor afford the limitations of this pro-
tocol. Next, we will dive into the details of MIDI messages and general applications
of each one.

2.2.2.1 MIDI Sound generation and MIDI messages

In order to generate sounds, the MIDI protocol provides with different types of
messages, with their characteristic structure and purpose. All those are transmitted
between machines through a Serial interface, as discussed previously.
MIDI uses a baud rate of 31,250 bps as standard, which means that the maximum
amount of data that can be sent per second is 3,125 bytes per second (since 8-bits
of data require 2 extra bits (start ad stop bits), so 10 bits need to be transmitted
for the shortest whole MIDI case scenario).

A MIDI message is no more than a set of bytes, chained zeroes and ones grouped
into 8 digit-chunks. Each type of message has a specific length, depending of its
purpose. Any MIDI message is made out of two types of bytes (chunks of 8 bits):
status bytes and data bytes:

• Status bytes: identify the type of MIDI command being triggered. All status
bytes begin with a one; that is, their Most Significant Bit (MSB) is 1. Status
bytes can be subdivided into two parts of the same length, both 4 bytes, called
nybbles.
The most significant nybble (upper four bytes) contains information regarding
the type of command to execute, whereas the second specifies the MIDI channel
to which the command applies to. As the MSB is fixed, there are only eight
possible command types, therefore, eight categories of messages.
On the other hand, regarding channels, we are allowed to use up to 16 as it is
possible to utilise the LS nybble bits to all its extent (4 bits; 24 = 16) .

• Data bytes: if the first bit (MSB) of a received byte is a zero, then, it solely
contains data, which will be associated with the last received status byte,
which often will be build up together a complete MIDI message. The meaning
of each data byte is determined by the category the previously received status
byte fell into.

Knowing these two types of bytes, we may finally discuss the variety of MIDI mes-
sages that can be built. Essentially, there are 8 types of messages namely: Note
Off, Note On, Polyphonic Pressure, Control change, Program change,
Channel Pressure, Pitch Bend and System messages.

• Note On: This command allows for specifying a note to be played back, and

34

Figure 2.8: MIDI byte types

requires information that is encoded in two subsequent data bytes: the note
number and a measured velocity depending on how hard we hit or how loud
we want the note to sound like. If we think of a usual piano-looking MIDI
controller, each key would be associated with a specific Note number, and
often, a pressure sensitive piece of the key is the responsible for telling the
computer the velocity value.
We can direct the command to any of the 16 MIDI channels by telling to which
it applies in the least significant nybble of the status byte.
As an example of this message, say we aim to create an E4. To do so, we would
look for the number between 0 and 127 that is associated to the desired note
(in this case E4=64) and then we would specify a velocity to taste. Velocity
values are supposed to have correspondence in terms of classical music theory,
however, different instruments handle velocity values in a variety of ways, as
mentioned in [16].
If we do the math, we can compute time it takes to transmit a Note On
complete message (One status byte and 2 data bytes):

3bytes/3.125bytes/s = 0.00096s = 0.96 ms (2.1)

• Note Off : Contrary to the previous type of message, this one is used to silence
a given active note which was previously triggered by a Note On message. The
difference in the structure with regards to note on messages is non-existent;
these two messages look exactly the same but the command code for them is
different.

Note On and Note Off messages are closely related, so in fact, you can use a
Note On message as an “implicit Note Off ” message by simply specifying on
it a velocity value of 0; the effect will be the exact same one we would expect
from a Note Off message targeted at particular note number.
In addition to this eventuality it is also possible to save bandwidth by using
what is called Running status, which consists in concatenating many Note
On/Note Off information after a single status byte, so that if we aim to send
every note towards a unique channel, we save time by only advertising we will
be sending a stream of Note On/Note Off data bytes next.
In other words, unless there is a new status byte arriving to the receiving end,
all the data messages will be processed as belonging to the formerly specified

35

channel and data bytes will be split in groups of 2 data bytes as if each one
was preceded by its own status byte (constituting a standard MIDI message).
You can find more precise details in Figure 2.9

Figure 2.9: Note On and Note Off messages

• System Real Time: These messages are easily recognised, as are those that
have the most significant nybble of the status byte set to 0xF and the first
bit (msb) of the second status nybble set (that is, set to 1). These messages
are used for synchronisation purposes, often to keep share the tempo among
sequencers or to start/stop the recording. System real time messages are only
one byte long, that is, they comprise only the status byte. Within these, the
channel is not specified, instead, those bits are used to tell which is the com-
mand itself within the category of System Real time messages. As they do not
have data bytes, we can use them without interrupting “Running Status”.

• Polyphonic Pressure: To provide an instrument with more expressiveness,
some MIDI controllers incorporate a feature colloquially referred to as After-
touch. One of the kinds of Aftertouch is the so called polyphonic aftertouch,
in which every key is capable of sending its own independent pressure infor-
mation.
A polyphonic pressure message is composed of a status byte and two data
bytes. The status identifying a message as Polyphonic Pressure is 0xA, and
as in most message types, the ls nybble contains information regarding the
channel receiving the message. The first data byte specifies the key number
associated to the pressure value to be controlled, whereas the second value is
the value for the pressure exerted towards the pressed key at a specific moment
(similarly to velocity).

• Channel pressure: as it is pretty expensive to include a pressure sensor un-
derneath each key of a MIDI controller, a cheap way to add expressiveness to
an instrument is to provide with a overall pressure measure. Channel pressure
messages gather information regarding the pressure of the notes being played
for a specific channel. Channel pressure messages are identified by the com-

36

Figure 2.10: System RealTime and Polyphonic Pressure message schemes

mand code 0xD and in contrast with polyphonic pressure, channel pressure
messages comprise only one data byte, containing the channel pressure value.

• Pitch Bend: A spring based mechanism is usually added to a MIDI controller
to enable glissando or portamento, so that the notes that are on can be pitch
shifted, and then, go back to their original pitch. Pitch bend messages are
recognised by the status code 0xE, and they need two additional data bytes,
both of which contain information regarding the bending. there is a total of
14 bits of pitch bending range, taking as starting point 8192 from a max value
of 214 and 0 as the minimum value (corresponding to the maximum bend
allowed upwards and downwards respectively).

Figure 2.11: Channel Pressure and Pitch Bend message schemes

• Control change (CC): More parameters regarding sound and expressiveness
can be provided through what are called continuous controllers, which are
often implemented as a set of additional knobs or sliders. These parts can
usually be mapped to control different things, even though there is a standard

37

specification for them, but it is not universal so many devices allow you to
configure them to taste. These messages are recognised by a command code of
0xB, and expect two additional data bytes. The first data message contains
the controller number; that is, whatever is to be controlled, whereas the second
data byte is devoted to specify a value to set to the given controlled expressive
parameter.

• Program change: As there are many synthesizers allowing for different
sounds within a specific MIDI channel, we can choose the sound that will
be played by stating so using a program change message. You change the
patch set on virtual synthesizer to the desired one. A program change mes-
sage is identified by the command code 0xC and requires a single data byte,
containing the patch number.

Figure 2.12: Control Change and Program Change message schemes

• System messages: System messages act as an auxiliary envelope for events
that don not fit within other statuses. To state that a MIDI message is of this
kind, we use the command code 0xF and we set the least significant nybble of
the status byte to the purpose of the message (encoded). As we saw, in case
the first bit of the second nybble is set, we have a system real time message,
otherwise we may have:

– Time Code Quarter frame (oxF1): Expects one data byte and it is used
to transmit absolute time information, in order to enable synchronisation
with video playback systems.

– Song position (0xF2): It is possible to construct messages that allow
moving around within a song being recorded in a sequencer. This message
expects two data bytes which conform an offset expressed as the number
of sixteenth notes elapsed from the start of the song.

– Song Select (0xF3): It is possible to tell a sequencer to select a new
song from MIDI messages. These messages require an extra data byte
encoding the number of the song.

– Tune request (0xF6): (dated) used in analog synthesizers to trigger au-
tomatic tuning functionality.

38

• System Exclusive: There are two command codes left to assign according
to the previous discussion; those are 0xF0 and 0xF7. These are reserved to
SysEx messages, which can be used to send any kind of data we aim trough
MIDI; they can be used for custom purposes, and they can take any length,
and follow a very specific structure discussed next:

There is an opening byte, called Start Of Exclusive (SOX), which carries the
0xF0 as data; then information regarding the vendor is expected, which can
be encoded in one or 3 bytes; depending on the nature of the vendor. If
the vendor was involved in the MIDI starting era, then, it will suffice with 1
byte to identify it. If the first byte received is zero, then the following two
bytes will encode the vendor. Non-commercial entities have a specific one-byte
identification number, which is 0x7D.
After the vendor ID, we can append any data we want as a stream of bytes,
which is closed by a new type of byte, End of Exclusive (EOX), characterised
by a the value OxF7. We can use vendor IDs to tell whether the data is real
time or not, so that we can prioritise accordingly.

Figure 2.13: System Messages variations

2.2.3 MIDI concerns regarding the project

There are many possible topologies for a MIDI system. We are interested in record-
ing MIDI events in a computer sequencer, at least regarding the physical interface
that we want to create for this dissertation. Therefore, note that the topology to-
wards which we will design the system later on is known as Computer-Sequencer.
The computer may include any set of Daisy Chained MIDI output devices (those
generating the sounds); or these can be external, as you see in Figure 2.14.

39

Figure 2.14: Computer Sequencer topology; source [15]

On another matter,MIDI channels can be reasoned as a limited number of 16 inde-
pendent pieces that can be set and produce sounds independently from one or many
different MIDI controllers. Therefore, it is not a good idea to think about MIDI
channels as independent instruments controlled via MIDI messages from differently
shaped MIDI controllers, but instead, you can reason about them as different parts
of a music sheet, which are built as different parts of a song but instead of being
played strictly by specific instruments of the orchestra, you can later play with the
assignment of those, that is to say you can choose which instruments do each part.
A channel is an isolated part of your composition, which may be controlled using
only status bytes referred to that channel, keeping the rest of the channels unaf-
fected by commands not headed to the channel itself. Channels are slots, different
destinations of commands.
Figure 2.15 shows the main parameters that the concept of a MIDI channel handles,
each channel can be set to a “program”, usually known as “patch”, which associates
with the kind of synthesizer that will process MIDI messages. The Program Change
message allows to change such setting in the synthesizer part of the digital instru-
ment chain.
For each channel, we have the same amount of notes which can be played back on
the synth (their state [on or off] is to be monitored by the synth), each logical key
has also an associated velocity value which refers to the strength of the press or hit,
depending on the type of MIDI controller used.
Regarding the project directly, according to General MIDI, drums are supposed to
be mapped to Channel 10, even tough many VSTs do not really restrict that much
the Channels according to the standard. This consideration will be evaluated later,
in the Design phase, to decide whether compliance shall be guaranteed or not.
This whole set of data structures and abstraction layers may be handled later and
implemented if necessary on the software side in order to support MIDI input, so it
is of chief importance to understand their insights. Extra configuration for sound
characteristics can be controlled via CCs (Continuous Controllers), which are usu-
ally knobs or sliders that trigger Control Change messages. Examples of these are
volume or panning of the sound. You can check all the Standard Continuous con-
troller mappings at [17]. This may be of special interest for enabling configuration
of the sound from the hardware interface in the sound-generator subsystem or in
order to implement a realistic hi-hat control.

40

Figure 2.15: MIDI Channels scheme

414141

Figure 2.16: MicroKeyboard project developed to settle down MIDI concepts pragmatically.

424242

Figure 2.17: C Maj 7 (4,11) chord on a Novation MIDI Keyboard

As a proof of concept, the author of this paper developed the one-octave piano
MIDI controller you see in Figure 2.16. So that a basic hands-on exploration was
performed to fully understand messages and their purpose within the scope of music
composition, spotting those types of messages which the author could be interested
in for its use in the final product.
It implemented all the type of messages described previously and used a joystick
to provide with Pitch Bend Support among other functionality. The code for the
project can be checked at [18].

2.2.4 Main MIDI Limitations and the future of MIDI

This part of the document summarises the main limitations associated to MIDI 1.0,
which is the most widespread MIDI version as of this dissertation.

• Low bandwidth and inherent delay: Let’s just consider we aim to play a
total of 10 simultaneous notes at once, testing the isolated delay of bare MIDI,
at its baud rate of 3,1250 bauds. This case scenario could be verbosely firmed
up as a Major 7 chord with an added tension played in two different octaves;
which doesn’t constitute a crazy amount of notes to be played at once and
involves both hands and all five fingers in the playing process. This example
is represented in Figure 2.17 .

If we consider both no running status and running status for MIDI transmis-
sion, solely, NoteOn messages and the corresponding delays, we would have
the following numbers:

43

10 notes with no running status involve a total amount of 30 bits to be trans-
mitted per NoteOn message. In other words, we would have:

10notes× 3data bytes× 10bits/byte = 300bits

Those 300 bits require 300bits∗ 0.032ms/bit = 9.6ms to be transmitted
sequentially.
Since sequentially means precisely one after the other, real time is literally
impossible to guarantee due to non-parallelism. For this scenario, each note
will be delayed a total of 0.96 ms with respect to the previously received one.

Running status mitigates a bit the delay associated to the lack of parallelism
but the improvements are not that outstanding. This bandwidth optimisation
mechanism reduces the amount of data to be sent from the previous 300 bits
to 210 bits, since only a status byte needs to be sent, giving birth to the status
and continuous stream of data bits. A complete noteOn message goes first
and then, 18 data bytes are sent.
If we do the math:

1whole message× 3bytes× 10bits/byte+ 9Data Byte messages× 20bits/DBm = 210bits(2.3)

This amount of data can be transmitted in:

210bits∗ 0.032ms/bit = 6.72ms

Comparing these two approaches, we obtain an improvement of around

%Decrease =
T0 − Tmpro

T0
×100 =

9.5ms− 6.729.5ms

9.5ms
×100 = 29.26%

(2.4)

According to several articles, the amount of delay that most musicians are
sensitive to is around 10-12 milliseconds, although it varies according to the
kind of instrument and is often associated to the attack time that it has.
Singers are the most sensitive to delays regarding buffering, processing and AD
converters (as they hear themselves internally before listening to the amplified
version of their vocals) yet since we are not interested in Vocals but in MIDI,
that discussion will end now, for more info regarding this issue consider going
through, under the ”Acceptable Latency Values” section [19].

• No time-stamping, handshakes or error correcting mechanisms what-
soever: the protocol fully trusts the communication channel, since there is no
mechanism used to check for bit errors or correct timing / duplicate messages
being received.

• Problems with continuous controllers: since Control Change messages
don’t have any kind of optimisation measure applied to them such as running
status, we face a problem here regarding the huge amount of messages that
are generated by rotating a knob on a midi controller, since a message (30
bytes are sent per modified value, which increases the delay due to sequential
messaging and potentially delays other MIDI messages such as NoteOn or
NoteOff. This amount can be reduced by means of programming in the MIDI
controller end, minimising the number of messages of this kind sent over the
channel per second, finding a balance between precision and usability.

44

2.2.4.1 MIDI 2.0.

At the time of writing this dissertation, a new version of MIDI was announced to be
in a prototyping phase. This new version is mainly aimed at improving the band-
width problems of MIDI 1.0, which did not allow for real-time control over sound
synthesizers, and it also wishes to adapt better to the new technical environment
surrounding MIDI [20] . However, no measures were taken to adapt to this new
standard, since the project was at an advanced stage when this advances were made
public at NAMM 2019 2.

2.3 Virtual Reality and Augmented Reality Mu-

sical Instruments

Back in 1965, Ivan Sutherland conceived an “ultimate display as one that could
provide an immersion comparable to that of the real world; where objects could
be as usable as real world objects and the computer could control the behaviour
of matter [21]. Virtual and Augmented Reality efforts have narrowed the gap ever
since, yet there is a long path to cover still.

In recent years, a rapid development of VR and AR displays and technologies;
specially HMDs (Head mounted displays) such as the Oculus Rift an, HTC’s Vive
(Virtual Reality alternatives) or the see-trough display offered by Microsoft Hololens;
has brought interest back to the paradigm, since more and more competitive prices
for these devices are coming out.

Anyways, new interfaces for sound and music generation have been developed during
the last few decades (often referred to as NIMEs), since the augmentation of reality
boundaries is specially interesting for creative activities, as it is the case of musical
performance and composition.

VMIs (Virtual musical instruments) have become a common tool for producers and
songwriters over the world, caging into software diverse models of existing musical
instruments and incorporating new features which where impossible to conceive in a
real and hardware-constrained instrument (e.g. vibrato and glissando in piano key-
boards). These virtual instruments have been around for decades and sometimes
generate sounds based on physical models (i.e. they use physics and models of how
the sound is actually generated to provide with realistic sounds in real-time); early
examples of these VMIs and custom interfaces can be found in Cook’s works SPASM
[22] and BoSSA [23] or Välimäki, V. and T. Takala project [24](1996)).

Nowadays, VMIs are often controlled by means of MIDI controllers, mostly shaped
like a piano keyboard and embedded as VST plugins (which essentially encapsulate
a virtual instrument so that it can be used within a DAW), and provide with real-

2watch https://www.youtube.com/watch?v=QvJhLQnuktg

45

istic sound generation used in musical compositions of all genres.
However, the capabilities of these high-tech virtualized instruments are limited in
terms of interaction from the perspective of the user, as interaction occurs and is
mapped similarly to how it is mapped in the real world, without leveraging the
non-physical constraints characterising virtualization (as the real-world constraints
don’t apply in the virtual world anymore).
Consequently, and according to Perry Cook’s principle “Copying and instrument is
dumb, leveraging expert technique is smart” [25] it makes more sense to expand
VMIs towards different interaction modes and mappings to the generated sound
than trying to simply replicate an existing instrument without modifying the way
users interact with it largely. New mappings would allow for a re-contextualisation
of gestures in the musical domain and allow for further extension of virtual instru-
ments and the sound they are able to generate in response to user input. This would
differentiate new instruments more and more from real-world instruments and even-
tually, would probably end up being considered instruments on their own (not just
improved counterparts) because of the extensions to the real world enabled by these.

To this end, unconventional MIDI controllers, Virtual Reality and Augmented Real-
ity projects have been developed over the years, exploring the potentially unlimited
possibilities offered by reality augmentation technologies (VR and AR) in the mu-
sical field. Next, a subset of these projects will be discussed shortly, extracting
conclusions from different research papers and articles by some of the experts in the
NIME field, Computer Music and the AR/VRMIs field (Augmented Reality/Virtual
Reality Musical Instruments).

Decades ago (during the mid 2000s), interesting contributions to the VR instruments
field were presented in the ALMA project, comprising several Virtual Reality In-
struments (namely Virtual Xylophone, Virtual Membrane, FM Synthesizer
and Virtual Air Guitar found in Figure 2.18) that focused on providing with new
mappings between gestures and generated output from the instrument that used
real-time sound synthesis, contrary to the trend at the time.
The majority of these instruments, as discussed in [26] (2005) did not involve wear-
ing an HMD but instead, a whole room was used for visualisation, where the virtual
world was projected and which was perceived as 3D by means of shutter glasses3.
User input was gathered by means of data gloves, magnetic motion trackers and
Computer Vision (this last technology used exclusively on the the Virtual Air Gui-
tar), often used in tandem to detect gestures or direct interaction with virtual ob-
jects.
These instruments enabled new interaction modes with respect to their physical

counterparts, so they essentially expanded on the possibilities made available by
virtualization in clever ways in order to differentiate from their predecessors.
Perhaps the most innovative aspect of these virtual instruments was the ability to
control sound generation parameters in real time, as the FM Synth and the Virtual
Membrane evidence. In the first project (FM Synth) , consisting of an instrument
inspired on the Theremin, hand gestures were mapped to different sound param-

3shutter glasses: special 3D glasses that work based on LCD technology and trick the user into
perceiving 3D from 2D projections via alternating the lens that allows see-through at a given point
in time

46

(a) Virtual Xylophone (b) Virtual Membrane (c) Virtual Air Guitar

Figure 2.18: ALMA project instruments, extracted from [26]

eters (e.g. right-hand-opening was mapped to amplitude of sound; that is to say,
volume). In the Virtual Membrane4 project, several parameters could be also
altered even once sound had been triggered (e.g. tension, dimensions), allowing for
generating sounds that could not be reproduced in a non-virtual counterpart and
thus, expanding over real-world constraints.

Along these lines, Robert Hamilton would suggest later in [27] (2009) that the lack
of physical constraints in the virtual world could be indeed used to re-contextualize
the way gestures affect sound within Virtual instruments, even contemplating the
possibility of providing the user with sounds which don’t match the way we would
perceive them in the real world (from a first-person perspective).
An interesting discussion on the possibility of creating a networked shared virtual
space is presented as an introduction to the referenced paper. In this interconnected
virtual environments, users from different geographic locations would be able to
hear the musical events happening in the virtual space in their own physical space,
sharing the experience and affecting sound in an correlated way.
Several projects related to the NIME field developed by Robert Hamilton use Q3OSC
[28], a special Open-source version of a game engine which allows to generate OSC
(Open Source Control5) output; that is to say, essentially any varying parameter
within a game (e.g. player’s position) can be used as an input to the sound creation
or shaping process, handled externally by an OSC server that generates the sound
according to the in-game situation or events happening at a given point in time.
Among Robert’s activity, we find multiple interactive video-games producing some
kind of audio output that is somehow interactive, such as maps and legends, a
multiplayer shooter videogame which immersed players in a world in which mostly
every user action has an impact on the sound generated as output. Within it, paths
and sound triggers in the shape of in-game objects are shown to the user to suggest
how to use the system in a more deterministic way. The system was devised as a
“compositional tool”, aimed at being showcased in a specific location, a university

4Virtual Membrane: a percussion instrument with configurable membrane characteristics that
could be played using virtual mallets

5OSC is a protocol for communication among computers, sound synthesizers, and other mul-
timedia devices (primarily targeted at transmitting audio-related data, as it is the case of MIDI)
which uses the IP network and UDP packets as communication channel. Unlike MIDI 1.0, its
specification stresses on real-time requirements associated to sound generation and control; see
[29] for more details

47

hall, providing a novel musical experience. In that location, audio was spatialized
(played back) through a set of speakers that existed in both real and virtual spaces,
and which output in the real world was driven by the distance of players to the
speakers within the virtual world [30]. As a whole, even though it was not conceived
or self-categorised as a musical instrument, this system explores on the NIME re-
search field by offering an interactive and collaborative platform to shape a musical
performance from a set of triggerable excerpts to which effects are applied depending
on the user actions within the game, making the virtual experience social (which is
by the way one of the main problems of Virtual Reality applications in relation to
music as discussed in Design Principle 9 for VRMIs in [31]).

Other projects involving Robert Hamilton are Smule’s Ocarina (an iPhone virtual
instrument simulating an actual Ocarina6 appearing in Ge Wang’s article “Princi-
ples of Visual Design for Computer Music”7[32] (2014) and Tele-harmonium [33],
an interactive virtual reality project created using UDKOSC 8 unlike Q3OSC, Un-
real Engine provides much more powerful graphic rendering techniques.

(a) maps and legends from [30] (b) Tele-Harmonium from [33]

Figure 2.19: Robert Hamilton’s musical videogames

Other remarkable efforts are shown in [34] (2005), where a Virtual flute with
a custom tangible interface is presented to ease interaction and playability of the
virtual instrument in a natural way. Similarly to the ALMA project instruments, the
Virtual Flute generated sound by means of physical models, emulating real physics
but allowing for modification of the size of the instruments to change the output
of the model in real-time.In a sense, with this instrument “sound can be created
without being limited by e.g. material and form, which makes it possible to play
sound, which can not be played on an ordinary physical instrument”.

The instrument did not represent the user’s hands in virtual space (as can be seen
in Figure 2.20a, but a magnetic sensor was used so that the tangible interface and
visual representation of the flute could be aligned, adding to the immersiveness of

6Ocarina: an ancient wind instrument, it is similar to a flute with an odd shape; see
https://en.wikipedia.org/wiki/Ocarina .

7Principles of Visual Design for Computer Music: article including several additional VMIs
such as Magic Piano or Magic Fiddle.

8UDKOSC: Unreal Development Kit with bidirectional OSC implementation , a project very
similar to Q3OSc[27] which involved modifications to Unreal Engine, a widespread Game Engine

48

(a) Virtual flute 3D representation (b) Virtual Flute tangible interface

(c) Virtual Flute set-up

Figure 2.20: The Virtual flute, from [34]

the system. In addition, interaction required actual blowing of the tangible inter-
face, which input was gathered by means of a dynamo turning the spinning motion
of a fan into measurable electric current, which made the experience more organic.
Perhaps one of the main objectives of virtual flute (and its partner, the virtual
drum9) was exploring on how visualisation of parameters associated to the gen-
erated sound (e.g. colour used as indicator of frequency of the sound wave) could
help the performer understand how their actions affect sound easily. Learnability
and engagement of instruments are other topics briefly discussed in these research
papers, for which visualisation mechanisms enabled by VR could be leveraged.

Some time later, researchers from Université de Bordeaux in [35] presented their
own implementation of “Reactive Widgets” (firstly described by Levin in [36] [2000]),
which were complex 3D objects that provided feedback from specific sound processes
and also enabled manipulation of such visualised processes by means of interaction
with the reactive widgets. For example, a reactive widget could be a cylinder which
varies in shape according to the spectral shape of the sound associated to a given
process, and, say, changes its colour to reflect changes in volume too. The whole
point of these objects was to provide simultaneous visualisation feedback and con-
trol over more than one sound parameter at a time, outstanding from 1D or 2D
sliders that control a single parameter (see Figure 2.21). These was a novelty in VR
visualisation aspect for sound control, which was yet to be fully leveraged.
Using these approaches to interaction with sound, they created a system called

Piivert (see Figure 2.22), which comprised a head-tracker, a set of pressure sen-

9virtual drum: another virtual instrument found in the paper by Gelineck et. al. [34] which
user input is gathered by means of computer vision and having similar characteristics to those of
the Virtual Membrane in [26]

49

Figure 2.21: Examples of reactive widgets from [37]

sors positioned below the fingers of both hands (a glove-like interface), and passive
stereoscopic glasses10 for visualization of the projected images as three dimensional
(thus, no HDMs as we know them were used at this time yet).
Even though the system was not that complex from the point of view of sound
generation (since it was limited to triggerable files and effects that could be added
to the pre-recorded sounds), we can still consider it a Virtual instrument on its
own, providing some innovations for Computer Music in the interaction aspect as
well as the visualisation and simultaneous configuration of parameters associated to
mapped sound processes.

Figure 2.22: Piivert device for gestural interaction from [37]

Perhaps the system described in [38] (2013) is one of the most advanced ones devel-
oped in the field of Computer Music (as far as the author is concerned), combining
real-time sound synthesis with tangible interfaces that work at high frequencies,
all in conjunction with 3D visualisation to provide a believable VR scene that is
consistent with the multisensory outputs provided (i.e. tactile, visuals and sound
are aligned), and highly focused on the generation of sound; since according to the
authors of this paper “systems very rarely consider sound with the same level of
importance as the visual or gestural aspects”, and they wanted to change that trend
and mitigate the effects of latency.

10passive stereoscopic glasses: low-cost glasses which have different polarisation on each lens
that fits with either odd or even lines of a displayed frame; since half of the displayed information
on the screen is meant for the left-eye (odd lines of the frame) and the other half is meant for the
right-eye (even lines), glasses allow the user to see slightly different information from the projected
overlapping images with each eye

50

A custom system taking into account different real-time requirements effectively al-
lows a astonishingly realistic interaction from the point of view of the tactile feedback
of the device as well as sound generated as output. In addition, the paper does not
simply show the creation of an ad-hoc11 instrument, but instead it shows a complete
platform to design and manipulate VMIs without the need for a wide knowledge in
Computer Music low-level details, thus, enabling the creation of multiple examples
of physical models driven by a high-tech haptic interface (see 2.23b.

However, it is worth noting that the 3D visualisations provided by the generated
physically-based instruments are in the shape of dots and lines representing the
physical components that would generate such a sound in the real world, that is to
say, the represented 3D objects have nothing to do with real instrument shapes, as
it can be seen in Figure 2.23a.

(a) The Piano Model (b) 12 DOF haptic interface

Figure 2.23: Leonard et al. Piano Model and 12 DOF haptic interface from [38]

More recently, much more sophisticated systems have been developed and discussed
by researchers all around the world, many of the projects are present in conference
papers, that is, proceedings, such as NIME or ISCCMR 12.

Firstly, directly related to AR percussion is V-Drum (2015), a CV (Computer Vi-
sion) system that allows for generation of sounds by means of air-drumming while
located in front of a web camera and involving interaction with both drumsticks and
a pedal, whose tips and mallet respectively are coloured differently to ease recog-
nition (see Figure 2.24). This system is actually pretty self-contained, allowing for
direct recording of audio and video as well high flexibility and low space demands
[39].

Similarly, Virtual Drum is a system that projects a set of pads over a surface and
usesMicrosoft Kinect [40]. This system is conceived as to explore the ubiquitousness
of drum playing and makes use of visual feedback, which is exocentric and could po-
tentially allow several users play concurrently over the projected drum-heads. Thus,
Virtual Drums is a proof of concept system that explores in the Augmentation of the
reality through projection, and is one of the early systems that utilise image tracking
as the interaction source for musical instrument virtualization. As a downside to

11ad-hoc system: a system that has been developed towards a very specific objective, and often,
implying flexibility limitations

12CCMR: International Symposium on Computer Music Multidisciplinary Research

51

Figure 2.24: V-Drum : An Augmented Reality drumset from [39]

this system, the main drawback is the fact that it relies a lot on future work for a
providing the actual portability and ubiquitousness the author claims the system to
have, as it uses a projector mobile phones don’t currently embed [41].

Figure 2.25: Virtual Drum from [41]

A different approach is executed in Airstic Drum by Tsutomu Terada [42], which
is a system aiming at integrating real drums with augmented virtual drum-kit pieces
that ideally could be used interchangeably (i.e. you can either hit your actual,
real drum piece; involving no more output than the one coming directly from the
drums themselves, or, on the contrary, you can air-drum to obtain an output sound
corresponding to the chosen, virtualised, non-physical drumpiece part).
A great point of this system is precisely the enhanced flexibility it offers, allowing for
special cymbals to be virtualized in order to avoid transportation issues associated
to that, or even better; the system can make unusual and expensive drum pieces
and cymbals available for free and ubiquitously. Not only the system is mounted
on a pair of drumsticks (which is a great idea for seamless interaction), but it is
also wireless and very precise (since thresholds and interaction acceleration curves
are adapted to each specific user to fit their technique). Similarly to other projects,
it uses gyro and acceleration data to determine the orientation of drumsticks and
data gathered from real-drumming interaction and air-drumming are compared to
allow their differentiation as accurately as possible. Figure 2.26 depicts the basic
idea upon which Airstic Drum is based, i.e. a real drumkit with augmented drum
counterparts.

Furthermore, the Mixed Reality MIDI keyboard is a very interesting project
aiming at expanding the capabilities of a conventionally-shaped piano MIDI con-
troller by creating a custom controller which integrates with Unity and provides

52

(a) Airstic drum tangible interface

(b) Interaction approach

Figure 2.26: Airstic drum from [42]

immersive visualization via the HTC Vive Headset13 and hand tracking using Leap
Motion Hand Tracker14[43].
This system provides tactile feedback by means of a piano-shaped MIDI controller
that exists within the virtual space too, an interface that can grow by means of
the flexibility allowed by Virtual Reality (or as the authors of this paper define the
system: Mixed Reality or Augmented virtuality in Milgram’s terms[21], since the
interface is indeed present but as well created in-real time in the Virtual environ-
ment). As a difference from previous research papers that used different techniques
to gather user input (such as IMUs, data gloves or similar), the Mixed-Reality MIDI
keyboard uses a combination of Hand-tracking and recognition of MIDI keys pressed
to place the virtual hands properly within Virtual space. It uses the MIDI protocol
because of its ubiquity in the computer music interfaces field in contrast to several
previously mentioned systems.
Regarding modelling of the virtual system, Blender was used in conjunction with

13 HTC Vive: https://www.vive.com/us/product/vive-virtual-reality-system/
14Leap Motion: https://www.leapmotion.com/

53

CAD15, in order to provide with a precise model of the piano MIDI controller that
was developed for the project. From the model, both physical and virtual coun-
terparts were created. As one of the last comments within the article, we can find
the following sentence “The techniques used for this virtual reality based system
can also be applied to Augmented Reality systems such as the Microsoft Hololens
to further retain connection to the real world, enabling the technology to be used
by musicians in live performances.” , which further encouraged the creation of the
system covered in this dissertation. Additionally, the code for the project is avail-
able at Github16 and the electronics are based on an Arduino Mega 2560, a platform
relatively familiar to the author of this document, so this project was used as a great
source of inspiration for this dissertation and as a guide for approaching the project
from the very beginning of it.

(a) Mixed Reality Keyboard Virtual
Space from

(b) Hardware for Mixed Reality
Keyboard

Figure 2.27: Mixed Reality Keyboard from [43]

Most recently (2018) I found [44] by Abassin Fangberry and Yanxiang Zang, in
which a tangible interface for natural drumming in Virtual reality environments
is developed using a wireless IMU17to gather data, and CV (Computer vision) to
allow interaction with two custom Virtual Instruments; a virtual drum and a virtual
xylophone. They study the movement required for a human wrist to execute a hit
using a drumstick and model such motion in term of succession of variations in
acceleration in a given timespan to correctly detect a “hit” on a drum piece or
xylophone plate in the virtual world (see Figure 2.28. One interesting aspect of
the developed system was its cost, which was very low compared to that of a real
drumkit, and constitutes also an important consideration for this project, since cost
of a drumset is high.

In close relation to the system to be developed, but regarding commercial per-
cussive virtual or augmented instruments we can outline the following:
One of the first attempts to generate music by means of instrument virtualization
including gestural control can be found in the Video-game industry.
Wii Music (2008), a Nintendo game which (very roughly) simulated the experi-

15Computer Aided Design; programs of this kind are AutoCAD or ScketchUp programs
16Mixed Reality Keyboard: https://github.com/jdesnoyers/Mixed-Reality-MIDI-Keyboard
17IMU (Inertial Measurement Unit) a device that allows for measuring acceleration and ori-

entation of the object to which it is attached (by using a triad of accelerometes and a triad of
gyroscopes), allowing to determine yaw, pitch and roll (absolute orientation).

54

(a) UI and setup for Virtual Xylophone (b) UI and setup for Virtual Drumset

(c) Tangible interface for percussion instru-
ments

Figure 2.28: Virtual Xylophone and Virtual Drumset from [44]

ence of playing different musical instruments (guitar, trumpet, violin, drums, etc)
by moving around the hand-held WiiMote controller [45]. The game was a nice way
of presenting music to young people, but no one would claim that Wii Music was
an instrument that could take you further than randomly strumming a real guitar
learning or hitting a snare drum completely out of tempo 18.
On the other hand, V-beat Air Drum [46] was a decently accurate toy device for
playing air drums (no longer available), which consisted of a pair of drumsticks and
hit sensors for pedals, which allow 8 different sounds which triggered by user action.
This device meant a nice exploration step for drum playing virtualization and made
evident the possibilities regarding the increased portability that devices of this kind
could be offering in the future. Unfortunately, its limitations were too pronounced
for replacing an actual musical instrument, it could make practice a little bit more
enjoyable though. V-beat Air Drum can be considered as a notable improvement
in the right direction concerning its precision and capabilities; this device settled
the importance of the interface design with respect to virtual instrument usability,
as its hit recognition system was far closer to what it is like interacting with a real
drumset than the Wii Music interface was.

Recently, more sophisticated systems that enable accurate drum virtualisation have
been developed, such as the popular AeroDrums ; which is highly versatile. This

18Wii Music review: watch https://www.youtube.com/watch?v=yvHNSTpxjDI

55

Figure 2.29: V-beat image via https://www.coolthings.com/

system is based again in air-drumming, and provides an interface which is familiar
enough to any drummer for straightforward use. A set of special sticks and feet
accessories are provided and a camera tracks the movements of the sticks and feet
to trigger sound. The tracking is based on light reflections produced by the special
gear, which makes them not usable in an actual stage, where lights are changing
constantly. It provides a built-in set of sounds, but can be connected to conven-
tional DAWs and VSTs to record drums in your computer easily, so it is a really
good solution for practising, playing with your band or recording in a home studio
with acceptable quality.
Aerodrums was presented in NAMM 2014 and reviews from hardened drummers
were really good, since the system combined accuracy, an intuitive user interface,
decent expressiveness and customisation of sounds [47]. In fact, they recently an-
nounced they would be extending the capabilities of the system by supporting VR
projection of the drum-set. The system is also affordable (185 euros) [48], which is
a really good point regarding the importance of this factor to average drummer.

Figure 2.30: Aerodrums tangible interface; image via https://www.amazon.com/

Another Mixed Reality musical instruments worth mentioning isThe Music Room(2017).
The Music Room19 is a collection of instruments that you play in Virtual Reality.
it acts as an accurate MIDI controller that enable strummming, sliding, bending and

19http://www.musicroomvr.com/

56

drummming in a relatively natural way. It looks gorgeous, as it immerses the user
virtual space where you can find a set of carefully 3D scanned drums and cymbals
from many top manufacturers and play with the aid of the HTC Vive headset and
[49]. This system seems to perform good in terms of expressiveness, but the im-
mersion, the air drumming approach, the need for accessories to play pedals and
the use of conventional joysticks for playing makes this VR system less familiar to
drummers coming from an acoustic or realistically-shaped electronic drumset.

Figure 2.31: The music view in-app image; image via
http://www.musicroomvr.com/

2.4 State of the Art Conclusions

This subsection aims to extract a set of chief conclusions from the aforementioned
information to give the reader a panoramic perspective about how it all relates and
can be applied to the project which is subject of this document.

It is a fact that virtual and physical instruments can be easily differentiated because
of the distinctive architectures characterising the two.
Whereas acoustic instruments comprise two components (excitation source, e.g.
plectrum; and resonating system, e.g. air, strings, performer’s body...) which are
heterogeneous and hard to conceptually separate, digital instruments (VMIs) can be
split into a gesture controller and a sound-generator subsystem, which are interfaced
to each other and essentially can be isolated. This shift on design of instruments
was introduced by MIDI and advances in technology and provided new possibilities
regarding mappings between gesture and timbre. This is referred to as “splitting
the chain” by Jordà in [50], and sets out a advantages and problems:
On the one hand, splitting the chain is an advantage from the point of view of the
rapid development of both interfaced subsystems in an isolated way. This means
more research is focusing in a single edge of the conceptual whole, so better features
and synthesis algorithms have been developed over the years and different interfaces
for percussive and non-percussive instruments have been created. The problem with
the approach is precisely not taking into consideration design of both ends in tan-

57

dem. Which would allow for a better matching and usability of the system, taking
advantage of as many synthesizer features as possible. This is a relatively unex-
plored approach to design, that ought to be performed in order to provide an actual
complete instrument that goes far beyond the use of a general purpose controller.
This is something several state of the art instruments referenced in this document
have aimed [34] [26] [38].

According to the diverse projects discussed earlier, we could distinguish two major
types of VMIs, according the type of sound-generator subsystem they implement:
real-time synthesis and sample based instruments.

• Real time synthesis VMIs: dynamically generate sound, usually using
physical models, simulating real instruments or creating novel timbres. Ex-
amples of these are [38], [34] and [26].

• Sample-based instruments: some sound generator subsystems are simply
in charge of triggering sample sounds with effects applied to those. This is
often the case for virtual drumsets, which handle sets of real recorded drum
sounds which are then triggered on user action depending on the received user
input. Examples of these are [39] or [37].

This project will not be focusing on sound synthesis but instead it will search for
building an integrated instrument that is sample-based, since trying to learn ad-
vanced audio synthesis concepts would be too much effort for the sole purpose of
this dissertation.

Regarding communication between Gesture controller and Sound generator subsys-
tems, we have found two protocols as standard to transmit audio related data, each
one with specific purposes. The use of one of these will be required for design of the
solution, but let me shortly summarise the differences between the two:

• MIDI (Musical instrument digital interface): It is a protocol which
defines a hardware interface for data transmission, and is based on Serial
communication. The data transmitted consists of messages with a limited
number of binary fields, processed as integers indicating information about
e.g. which note to play, volume, channel, etc. Extensions have allowed it to
work over Wifi and Bluetooth, enabling wireless communication.
It is the standard protocol used by most companies in their interface products.
A new version of MIDI was announced and is said to overcome most problems
regarding inherent latency, time-stamping and note limitations among other
problems discussed in Section ??.

• OSC (Open Sound Protocol: is a protocol created by Berkeley University
as replacement for MIDI 1.0, providing much more advanced features in terms
of performance, flexibility and networking. The protocol uses the network and
UDP packets as transmission channel and is implemented in famous projects

58

as ChucK20, MAX/MSP21 or Reaper22. However, it lacks of support from
the commercial point of view.

The main question regarding this project is, as a matter of fact, the following:What
is the purpose of drum virtualization or augmentation if there are phys-
ical counterparts that do sound realistic?
Well, there are clear distinctions among drumsets of progressive virtualization de-
grees. We might distinguish three main types of drumsets in this sense: Acoustic
drums, Electronic Drums and AR/VR drums. Next, the basic differences among
these three types of instruments from the perspective of the author’s own research
and state of the art’s discussions will be depicted; they are summarised too in Table
2.1.

• Acoustic drums: these are the most expensive (when comparing features of
all of the competitors), the least portable and the ones providing the high-
est sound fidelity (obviously). Flexibility is often a problem as adding new
pieces to a drumkit involves buying new hardware, set-up and spending a large
amount of money (specially in the case of cymbals). Nothing feels as real as
hitting a real drumset so the physicality involved here cannot be better, and
the drummers on acoustic sets can, indeed, “feel the beat”. Performance is
great due to the rebound offered by drum pieces themselves which allow for
faster hits, and expressiveness is fairly large (dynamics are up to the user) and
sound is generated in real time with no delay introduced by virtualisation.

• Electronic Drums: these are similar to acoustic in shape and in average
are a little bit cheaper. They also provide higher portability with respect to
acoustic counterparts, since they tend to be smaller. Sound fidelity depends
on the sound generator subsystem that can be implemented in HW or SW,
so often these are used as MIDI controllers for VSTs. They provide natu-
ral tactile feedback and gestures to play these are fundamentally identical to
those corresponding to Acoustic Drums, so precision is also similar, but often
introducing extra delays due to buffering on a external computer running the
sound-generation subsystem. In terms of technique reuse, electronic drums
allow for full leveraging of the performer’s drumming skills.
These kits are much better in terms of flexibility, since it is much easier to
remap pads to sounds via software rather than physically rearranging or adding
acoustic parts to the set. In fact, these drums allow use of all kinds of sounds,
so the drummer is not restricted to non-pitched percussion sounds. Access
to one of these can provide with great expressiveness if you get a high-end
electronic drum-set (i.e. an expensive one), such as [51].

• AR/VR drums: discussion on these drums is vague due to the multiple
solutions provided, each one with its own pros and cons. On the one hand,

20ChucK: a sound-synthesis-oriented programming language developed by Ge Wang and Perry
Cook; see http://chuck.cs.princeton.edu/doc/

21MAX/MSP: a visual programming application that allows complex sound generation by means
of linking boxes which are in reality independent modules; see https://cycling74.com/

22Reaper: a DAW just like Cubase, allows for MIDI recording, editing, processing and mastering
sound

59

price varies a lot depending on the type of Hardware involved in the system.
If they use the latest immersion technology prices are high but options like
[44] show that affordable instruments can be created. Either way, prices on
devices like Hololens, HTC Vive and similar are bound to lower as technology
progresses, so all of the AR/VR instruments based on HMDs will eventually
become relatively inexpensive. Most solutions shown in the provided State of
the art panoramic are cheap if we consider the flexibility those provide as well
as the huge portability enabled by these.
Tactile feedback is a lack in most instruments to date though, due to the
interaction mode they use: air-drumming. This approach makes skill reuse
only partial because experienced drummers are required to change the way
they perform and accustom to be the ones stopping the virtual drumsticks
once a hit has been detected, which is known to influence their performance
(at least without extra practice to settle down a new interaction technique).
Flexibility is large and similar to that of electronic drums, but enabling novel
mappings of whole-body gestures to sound parameters, which would expand
the possibilities of a real or electronic drumset greatly.

Type Acoustic Drumset Electronic Drum-
set

AR/VR drums

Price High Miedum-high Widely ranging
Flexibility23 Low High High
Expansion Cost High Medium Low
Portability Low Medium High
Expressiveness High High Potentially the

highest
Whole-body ges-
tural control

No No Yes

Physicality Natural Quite Natural Often Low
Performance pre-
cision

High High Medium

Interaction Mode Real-HW hitting Real-HW hitting Mostly air-
drumming

Skill reuse Complete Complete Partial24

Table 2.1: Comparison among types of drumsets

As a whole, research on previously developed instruments and design guidelines has
allowed the author of this document to isolate a set of VMI key considerations to
be taken into account in the development of this project.

VMI Key design considerations:

• Low latency is a must: physical instruments introduce no delay due to
buffering or virtualisation, so the the time between interaction and sound shall
be minimised on a VMI, ideally to values below 12 ms for most instruments

60

(which is often even lower for percussion, when latency is often noticeable at
around a 6 ms delay) [52].

• High Expressiveness: dynamics in music performance and composition are
very important, so a VMI shall allow for a high level of expressiveness, ideally
similar to that of a real instrument or exceeding its expressiveness capabilities.

• Expansion of real-world counterpart capabilities: real-world instru-
ments are probably already the best they can be, and replicating them in
the virtual world via physical modelling would not take advantage of the pos-
sibilities offered by digital environments. As Perry Cook suggests in [53] , new
algorithms may suggest new control metaphors and new hardware might as
well suggest new synthesis aspects; so it may be a good idea to design both
controllers and synthesizers in tandem, avoiding simulation of real world in-
struments and creating an instrument that can be considered as a new one on
its own right.

• High portability: specially for drumkits or percussion as a whole, portability
has always been an issue, since the dimensions of drumsets are large if we com-
pare them to those of any other hand-held instrument. Virtualisation of these
instruments would allow for an enhanced flexibility regarding the number of
sounds that a drummer can perform along a performance and would minimise
the transportation problems and limitations involved in touring, when you are
required to carry your high space-demanding instrument with you to every
gig.

• Skill reuse: A VMI shall be easy to learn, at least as easy as it is to learn
a rea-world instruments. In case of percussion, it would be natural to allow
for technique reuse, so that the performer does not need to learn how to play
a virtual counterpart to produce sounds similar to the ones he can already
generate using Electronic drumsets, for example.

• Tactile feedback: According to multiple experiments [54] and among others
[55]; there is a need from performers of physicality, that is, having something
they can physically interact with; be it a keyboard, a stick or some kind of
non-virtual, tangible hardware for sucessful and accurate interaction. This
is partially, in my opinion, due to the concept of affordances25 of an object,
whose are biased from interaction with the real world (i.e. a stick suggests that
you use it to hit something whereas the air has not often got that associated
use).

• Minimisation of cybersickness: users trying out VRMIs and other Virtual
reality products have complained about adverse effects on their bodies after
use of HMDs. These effects include disorientation, headaches, sweating, eye
strain and nausea and have been studied to determines their cause; being the
most popular explanation to it a conflict between the visual and the vestibular
senses [57]. The development of an augmented instrument shall take into

25Affordance: a concept introduced by Gibson in [56]; all transactions that are possible between
an individual and its environment; e.g. a chair suggests you to sit down on it

61

account these potential discomforts and try to minimise them by reducing
multisensory conflicts to the extent possible.

• Gestural mapping: gestures make a great impact in the sound of a real
instrument and are crucial for expresiveness and pitch stability (as in the case
of a flute; where both the blowing strength and the hands position and pressure
make the sound largely different). Thus, its is important to leverage gestures
and expand on how these afffect sound within the virtual space on VR/AR
instruments.

• User technique tailoring: playing techniques vary extensively among per-
formers, specially regarding non-pitched percussion (drums); which is evi-
denced by the multiple ”correct” techniques for holding the drumsticks (e.g.
american grip, german grip, traditional grip ...[58]), so a VMI shall be config-
ured so that the sensitivity of sensors involved or associated software adapts
closely to the technique of the performer. An example of a project considering
this fact is [42].

• Engagement: playing an instrument should be an entertaining experience
and VMIs have a great potential for providing visual guides to playing, making
the experience of practising, learning and composing much easier and engaging.
A project that utilises visualization for teaching and providing cues about
accuracy of the learner is HoloBeats, an augmented instrument based on
markers placed over an electronic drumset [59].

• High level of Presence: One of the main purposes of VR from its birth is
immersion, usually achieved “by removing as many real world sensations as
possible and substituting these by sensations corresponding to the VE”. This
definition does not make that much sense when dealing with the AR paradigm,
which aims to enhance the real world. Either way, having the user’s hands
present in the virtual environment can help building such sentiment of being
“within” the virtual world.
On the contrary, for AR experiences, the ability of keeping the user attention
in the objectives rather than distracted by augmentation is crucial and shall
be imposed as a chief application objective.

• Social interaction: As VR often involves the use of HMDs, it becomes harder
for audiences of VRMI concerts to share the performer’s experience. Allowing
for joint visualization or co-performance would potentially solve the problem.
It could also be solved by means of AR devices running a visualization appli-
cation showing the audience precisely what the performer is doing.

62

Chapter 3

Analysis of the problem

This chapter provides a thorough description of the system in three chief levels of
abstraction; going from a high-level picture of what the product to be built is about
towards a formal definition in the shape of two layers of requirements.
Once an complete introduction to the system has been depicted, the reader will
be presented with a User Requirements Specification (concreting the capabilities
the user shall be able to perform by means of the system) and finally, System
requirements will be covered, which provide a more detailed vision of the system
while maintaining a design-neutral approach.
As culmination for this Chapter, the reader will be presented with a traceability
Matrix plotting User Requirements against System requirements, to ease tracing
errors or noncompliance back to a requirements specification problem.

Section 3.1 goes through a detailed depiction of the system objectives to be achieved,
stating how the system has been conceived and showing the constraints imposed over
the project development and environment towards which the project is targeted.

Section 3.2 covers the formal specification of User requirements, among which we
can find Capability and Constraint Requirements respectively, gathered consciously
and reviewed along the project development phase to ensure compliance.

Section 3.3 goes further in the elicitation process and provides a set of baselines for
the design and implementation process, that is, the System Requirements specifi-
cation and additionally generated items that clarify what the system shall do and
under which constraints.

3.1 General Description

This section provides an overview of the project and the system to be built, limit-
ings its scope, stating constraints imposed over the development and describing the
environment and target users of it.

63

3.1.1 General capabilities of the system

The centre of this dissertation is the creation of a complete electronic musical instru-
ment comprising both hardware and software that allows triggering drumset sounds
in the same way a commercial Virtual Instrument like Addictive Drums 2 [1] does
in conjunction with an electronic drumset like say the Roland V-Drums TD-17KVX
[60] or any cheaper counterpart.
Thus, like any state-of-the-art electronic musical instrument, DrumVR , is com-
posed of two main parts, which are ideally independent from each other and which
are linked by means of the MIDI protocol. These are often known as the MIDI
Controller and the Sound Synthesizer.
Consequently, the system is split into two clear subsystems from the very beginning
and this is important to understand the system concept as a whole, conformed by
a custom made MIDI Controller and a Desktop program producing sound derived
from user’s interaction with the MIDI Controller, showing a graphical representation
of such interaction.

DrumVR is not just a replica of some other system carried out for the sole purpose
of getting to know the insights of similar devices and programs, that is, the goal
is not to build a cheap alternative to electronic drumkits, or simply a professional-
looking DIY electronic drumset.
Instead, the present system has been developed to provide an innovative approach to
MIDI controllers targeted at interaction with non-pitched percussion-oriented vir-
tual instruments, by means of moving away from trying to replicate a real drum
with hidden sensors in it and building most or all the interaction detection into the
real triggering elements of a drumset: drumsticks and pedals (which are the ones
actually driving the interaction in all cases, and the ones whose flexibility is poten-
tially unlimited).
From the perspective of the Synthesizer part of the system (better called sound gen-
erating end since it does not necessarily create the sounds from scratch), its main
purpose is to allow such a MIDI controller (providing very few real-world cues about
the interaction being performed by the user), to present the user with a direct map-
ping, both visual and auditory, from the interactions they are performing.
Summarising the previous verbose description, you can find a simple scheme that
may give some light to understand better the system concept:
On the one hand, the author will develop a Hardware interface belonging to the
NIMEs (New Interfaces for Musical Expression) that will be used as user main in-
put to the sound generating system, mapped to the second main subsystem to be
developed in this project. This interface is to be composed of four main sources of
interaction, one per limb, two drumsticks and two pedals.
On the other hand, a sound generating system and graphically-enhanced software
program will be developed enabling the generation of different sounds according to
different inputs of the user by means of the MIDI Controller system described briefly
above. Additional configuration shall be enabled to the user to allow customise how
sounds are assigned to specific gestures or interactions with the system.
Figure 3.1 shows a draft aiming to ease the comprehension of the textual descrip-
tions provided herein.

64

Figure 3.1: Sketch of the devised system

The main capabilities of the system will be enumerated next, showing the pro-
cesses enabled by DrumVR :

• Allows users to generate sounds by hitting surfaces that do not include sensors
in them.

• Allows users to leverage real drumming skills by providing an interface which
resembles that of a non-MIDI counterpart.

• Overcomes portability problems of an acoustic or electronic drumkit by limit-
ing the required hardware pieces for interaction to four.

• Overcomes the flexibility problems of a traditional, fixed-size drumkit, which
requires physically expanding the number of drums or sensor-enabled pads in
order to have room for more sounds within a drumset.

These capabilities can be leveraged by users in multiple situations, among which we
could outstand the following:

• The system can helps users to practice in a non-prepared environment, that
is, without requiring a really specific setup to start playing drums that sound
like “familiar drum sounds” (i.e. snare drum, hihat, crash...etc).

• The system can help users to get used to play on different drumset configura-
tions by means of distinct custom assignations from interactions to sounds.

• The system can help users develop coordination skills on a very space demand-
ing environment, providing cues about when the user is making a bad move.
It is very hard for drummers to practice limb independence without matching
sounds to compare movements against.

65

• The system can help users on a limited budget to access a great practising
tool for free, using the open source code referenced in this dissertation.

• The system can help users to understand how MIDI musical interfaces and
Virtual Instrument software works and that an ultimately give them back-
ground knowledge or inspire them to play around with configuration of such
programs and HW devices.

3.1.2 User Characteristics

DrumVR is mainly targeted at drummers or aspiring drummers, so it is assumed
that the users are familiar with a real drumset or know how interaction with one
of those works. In order to get the most out of the system, concurrent interac-
tions should occur, similarly to what happens when interacting with a conventional
drumset. Familiarity with a drumset is specially useful for interaction with the
MIDI counterpart of the Hi-hat pedal, which enables an increased executable set of
sounds.
Essentially, only very basic coordination and proprioception skills are required for
satisfactory interaction with the system. In addition, it is worth mentioning that
this system is designed assuming the user is, indeed, capable of interacting with the
system using all four limbs. Disabled people may have trouble getting the most
out of this system even though it is possible to do a work-around to allow complete
interaction for these special cases, and accessibility can be improved in further iter-
ations over the system. In general, most users who are unfamiliar with drums may
find the system cumbersome at first, but its simplicity is enough for any novice user
to understand how interaction with the system works.
Regarding expectations from users, the system is very likely to be criticised due to
the latency introduced between hit and generated sound, which may even be hard
to tolerate for certain users, most likely, experienced drummers. However, the focus
of this system is not put into providing an optimal performance (since even the
MIDI protocol is slow by definition), but demonstrating the feasibility of creating
such a system which, once polished could overcome many of the limitations current
MIDI interfaces and systems have, discussed previously in Section 2.2. On the other
hand, the system aims to be flexible enough to provide experts with customisation
and casual users with a plug-and-play experience. This is an important aspect to
consider given the wide range of drummers that exist, varying in level, preferences
and artistic tastes, who must be satisfied by supplying the musical instrument with
a relatively wide set of options.
In this sense, experienced drummers may ask for changes in drumset configurations,
addition of drums, inclusion of own sounds or similar queries. In contrast, novice
drummers or casual users may simply expect the system to produce a varied set of
sounds by default, so that they can play drums straight away.

66

3.1.3 General Constraints

This section covers the main limitations regarding development of the project, cov-
ering constraints in relation to equipment, expertise of the developers, time and
nature of the project to be described in this thesis.
Regarding available facilities for development, we can list the main building blocks
of the author’s setup.
The personal computer at hand used to develop the project comprises a Lenovo
Z50-70 laptop, with the specifications that are shown in in Figure 3.2.
Such computer equipment suffices for development but is likely to slow down the

Figure 3.2: Laptop Specifications

(a) Laptop Specifications

(b) Laptop Graphics Card specs

process due to its age (more than 4 years old), as it is known to have issues running
programs of special importance for documentation, such as Adobe Photoshop (used
for the creations of explanatory diagrams), as well as 3D modelling software (such
as Blender1), Game Engines or Emulators (e.g. Unity ; Hololens Emulator).
Difficult access to University facilities is also a restrictive factor regarding the cre-
ation of the project, since due to personal reasons, the author will not live in Madrid
neither he will live in the outskirts during the creation of the project. For this rea-
son, rapid prototyping and support for HMDs (which are too expensive for a student
to buy for development) or see-through devices like Hololens may be impossible to
achieve on the short timespan planned for the completion of this work.

1Blender: https://www.blender.org/

67

On the other hand, this project has the additional complexity of being a research
work. Thus, since it is not a verbatim replica of an existing system, feasibility
estimation becomes harder to perform and therefore, much more time was devoted
to solving this kind of issues, slowing the development process as well as elicitation
down. In addition to the complexity inherent to research work, the whole process of
writing, researching, designing, developing and testing the software described herein
is to be done by a single person. This forces the author to show a relatively high
versatility in very distinct aspects of the Software Lifecycle; which means that it
will be required to spend a lot of time exploring areas to which the author may not
be accustomed to.
We may add to this composite situation a short knowledge-base regarding the
field to be dealt with in this project. This is a manifest characteristic of barely any
college undergraduate, since their skills are inevitably limited. Owing to this fact,
chances are that the project will become even harder to manage regardless of the
initial, perhaps naive, intentions of the author.

Regarding schedule limitations, there are several aspects to cover in this sense.
In the first place, the project had to be developed in spare time, considering the
author was working part-time during the creation of the system and its documen-
tation. This imposes a tighter limitation regarding general objectives, which had to
be reduced in order to provide a finished whole while guaranteeing quality of the
delivered items. At most, three or four hours could be devoted to the project per
day, being very optimistic. Nevertheless, this project was planned to be developed
in around 10 months (see Section 6), which is a very limited amount of time,
specially due to the short expertise of the author with respect to the technologies
being handled during the development process. Such amount of time is clearly a
small time-span when you have to make sense of what you want to build, stating
whether it is feasible or not to build it and make design decisions you are not sure
about all the time, since you are almost oblivious of best techniques or practices
regardless of your efforts to get to know as much as you can about the technologies.
Since options seemed unlimited at the beginning of the project, one of the problems
regarding planning is precisely estimating how much time it would take to choose
among alternatives, how much time it would take to learn certain skills and whether,
eventually, it would be possible to fulfil the objectives enumerated in the first place.

Lastly, this document was developed in LATEX , which inherently implied an ad-
ditional complexity and required booking more time for the documentation phase,
since it is necessary to get accustomed to writing and editing documents with this
programming language, skills that are expected to be useful for the future along
with the knowledge extracted from the creation of the system depicted herein.

68

3.1.4 Operational environment

The product generated as outcome from this process is targeted at a very specific
setting, which is an indoors home studio or a small bedroom within a flat. This
is the target environment due to the typical constraints owning a drumset involve,
since they are very space demanding instruments. Thus, a typical user of the system
would be a musician or aspiring drummer which either does not own a drumset or
cannot fit it within its working space. Consequently, the operational environment
constraints the design of the system towards having a relatively small size compared
with that of a typical drumkit.
The main desirable context of use of the system is practice, since recording is not
defined as a primary goal due to its increased complexity. A user may use the
system to work in rudiments all over a simulated drumset whose flexibility is much
higher than that of a non-virtualized counterpart and whose dimensions will be
considerably smaller.
Consequently, this system is not expected to be used in a musical performance, at
least in the first set of iterations, since no guarantees are made regarding overall
delay, which plays a huge role in performance with other musicians and influences
the ease to keep a straight tempo.
The conceived system requires a set of hardware pieces to get the most out of it in
terms of seamless interaction. The user is expected to own the following material or
something similar to improve ergonomics and similarity towards playing real drums.
nevertheless, these are still optional to obtain a satisfactory interaction (even though
the way user produces the input becomes inevitably different from that of drumming
in an ordinary drumset.
The reader will find several alternatives as well as the products owned by the author
of this dissertation for completeness, so that an estimation for the cost of the setup
can be later performed.

• A bass drum pedal: In order to make interaction as close as possible with
respect to a real HW, the best configuration in my opinion utilises a pedal,
either double or simple. Prices are varied with regard to pedals but some
affordable ones are Pearl’s P-530 (40 e[61]) or Tama’s HP30 (53 e[62]). Re-
garding the author’s setup, he owns a double pedal, Tama’s Iron Cobra Jr.
Limited Edition Double Bass Pedal (which is more expensive, around 140
e[63]).

• A bass drum practice pad: as support piece for the kick-drum sensors, we
will use this piece of hardware, where a sensor will be hidden under the foam.
Some alternatives in this section are Millenium’s BDP-S Bass Drum Practice
Pad (33 ebut not suitable for all pedals [64]) or the one the author owns,
Evans’ RFBass Bass Pedal Practice Pad which costs 88 eand is quite silent
[65].

• A “snare” practice pad: in order to use it as a physical reference for your
playing. The author owns Meinl’s MPP-12-JB 12”, which is around 35eand
very durable [66] , but you can buy the cheap Thomann’s Sticky Practice Pad
for around 13 e.

69

Figure 3.3: Ideal operational set-up

My setup also includes a Tama’s HS80W Snare Stand to adjust the height of the
practice pad based on my preferences [67].

In order to provide a more concise and clear view of the system and its architecture
at a high-level of abstraction to any reader, a Context diagram is provided in Figure
3.4. The Context diagram (also known as Context-level Data Flow Diagram) is de-
composed into-two levels of abstraction, namely Level-0 and Level 1). The first one
is an extreme simplification of the system to be developed, with arrowheads show-
ing the kind of information that is exchanged between different parties involved in
achieving a proper execution and the direction of the information flow.

Level-2 diagram goes further and gets more precise about the internals of the system
to be developed showing that this system follows the split chain paradigm noted by
Jordà [50]. In this case, the oval shapes constitute two separate processes which
communicate with each other but are considered part of the system to be developed

70

so they are located within a ”Process Box”, the dashed box containing both ovals.
A better understanding of the system can be obtained from this second one but the
Level-0 diagram was included for completeness.
In addition to the context diagram, a System Block Diagram showing basic pro-
cessing insights is provided, so readers can understand the expected basic behaviour
from the system. This part will also be used as input to the requirements definition
and design of the system, so it can be considered as an early form of elicitation,
keeping the description implementation-neutral. As you can observe from Figure
3.5, a Hardware-based component is spotted as well as a software-base subsystem
producing the sounds and most of the interaction feedback.

71

(a) Level-0 DFD

(b) Level-1 DFD

Figure 3.4: Context Diagrams

72

Figure 3.5: Block diagram

737373

3.1.5 Product Perspective

This project is not conceived as a stand-alone system even though this is an ul-
timate goal in an advanced iteration of the project. Therefore, middleware can be
used to speed up the development process and delegate processes to already created
solutions which even though open-source, require a great expertise to be included
in the implementation of this system.
The system is not a replacement for an IT system either. However, it aims to substi-
tute in some way an acoustic or electronic drumkit, thus, constraints are inherently
imposed as this objective is included in the requirements. Besides trusting on third
party-software for interfacing, open source and non-open source software were used
along the development process among which we can find Unity, Arduino SW li-
braries, Arduino Hardware, Blender, Photoshop, Hairless MIDI and LoopMIDI.

3.1.6 Assumptions and dependencies

The present project has been carried out under uncertainty and assuming a set of
statements to be true, the following list depicts the main considerations assumed
when the project was started:

• A user is expected to have a basic understanding and familiarity with inter-
action with a computer-based system (i.e. user-Level skills on a Windows
operating system).

• The protocols used as well as the hardware involved in the development of the
project does not get dated before the dissertation comes to an end.

• The middleware or add-ons used along the development of this project intro-
duce no errors in the project itself and have been already tested before being
let available to the public.

3.2 User Requirements

The current section aims to provide with the thorough description of requirements
as extracted directly from the target user of the system.
Two types of requirement will be specified herein:

• Capability requirements: those that state the actions the user shall be able
to perform to achieve an objective. These describe functions and operations
that shall be enabled to user. Clarifications on the quantitative verifiability of
the requirements will be provided.

• Constraint requirements: comprise specifications with regard to how a
certain need or objective is to be achieved. This type of requirements states

74

how software is to be built and operated. Restrictions of this kind may be
required due to the pre-existence of certain interfaces, protocols or restrictions
imposed by the technology target of the development. Portability desires are
constraint requirements as well, and so are target devices or specific hardware
to be used.

Following the guidelines from the ESA standard (aiming not to forget any important
aspect of the product specification), User Requirements have to include a variety of
attributes, which apply to the definition of every requirement [68].
Since there are two types of User Requirements, we will use identifiers following the
expression: UR-XX-YY
XX will show the value CA for capability requirements or CO for constraint re-
quirements.
YY is a two digit counter for user requirements. The counter starts from one for
both types of user requirements, hence, two different identifiers with the same digit
YY value can be found, namely UR-CA-01 and UR-CO-01.
Identifiers are of chief importance for traceability of the requirements along this doc-
ument (one instance could be the System Requirements specification, which takes
URs as inputs) and the development process. A traceability matrix plotting User
Requirements against Software Requirements can be found in Section 3.4.

In addition to the identifier, the following attributes will be included:

• Need: specifies the level of necessity for the fulfilment of a requirement,
according to its importance regarding achieving the purpose goals from the
general description of the system. There are three possible values for this
attribute: Essential, Desirable and Optional.

• Priority: specifies the urgency of fulfilment of a requirement, its review or
creation of lower level requirements. It is a very capital aspect of requirements
owing to the fact that such tags allow for a better scheduling and subdivision
of tasks once the project has started. There are three priority levels for this
project: Low, Medium and High.

• Stability: allows to label requirements that are prompt to be changed in the
future, so that they can be more easily identified. The two possible values for
this attribute are Stable or Unstable. Most requirements shall not be changing,
hence, they will be labelled as Stable.

• Source: Corresponds to the stakeholder, document or group of users that
leaded to the generation of a given requirement. This is often useful to be
noted for reviewing purposes, in case some clarifications have to be performed
and an appointment or review of the source has to be carried out.

• Clarity: Even though requirements are supposed to be written with brevity
and precision in mind, this field eases the review process, even in the case of
having a single stakeholder involved in the UR phase, and a single developer as
it is the case of this dissertation, apart from the tutor (who can take advantage

75

of this field to criticise the approaches to express certain requirements). There
are three values for this field: Low, Acceptable and High clarity.

• Verifiability: it is a must for developers to be able to prove that a requirement
has been fulfilled, something that can relatively be measured according to how
well requirements seem to quantify success, or how similar they look with
respect to a clear and precise checklist, avoiding abstract concepts. In other
words, user requirements shall be precise enough for them to always be taken
into consideration and finally implemented and tested for compliance. This
is a binary attribute, thus, it has two possible values: Verifiable and Non-
verifiable.

• Status: reflects the degree of advances performed towards the implementa-
tion of the requirement. There is a set of values for this attribute: Proposed,
Verified (check that it is implemented), Validated (it was checked that a re-
quirement reflects the user needs properly) and Rejected (in case it doesn’t
apply anymore).

• Target build: limits the requirements to a programmed delivery of the ones
specified within the Planning part the project, within Section 6.0.2. Two
builds are specified in such section; namely Bare Bones Build and Modest
Build.

A table template that comprises all the aforementioned attributes has been created.
The template shows the possible values for certain fields and inline clarifications in
green colour to ease the understanding of independent fields and user requirements
as a whole.

Name UR-XX-YY

Need Essential | Desirable | Optional
Clarity Low | Acceptable | High
Priority Low | Medium | High
Stability Unstable | Stable
Verifiability Non-verifiable | Verifiable
Source i.e. Alejandro Rey
Target build Bare Bones Build | Modest Build
Status Proposed | Validated | Verified | Rejected
Definition

Table 3.1: Template for user requirements

3.2.1 Capability Requirements

The list of actions that the user shall be able to perform will be provided formally
by means of this type of requirements, as stated previously.

76

Name UR-CA-01

Need Essential
Clarity Acceptable
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to trigger a percussion

sound by hitting a random surface with the cus-
tom MIDI controller (hard enough as to be con-
sidered interaction).

Table 3.2: Capability User Requirement 01

Name UR-CA-02

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to trigger more than three

different sounds by interacting with the system
(more specifically, with the MIDI controller part
of the system).

Table 3.3: Capability User Requirement 02

Name UR-CA-03

Need Essential
Clarity Acceptable
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Definition The user shall be able to understand when the

system is up and running, ready to receive user
input.

Table 3.4: Capability User Requirement 03

77

Name UR-CA-04

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to use the MIDI Controller

part of the system as a general purpose MIDI
controller, that is, as input to any DAW (e.g.
Cubase), considering limited functionality.

Table 3.5: Capability User Requirement 04

Name UR-CA-05

Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to generate sounds which

vary in volume proportionally to the exerted force
on the MIDI controller inputs.

Table 3.6: Capability User Requirement 05

Name UR-CA-06

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to produce sounds from a

library of predefined and fixed sounds.

Table 3.7: Capability User Requirement 06

78

Name UR-CA-07

Need Essential
Clarity Acceptable
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be presented with a visual repre-

sentation of the instrument to model.

Table 3.8: Capability User Requirement 07

Name UR-CA-08

Need Essential
Clarity Acceptable
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to understand how sounds

relate to their interactions by alterations in ob-
jects in virtual space.

Table 3.9: Capability User Requirement 08

Name UR-CA-09

Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to use a general pur-

pose MIDI controller to interact with the system’s
Desktop application.

Table 3.10: Capability User Requirement 09

79

Name UR-CA-10

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to perform up to 4 (simul-

taneous) interactions without the system missing
the input.

Table 3.11: Capability User Requirement 10

Name UR-CA-11

Need Essential
Clarity Acceptable
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to leverage previously

gained skills regarding real-world drumming prac-
tice to interact with the system, they shall be able
to interact similarly to the way they would with
a real-world drumset.

Table 3.12: Capability User Requirement 11

80

Name UR-CA-12

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to trigger two sequential

sounds by performing two consecutive interac-
tions separated by a maximum amount of time
of 68ms (maximum separation between two six-
teenth notes at 220bmp) without the system miss-
ing any input.

Table 3.13: Capability User Requirement 12

Name UR-CA-13

Need Desirable
Clarity Acceptable
Priority Low
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to alter the way sounds are

mapped to HW interactions from the application.

Table 3.14: Capability User Requirement 13

81

Name UR-CA-14

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to adjust the volume of the

whole instrument from the application.

Table 3.15: Capability User Requirement 14

Name UR-CA-15

Need Desirable
Clarity Acceptable
Priority Low
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to modify the sounds used

for each HW interaction input, choosing different
sounds to assign to different parts of the virtual
representation of the drumset.

Table 3.16: Capability User Requirement 15

Name UR-CA-16

Need Desirable
Clarity Acceptable
Priority Low
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to preview the sounds to be

assigned to a drum piece before actually assigning
them.

Table 3.17: Capability User Requirement 16

82

3.2.2 Constraint Requirements

The following requirements impose constraints on the solution that is to be provided
in this document, restricting how certain objectives shall be achieved.

Name UR-C0-01

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The MIDI controller shall be built in an Arduino-

compatible board in order to ease prototyping and
development.

Table 3.18: Constraint User Requirement 01

Name UR-C0-02

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The MIDI protocol shall be used as upper-

application level protocol for the logical transmis-
sion and management of out-flow and in-flow of
messages between subsystems.

Table 3.19: Constraint User Requirement 02

83

Name UR-C0-03

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition MIDI mappings shall support General MIDI

assignments.

Table 3.20: Constraint User Requirement 03

Name UR-C0-04

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The MIDI controller subsystem shall be com-

patible with default mappings within Addictive
Drums 2.

Table 3.21: Constraint User Requirement 04

Name UR-C0-05

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The interface model between MIDI controller and

sound trigger need not be self-contained (auxiliary
bridge programs may be used).

Table 3.22: Constraint User Requirement 05

84

Name UR-C0-06

Need Essential
Clarity Acceptable
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be able to understand the effects

of its physical interaction by looking at the MIDI
controller interface.

Table 3.23: Constraint User Requirement 06

Name UR-C0-07

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition NoteOn messages within the general MIDI speci-

fication shall be supported.

Table 3.24: Constraint User Requirement 07

Name UR-C0-08

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The sound-generating part of the system shall be

built using the Unity Game Engine Personal Edi-
tion, which reduces the cost of the development
as it is free of charge.

Table 3.25: Constraint User Requirement 08

85

Name UR-C0-09

Need Essential
Clarity Acceptable
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The user shall be shown virtual imagery to map

interaction with visual and auditory output from
the Unity-based application.

Table 3.26: Constraint User Requirement 09

Name UR-C0-10

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Bare Bones Build
Status Validated
Definition The application shall be targeted at machines run-

ning Windows.

Table 3.27: Constraint User Requirement 10

Name UR-C0-11

Need Desirable
Clarity Acceptable
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The system shall resemble the physical interaction

with a real-world drumset.

Table 3.28: Constraint User Requirement 11

86

Name UR-C0-12

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition MIDI CC messages included in the MIDI proto-

col specification shall be supported by the MIDI
Controller.

Table 3.29: Constraint User Requirement 12

Name UR-C0-13

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The MIDI controller’s overall dimensions shall be

smaller than those of an average 5-piece drumkit
(see [69]) .

Table 3.30: Constraint User Requirement 13

Name UR-C0-14

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The MIDI controller’s overall weight shall be

smaller than 4kg so that it is easily portable.

Table 3.31: Constraint User Requirement 14

87

Name UR-C0-15

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be presented with a virtual 3D

model of a drumset within the application.

Table 3.32: Constraint User Requirement 15

Name UR-C0-16

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
Source Alejandro Rey
Target build Modest Build
Status Validated
Definition The user shall be able to explore the virtual en-

vironment, moving around the camera in order
to see the complete drum-set towards which the
camera shall be placed.

Table 3.33: Constraint User Requirement 16

3.3 System Requirements

This section covers the second phase of elicitation, translating User Requirements
into System Requirements, going through a previous step involving the creation of
Use Cases. The SR phase, often referred to as “problem analysis phase”, consists
in building a logical model of the system to be built, meaning a simplified, abstract
description of the system that can be used as input for the design phase. Systems
requirements will show what the system must do and progressively go further in
the level of precision on describing the system at hand. The approach to perform
this specification, used to reason about the software in broad terms, is formally
known as Functional decomposition and a guide to its application can be found
in PSS-05-03 of [68]; “Guide for the software requirements definition phase” .

88

3.3.1 Use cases

A Use case diagram is the primary form of system/software requirements for a new
software program under development. These define the possible interactions be-
tween the actors (users, external entities or systems, etc) and the system at hand.
Therefore, is a simplified view to show the desired capabilities and high-level pro-
cesses involved in each functionality provided to the user.
You can spot two types of relationships between processes (formally named Use
cases, ovals in the picture), include and extend. An include relationship means that
a use case or process is inherent to the execution of another use case ,that is, if the
base one runs the other does. In contrast, an extend relationship implies an optional
use case when another happens, that is, depending on the user actions or specific
situation such use case may be executed or not.
For extend relationships you can see the arrowhead points to the use case to which
one is complementing, whereas in an include relationship the arrowhead points to-
wards use cases that could be though as sub-processes of others.

89

Figure 3.6: Use Case Diagram

909090

3.3.2 Software Requirements Specification

In the same way we created the User Requirements, a set of lower requirements are
to be enumerated to convert from user expectations and views to what the system
shall do and the constraints imposed to the system design. Therefore, similarly to
the templates and categorisation in Section 3.2, we will provide a new one for this
kind of requirements.
System requirements can be split into two categories, Functional Requirements and
Non-functional requirements, the differences between these two categories are briefly
summarised below:

• Functional requirements: define functions required to accomplish the ob-
jectives of the system. In other words, they will detail the set of operations
the software shall be able to perform.

• Non-functional requirement: define constraints imposed over the perfor-
mance, the shape of the system, the interfaces it will be interacting with, the
environmental conditions under which the system must keep working, reliabil-
ity issues that must be taken into account, etc. These constitute a less fuzzy
representation of the constraint requirements described in the UR phase. Re-
garding the type of constraints they impose, they can be categorised accord-
ing to NASA guidelines [70] into: Performance, Constraints, Interface,
Environmental, Human Factors, Reliability, Verification and Safety
requirements.

Software requirements will expand upon the attributes specified for user require-
ments to handle traceability better, so the following template has been created to
hold all the required information about the requirements:
Since there are two types of Software Requirements, we will use identifiers following
the expression: SR-XX-YY
XX will show the value FR for Functional requirements or CO for Non-functional
requirements (also known as Constraint requirements).
YY is a two digit counter for system requirements. The counter starts from one for
both types of System requirements, so once more, two different identifiers with the
same digit YY value can be found (e.g. UR-FR-01 and UR-NF-01).
A traceability matrix plotting User Requirements against Software Requirements
can be found in Section 3.8 .

In addition to the identifier, the following attributes will be included:

• Need: specifies the level of necessity for the fulfilment of a requirement, ac-
cording to its importance to achieve the purpose goals from the general de-
scription of the system. There are three possible values for this attribute:
Essential, Desirable and Optional.

• Priority: specifies the urgency of fulfilment of a requirement, its review or
creation of lower level requirements (if any). There are three priority levels for
this project: Low, Medium and High.

91

• Stability: allows to label requirements that are prompt to be changed in the
future, so that they can be more easily identified. The two possible values
for this attribute are Stable or Unstable. Most requirements should not be
changing, so they will be labelled as Stable.

• UR Source: Includes a non-empty set of 1 or more User requirements that
originated the creation of each specific System requirement, which guarantees
that the developer focuses on providing the essential functionality the user
asked for, neither more nor less.

• UC Source: States the associated Use Case (see Section 3.3.1) to which the
software requirement is associated.

• Clarity: States the level of ambiguity a requirement presents. There are three
values for this field: Low, Acceptable and High clarity.

• Verifiability: States whether the requirement can be formally verified, that
its, its fulfilment can be claimed to be successful. This is a binary attribute,
thus, it has two possible values: Verifiable and Non-verifiable.

• Status: reflects the degree of advances performed towards the implementa-
tion of the requirement. There is a set of values for this attribute: Proposed,
Verified (check that it is implemented), Validated (it was checked that a re-
quirement reflects the user needs properly) and Rejected (in case it does not
apply anymore).

• Target build: limits the requirements to a programmed delivery of the ones
specified within the Planning part the project, within Section 6.0.2. Two
builds are specified in such section; namely Bare Bones Build and Modest
Build.

Two table templates that comprise all the aforementioned attributes have been
created. The templates show the possible values for certain fields and inline clarifi-
cations to ease the understanding of independent fields and user requirements as a
whole. Note that the Non-functional requirements will be further categorised into
the sub-types mentioned earlier in this section, to show such taxonomy, these re-
quirements will present an extra field, called Sub-type, highlighted in the template
with an orange colour.

92

Functional Requirement
Name SR-FR-YY

Need Essential | Desirable | Optional
Clarity Low | Acceptable | High
Priority Low | Medium | High
Stability Unstable | Stable
Verifiability Non-verifiable | Verifiable
UR Source i.e. UR-CA-01
UC Source i.e. UC-01
Target build Bare Bones Build | Modest Build | Future Work
Status Proposed | Validated | Verified | Rejected
Definition

Table 3.34: Template for Functional Software requirements

Non-functional Requirement
Name SR-NF-YY

Subtype Performance | Constraints | Interface | Environmental | Human
Factors | Reliability | Safety | Verification

Need Essential | Desirable | Optional
Clarity Low | Acceptable | High
Priority Low | Medium | High
Stability Unstable | Stable
Verifiability Non-verifiable | Verifiable
UR Source i.e. UR-CA-01
UC Source i.e. UC-01
Target build Bare Bones Build | Modest Build | Future Work
Status Proposed | Validated | Verified | Rejected
Definition

Table 3.35: Template for Software requirements

3.3.3 Functional Requirements

This section covers the formal definition of software requirements that correspond
to functionality the final application is to implement, as defined earlier in this docu-
ment. These requirements set up the baseline for design and development and may
be referenced in subsequent sections.
Note that functional requirements are easily identified by means of the colour of the
table header, which has got a light green background and white text.
Requirements present here will be verified in the Evaluation Section 5.2 and conse-
quently, the status for most of the requirements mentioned herein is expected to be
Validated at most, which simply involves properly reflecting the needs of the user.

93

Functional Requirement
Name SR-FR-01

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-01
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The system shall play back a sound that is associated with a

specific interaction from the user.

Table 3.36: SR-FR-01

Functional Requirement
Name SR-FR-02

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-01
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The system shall continuously monitor and process input from

the user when a sound is configured as to be played in response.

Table 3.37: SR-FR-02

94

Functional Requirement
Name SR-FR-03

Need Essential
Clarity Acceptable
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-03
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The MIDI controller subsystem shall provide with output feed-

back to the user, so that the user can understand the state of the
MIDI controller subsystem.

Table 3.38: SR-FR-03

Functional Requirement
Name SR-FR-04

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-02
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The system shall be able to generate more than three different

sounds to be triggered as response to different user input gestures.

Table 3.39: SR-FR-04

95

Functional Requirement
Name SR-FR-05

Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-04
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The MIDI Controller subsystem shall send MIDI Messages to the

Sound Generation Subsystem.

Table 3.40: SR-FR-05

Functional Requirement
Name SR-FR-06

Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-05
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The MIDI Controller subsystem shall create MIDI messages

whose velocity depends on the strength of a hit in order to notify
the Sound generation subsystem about it.

Table 3.41: SR-FR-06

96

Functional Requirement
Name SR-FR-07

Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-05
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The system shall generate sounds that vary in volume propor-

tionally to the provided MIDI velocity, extracted by the MIDI
subsystem and associated to the force exerted on some sensor.

Table 3.42: SR-FR-07

Functional Requirement
Name SR-FR-08

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-06
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The system shall load sounds from a set of predefined sounds

within the computer the Sound generation subsystem is being
run into.

Table 3.43: SR-FR-08

97

Functional Requirement
Name SR-FR-09

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-06
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The system shall assign sounds to MIDI Number inputs by

default.

Table 3.44: SR-FR-09

Functional Requirement
Name SR-FR-10

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-08
UC Source UC-01
Target build Bare Bones Build
Status Verified
Definition The system shall inform the user about which drum piece has

been virtually hit by means of visualisation mechanisms.

Table 3.45: SR-FR-10

98

Functional Requirement
Name SR-FR-11

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-13
UC Source UC-04
Target build Modest Build
Status Validated
Definition The Sound Generation subsystem shall allow configuration of

how sounds are mapped to specific interactions with the MIDI
Controller subsystem.

Table 3.46: SR-FR-11

Functional Requirement
Name SR-FR-12

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-13
UC Source UC-04
Target build Modest Build
Status Validated
Definition The Sound Generator subsystem shall provide a graphical user

interface to be used for configuration by the user of the system.

Table 3.47: SR-FR-12

99

Functional Requirement
Name SR-FR-13

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-14
UC Source UC-03
Target build Modest Build
Status Validated
Definition The Sound Generator subsystem shall allow the user to control

the overall volume generated as output.

Table 3.48: SR-FR-13

Functional Requirement
Name SR-FR-14

Need Desirable
Clarity High
Priority Low
Stability Stable
Verifiability Verifiable
UR Source UR-CA-15
UC Source UC-06
Target build Modest Build
Status Validated
Definition The system shall allow to modify the sounds assigned to different

interactions on the MIDI Controller subsystem.

Table 3.49: SR-FR-14

100

Functional Requirement
Name SR-FR-15

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-07
UC Source UC-01
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall be able to generate NoteOn

messages.

Table 3.50: SR-FR-15

Functional Requirement
Name SR-FR-16

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-07
UC Source UC-01
Target build Bare Bones Build
Status validated
Definition The Sound generation subsystem shall be able to process and

extract the encoded information from standard NoteOn MIDI
messages.

Table 3.51: SR-FR-16

101

Functional Requirement
Name SR-FR-17

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-12
UC Source UC-01
Target build Modest Build
Status Validated
Definition The MIDI Controller subsystem shall be able to generate CC

messages.

Table 3.52: SR-FR-17

Functional Requirement
Name SR-FR-18

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-12
UC Source UC-01
Target build Modest Build
Status Validated
Definition The Sound generation subsystem shall be able to process and ex-

tract the encoded information from standard CC MIDI messages.

Table 3.53: SR-FR-18

102

Functional Requirement
Name SR-FR-19

Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-16
UC Source UC-02
Target build Modest Build
Status Validated
Definition The Unity camera’s movement shall be enabled so that users

can navigate virtual space around the 3D representation of the
drumset.

Table 3.54: SR-FR-19

Functional Requirement
Name SR-FR-20

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-16
UC Source UC-05
Target build Modest Build
Status Validated
Definition The system shall allow the user to pre-listen sounds before they

get to assign them to a specific MIDI subsystem input.

Table 3.55: SR-FR-20

103

Functional Requirement
Name SR-FR-21

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-04
UC Source UC-01
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall be able to send NoteOn

messages compliant with the Standard MIDI Specification.

Table 3.56: SR-FR-21

Functional Requirement
Name SR-FR-22

Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-04
UC Source UC-01
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall be able to send Con-

trol Change (CC) messages compliant with the Standard MIDI
Specification.

Table 3.57: SR-FR-22

3.3.4 Non-Functional Requirements

This subsection enumerates all the Non-functional requirements constraining the
design and development of the system, further categorising them according to the
aspect of the system they cover.
Since User Cases show the main actions the user shall be able to perform in the
system, these have no direct relation with non-functional requirements.Because of
that, Non-functional requirements have the UR Source field tagged as N/A (Not
Applicable).

104

Non-functional Requirement
Name SR-NF-01

Subtype Verification
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-01
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The system shall generate sounds only from direct input of the

user, that is, not arbitrarily.

Table 3.58: SR-NF-01

Non-functional Requirement
Name SR-NF-02

Subtype Constraints
Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-01
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The system shall only generate sounds when a sound is being

previewed or when direct interaction via custom hardware is
performed.

Table 3.59: SR-NF-02

105

Non-functional Requirement
Name SR-NF-03

Subtype Constraints
Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-03
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The system shall provide output feedback to the user using hard-

ware actuators.

Table 3.60: SR-NF-03

Non-functional Requirement
Name SR-NF-04

Subtype Interface
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-03
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The connection between the MIDI Controller subsystem and the

Sound generating subsystem shall be performed by means of
USB.

Table 3.61: SR-NF-04

106

Non-functional Requirement
Name SR-NF-05

Subtype Verification
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-04
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall be tested using Cubase as

sequencer to show interoperability.

Table 3.62: SR-NF-05

Non-functional Requirement
Name SR-NF-06

Subtype Constraints
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source i.e. UR-CA-07
UC Source N/A
Target build Bare Bones Build
Status Verified
Definition The system shall show via a display a set of 3D objects repre-

senting different drum pieces.

Table 3.63: SR-NF-06

107

Non-functional Requirement
Name SR-NF-07

Subtype Constraints
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-09
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The Sound generation subsystem shall receive data from all MIDI

ports within the Desktop computer the program is running on.

Table 3.64: SR-NF-07

Non-functional Requirement
Name SR-NF-08

Subtype Verification
Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-09
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The System shall be testable using a general purpose MIDI con-

troller, often in the shape of a piano keyboard.

Table 3.65: SR-NF-08

108

Non-functional Requirement
Name SR-NF-09

Subtype Performance
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-10
UC Source N/A
Target build Modest Build
Status Validated
Definition The system shall be able to track up to 4 simultaneous inter-

actions with the MIDI controller sensors, meaning by tracking
allowing a correct execution without data loses 80% of the times
(computed over a sample of 50 trials).

Table 3.66: SR-NF-09

Non-functional Requirement
Name SR-NF-10

Subtype Constraints
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CA-11
UC Source N/A
Target build Modest Build
Status Validated
Definition The system shall provide input mechanisms that involve hitting

or pressing.

Table 3.67: SR-NF-10

109

Non-functional Requirement
Name SR-NF-11

Subtype Performance
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CA-12
UC Source N/A
Target build Modest Build
Status Validated
Definition The MIDI Controller subsystem shall be able to recognise two

consecutive interactions separated by a maximum amount of time
of 68ms, to guarantee the MIDI Controller subsystem is still us-
able at high speeds.

Table 3.68: SR-NF-11

Non-functional Requirement
Name SR-NF-12

Subtype Constraints
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-01
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall be built using an Arduino-

compatible board with actuators.

Table 3.69: SR-NF-12

110

Non-functional Requirement
Name SR-NF-13

Subtype Interface
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-02
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The system shall use the MIDI communication protocol to trans-

mit data between the MIDI Controller subsystem and the Sound
Generation Subsystem.

Table 3.70: SR-NF-13

Non-functional Requirement
Name SR-NF-14

Subtype Constraints
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-03
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall generate output MIDI Mes-

sages using the note values in GM Standard.

Table 3.71: SR-NF-14

111

Non-functional Requirement
Name SR-NF-15

Subtype Constratints
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-04
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller messages shall work in conjunction with

Addictive Drums 2.

Table 3.72: SR-NF-15

Non-functional Requirement
Name SR-NF-16

Subtype Verification
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-04
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall be tested using Addictive

Drums 2.

Table 3.73: SR-NF-16

112

Non-functional Requirement
Name SR-NF-17

Subtype Constraints
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-05
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The system need not be self-contained.

Table 3.74: SR-NF-17

Non-functional Requirement
Name SR-NF-18

Subtype Constraints
Need Essential
Clarity Acceptable
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-06
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The MIDI Controller subsystem shall show information about

the state of the subsystem by means of external actuators.

Table 3.75: SR-NF-18

113

Non-functional Requirement
Name SR-NF-19

Subtype Constraints
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-08
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The Sound generator subsystem shall be developed based on the

Unity Game Engine Personal Edition.

Table 3.76: SR-NF-19

Non-functional Requirement
Name SR-NF-20

Subtype Constraints
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-09
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The Sound generator subsystem shall display virtual objects to

represent different drum pieces.

Table 3.77: SR-NF-20

114

Non-functional Requirement
Name SR-NF-21

Subtype Constraints
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-10
UC Source N/A
Target build Bare Bones Build
Status Validated
Definition The Sound generator subsystem shall run in Windows Machines

running Windows 10.

Table 3.78: SR-NF-21

Non-functional Requirement
Name SR-NF-22

Subtype Constraints
Need Desirable
Clarity Acceptable
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-11
UC Source N/A
Target build Modest Build
Status Validated
Definition The system shall imitate the interaction paradigm present when

interacting with a real drum-set.

Table 3.79: SR-NF-22

115

Non-functional Requirement
Name SR-NF-23

Subtype Constraints
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-13
UC Source N/A
Target build Modest Build
Status Validated
Definition The MIDI Controller subsystem’s dimensions shall be smaller

than (width = 84 cm x deep = 72 cm)

Table 3.80: SR-NF-23

Non-functional Requirement
Name SR-NF-24

Subtype Constraints
Need Desirable
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source i.e. UR-CO-14
UC Source N/A
Target build Modest Build
Status Validated
Definition The MIDI controller subsystem weight shall be smaller than 4kg

.

Table 3.81: SR-NF-24

116

Non-functional Requirement
Name SR-NF-25

Subtype Constraints
Need Essential
Clarity High
Priority High
Stability Stable
Verifiability Verifiable
UR Source UR-CO-15
UC Source N/A
Target build Modest Build
Status Validated
Definition The Sound generating subsystem shall display a virtual model of

a drumset.

Table 3.82: SR-NF-25

Non-functional Requirement
Name SR-NF-26

Subtype Constraints
Need Essential
Clarity High
Priority Medium
Stability Stable
Verifiability Verifiable
UR Source UR-CO-16
UC Source N/A
Target build Modest Build
Status Validated
Definition The Sound generating subsystem allow configuration by overlay-

ing a configuration menu within the screen of the computer the
Sound generating subsystem is running on.

Table 3.83: SR-NF-26

3.3.5 System Requirements Specification

3.4 Traceability Matrix

In this section, two tables are shown, used as a measure for traceability of the
requirements. These show how different levels of application requirements map each
other meaning their source is a higher level requirement specification. Figure 3.8
shows which User requirements gave birth to System Requirements, assuring the

117

fact that all of them will be taken into account for the design part. In contrast
Figure 3.7 shows how the main use actions the user is allowed to perform map to
functional requirements within the System Requirements Specification Section.

118

Figure 3.7: Use Cases vs System Requirements traceability matrix

119

Figure 3.8: System Requirements vs User Requirements traceability matrix

120120120

Chapter 4

Design of the Solution

This chapter covers the architectural design and implementation concerns regarding
DrumVR , the reasoning behind the selection of certain technologies, the reflections
on the problem to be solved by means of the created system, the hardware and
algorithms employed to satisfy the requirements for the system as well as auxiliary
comments which discuss how to solve some of the most common problems found
along the development of this project.

4.1 Evaluation of complexity and design alterna-

tives

This section covers the design paths that were weighed up before committing to the
final solution for the system described in this document, evaluating each design pos-
sibility independently and explaining the arguments upon which each final decision
was made.

As Jordà spotted in [50], VMIs comprise two clearly differentiated components: a
gesture controller (a piece of equipment that a player uses to control how sounds
generated or stored in a computer will be released) and a sound generator (which
is responsible for triggering or generating sound in real-time). This approach to
VMI design was standardised right after the appearance of MIDI and allowed for
independent development of both ends of a VMI. It enhanced flexibility as well,
as MIDI allows to control any sound generator using any device that implements
MIDI communication. This new approach to VMI design was known as ’splitting
the instrument chain’.
Since the aforementioned high-level architecture is unavoidably applied to the present
project, the discussion about design paths will be split according to the three ma-
jor concerns of the project: the MIDI Controller subsystem (Section 4.1.1), the
Sound generator subsystem (Section 4.1.2) and the integration aspects provided to
interconnect both (Section 4.1.3).

121

4.1.1 MIDI Controller Subsystem alternatives

The system is expected to implement a MIDI controller with custom hardware whose
portability is high and which ultimate goal is to generate sounds according to some
input from the user, in the shape of hits, the interaction form drummers are accus-
tomed to. From the System requirements, several major approaches to the solution
of this subsystem were evaluated, with three outstanding possibilities:

• Creating a custom DIY electronic drumset based on pads: One of the
examined approaches to the problem involved creating a conventionally-shaped
drum MIDI controller, which showed a main advantage regarding known fea-
sibility and easy estimation of development time; but on the contrary, it of-
fered no real innovation on the interaction paradigm and neither allowed for
an improvement in portability of the system nor provided an enhancement
in flexibility. Thus, this approach was soon discarded due to its numerous
limitations.

• Delegating input recognition to XR subsystem: an early approach that
was looked into consisted in using tracking visual recognition mechanisms in
the market to trigger sounds directly from the computer-side application, in-
dependent of the specific target device used at the end of the development
process. During a brief feasibility study, the Vuforia library 1 (integrated with
Unity) was explored shortly, it included features that easily allowed for presen-
tation of holograms in real space by means of image targets (see an example
in Figure 4.1), which could be used as a great way for users to arrange their
drumkit pieces in AR space to taste. The Vuforia library is said to speed up the
development of VR/AR applications by adding computer vision features for
UWP among other platforms. Therefore, this library was suitable for Hololens
development but still, the main disadvantage of this approach laid in how well
fast hand and foot interactions could be handled by computer vision. It was
also considered the fact that due to the limitations in performance of the li-
brary, the final interaction model would probably need to differ a lot from the
approach used for interacting with a real drumset and therefore, users would
not be able to leverage their existing skills.
Moreover, learning how to use this library seemed like a real challenge fromt
he programmer’s perspective, and thus, this approach to design could be post-
poned to later iterations of the system. Hololens examples provided in the
Mixed Reality Toolkit by Microsoft 2 also showed feasibility of interaction with
projected 3D models by means of combined gaze and gesture input, but that
was still a problem because its performance was limited. Thus, this approach
was dismissed along with the previous one.

• Creating a customMIDI controller whose interaction was built based
on the drumsticks and the leverage of all four limbs of the user: in-
spired by systems such as Aerodrums [48] and Freedrum (this one discovered

1https://developer.vuforia.com/
2see https://github.com/microsoft/MixedRealityToolkit-Unity

122

Figure 4.1: Example of Hologram projected using image target; via
https://library.vuforia.com/articles/Training/Image-Target-Guide

by the end of the project3), one of the ideas behind the interaction paradigm
to be supported involved integrating the sensors to be used to capture user
input into a pair of drumsticks and pedals, so that it could be possible to
avoid the necessity of carrying a lot of stuff with you to play MIDI drums,
increasing portability. Since similar projects existed, as the ones mentioned,
the feasibility was guaranteed and according to research, it was a relatively
easy approach to use, considering the great amount of DIY projects regarding
MIDI that can be found over the Internet. In addition, this approach might
be better for a novice developer of virtual musical instruments and embedded-
systems in this case, so since the learning resources were plentiful, then less
trouble was estimated to be found along the development process.
Thus, a MIDI controller of these characteristics was set as a goal to be achieved
in this dissertation.

4.1.2 Software subsystem (Sound Generator) alternatives

Regarding the sound generation subsystem, which had as main desired capability
providing with feedback to the user in the form of audio and visuals; many different
possible alternatives appeared as solutions for the aforementioned system require-
ments:

• Creating a standard UWP application from scratch: an early possi-
bility taken into account involve creating a Standard Microsoft application to
represent and project 3D items in visual space, which due to the focus on 3D
imagery seemed hard to do from scratch, without reinventing the wheel pro-
vided by game engine environments such as Unity, Unreal and so forth. The
fact that so much work and examples were available for other technologies
along with the similarities of those programming paradigms with respect to

3see https://www.freedrum.rocks/

123

the prior knowledge of the author of this dissertation were the key point to
abandon this a priory costly approach, which differed widely from the way
programs were built in Linux, and which feasibility in a timely schedule was
unlikely to be guaranteed. In short, this approach was discarded due to the
huge amount of work and expertise that is supposed to be owned in order to
provide an actual working system with the expected characteristics.

• Creating a Unity-based videogame program: aiming at a fast develop-
ment and prototyping of the system, using a game engine as basis for visuals
on our system was proven to be possible, given the nature of videogames and
its similarities with respect to the proposed system, in terms of navigation
and expected representation of the drumset as such within the virtual space.
Additionally, Unity integrates with AR/VR devices and supports building ap-
plication targeted at an heterogeneous set of platforms with minimum effort,
so constituted the most flexible approach for development. The fact that
Hololens tutorials were based upon Unity for development was also a critical
factor when deciding this path for development, even though the final product
didn’t finally target this device due to the limitations discovered during the
development process (see Chapter ?? for more details). Furthermore, State of
the art VRMIs are known to have used Unity for development, such as Mixed
Reality Keyboard [43]. For these reasons, the selected pathway for SW-side
development involved Unity as starting point.

4.1.3 Integration Mechanisms

As the system is known to have two clearly differentiated subsystems that shall
exchange information in order for the VMI to perform its basic functions, some in-
tegration mechanisms had to be used to ”interconnect the instrument chain”. In
this section, the thoughts upon which the final design choice is made are explained
shortly.

To begin with, one of the challenges inherent to the system to be built was integration
between the Hardware part of the system (the MIDI controller) and the visualisation
program to run in a desktop computer or AR/VR device.
One of the possibilities regarding integration was providing a self-contained solution
for the transformation from Serial USB to MIDI, the creation of a MIDI port for later
use in the visualisation application. However, this approach seemed too complex
regarding the need to explore the creation of drivers and handling communication
between Unity and the Hardware device all on the writer’s own, in an environment
(the Windows operating system) which is completely new for him, as a computer
undergraduate used to Linux.
Since after a relatively thorough exploration, free or open-source programs that
precisely covered the system’s needs were found, it was decided to abandon the self-
contained approach to avoid, once more, reinventing the wheel. It was considered
as a possibility to provide with such self-contained functionality later on, as new
iterations were performed over the first few prototypes, narrowing this way the

124

scope of this dissertation.
Next, the reader will be presented with the integration concerns and the chosen
solutions for them:

• On the one hand, the first issue consisted in taking the Serial input to the
computer, encoding MIDI messages, and converting that stream back to MIDI
to finally conveying the MIDI messages through a MIDI port. This is precisely
what Hairless MIDI enables, acting as a Serial to MIDI Bridge4. Using this
application, development time could be reduced and successful communication
among subsystem was enabled in an easy fashion.

• On the other hand, in order to redirect the newly extracted MIDI from the
Serial communication protocol at an arbitrary speed towards a MIDI port, we
were required to create a MIDI loopback5 port, that is, a port that takes data
from the computer and redirects it towards another application using a MIDI
port.
An application developed by Tobias Erichsen, called loopMIDI; visit 6 en-
ables precisely this, allowing for creation of MIDI ports to use as input to
other applications. This project uses a driver created by Tobias too, called
virtualMIDI, which also provides a SDK, that could be later explored on an
advanced iteration of the project to complete the last ideal goal, the project
to be self-contained.

• In addition to these two programs, a Unity add-on was used to support MIDI
input in Unity, which reads all the MIDI ports and handles basic MIDI inputs
such as NoteOn and CC messages within the MIDI specification. This add-on,
called MIDI Jack and developed by Keijiro Takahashi eases the development
process by providing all the low level functionality of dealing with MIDI ports
and allows the author of this dissertation to focus on basic handling of inter-
action and GUI concerns [72]. However, this tool does not support UWP by
the writing of this dissertation, which limits the target device to Desktop Win-
dows and gets in the way with Hololens development for the moment. UWP
is in fact the way to go to obtaining MIDI-BLE support using the UWP API,
which is a future work objective of the author of this dissertation (see Chapter
9 for more information regarding future work).

Led by these decisions on how to build the system prioritising development time
and minimum effort, the subsequent design was greatly influenced by this princi-
ple, in the sense that most expectations were reduced to the minimum so that the
problem, which complexity was initially unknown due to a poor expertise in the
matter, could be finally manageable by a single developer. Only after this process of

4Hairless MIDI (see https://projectgus.github.io/hairless-midiserial/) is a cross-platform pro-
gram developed by Angus Gratton which was compatible with Arduino MIDI Library. This ap-
plication uses Qt, a cross platform framework that expands the capabilities of the C++ language
and generate standard compliant C++ sources to be compiled by any known C++ compiler such
as Clang or GCC [71]

5loopback: connecting via software the host system to itself
6http://www.tobias-erichsen.de/software/loopmidi.html

125

complexity decomposition, a plan regarding the pathway to follow for development
and requirements elicitation could be performed. Simplification of the problem into
more manageable and specific goals played a huge role in the completion of this
dissertation, which otherwise would probably have been too complex to even ap-
proach or build in a limited schedule such as the one situation of the author of this
dissertation.
As main consequences of the technology selections discussed we can extract the
following conclusions:

• The AR paradigm is abandoned in the Software side, going for a
simplified and easily achievable functioning whole instead of a set of failed
or in-progress attempts in the limited time-span devoted to the dissertation.
Hololens targetting is thus left as a future goal, and the AR is to be present
in a way within the MIDI Controller, ideally building a controller that can
generate different sounds depending on the orientation of the drumsticks.

• The ideal BLE support for MIDI is also abandoned in both ends of
the system, due to the increased complexity this support implies and the
limitations in the documentation found when briefly exploring this new feature.
Allowing for BLE MIDI would also require (at least) to modify the MIDI Jack
add-on to support UWP or finding a different solution to provide such support
otherwise. It was considered a much better idea to make the problem easier to
manage and expand over an existing solution, which leverages the properties of
Incremental delivery approach to the SDLF (Software Development Lifecycle),
which is used in the project and covered in detail in 6.0.2.

• Some requirements are implemented by means of the third-party software
(specifically, SR-FR-16 and SR-NF-17).

4.2 Architectural Design

The present section covers the design of the system and the improvement of it in the
numbered builds detailed in Section ??, both the Bare Bones Build and the Modest
Build. These are also referenced in the requirements, from which this section is
derived and which was used as reference for implementation.
In this section, subsequent iterations on the project are depicted one after the other,
covering Hardware and Software-based subsystems independently.

4.2.1 Bare Bones Build

A very basic version of the system is covered in this design phase, providing function-
ality detailed in system functional requirements and considering constraints imposed
by non-functional requirements as well. First, in 4.2.1.1 a high level description of
the functionality to be supported will be provided, aiming at giving the user a quick
comprehensive grasp of the system to be developed and the objectives to be achieved

126

in this first build. Next, the Hardware-based subsystem(i.e. the gestural controller)
design will be covered in Section 4.2.1.2. Afterwards, the Software-based subsystem
will be described in 4.2.1.3.

4.2.1.1 Bare Bones Build Concept

The first build of the project has as target to create a proof of concept system that
is able to generate sounds in response to user input gathered by means of sensors
that are hooked up to an Arduino-compatible board, and which are to provide basic
visualisation on the videogame-side of the application. The main objectives to be
achieved in this build are the following:

• Designing a gesture controller based on hit sensors that allow to obtain a
continuous value; that is, analog sensors which can be used to trigger sounds
with varying volume depending on the type of interaction, as required by 3.42.
All the required circuitry will be attached to a protoboard in order to avoid sol-
dering and so that we can make connections non-permanent. This subsystem
will comply as well with the following lower-level objectives:

– Implementing MIDI data output from the gesture controller sup-
porting at least NoteOn and CC MIDI messages, as required by 3.50 and
3.57.

– Including actuators which notify the user about the state of
the gesture controller as required by 3.39. These actuators have been
chosen to be simple LEDs, as it will be specified later.

– Designing a control algorithm that continuously polls for user input
and converts the input information into MIDI output messages (as spec-
ified 3.37), whose velocity value is proportional to the value received as
input from the corresponding analog sensors (as stated in 3.42).

• Designing a sound generator which is able to to process MIDI input data
coming from the gesture controller and provide both basic auditory and visual
feedback. This subsystem will comply as well with the lower-level following
objectives:

– Allowing for triggering of at least 3 different fixed sounds de-
pending on the MIDI note number received, using the velocity
field of NoteOn messages as a value to modify the volume of the
sound sample to be triggered (the greater the velocity, the higher the
volume). Mappings between MIDI numbers and sound shall be fixed and
created by default (as extracted from ??) and sounds shall be extracted
from a limited library of .

– Creating a simple 3D model representing the drumset in the
virtual environment whose materials are altered when the user vir-
tually hits a specific piece of the simulated drumset (derived from 3.45)
.

127

4.2.1.2 Hardware Design: Arduino-Based MIDI Controller

This section covers the design process for the Hardware-based subsystem associated
to the VMI to be created as output of this project. The information herein will be
structured as follows:

1. Selection of an Arduino-compatible board: this excerpt will discuss on
the board upon which the whole hardware will be based, listing the arguments
for its use.

2. Selection of sensors and circuitry design: this section will detail the
sensors used and the reasons that meant its selection.

3. Control algorithm design: will depict the software algorithm to be run
non-stop during the operation of the MIDI controller.

4.2.1.2.1 Selection of an Arduino-compatible board

Due to the hands-on experience with Arduino development the author of this disser-
tation had prior to the development of this project, an Arduino compatible board
was decided as device upon which the final solution could be built. Since the task
to be performed is fairly simple, a simple microcontroller board is known to suffice,
so no device including an operating system was considered for the design. Several
aspects were evaluated to determine the best option (to the eyes of the developer)
among the existing boards.

To begin with, we may assume that all four limbs shall be used by the user to in-
teract with the subsystem (the gesture controller), so that means that at least 4
sensors that capture interaction will be required to gather input. This interaction
shall be in the shape of hits or pressure, resembling how the user interacts with a
real drumset.Therefore, a must-have requirement for the final board was a minimum
of 4 analog input pins. Luckily, most boards satisfy this requirement and thus, other
aspects shall be considered. Amongst the most popular boards we can findArduino
Micro, Arduino Uno and Arduino Mega 2560. The differences between these
three boards can be summarised in table 4.2:
From this table we can observe that all of the aforementioned boards provide similar
characteristics, differentiating mostly in size and memory. Since the system is known
to progressively grow in complexity, source code size, sensors and actuators attached
to the board, flexibility was considered as a crucial decision factor. Whereas Uno
and Mega were compatible with shields, something Arduino Micro did not allow,
as the pins are in the form of through-holes, in contrast to the other two. This
is something to be considered when trying to expand on the features provided by
the gestural controller; Bluetooth communication or Wifi features could possibly be
implemented in the future. This was the main reason for discarding Micro.
On the other hand, as more sensors were planned to be introduced in future iter-

128

Figure 4.2: Arduino Boards Comparison from [73]

ations, it was a nice feature to have support for SPI7 and TWI8 protocols, that
could be used for communication between, say MPU92509 which could be used to
obtain orientation information from the hands of the user or tangible interface used
in further iterations on the project. All of the boards included support for these
protocols so other aspects had to be evaluated to take a decision.
After a thorough evaluation, Arduino Mega was chosen. The advantages of this
model over Uno are multiple:

• It comes with 4 UARTS, that is, many Serial ports can be connected to the
Arduino, and those UARTs are in charge of transforming parallel information
(more than one bit transmitted at a time) into a single line stream of bits. This
is a great advantage over Uno, for example, since 0(RX) and 1(TX) pins are
connected to the USB to TLL Serial chip and precisely that prevents you from
using those pins at the same time as you are programmming the chip, because
otherwise, conflicts happen. Since it is important to search for efficiency on
debugging, the Arduino Mega was known to avoid such conflicts, as the rest
of UART could be used for, say Bluetooth communication without generating
issues when uploading software to the board.

• Its clock speed is 16MHz, which means that the oscillator within the chip
generates 16,000,000 variations of voltage (oscillations) per second, which maps
to at least one low-level operation being performed; ideally more. So more than
16,000,000 operations are performed per second, at least one operation every
625 μ s. This means that as each UART transmits one bit on every oscillation
of the clock, a total amount of 10 bits (the size of a data byte plus auxiliary bits
of the Serial protocol) take to be sent 6,250 μ s (0.00625ms), ideally providing

7Serial Peripheral Inteface, a communication protocol used to transmit data between integrated
circuits that uses 4 buses

8Often referred to as 2C, a protocol to communicate among Integrated Circuits that uses only
2 cables

9a 9DOF IMU

129

real-time output for the purpose of musical performance of drums (considering
a maximum allowed delay of around 3ms and knowing that a the average size
of a MIDI message is 3 data-bytes; the time it takes for a complete MIDI
message to be sent is 0.01875 ms if there is no buffering). This feature was
common to all the evaluated boards but equally important.

• Mega includes 14 PWM10 pins, which allow to generate analog signals using
digital means, allowing for a varying output from HIGH to LOW values which
translate into a given portion of time (called duty cycle) connected to a 5V
source. This on and off pattern allows to simulate an intermediate voltage.
This one was the board which had the highest number of pins of this kind, so
the feature was taken into account for the final decision.

• Arduino Mega has 6 available external interrupt PINS, from INT0 to INT5
in pins 2,3,21,20,19 and 18 respectively. This mechanisms allows for handling
up to 6 inputs without polling (without constantly checking the value of the
pin), which is desirable for expanding the capabilities of the system; in other
words, it allows for multitasking and actually guaranteeing that no user input
is lost. This was an important reason to pick Arduino Mega out from the set
of discussed boards.

• Memory was an important aspect of the system, as the system is to be ex-
panded over time and code size may eventually become an issue. Arduino
Mega led the competition in this aspect, since it is equipped with a 256KB
RAM, 8KB of SRAM and 4KB of EEPROM, which is more than double of
the capabilities offered by other boards.

As an embedded system, the Hardware MIDI controller designed for this project
was to be developed by means of a set of linearly executed tasks, running one after
the other, controlling inputs and reacting to them appropriately. Thus, the MIDI
Controller subsystem can be essentially thought as a control system, an open loop
control system whose goal is to trigger a specific behaviour (sound) in the receiving
end; that is, output from the control system is generated solely based on inputs.
The subsystem at hand is not only a control system but was also targeted at an em-
bedded system, one with limitations regarding resources (the Arduino Mega board).
Furthermore, any music controller can be categorised as well as a real-time system, a
soft real-time system to be more precise, since there are timing requirements but no
catastrophic disasters shall be produced due to the malfunctioning of this system,
as it is not dealing with people’s lives. However, incorrectly detecting a note can be
disastrous for a performance, so we are seeking here for a level of precision that is
able to provide playfulness to most musicians (drummers in this case). Details on
the design of the actual solution can be found next.

10Pulse Wave Modulation

130

4.2.1.2.2 Sensor selection and circuitry design

Starting from the assumption that interaction from the user has to be captured
by means of hitting, and driven by the fact that the system shall somehow handle
a pedal-like mechanism to deal with aperture of the hi-hat cymbal, we can safely
state that at least 4 sensors are required, so that all user limbs can be leveraged
simultaneously as input generators.
Due to the fact that stamping is a widely used way to practice rhythmic patterns,
this first version of the subsystem was thought to include a sensor to detect that
kind of interaction mode.
Accelerometers were evaluated but discarded among other digital sensors, which did
not allow for velocity extraction straight away, so finally a piezo sensor was chosen
as mechanism to detect the stamping intensity.
Regarding the hi-hat pedal counterpart, several alternatives were evaluated, includ-
ing IMUs, piezos and light sensors. The latter turned out to be the simplest
solution to the problem and proved to work well if carefully calibrated according to
the initial light intensity sensed in the environment. Lastly, regarding hand interac-
tion, film piezos were chosen for gathering inputs in an analog fashion.
To sum up, the Hardware-based subsystem is composed of four sensors, each one
associated with one of the limbs:

• Piezo sensor: It serves as a sensor that
simulates bass drum pedal hits, often trig-
gered by the right foot. A piezoelectric
disk generates a voltage when deformed,
so it can be directly pressed or hidden in
a practice pad for physically protecting it-
self and allowing the drummer to use an
actual pedal for interaction.

• Light sensor: in order to control the
opening of the hi-hat, this sensor, which
words based on the light intensity it re-
ceives, simulates the interaction with a hi-
hat pedal, since depending on the occlu-
sion performed over the sensor (often with
the left foot) we enable certain sounds on
the synthesizer end.

• 2 Analog hit sensors: they allow for de-
tecting vibrations that can be translated
into MIDI velocity when appropriately
mapped. Each of these sensors shall even-
tually be directly attached to a drumstick,
in order to capture user input. These sen-
sors were chosen to be flexible, so that
they could later be attached to some kind
of tangible interface.

131

The schematic of the system is shown in Figure 4.3. Two leds are used for providing
the user with visual feedback regarding the state of the system, as required in
the system requirements. The green led informs about how ”closed” the hi-hat is,
meaning that it is to be light up when the light sensor tends to be occluded, whereas
the red LED tells whether the MIDI controller is powered up or not, which aims to
provide a very basic intuition of what is happening within the subsystem.

132

Figure 4.3: Arduino-Based MIDI Controller Schematic v1.0 (Bare Bones Build)

133133133

4.2.1.2.3 Design of the control algorithm

This section details the processing to be done of the inputs the user provides, briefly
summarises how monitoring is performed and how MIDI output is generated.
To begin with, it is not possible to plot the gesture control problem as a cyclic
scheduler due to the arbitrary timing of the user’s input, which cannot be predicted
in advance. Neither is it following a repeating pattern, so the program running
within the micro-controller shall monitor the user’s input, say ”frequently enough”
for most performances to be accurately detected and transmitted via USB, at least
that is the level of accuracy we are seeking in this first iteration.
The proposed basic solution implies no timing guarantees, since hits may not be
recognised if the user (a drummer) is able to play fast enough for different pin
status reads (via Arduino analogRead()) not to detect sequential alterations in the
input that occur within a very small time period (even though assumptions are made
so that this is impossible for a human player) Anyways, the subsystem is functional
due to the fact that inputs are verified at a huge rate, giving the illusion of them
being processed in parallel.
The control algorithm to be implemented in the embedded system is the following:

For each sensor, there is a threshold, say thresholdInteraction (to be adjusted de-
pending on the user or environmental conditions prior to interaction). Any value on
the voltage read from the sensors surpassing such thresholdInteraction is interpreted
as interaction, that is, as a hit to a given drum-set piece.
Since a single message per hit is to be sent but the sensors used are analog, that
is to say, providing continuous values, the idea is to avoid duplication of NoteOn
messages by assuming certain hits can’t be feasibly performed in a very small period
of time. We can assume a extreme case scenario to compute some values to use as
reference, say we have a tempo of 220bpm, a fast tempo.
Imagine we want to play 16th notes at that beat, which means 3,67 hits per second
with only one of the limbs (a huge speed indeed). Therefore, we could assume that
two hits from the user will never happen within such time span, being this assump-
tion pretty restrictive already.
In order to avoid processing triggered notes in the input ”too often” (avoiding mis-
takenly identifying hits due to noise in the input), we keep two timers per input
sensor. Thus, even though we continuously monitor the inputs, we only process
them when a certain time interval is overflown. This interval is given by the afore-
mentioned calculation, thus, set at 272.5 ms approximately
In the pseudo-code shown in Algorithm 1 the variable timeCurr keeps track of the
most recent time ”interaction” has occurred, meaning that the analog value as-
sociated with a specific limb has surpassed the threshold (for whatever shall be
considered as a hit), to be set at the very beginning of the program.
On the other hand, timeLast keeps track of the timestamp at which the last pro-
cessed ”note” was identified.
Both are used to compute the time elapsed since a NoteOn message was triggered
by a given limb, which is used to avoid accidentally sending two NoteOn messages
that are in fact associated with a single hit from the user viewpoint. Note that in-
teraction thresholds are to be decided based upon user preferences, since depending

134

on the style of music or playing style itself, the movements and force exerted when a
hit is performed may vary. Customisation is made through direct code modification
at this point, but different approaches may be leveraged in subsequent iterations
over the project.

Algorithm 1 Input detection algorithm

Require:
- threshodntercton is defined for each sensor independently, to adapt to
player interaction mode (how much force or pressure is considered as interaction)
- NoteFesbenterSensor represents a time interval within which we
assume that two notes can’t be ”humanly” played using a single limb. This
values are used to avoid processing user input incorrectly.

1: while true do
2: ← 0
3: while ≤ nmSensors do
4: crrVeSensor ← ReadSensor(i)
5: if crrVeSensor ≥ threshodntercton then
6: tmeCrrSensor ← getMsecondsFromStrtp()
7: if crrVeSensor ≥ threshodntercton

and preVeSensor ≤ threshodntercton
and getElapsedTime(tmeCrrSensor, tmeLstSensor) >
NoteFesbenterSensor then

8: sendNoteOn(chnne, getNoteMppngsensor(), eocty)
9: tmeLstSensor ← tmeCrrSensor

10: crrVeSensor ← stVeSensor

The algorithm shows a simple triggering of MIDI NoteOn messages when interaction
is detected on a specific sensor, which has a specific MIDI number associated (called
getNoteMppngsensor() in the code) . This numbers correspond to the most
basic components of a drumset: the hi-hat, the snare drum and the bass drum.
From this algorithm, we can observe that the approach to sound generation is fixed
for this specific build; i.e. each sensor has only one sound associated (except for
the LDR).In addition, as the reader may have observed, no NoteOff messages are
used in the algorithm or previous explanation whatsoever. This is due to the nature
of non-pitched percussion sounds, whose duration is limited, so it is not strictly
necessary to include NoteOff messages to shut sounds down, as it would be the case
for a piano keyboard. This decision is accurate for sounds which are characterised by
short attack and release times but not for cymbals, whose sound is often sustained
for longer periods of time. NoteOff messages would be useful to implement cymbal
choking, which is an interaction form that goes beyond the scope of this dissertation
and may be explored in future work.

4.2.1.2.4 Hi-hat interaction handling

As mentioned earlier, one of the sensors’ input (LDR’s) is handled differently since is
targeted at resembling the way a hi-hat pedal works, and therefore this one will work
differently in the sense that the sensor associated with the right hand drumstick (at

135

some point of the development) will be mapped to different sounds in the receiving
end, simulating the real interaction mode that allows regulating the aperture of the
hi-hat by the fact of detecting that more or less amount light is getting to the light
sensor.
This is strictly necessary for this build due to requirements on the number of sounds
that the system as a whole shall be able to generate, which shall exceed three, and
which is impossible to achieve unless different sounds on the simulated hi-hat can
be generated.
As a rather simple design, we chose for this particular build a binary status allowed
for the pedal. That means that from the point of view of the code, the pedal can
only be either OPEN or CLOSED, and that means two different sounds shall be
triggered in the sound generator subsystem depending on the state of the hi-hat.
In order to achieve this, we keep track of the analog status of the LDR and set
a threshold that determines the logic to decide whether the hi-hat pedal is open
or closed, a value that consequently alters the noteNumber included in the MIDI
NoteOn messages sent as output that are associated to the right-hand interaction
of the user.

Two timers are kept to avoid processing of hits ”too often”, as it was shown in
Algorithm 1.

Specific parameters and sizes of data structures are implementation dependent and
therefore not specified here, you can find more about them in the code itself, where
the detailed design is embodied for this project. All implementation decisions were
made looking for a trade-off between precision and performance loses, ultimately
seeking for usability of the product as a whole as musically-useful.

136

Algorithm 2 Hi hat handling algorithm Bare Bones Build

Require:
- thresholdHHClosed is set depending on the environment’s light; values below
this threshold imply a closed hi-hat noteNumber to be generated as output.
- thresholdInteraction is set to the minimum value as input that shall be consid-
ered a virtual hit.
- noteFeasibleIntervalSensorHH represents a time interval within which we as-
sume that two notes can’t be ”humanly” played using a single limb, two hits on
the hi-hat can’t be feasibly performed within this timespan.
- hiHatStatus is initially set to CLOSED or OPEN and updated according to
the read input on the LDR

1: while true do
2: crrVeHH← readHHSensor()
3: crrVeHtSensorHH← readHitSensorHH()
4: if crrVeHtSensorHH ≥ threshodntercton then
5: tmeCrrHHSensor ← getMilisecondsFromStartup()

6: if
7: crrVeHH ≥ threshodHHCosed and
8: preVeHH ≤ threshodHHCosed and
9: getElapsedTime(tmeCrrHHSensor, tmeLstHHSensor)
> NoteFesbenterSensor then

10: mdVeocty← computeVelocity(crrVeHH)
11: if hiHatStatus is CLOSED then
12: sendNoteOn(chnne, hhMppngCosed,mdVeocty)
13: else
14: sendNoteOn(chnne, hhMppngOpen,mdVeocty)

15: tmeLstHHSensor ← tmeCrrHHSensor
16: crrVeHHSensor ← stVeHHSensor

137

4.2.1.3 Software: Unity-based Sound generator

Before diving into design of the Bare Bones solution to the problem, we may justify
the selection of a set of technologies as building blocks for the system to come to
life, whose selection is derived from the software requirements.
Firstly, the software subsystem was developed using Unity. This decision was taken
owing to several reasons:

• It was an opportunity to learn about videogame creation, a topic of
great interest and demand in the IT sector. The idea of getting started with
tool by means of this project could be consequently positive in two aspects:
personal enrichment and potential of showing a small expertise with the tool
to employer; or as a self-assessment of knowledge-base for possible further
studies.

• Since visualisation is the main purpose (in conjunction with sound generation)
of the Sound generating subsystem, game engines are known to ease and
speed up the development process of ’game alike programs’, and are
designed to provide facilities with a focus on dealing with 3D models, 3D
audio and User Interfaces. These are the main items to be dealt with in the
design and implementation of the subsystem so it seems like the best approach
to follow under the limited time-span planned for completion of the system.

• Unity was chosen over other game engines because of the quality docu-
mentation and popularity. Needless to say that it is free, in contrast with
other game engines with similar features and workflows [74]. And it supports
Windows 10 as target, allowing us to complete SR-NF-21.

In addition, regarding the approach to handling MIDI input, we based the design
of this initial build on the MIDI Jack Unity add-on, which keeps track of the
state of all the different 16 MIDI channels, notes that are played, when they have
been played and so on. Next, a thorough description of the MIDI Jack add-on
and its capabilities is provided, as it may help readers understand how the Unity
programming paradigm works and why the solution proposed later makes sense.

4.2.1.3.1 About MIDI Jack:

The Plugin comprises a set of 5 C# files, some of which make use of a DLL whose
source code is available at keijiro’s github page [72]. Each file has its own purpose,
summarised below:

• MidiJackWindow.cs is a file implementing a GUI window for the Unity
editor, which shows the data messages being received through all MIDI ports
in the system; so basically serves the purpose of debugging, allowing for the
messages being received to be displayed after they are processed, accessing
them from a message history data structure. This file is not interesting for the

138

design part because it doesn’t provide any useful functionality to be leveraged
in the project; at least for the implementation as such.

• Midi.cs defines the data structures that stores data associated to a given
MIDI message, either CC or Noteon/NoteOff. Encapsulates the processing
of the input data stream and separates the different logical fields of it for an
easy access and logical reasoning in the code. Thus, this file provides with the
innermost data structure (the MIDI message and its fields), used and dealt
with later on higher abstraction levels.

• MidiDriver.cs implements the main logic of the add-on and provides with
internal structures that store the status of MIDI notes and knobs (the Channel-
State class), public methods to access the aforementioned structures as well as
the core function providing barely all capabilities, the inner Update() method.
This method does the following.

1. Checks the status of all the data structures holding MIDI in data to
guarantee that the values are up to date. Since Unity works mostly
based on frames for visualization purposes and that is one of the typical
approaches to gameplay programming, the addon provides functions that
allow other programmers to know whether data was received or triggered
during the current frame, released or simply ON or OFF at any given
point in time.

2. Processes the incoming MIDI messages, whose low level details are left to
DLL functions; updating the data structures associated with each MIDI
Channel to reflect the state of the MIDI input.

3. Notifies about events defined with C# delegates, allowing classes sub-
scribed to the events to execute methods in their scope. This is a useful
tool to allow users of this plugin to create low coupled programs that
respond to certain events, such as the receipt of a NoteOn message, for
example; upon which the implementation of the virtual drumset is based.

• MidiStateUpdater.cs is a file which derives from MonoBehavior and there-
fore, the one attached to a Unity GameObject. It is the one which gets to
execute the core functionality of the Addon, once its creation is performed by
the constructor of the MidiDriver class. This class uses a delegate as a way to
receive a function reference as parameter, using it to determine what code to
execute within the Update() method defined within.

• MidiMaster.cs is a static class that provides a high-level access to all the
main features of the add-on, allowing directly calling methods without requir-
ing an instance of any other MIDIJack class. It is the one to be referenced
within our code directly, as it acts as a clear API for programmers aiming at
rapidly incorporating MIDI input support to in Unity.

In order to support the explanation and aiming to straightforwardly understand the
complex flow of the add-on classes (how they relate to each other), Figure 4.4 is
provided.

139

Figure 4.4: MIDI Jack execution logic diagram

140140140

4.2.1.3.2 Architectural design of the videogame-alike program

In this excerpt, the Architectural design will be formally depicted using the OOD
Methodology (Object Oriented Design). This one was selected because of the nature
of the videogame-creation environment (Unity), which allows to create code using
C# , an OOP(Object Oriented Programming) language, meaning that its logic is
based on classes and objects that are the virtual representations of entities (logical
or physical) that exist in the real-world.

The following components were identified in the system, each one targeted at
implementing a clear overall purposeful function. All of the mainly involved compo-
nents are listed (both custom and pre-existing), in order to guide the understanding
from the reader.

• MIDIJack (C1): the add-on acts as a component encapsulating MIDI input
and allowing other components to access related data by means of a clearly
defined interface. No substantial changes need to be performed in this pre-
existent component. It allows compliance with SR-NF-07(see 3.64) and SR-
FR-16(see 3.51).

• Drumset Mapper (C2): in charge of mapping MIDI Input numbers to ac-
tions using the event notification tools provided by MIDI Jack and is respon-
sible for configuring the sounds that are to be played in response to user input
and animations to be executed. This is a brand new component.

• Drumsetpiece Handler (C3): handles the information related to specific
parts of a virtual drumset and is in charge of generating changes on the vi-
sualised objects as well as directly triggering 3D audio. This is a brand new
component.

• Unity Audio (C4): classes dealing with Audio in Unity are used by custom
components to handle sound generation, clip assignment and sound configu-
ration. No changes will be performed to this component.

• Unity Renderer (C5): the classes handling materials, object’s look and tex-
tures in Unity will be used by custom components in order to trigger anima-
tions. No changes will be performed to this component either.

Figure 4.5 shows custom components in yellow colour, while pre-existent components
are shown in a bluish green colour.
A detailed specification of each custom components is provided using the following
table template; containing the following fields:

• ID: follows the pattern CX where X increases every new component, so that
each component can be univocally identified.

• Origin: defines whether the Component was created for the sole purpose of
this dissertation (Custom) or if it existed previous to it (Pre-existent).

141

Figure 4.5: (Sound generator) Component Diagram for Bare Bones Build

• Purpose: references the Software requirements related to the component.

• Function: states what the component does; that is, the process it encapsu-
lates as well as the information stored or transmitted.

• Type: can be Executable (transforms data) or Non-Executable (does not
directly transform data, only does data management).

• Dependencies: they are represented by the hooks attached to lollipops in
the Component Diagram . They are used interfaces.

• Offered interfaces: refer to the interfaces each specific component offers,
represented as lollipops or circles coming out of a given component.

• Target Build: the associated Build towards which this design has been per-
formed; there are two possible values; Modest Build or Bare Bones Build.

A Class diagram is provided in Figure 4.5 for the software system developed in
this build. It aims to clarify how components may be implemented, identifying
responsibilities, relationships and purpose of each of the classes and components
involved in the solution.

142

Component Specification Template
ID e.g. Made-up Component (C1)

Origin Custom | Pre-existent
Purpose e.g. SR-FR-01, SR-NF-01 ...
Function Brief description of the responsibility of the component within

the system.
Type Executable | Non-executable
Dependencies e.g. InterfaceIn: the component uses it to access the informa-

tion from the database, whose low-level details are encapsulated
in the component offering such interface.

Offered inter-
faces

e.g. InterfaceOut: set of functionalities offered to the public
that enable access to status of the user within the application
lifecycle.

Target build Bare Bones Build | Modest Build

Table 4.1: Component Specification Template

Component Specification
ID DrumsetMapper(C2)

Origin Custom
Purpose SR-FR-02,SR-FR-08,SR-FR-09,SR-NF-19 andSR-FR-03
Function 0.Subscribes to the noteOn event from C1. 1.Assigns Midi Num-

bers as input to Drumpieces; forwarding input to C3. 2.Loads
sounds to be triggered from library of samples. 3.Assigns sounds
and configures its parameters (looping, playOnAwake...)

Type Executable
Dependencies MIDIJack’s (C1) Interface MIDI Data: obtains the infor-

mation regarding the state of the MIDI input, allowing for easy
logical access to notes that are on, off, status of the knobs. . .

Offered inter-
faces

None

Target build Bare Bones Build

Table 4.2: Component 2 Specification Bare Bones Build

143

Component Specification
ID Drumsepiece handler (C3)

Origin Custom
Purpose SR-FR-01,SR-FR-07,SR-NF-06,SR-FR-10,SR-NF-

08,SR-NF-19 andSR-NF-20
Function 0.Encapsulates all the data associated with the virtual represen-

tation of a drumkit piece. 1.Enables sound triggering. 2.Enables
material animation.

Type Non-Executable
Dependencies Unity’s Audio (C4) Interface Audio Handling: provides

functionalities regarding audio playback, 3d audio spatialization,
audio playback status access, etc. Unity’s Renderer (C5) In-
terface DisplayHandling: allows changes of material assigned
to 3D objects in the scene.

Offered inter-
faces

Interface DrumInteraction:enables modification of Materials
associated to a specific 3D object (a virtual drumset piece; using
C5 utilities) and triggers 3d sounds using other components (C4).

Target build Bare Bones Build

Table 4.3: Component 3 Specification Bare Bones Build

144

Figure 4.6: (Sound generator) Class Diagram for Bare Bones Build

145145145

In short, the program workflow would work as follows:

1. The Drumset Mapper would get assigned all the midiClips that the user
will be able to trigger during program execution, as well as a material that
would substitute the one present in any drumset piece with which the user
may interact in the future.

2. To provide with mappings between MIDI inputs and sounds/animation, a
Dictionary, say midiNumbersDictionary would keep the relation among the
noteNumber received and the virtual drum piece to be conceptually ”hit”. The
mapper would be in charge to create instances of DrumkitPiece (See Drumset
Controller Component) to represent and store data related to a virtual drum
piece, allowing for later sound triggering and animation.

3. Using the noteOnDelegate delegate offered by MIDI Jack, made public via
MidiMaster.cs, we would create a function that processes the received notes
for all of the drum pieces that have an assignment. On initialisation of the
program, that is to say Unity’s Awake(), we subscribe to that event; meaning
that we add the created method to the list of functions to be called on event
execution (i.e when a note that wants to be handled is received via any MIDI
port). In this way, the custom implementation is only in charge of extracting
the noteNumber associated to a given noteOn message received; and process it
by looking for the key (the noteNumber) within the midiNumbersDictionary
dictionary to finally use the DrumkitPiece class methods associated to the
extracted object to trigger the desired sound sample and alter the visuals of
the desired drumset piece.

4.2.1.3.3 User Interface and visualization

For the visuals of the sound-generating subsystem, a very simplified drumset was
created (see Figure 4.7a), made of a set of rectangular prisms with different mate-
rials, each one associated to a drum or cymbal within the simulated drumset. This
simplification aimed to speed up the development process, leaving the fidelity of the
graphical representation of the drumset for further iterations over the system. The
figure shows both the visuals of the sound generation subsystem at rest and when
it receives MIDI messages associated to, in this specific case, the hi-hat cymbal and
the snare drum, which turn red on the very next frame when input associated to
their drumpieces per se is received.

Midi mappings are strictly fixed and simplified for this version, not being compli-
ant with MIDI standard assignments. These configuration parameters were made
available through the Unity inspector to allow easy configuration without modifying
code, which made testing much easier. Assignments can be found in Figure 4.8,
which include noteNumbers in the interval [1-6].

146

(a) Bare Bones 3D visuals in Unity

(b) Bare Bones visuals on Interaction

Figure 4.7: Bare Bones Build 3D visuals

147

Figure 4.8: Midi Mappings in Bare Bones Build

148

4.2.2 Modest Build

As in the previous iteration of the project, the structure of the design will be analo-
gously described next. In this build, called Modest Build, an improved version of the
system is to be created, whose requirements are simplified to natural language in the
first part of this passage (see 4.2.2.1). Later, gesture controller enhancements and
software-side new features will be detailed in sections 4.2.2.2 and 4.2.2.3 respectively.

4.2.2.1 Modest Build Concept

The second build has as target to improve the whole system by making it more
usable and customizable than the one obtained as outcome of the Bare Bones Build.
Many objectives to this build were derived from reading several sets of guidelines
for creating VRMIs and NIMEs (Jordà’s [50], Perry Cook’s [25] and [75], Ge Wang’s
[32], Serafin et al. [31]) and the author’s own well-founded opinion after research and
State-of-the-art reading; so you may find references to those later in this document.
In fact, by simply iterating on this project, we are fulfilling Ge Wang’s 11th principle
from [32].
Broadly speaking the following build is to achieve the following:

• Improving the gesture controller: based on the previously generated sub-
system, the goal is to improve its usability, accuracy, expressiveness and porta-
bility by complying with the following main objectives:

– Providing time guarantees: the system shall be able to be respon-
sive enough to handle two hits happening within a maximum range of
68ms of separation (from the same sensor); that means we must measure
performance to make sure no output cannot be sensed.

– Embedding sensors in a set of drumsticks and pedals, in order to
give birth to a tangible interface which can make the instrument more
straightforward to use and allow the player to reuse their drumming skills.

– Implementing support for CC messages: so that these can be used
to control hi-hat aperture using continuous values, which is the imple-
mentation approach followed by most VSTs (such as Addictive Drums
2).

• Improving the sound generator subsystem: based on the simple solution
obtained as output from the Bare Bones development, we aim to add new
functionality that make of this virtual instrument a better fit for a musician
and their creative minds, providing with custom mappings, volume settings
and higher-fidelity 3D Visuals.

– Modelling an accurate representation of a Drumset in Blender:
this would provide with better graphics and immersion, since graphical
and physical representations will be similar to each other, making the UI
look, in addition, much more professional.

149

– Expanding the number of sounds that can be generated by sup-
porting CC input: this feature will enable a much higher range of
hi-hat sounds, depending on the aperture value at a given point in time.

– Implementing a configuration menu that allows changing sound-
to-noteNumber-to-drum piece configuration, as well as volume values
for the drumset as a whole.

– Implementing a sound-preview functionality; this would allow users
to listen to a sample that is to be assigned to a specific drum piece be-
fore actually assigning it, so that users can make an efficient use of the
configuration menu.

– Implementing support for camera movement: would allow the user
to explore the virtual environment, as if they were able to move their gaze
around it.

4.2.2.2 Hardware Design: Arduino-Based MIDI Controller

One of the problems discussed by Jordà regarding ”splitting the chain” (having
a controller-sound generator architecture), was precisely the fact that it reduces
the feel of control over the instrument. In order to address this problem and so
that we can make interaction with our sound generator as organic as possible, we
introduced a set of improvements to the gesture controller obtained in the previous
design iteration.

4.2.2.2.1 Tangible Interface Design

Firstly, it was decided to attach the sensors of the system to something physical,
which could be swung or hit around, and therefore, could resemble the way drummers
interact with an real-world drumset. This decision may be thought as derived from
Ge Wang’s 4th principle, “Induce viewer to experience substance”; which means, one
should keep the attention of the user away from the artefact that makes possible
the music, instead, let they focus on playing. It also relates to the 9th principle,
“Be whimsical and organic”; in the sense that we involve real-world interaction
paradigms: as it is hitting.
Figure 4.9 shows the assembly performed to embed sensors within a set of real world
objects in order to make them more usable. Female USB connectors were soldered
to both the Arduino inputs and the tangible interface, in order to ease playing
and portability, since otherwise long thin cables would be necessary to interconnect
sensors to the Arduino board and these would likely make connections fall apart due
to the tightness associated to playing.

150

(a) Hi-hat pedal tangible interface

(b) Hand-held interface and playing setup

Figure 4.9: Tangible interface designed for DrumVR

151

4.2.2.2.2 CC Hihat output design (improvement)

In contrast to the Bare Bones Build, which implemented hi-hat sound triggering as
different noteNumbers sent depending on the two logical states of the hi-hat (OPEN
or CLOSED) handled within the gesture controller, this build is to be stateless in
this aspect. This means that conceptually, it will be the sound-generator, the one
handling which sound shall be generated depending on the simulated hi-hat aper-
ture, which will be continuously notified to that end.

In order for the receiving end (the sound generator) to be able to know how “closed”
the simulated hi-hat is without providing with fixed note numbers within MIDI No-
teOn output; MIDI CC messages are sent by the Arduino MIDI controller to let
the Sound generating subsystem know about the state of the pedal more accurately,
allowing for expansion of sounds that are mapped to the right hand interaction (hits
to the simulated hi-hat).
Control Change dispatching is handled in a special way so that these messages do
not overload the Serial bus with unnecessarily precise data, that is, we avoid provid-
ing the Sound generating subsystem with aperture data unless a substantial change
has happened.

The exact approach to this problem consists in keeping an data structure with not
only the exact previous value read from the light sensor, but instead keeping track
of several of them. Using this set of previous values, we are able to determine more
precisely the trend of the data being analysed by computing an average value. In this
way, we can then compare the last detected analog value coming from the LDR (the
hi-hat pedal counterpart) with the mean value calculated before to spot whether
the pedal interaction is suffering a change, meaning that a substantial variation in
the light getting to the light sensor is happening. This, consequently allows us to
determine more accurately when the receiving end should be notified.
Once computed the mean value, we set a threshold of maximum deviation (maxDe-
viation in the algorithms) from the average value and use that as a boolean condition
to be used as decision maker, since a current value that differs too much from the
mean computed value logically means that a substantial change just happened.

Algorithm 3 shows how, by means of a function, the system is to conclude that a
substantial change has happened in terms of light variation from the hi-hat pedal. A
mean value is computed using a number n of samples taken over time regarding the
LDR state. When the absolute value of the substraction of LDR current state and
the mean exceeds the maxDeviation value, then, the function returns true, meaning
that a change in the input is sufficient to notify the sound-generating subsystem.

Algorithm 4 represents how the CC output is to be handled inside the control loop,
which is running all the time while the Arduino board is powered on. Note that
ccNumber corresponds to number 4, which the standard value to use for “Foot
Controller” as given by the MIDI Specification 11. The value included within the

11CC Standard values: see https://www.midi.org/specifications-old/item/table-3-control-

152

Algorithm 3 Function to handle CC output overload

Require:
- mDeton defined to distinguish ’substantial change’ in LDR input
- n defining the number of samples to use in order to compute the mean
- preHht an array of n positions which stores a set of sample values previous
to the current one
- crrentHH is the value of the last sensed LDR pin value

1: function hihatStateHasChanged
2: sm← 0 # Variable to store

∑n−1
t=0 preHht

3: men← 0
4: for ←0 to n-1 do { sum ← sm + preHHt}
5: men← sm

n # Compute the mean value in the last
n consecutive timestamps

6: if |crrentHH −men| ≥mDeton then
7: return true
8: return false

CC MIDI output message is computed in Line 4 of the algorithm, which computes
a percentage of aperture to later map into the [0-127] range allowed by the MIDI
message specification.

4.2.2.3 Software: Unity-based Sound generator

4.2.2.3.1 Architectural Design

In this excerpt, the Architectural design will be once again formally depicted using
the OOD Methodology (Object Oriented Design). A stress will be made in new
components or redefined ones, briefly summarising the responsibilities each one has
assigned. The following components were identified in the system, each one tar-
geted at implementing a clear overall purposeful function; all of the mainly involved
components are listed (both custom and pre-existing).

• MIDIJack (C1): As in the previous build, it offers utilities to get the status
of MIDI input, delegates to execute custom-defined methods if they are sub-
scribed and so on. It encapsulates all the MIDI in processing and makes it
easily accessible to the Unity programmer.

• Game Controller (C2): Centralizes mapping data and controls main vi-
suals of the videogame-like program, toggling the main menu and actually
subscribing to C1 events to enable the main flow of the system. It replaces
the Drumset Mapper (C2) from the previous version, and receives a different
name and responsibilities that relate more closely to one another.

change-messages-data-bytes-2

153

• Drumset controller (C3): Drumset Controller (previously named Drum-
setpieceHandler, C3) is an enhancement to the previous component, which
identifies different types of drumset pieces such as generic ones and hi-hat,
which in contrast to other pieces, generates more than one sound depending
on the CC value received from the gesture controller. Inheritance is used to re-
duce code size and maintainability while providing special handling of specific
drumkit pieces. These include new functions, among those, capabilities that
allow to modify the sounds assigned to each 3D drum piece during runtime,
something that is managed by the new component described later (C7).

• Unity Audio (C4): Audio playback, spatialization, volume and related utili-
ties are accessible using this component, which enables sound generation and
sound reassignment, as well as sound preview are sample library loading.

• Unity Renderer (C5): As described in the previous version, it enables
hadling how 3D objects look within the virtual environment, allowing to
change Materials during runtime.

• Audio Mixer (C6): Enables volume control of the whole drumset sound,
which is a new customization functionality to be implemented in this build.

• Configuration (C7): This is a brand new component created for this build
which handles everything that has to do with configuration or customization of
the sound generator. It controls volume and menu look-and-feel,is in charge of
loading library samples, creating sub-menus, assigning noteNumbers to Drum
pieces and sounds by default, and enabling later alteration of those mappings.

Figure 4.10 shows components and interfaces among them. Red components are
brand new components, added for the purpose of including new features required
for this build; yellowish components are re-definitions and redesigns of programmer-
defined components from the previous build, whereas blueish components are pre-
existent; non programmer-defined ones.

154

Algorithm 4 Hi-Hat CC output and sampling management

Require:
- prehhc is the value [0-127] last sent into a MIDI CC message
- cteChnne MIDI channel [0-15] towards which the MIDI CC message
is sent
- ccNmber the knob number to be used as hi-hat aperture handler, set to 4
(as in Standard MIDI has got the name ”Foot Controller” assigned)
- preHht an array of n positions which stores a set of sample values previous
to the current one
- crrentHH is the value of the last sensed LDR pin value
- smpet keeps track of the position in preHht that is to be written
next.
- n defining the number of samples to use in order to compute the mean
- mHH max value that the LDR sensed input can obtain, based on initial
calibration

1: while true do
2: # Rest of the control loop work
3: if hihatStateHasChanged then
4: hhcc← crrentHH∗mHH∗ 127
5: if prehhcc ̸= hhcc then
6: SendControlChangeMessage(cteChnne,ccNmber,hhcc)

Sends MIDI CC message over Serial

7: smpet← smpet mod n
8: preHhtsmpet ← crrentHH
9: smpet← smpet + 1

155

Figure 4.10: Component Diagram Modest Build

156156156

A detailed specification of each individual component is provided using the previ-
ously covered table template (see table 4.1); with the same fields that can be found
in the previous build.

Component Specification Template
ID GameController(C2)

Origin Custom
Purpose SR-FR-19 and SR-NF-27.
Function 0.Enables camera movement, changing user view. 1.Allows for

rapid configuration of the CC knob to be mapped to hi-hat aper-
ture. 2.subscribes to noteOnDelegate event 3.stores Mappings
between midi noteNumbers and Drumpieces, data main store,
accessible to all other components.

Type Executable
Dependencies MIDIJack (C1) Interface MIDI Data: obtains the informa-

tion regarding the state of the MIDI input, allowing for easy
logical access to notes that are on, off, status of the knobs, etc.

Offered inter-
faces

Interface DrumMappingsSet: allows access to the dictionary
of mappings, of centralized use in this component.

Target build Modest Build

Table 4.4: Component 2 Specification Modest Build

Component Specification
ID DrumsetController(C3)

Origin Custom
Purpose SR-FR-18
Function 0. Encapsulates all the data associated with the virtual represen-

tation of a drumkit piece. 1. Enables sound triggering. 2.Enables
material animation. 3.Enables sound remapping and reassign-
ment. 4.Enables multiple sounds to be generated depending on
CC values.

Type Non-Executable
Dependencies Audio Source (C4) Interface AudioHandling: allows gener-

ation of audio with variable volume. Renderer(C5) Interface
DisplayHandling: Enables animation of 3d objects represent-
ing drum pieces.

Offered inter-
faces

Interface DrumsetInfo : Allows mapping of Configuration
Submenus to Drum Piece information and references.

Target build Modest Build

Table 4.5: Component 3 Specification Modest Build

157

Component Specification
ID Configuration (C7)

Origin Custom
Purpose SR-FR-11, SR-FR-12, SR-FR-14 and SR-NF-20
Function 0.Enables volume control. 1.Controls material to use on anima-

tion. 2.Defines by-default MIDI mappings. 3.Handles listening
MIDI Channel 4.Enables remapping by creating submenus asso-
ciated to each specific Drum piece.

Type Executable
Dependencies Audio Mixer (C6) Interface ConfigVolume: allows access

to the AudioMixer utilities, allowing applying FX and control-
ling overall volume, Audio Source (C4) Interface AudioPre-
view: allows sound preview functionality as well as reassignment.
Drumset Controller (C3) Interface DrumsetInfo: allows
configuration of drum pieces, customization of noteNumber to
sound mappings. Game Controller (C2) Interface Drum-
mMappingSet:allows access to central mapping dictionary, ac-
cessible throughout the application.

Offered inter-
faces

Interface Configure: allows activation of configuration com-
ponent , allowing for customization of sounds, CC knob used,
etc.

Target build Modest Build

Table 4.6: Component 7 Specification Modest Build

158

Figure 4.11: Class Diagram Modest Build

159159159

4.2.2.3.2 User Interface and Visualization

Several UI aspects were revisited in this second build, developing different improved
solutions that enabled more customisation from the point of view of the user. Based
upon Ge Wang’s design principles, we introduced the following features in this build:
in order to “Invite the eye” (3rd principle) and provide an “aesthetic” (10th) expe-
rience, we created a brand new model of the drumset, with a lot of work put on it
to ressemble a real one as accurately as possible.
A configuration menu with lots of visual elements was also provided (see Figure
4.12), allowing users to modify which sounds are triggered when certain MIDI input
is received. They can also modify the output sound amplitude for the whole drumset
using a slider and they can choose a Channel (from 1-16) in order for the system to
listen to MIDI input solely from that channel.

160

Figure 4.12: Configuration menu implemented in Modest Build using Unity

161161161

Note that, as already implemented in the Bare Bones build, the system complies with
the 8th principle,“Animate”), since on interaction materials from Drum-set pieces
turn red and go back to normal when the sound is paused or over. In addition, this
implies the application of using “Graphics to reinforce physical interaction” (the
6th principle) and “Simplify” (the 7th), since the design was made so that the user
can very easily map their actions to effects within the virtual environment, and no
really complex animations are executed, allowing the user to focus in playing and
generating sounds. This is the chief purpose of the system.

Figure 4.13: Drummer’s viewport

162

Chapter 5

Evaluation

In this chapter, we evaluate conformance with respect to the system requirements
defined in Section 3.3, in order to show evidence of the correctness of the solution.
Firstly, various tests will be described along with their output in section 5.1, and
later, a traceability matrix plotting System requirements against Tests performed
will be provided to assure completeness (see 5.2.

longtable

5.1 Requirements fulfilment analysis

In order to describe tests formally, a template will be used to structure tests, so
that no information strictly required is accidentally left out of the test definition.
This approach to testing allows for an easy traceability of the System-Requirements
whose compliance is to be assured by performing and verifying these tests. The
template covers the following aspects of each test:

• ID: alphanumeric string that univocally identifies the test. It follows the
naming pattern TX, where X is a number that increases as new tests are
performed.

• Name: a sentence summarising the test at the conceptual level.

• Requirements covered: Lists the number of requirements that whose com-
pliance is to be addressed by means of this test.

• Required set-up: Often, tests require a set of assemblies or some preparation
before being carried out. This field summarises the fundamental steps to
perform prior to testing.

• Test description: an in-depth description of the actions to be carried out
for testing is provided along with some general considerations about what the
test aims to achieve.

163

• Expected Results: for each described action within the “Test Description”
field, a set of results are to be observed, in order to assess whether the test
can be concluded to be either successful or failure.

• Observations to make: list a set of side effects of the test that are as well
required for verification.

• Result: has to possible values, Verified or Failed. This field is to be filled once
the test has been carried out, stating the final outcome of the testing phase
for each specific test.

Table 5.1: Test Cases template

Test Cases Template
Name: e.g. Descriptive brief name for the test
Requirements Covered: e.g. SR-NF-01, SR-FR-02, SR-FR-04, SR-NF-03, SR-FR-

05, SR-NF-04, SR-FR-21, SR-FR-22, SR-NF-05, SR-FR-
06, SR-NF-10, SR-NF-12, SR-NF-13

Required Set-up e.g. The user shall execute the program and configure it
to listen to all MIDI ports. They shall connect the MIDI
controller to the host computer and place a practice pad
next to them in order to test hit-based interaction.

Test description: e.g. Here you may find the objective of the test briefly
detailed. Then, a set of actions to be performed will be
enumerated as follows:

A1) A user will perform a soft hit with the left-hand
drumstick on a practice pad.

Expected Results:
Observations to make: Any extra observations to make to assess test verification.

Result: Verified | Failed

164

T1
Name: Limb-isolated operation of gesture controller Unit test
Requirements
Covered:

SR-NF-01, SR-FR-02, SR-FR-04, SR-NF-03, SR-FR-05, SR-NF-04, SR-FR-21, SR-FR-22, SR-NF-05, SR-FR-06, SR-NF-10,
SR-NF-12, SR-NF-13, SR-NF-14, SR-NF-15, SR-NF-16, SR-NF-17, SR-NF-18, SR-FR-15, SR-NF-22, SR-FR-17, SR-FR-03.

Required Set-
up

The Arduino-based gestural controller will be connected via USB to a host computer running Windows 10 and Cubase LE
AI Elements 8 64bit.
Hairless MIDI and loopMIDI will run on the host computer as well, configured as follows in order to perform the tests:
LoopMIDI configuration: Create a new loopback MIDI port, giving it a name we will be using later into Hairless MIDI. e.g.
“DRUMAR”. Hairless MIDI configuration:

• A baud rate of 256000,

• A length of data bits of 8

• No parity bits used

• Use one stop bit in order to separate mesages in the received stream

• No control flow.

Assign the loopback MIDI port created previously to the MIDI Out dropdown Menu, in order to send data through that port
from the Arduino Serial Port. Enable Debug Logging in Hairless MIDI to display a message when MIDI input is received,
with timestamps.

165165165

Continuation of T1 (table 5.1)
T1
Name: Limb-isolated operation of gesture controller Unit test
Test descrip-
tion:

The test will consist on the following actions:

A1) A user will perform a soft hit with the left-hand drumstick on a practice pad.

A2) A user will perform a hard hit with the left-hand drumstick on a practice pad.

A3) A user will use an actual bass drum pedal to hit a piezo sensor placed under a piece of foam attached to a bass drum
practice pad.

A4) A user will perform a hit with the right-hand drumstick on a practice pad without using their foot to cover the LDR
embedded within the physical left-foot pedal.

A5) A user will perform a hit with the right-hand drumstick on a practice pad while completely occluding the LDR embedded
within the physical left-foot pedal.

166166166

Continuation of T1 (table 5.1)
T1
Name: Limb-isolated operation of gesture controller Unit test

Expected Re-
sults:

A1) - Hairless MIDI will print out a message notifying the user about a newly received MIDI message with note Number X
and a small velocity value in the range of [0-127].
- A snare drum sound with a medium perceptible volume will be generated as output from the host computer’s speakers.

A2) - Hairless MIDI will print out a message notifying the user about a newly received MIDI message with note Number X
and a small velocity value in the range of [0-127].
- A louder snare drum sound will be generated as output from the host computer’s speakers.

A3) - Hairless MIDI will print out a message notifying the user about a newly received MIDI message with note Number X
and a small velocity value in the range of [0-127].
- A kick-drum sound whose volume is proportional to the velocity received as input from the MIDI message will be
generated.

A4) - The user shall be able to observe the green led attached to the physical left-foot pedal is off, since occlusion will not
be taking place.
- Hairless MIDI will print out a message notifying the user about a newly received MIDI message with note Number X
and a velocity value that varies depending on the strength of the hit within the interval [0-127].
- An open hi-hat sound will be generated as output from the host computer’s speakers.

A5) - The user shall be able to observe the green led attached to the physical left-foot pedal is off, since occlusion would be
happening. - A set of CC messages will be displayed in the Hairless MIDI windows showing a decreasing Continuous
Control value that approaches 0 as complete occlusion is completed. - When the hit occurs, Hairless MIDI will print
out a message notifying the user about a newly received MIDI message with note Number X and a velocity value that
varies depending on the strength of the hit within the interval [0-127]. - A closed hi-hat sound will be generated as
output from the host computer’s speakers.

167167167

Continuation of T1 (table 5.1)
T1
Name: Limb-isolated operation of gesture controller Unit test
Observations
to make:

- The red LED, attached to the piezo sensor associated to the bass drum shall be on all the time, from the moment when
the Arduino is connected and on.
- No duplicated messages shall be produced when interaction occurs, that is to say, only actual hits shall be recognised as
interaction and have an effect in the sound-generation subsystem.
- The third-party software shall perform intermediary operations to allow receipt of MIDI messages and sound generation
using Cubase with the Addictive Drums 2 VST.

Result: Verified

168168168

T2
Name: Basic Sound-generation subsystem Unit Testing
Requirements
Covered:

SR-FR-03, SR-FR-19, SR-NF-21, SR-NF-20, SR-NF-19, SR-FR-16, SR-NF-08, SR-FR-08, SR-FR-10, SR-NF-06, SR-FR-09,
SR-FR-07, SR-NF-02, SR-FR-01, SR-NF-25.

Required Set-
up

The Unity-based program will be tested using a Novation MIDI keyboard to test sound generation and visual animation
features of the system. This approach is chosen to assure compatibility with a general-purpose MIDI controller. Pre-
configuration and execution of Hairless MIDI and loopMIDI are necessary and require the same steps as in T1 (see table
5.1).

Test descrip-
tion:

The test will consist on the following actions:

A1) A user will press key number 35 (Acoustic Bass Drum in GM)

A2) A user will press key number 38 (Acoustic Snare in GM)

A3) A user will press key number 42 (Closed Hi-hat in GM)

A4) A user will press key number 41 (Low FLoor Tom in GM)

A5) A user will press key number 46 (Open Hi-hat in GM)

A6) A user will press key number 51 (Ride Cymbal in GM)

A7) A user will press key number 49 (Crash Cymbal in GM)

A8) The user will move the mouse around once the sound-generating program has launched.

Expected Re-
sults: For actions A[1-7] :

- The 3D representation of the corresponding sound should momentarily turn red while the sample sound is playing.
- A sound associated to the hit drum piece should be triggered with a volume which will be proportional to the exerted

force on the MIDI keyboard key pressed.

A8) The camera view will change depending on the direction of the mouse movement, allowing the user to observe the
virtual environment as if they were changing their gaze direction while sat on the drum throne.

169169169

Continuation of T2 (table 5.1)
T2
Name: Basic Sound-generation subsystem Unit Testing
Observations
to make:

- No sounds shall be generated unless the user presses a key, as in the case of Actions [1-7]. - The aspect of the 3D
represenations within the sound-generation subsystem shall go back to normal once sounds stop playing.

Result: Verified

170170170

T3
Name: Physical metrics of MIDI Controller subsystem
Requirements
Covered:

SR-NF-24, SR-NF-23

Required Set-
up

N/A

Test descrip-
tion:

The MIDI controller subsystem is required to comply with a set of portability constraints, which are to be assessed by means
of this tests. The parameters to be assessed are weight, width and depth, which are expected to be 4kg, 84cm and 72 cm
respectively; in order to check compliance with these requirements a user will be ask to perform the following actions:

A1) The user will lay the whole subsystem on the ground, involving permanent and portable connectors (such as USB-to-
USB cables), along with the components of the tangible interface. The use will take measurements using a measuring
tape to determine whether the dimensions are lower than the expected ones.

A2) The user will weight the whole subsystem using a standard scale to determine compliance with the weight requirements.

Expected Re-
sults: A1) The subsystem’s dimensions do not surpass those specified in the requirements.

A2) The weight of the subsystem is lower than 4 kg.

Observations
to make:

N/A

Result: Verified

171171171

T4
Name: Concurrent multi-port interaction with Sound-generation subsystem
Requirements
Covered:

SR-FR-01, SR-NF-01,SR-NF-04, SR-NF-02, SR-NF-07, SR-NF-08, SR-FR-08, SR-FR-09, SR-NF-06, SR-FR-10

Required Set-
up

In order to determine whether MIDI from two different virtual or hardware MIDI controllers can be correctly processed by
the sound-generation subsystem, concurrent (potentially) parallel input is provided using both the custom MIDI controller
and the aforementioned Novation MIDI Keyboard (see T2; table 5.1). - Hook both instruments up to the host computer
via USB.
- Open Hairless MIDI and loopMIDI and set them up as specified in T1, in order to redirect Serial input from the Arduino
properly to the sound-generation application.
- Make sure Automap 4 is running and creating its own MIDI port.
- Run the sound-generation application in Unity.
- Open the MIDIJack terminal window so that it shows information regarding input messages.

Test descrip-
tion:

The actions to be performed in this test are:

A1) A user will press key number 38 (Acoustic Snare in GM) on the Novation MIDI keyboard while hitting the piezo sensor
that is mapped to the bass drum note number (35) in the Arduino-based instrument.

172172172

Continuation of T4 (table 5.1)
T4
Name: Concurrent multi-port interaction with Sound-generation subsystem
Expected Re-
sults: A1) - Hairless MIDI will print out a message notifiying the user about a newly received MIDI message with note Number

35 and a small velocity value in the range of [0-127].
- Check the logs in the MIDI Jack Window to see the received messages in the message History. There should be 2
messages only and at least two MIDI ports shall display at the top, the address of the message should correspond to
that identifying a different MIDI port.
- An Acoustic Snare drum sound shall be triggered and the snare drum aspect shall change during the time the sounds
is playing.
- A Bass drum sound shall be triggered and the Bass drum aspect shall change during the time the sounds is playing.

Observations
to make:

Sound generation should only happen on purposeful interaction and no messages shall be exchanged between controller and
sound-generation subsystem while the actions are not being performed.

Result: Verified

173173173

T5
Name: CC output test Gesture Controller Unit Test
Requirements
Covered:

SR-NF-01, SR-NF-02, SR-FR-04, SR-FR-04, SR-NF-03, SR-FR-05, SR-NF-04, SR-FR-22, SR-FR-21, SR-FR-06, SR-FR-07,
SR-NF-12, SR-NF-13,SR-NF-15, SR-NF-16, SR-NF-17, SR-NF-18, SR-FR-15, SR-NF-22, SR-FR-17, SR-FR-03

Required Set-
up

CC messages are known to easily overflow the Serial bus if not correctly implemented, in this test we use Addictive drums
2 to test the CC output as suitable for control of a virtual instrument in an isolated fashion. This tool was chosen because
of the great User Interface it offers, allowing to visualise the state of the hi-hat in a continuous bar that maps to hi-hat
aperture within the VST.
In order to set up the testing environment, we need to open Hairless MIDI and LoopMIDI and configure them as in T1 (see
table 5.1). Then, we must open the Standalone version of Addictive Drums 2 and open the Audio & MIDI Setup menu.
Then, we must select the DRUMAR port as active MIDI input. Then, go to the “?” option and “Map” Window, a CC Hihat
map will be shown, displaying CC values received. Depending on the CC value received, when hitting with our right-hand
drumstick, we shall produce one sound or another (all of them being hi-hat sounds).

Test descrip-
tion:

The actions to be performed in this test are:

A1) Keep the Pedal completely without occlusion and perform a hit in the practice pad.

A2) Place your left foot over the pedal, completely occluding the LDR and perform a hit in the practice pad.

A3) Raise your toes up without leaving the pedal with your heel and perform a hit in the practice pad.

A4) Alternate between foot position described in A2 and A3 and observe the received input in the host computer.

174174174

Continuation of T5 (table 5.1)
TX
Name: CC output test Gesture Controller Unit Test
Expected Re-
sults: A1) - No CC messages shall be displayed in Hairless MIDI unless the light reaching the LDR sensor decreases due to

environmental light change.
- An open hi-hat sound shall be generated by Addictive Drums 2 while the CC marker shows the indicator at a high
position within the CC value plotter.

A2) - A set of CC messages will be displayed by Hairless MIDI, decreasing in CC value as occlusion is performed on the
LDR. - A closed hi-hat sound shall be generated by Addictive Drums 2 while the CC marker shows the indicator at a
low position within the CC value plotter.

A3) - A set of CC messages will be displayed by Hairless MIDI, increasing in CC value as less occlusion is performed on
the LDR.
- A partially opened hi-hat sound shall be generated by Addictive Drums 2 while the CC marker shows the indicator
at an intermediate position within the CC value plotter.

A4) - A set of CC messages will be displayed by Hairless MIDI, increasing and decreasing in CC value occlusion varies (the
more occlusion the lower the cc value).
- The CC marker in Addictive drums shall show the indicator varying on an intermediate position within the CC value
plotter.

Observations
to make:

- No sounds shall be generated if no interaction from any of the user’s limbs happens.
- When occlusion is performed on the LDR, the green LED attached to the left-foot pedal will shine.
- The volume of the sounds generated will depend on the strength of the performed hits.

Result: Verified

175175175

T6
Name: Parallel hitting gesture controller test
Requirements
Covered:

SR-NF-09, SR-NF-01, SR-FR-05, SR-NF-04, SR-FR-21, SR-FR-06, SR-NF-10, SR-NF-12, SR-NF-13, SR-NF-14, SR-NF-15,
SR-NF-16, SR-NF-17, SR-FR-15

Required Set-
up

The set up is the same as in the case of (see 5.1), running Addictive Drums 2 and Hairless MIDI+LoopMIDI.

Test descrip-
tion:

The purpose of this test is guarantee input from all limbs can be effectively gathered without losses from the performer’s
perspective. The idea is to get a user to perform hits using both hands and the bass drum pedal at the same time 50
times, in order to assess whether the gestural controller system is able to generate 3 midi messages at least 80 percent of
the attempts. The actions to be performed in this test are:

A1) A user shall perform all three hits simultaneously, triggering three sounds at the Addictive drums 2 end.

Expected Re-
sults: A1) Do 50 times:

- Three messages shall be displayed by Hairless MIDI, including respectively number 35 (Acoustic Bass Drum in GM),
38 (Acoustic snare) and 7 (hi-hat shaft in Addictive Drums 2).
- Three sounds associated with the drum set pieces that map to those note Numbers shall be generated.

Observations
to make:

- Count the number of times that all threee messages are properly sent to the Addictive drums end and compute the
percentage out of the 50 attempts. If it surpasses the 80% then the system is compliant with this set of requirements.

Result: Verified

176176176

T7
Name: Performance test
Requirements
Covered:

SR-FR-05, SR-NF-04, SR-FR-21, SR-FR-06, SR-NF-10, SR-NF-11, SR-NF-12, SR-NF-13, SR-NF-14, SR-NF-17, SR-FR-15

Required Set-
up

In order to test that we use Hairless MIDI debug terminal, that timestamps MIDI messages with the number of milliseconds
from the start of the program, allowing to easily compute the interval between two consecutive MIDI messages received.

Test descrip-
tion:

This test measures responsiveness of the gesture controller subsystem, which is to allow 2 consecutive hits from any limb
within the 68ms timespan. The actions to be performed in this test are:

A1) Perform two consecutive hits leveraging drumstick rebound, using the left-drumstick.

A2) Perform two consecutive hits leveraging drumstick rebound, using the right-drumstick.

A3) Perform two consecutive hits to the piezo sensor associated to the bass drum (leveraging pedal rebound).

Expected Re-
sults:

For all of the actions, it shall be possible to execute a two hits with a separation of around 68ms or less with the system
producing output messages and sounds;
For each action, the user must compute the interval between the receipt time of the two last consecutive MIDI NoteOn
messages to compare it with 68ms.

Observations
to make:

N/A

Result: Verified

177177177

T8
Name: Customisation functions test of the Sound-Generation subsystem
Requirements
Covered:

SR-NF-02, SR-NF-02, SR-FR-02, SR-FR-07, SR-FR-08, SR-FR-09, SR-NF-06, SR-NF-06, SR-FR-10, SR-NF-08, SR-FR-11,
SR-FR-12, SR-FR-13, SR-FR-14, SR-NF-17, SR-FR-16, SR-NF-19, SR-NF-20, SR-NF-21, SR-NF-27, SR-FR-20

Required Set-
up

The Novation MIDI controller will be will be used to carry out this test, in order to simplify the process, requiring simply to
press different keys once mappings have been altered. This saves time regarding the need to alter mappings in the custom
MIDI controller subsystem if we wanted to use an integrated approach to testing.

Test descrip-
tion:

This test assesses the correctness of the configuration features provided by the sound-generation subsystem created in this
dissertation; that is, mapping alteration, sound mapped-change, active channel, sound preview, sound assignment and
volume change. The actions to be performed to test out all this functionalities are :

A1) - Press ”Esc” to open the Drumset Configuration Menu.
- Hit key number 35 in the piano keyboard (mapped to acoustic bass drum by default).
- Move the slider to the left and play the note again. The volume shall be lower now.
- Move the slider back to its original position and play the note again. The volume should increase.
- Move the slider to the right and play the note again.The volume should increase even more.
- Play the note several times while moving the slider value, observe that changes in volume are indeed performed.

A2) - Configure the Novation MIDI keyboard to send messages targeted at Channel 1 only.
- press key number 38 (mapped to the acoustic snare). Observe that a sound is generated.
- Change the active channel from ”All” (the default) to 9. Play the same note again. No sound shall be generated.
- Change the active channel from 9 to 1. Play the same note again. A sound shall be generated.

A3) - Press key number 41 (Low FLoor Tom in GM) in the Novation MIDI keyboard.
- Choose a new sound to be mapped and press ”Play”. The new sound should be generated for preview.
- Choose a different channel to be mapped and press ”Play”. A different sound should be generated for preview.
- Change the MIDI value to number 1 and Click assign.
- Press now note number 1 on your MIDI keyboard. You should hear the newly assigned sound and see the associated
drum piece turn red accordingly.

178178178

Continuation of T8 (table ??)
T8
Name: Customisation functions test of the Sound-Generation subsystem
Expected Re-
sults: A1) - The menu will display, showing the default configuration values for each drum piece, as well as volume and active

channel. - Volume will change as expected and the change will be immediately executed.

A2) - The system shall be able to generate sounds only when MIDI messages are set to be received by the Channel specified
as ”Active channel” or in the special case of active channel = ”All”.

A3) - MIDI preview shall allow preview of a list of predefined sound samples. - Assignment of sounds and remapping shall
work as expected, having a new note number assigned to the interaction with a given piece of the simulated drums.

Observations
to make:

N/A

Result: Verified

179179179

T9
Name: Integration Test
Requirements
Covered:

SR-FR-18, SR-FR-01, SR-NF-01, SR-NF-02, SR-FR-02, SR-FR-04, SR-NF-03, SR-FR-05, SR-NF-04, SR-FR-21, SR-FR-22,
SR-NF-05, SR-FR-06, SR-FR-07, SR-FR-08, SR-FR-09, SR-NF-06, SR-FR-10, SR-NF-12, SR-NF-13, SR-NF-14, SR-NF-17,
SR-NF-18, SR-FR-15, SR-FR-16, SR-NF-19, SR-NF-20, SR-NF-21, SR-NF-22, SR-FR-17, SR-FR-18, SR-NF-25, SR-FR-03

Required Set-
up

The set-up for the test requires T1 configuration of LoopMIDI and Hairless MIDI (see table 5.1), and execution of the
sound-generation subsystem once those have been configured and no other sequencer program is running.

Test descrip-
tion:

This test aims to demonstrate the correctness of the solution, carrying out a sect of actions that involve both custom
subsystem (the gesture controller and the sound generation subsystem). The actions to be performed in this test are:

A1) The user will perform a hit to the piezo sensor attached to the bass drum practice pad (of the gesture controller).

A2) The user will perform a left-drumstick hit to the practice pad (of the gesture controller).

A3) Without occluding the LDR of the left-foot pedal, the user will perform a hit with the right hand-drumstick.

A4) Completely occluding the LDR of the left-foot pedal, the user will perform a hit with the right hand-drumstick.

A5) Partially occluding the LDR of the left-foot pedal (heel down), the user will perform a hit with the right hand-drumstick.

180180180

Continuation of T9 (table 5.1)
T9
Name: Integration Test
Expected Re-
sults: A1) - The aspect of the bass drum 3D representation will change momentarily and a sound with the appropriate timbre

and volume proportional to the hit strength will be triggered. As the sound ceases, the aspect of the 3D object will go
back to normal.

A2) - The aspect of the snare drum 3D representation will change momentarily and a sound with the appropriate timbre
and volume proportional to the hit strength will be triggered. As the sound ceases, the aspect of the 3D object will go
back to normal.

A3) - The aspect of the hi-hat 3D representation will change momentarily and a sound with the appropriate timbre (wide-
open hi-hat) and volume proportional to the hit strength will be triggered. As the sound ceases, the aspect of the 3D
object will back to normal.

A4) - The aspect of the hi-hat 3D representation will change momentarily and a sound with the appropriate timbre (closed
hi-hat) and volume proportional to the hit strength will be triggered. As the sound ceases, the aspect of the 3D object
will back to normal.

A5) - The green LED attached to the left-foot pedal shall light up.

A6) - The aspect of the hi-hat 3D representation will change momentarily and a sound with the appropriate timbre (mid-
open hi-hat) and volume proportional to the hit strength will be triggered. As the sound ceases, the aspect of the 3D
object will back to normal.

Observations
to make:

- No sound shall be generated unless interaction occurs.

Result: Verified

181181181

5.2 Evaluation Traceability matrices

This section plots Test cases against the Software requirements they check. Each
“x” means this test checks for the fulfilment of the requirement in the same row.

182

Figure 5.1: SR against Test Cases Traceability matrix

183

Chapter 6

Project plan

6.0.1 Methodology selection concerns

This project has been carried out following the ESA standard targeted at small
software projects [76]; A generic software life cycle as stated by ESA standard is
composed by a set of 6 phases. Even though the phases of the software life-cycle are
(to some degree) fixed, there are many different approaches to them, since projects
vary in shape and necessities. For this reason, the present section presents some
of the most usual approaches and justifies the selection of one to be applied to the
planning and development of this dissertation.
It is worth summarising the software life-cycle phases for completeness in this doc-
ument. In broad strokes, every software product is the result of the following sub-
processes.

1. UR Phase: Definition of User requirements: also called the “problem defini-
tion phase” consists in the user of the system to be built discussing their needs
along with the elicitator or developer (in case of very tiny projects) in charge
of clearly writing a set of user requirements down, which serve as input to the
whole development process. Those requirements are of two types, as described
in Section 3.2; Capability requirements and Constraint requirements.

2. SR phase: Definition of System requirements: also called the “Problem Anal-
ysis Phase”, consists in a thorough specification of what the system is to do,
without using implementation terminology. They describe high-level essen-
tials, making the system understandable as a unit. The documentation item
associated with this phase can be found in Section ?? of this paper.

3. AD phase: Definition of architectural design. The developer is in charge of
taking the System requirements and use them as an input to generate a physical
model; that is, providing a solution for the proposed problem in implementation
terms. This phase and the System Requirements phase are to be merged in
order to save efforts according to the ESA recommendations targeted at small
projects.

4. DD phase: Detailed design and production of the code. Thus, implementation
along with code documentation. This phase is simplified and not formally

184

performed; that is, no document is generated for it according to the ESA
recommendations for small projects.

5. TR phase: transfer to the software to operations. In other words, software is
set to function in the operational environment it was designed to work within.

6. OM phase: operations and maintenance. Any debugging that could not be
performed in previous phases shall be performed so that the software keeps
fulfilling the requirements that gave rise to the system in the first place. The
ultimate evaluation will be carried out during this phase, where the product
will be operating in the target environment.

These phases can be approached in various ways, among which we find the following:

• The Waterfall approach: as its name points out, the Waterfall proposal
consists in a sequential execution of the aforementioned phases, allowing iter-
ation over past phases for the sole purpose of error correction. It is the most
straightforward approach for software development; say the most classical ap-
proach, but likely, the one used the least mainly due to the lack of flexibility
and its poor applicability among real-world projects. It is more of a ’theoreti-
cally perfect’ approach [77].
As the original Waterfall approach is not practical, an improvement was per-
formed by adding a feedback path from a phase towards its preceding phases,
allowing for errors during the development. However, this model is still strug-
gling with flexibility and a lack of feedback from the end user, since according
to this approach, it is only once the system is completely built when the user
can review the actual product beyond documents regarding requirements.

• Incremental delivery approach: This approach aims to modularize the
process of development of the system, allowing for the three last phases to
be carried out independently for each module identified in the Architectural
design phase. In other words, this model, also known as “Successive version
model”, proposes the implementation of the core functionality and expanding
upon the basic version of the system to be provided at the end of the process.
Thus, by means of subsequent versions of the system, the features increase and
are refined as new versions and feedback from the user is received. In this way,
large systems can be easier to manage, and a set of incremental deliveries may
be scheduled in case there are functions that require others to be implemented
before they can be effective.
This approach focuses in the short term planning targeted at completing the
immediately next delivery, instead of trying to cover in the requirements the
whole system precisely. There are several varieties of Incremental delivery; the
Staged delivery model and the Parallel development model.

– Staged Delivery: focuses on the construction of only one part of the
project at a time; that is, it does not allow for parallel work on different
components.

– Parallel Development Model: in this variety several subsystems are
developed concurrently, which in case there are enough resources, can lead
to a reduced development time of the project overall.

185

(a) Original Waterfall Model

(b) Iterative Waterfall Model

Figure 6.1: Software Lifecycle Waterfall approaches

The problem with Incremental delivery lies in the fact that incremental builds
require extra testing to confirm the last release has not impaired functionality
formerly tested. This, obviously has an impact in the cost of the software
product as a whole, in terms of time (applying it to this project) and also
regarding monetary cost; but its advantages are numerous, as we will describe
shortly.

• Evolutionary development approach in this strategy, the idea to schedule
a set of releases so that the development of the next can be performed using the
experience from past deliveries. For every release, all phases of the life-cycle
are carried out (all the lifecycle stages).
The key aspect of the evolutionary development scheme is to recognise the
priorities of the user and produce the fundamental pieces that are most valuable
to the user and also can be developed with the minimal technical problems or
expected delays. In such an approach, it is not strictly required to fulfil all
requirements in each development cycle, but they shall be carefully stated so
that the objectives whether fulfilled or not, can be identified and analysed
appropriately.
The representation of this model diagramatically consists in a spiral, indicating
both stages and phases of progressive refinement of the product. Each new

186

(a) Staged Delivery

(b) Parallel Incremental Delivery

Figure 6.2: Incremental Delivery Lifecycle approaches

loop embodies an iteration over the product to be built, the radius of each loop
reflects the expenses of the project whereas the angular dimension is a measure
of progress within the project. Four quadrants can be spotted in Figure 6.3
each one relates to a stage of the process which internally involve the phases
described at the beginning of this section. These quadrants are:

1. Objectives determination and leveraging of alternative solutions: involves
the elicitation phase (UR and SR), depicting the problem and analysing
possible solutions (AD phase).

2. Identify and resolve risks: Different alternatives are compared and the best
proposal is prototyped (DD phase) in order to estimate risks and evaluate
feasibility.

3. Development of next version of the product: Involves actual implementa-
tion of the code, testing and verification.

187

4. Review and plan of the next phase: evaluation happens because the soft-
ware is then accessible to the customer (TR phase) and then a new loop
starts (OM phase, maintenance involves the same phases over again).

Figure 6.3: Spiral model

In a sense, this model leverages the Incremental Delivery approach since each
new iteration generates a new version of the system with extended functionality.
However, this model exceeds the advantages of the previous one in terms of Risk
analysis, which is a crucial aspect to be taken into account when aiming at
developing a product in an area relatively new in the IT world; it is important
to know whether the conceived product can eventually be built or not before
starting the development process when using Incremental delivery, whereas the
Spiral model is much more flexible in this aspect [78].

Once these three methodologies have been described, the advantages and drawbacks
of them will be discussed to finally choose the most suitable methodology for the
present project.
On the one hand, the Waterfall approach, even though conceptually simple, doesn’t
seem to fit inexperienced developers and a project of the features and setting of the

188

present one, since the Waterfall model requires to provide a thorough description of
the system, along with its design without taking into account the fact that certain
requirements may not even be achievable in practice; that is, unfeasibility is not even
considered as an option, since such evaluation takes place at the very beginning of
the project and thus, it is assumed an infinite expertise of the developers, which
are supposed to be able to predict the difficulties that are to be found during the
software lifecycle.
In addition, the “original” Waterfall model has no feedback path; that is, no error
shall be committed by the developers during any phases (which is completely im-
possible), since no error correction paths (no iterations) are planned.
In the case of the Iterative Waterfall improvement, it keeps requiring too much ex-
pertise from developers from the very beginning.
Flexibility is another issue, since this model requires requirements to be clean, com-
plete and constant along the whole software lifecycle, so no changes to the require-
ments can conceivably be made to fix some major issue that the customer really
needs to be addressed by means of the software.
Finally, efficiency constitutes another drawback to be conveyed in this dissertation,
since development time is very important and the prohibition of overlapping phases
proposed by the Waterfall model may be to costly in terms of both time and mon-
etary costs.

In contrast, the Incremental delivery approach is a good fitting strategy regarding
its stress on modularization of the implementation and subsequent phases, specially
considering the shape of its Parallel Development variety; which at first glance seems
to adapt really well to the easily spotted components of basically any MIDI based
instrument (a hardware MIDI controller -a control system, hardware based - and
a video-game like interface -implemented as Software-), both of which can be im-
plemented concurrently following this approach and partial deliveries are proposed,
which allow for completion of independently interfaced components.
However, it is likely to hinder the project, requiring much more time, to create a
functional whole that meets the expectations of the user, which, indeed, may be too
high.
What’s more, this model is said to adapt very well to projects using new
technology and uses the divide an conquer approach for splitting the major prob-
lem into smaller tasks that are easier to handle from the development point of view.
It is worth mentioning the necessity of stating requirements for each new version
as clearly as possible up-front; that is, before any development starts; consequently,
in the case we do not have a clear idea about what our product would be like, a
different model would be a better choice.

The leverage of the Evolutionary development approach is its suitability for a vari-
ety of technical difficulties certain requirements the present project involves. The
reason for this is its stress on Prototyping and flexibility.
In contrast, since the feasibility to fulfil some requirements in a timely manner may
actually depend on a third party, the availability of future technology, or the addi-
tional learning time due to the inexperience of the developers in the area, the author
of this paper believes this strategy does not fit well the project.
The reason for this is that lies upon risk analysis, which is a topic that requires a
level of expertise that a Computer Science undergraduate cannot offer, and there-

189

fore the effort required to accurately assess the feasibility of the project is likely to
become excessive and consequently, this methodology was eventually discarded.
Neither is it recommended for small projects as this one, not to mention its com-
plexity surpasses all the other presented models, owing to the fact that the phases
are not fixed from the beginning and planning is hindered.

In conclusion, due to the fact that we have isolated wholes that can be spotted
straight away (Hardware Interface and VR part) the development will take advan-
tage of the Incremental delivery approach and leverage the prototyping stress made
by Evolutionary development, in order to evaluate feasibility of the imagined so-
lutions before committing to finish the whole project, which is aimed at providing
with a functional whole as opposed to a set of erratic development attempts that
are very likely to occur due to the novice status of the author of this dissertation.
Last but not least, as we mentioned earlier, this project will be prototyping-intensive,
so that precisely will constitute a chief practice and will be used first to define bet-
ter the system to be built (as a target user and programmer simultaneously). This
approach is referred often as Exploratory prototyping in the IT framework.

6.0.2 Methodology depiction

As stated in the previous section, we decided to combine the Incremental delivery
and Exploratory prototyping approaches to the software life-cycle. Thus, the project
leverages both the try-and-fix features of Incremental delivery and the constant feed-
back and refining from the user of the system enabled by Evolutionary development.
Next, we will elaborate on how this methodology was carried out along this project.
The following phases were performed in order for the project to be built according
to the basics of Incremental delivery:

1. Requirements gathering phase: involves both the User Requirements and
System Requirements phases of the ESA-proposed life-cycle. All the require-
ments for the immediate next delivery were created and marked as such, op-
tional or desirable requirements were be left for implementation on subsequent
iterations on the project or implemented in the case there was time to perform
more than one iteration timely before the delivery of this project. Major in-
dependent components were identified and possible solutions to be prototyped
were elaborated.

2. Divisions of tasks for implementation: Two builds were scheduled per
major component, one involving a functioning whole with very basic function-
ality, referred to as Bare-bones build; and another one known as Modest build,
including more advanced functionality, ergonomics and usability in general.
Both builds were planned and are shown in the Gantt diagram shown in Fig-
ure 6.4. Further decomposition of tasks can be found there and within section
6.1, regarding task subdivision. Plans for both builds were carried out at the
beginning of the project, stating which milestones were to be achieved very
roughly; then, those plans were refined once the requirements phase was over.

3. Development: After the planning has been performed and goals for each

190

build are clearly set, the code and hardware components of the system are to
be assembled and created. This process is the result of the design and previous
requirements definitions and involves testing to verify the requirements are
finally fulfilled at the end of every iteration. Involves the DD and TR phases
of the ESA-defined software life-cycle phases.

4. Evaluation: The user is presented the system and proposes solutions regard-
ing future work and comments to be used in subsequent iterations. The VRMI
(Virtual Reality Musical Instrument) will be evaluated from the performer’s
perspective, regarding task performance, playability, user experience and emo-
tions resulting from the interaction with the software. Serafin et al.’s “Virtual
Reality Musical Instruments: State of the Art, Design Principles, and Future
Directions regarding VRMIs” and references in it can be used as guidance to
the evaluation of the project [31].

6.1 Division of tasks and formal planning

In order to provide an estimation of the duration of the project at the very beginning
as well as organising and simplifying the problem as a whole into more manageable
tasks that can be addressed in a straightforward manner, a GANTT diagram was
created (see Figure 6.4) to show on a glimpse the pending tasks, the relationships
among tasks (including dependencies), the progress and milestones that shall be
completed along the project life-cycle.
GANTT diagrams are a way of representing tasks or processes with respect to time
firstly conceived by Karol Adamiecki and popularized in western Europe by Henry
Laurence Gantt [79].
GANTT diagrams, along with other complementary diagrammatic tools (such as
PERT) are a very useful tool for project managers and task management in general.
These make even more sense when Resources are added to the tasks themselves.
Resources represent workforce, that is, employees that can be assigned different
tasks according to their role. As this is an individual project, it makes no sense to
create a Resource or multiple resources associated to the author of this paper and
assign him all the tasks of the project.

191

Figure 6.4: Project Plan GANTT Diagram

192192192

Finally, once the project came to an end, a table comparing estimates with respect
to real begin and end dates can be found in Figure ??, so that conclusions can be
extracted to improve estimations in future similar projects. Note that diagrams
were built using the free GPL-Licenced GanttProject1.

The project was carried out in 10 months of work, formally starting in August 1st

2018 and finishing by June 15th not devoting full-time due to the fact that this
application was built while working in a company and thus, has been built basically
in scheduled spare time in order to guarantee its completion in June’s deadline. For
this reason, holidays are not taken as non-working days in GANTT diagrams, since
those days were actually more work-intensive than working days, at least regarding
the progress of this project.

1GanttProject: https://www.ganttproject.biz/

193

Phase Planned Actual

Sub-Task Begin Date End Date Duration Start End Duration

Project Planning 8/1/2018 8/11/2018 9 8/1/2018 8/10/2018 8

Methodology Research 8/1/2018 8/3/2018 3 8/1/2018 8/3/2018 3

Methodology Reasoning 8/4/2018 8/6/2018 2 8/4/2018 8/6/2018 2

Subdivision of Tasks 8/7/2018 8/7/2018 1 8/7/2018 8/7/2018 1

GANTT Chart Creation 8/8/2018 8/10/2018 3 8/8/2018 8/9/2018 2

User Requirements 8/11/2018 9/14/2018 29 8/10/2018 9/5/2018 27

General Capabilities of the System 8/11/2018 8/13/2018 2 8/10/2018 8/10/2018 1

System Constraints 8/14/2018 8/16/2018 2 8/11/2018 8/11/2018 1

Description of Operational Environment 8/17/2018 8/18/2018 2 8/12/2018 8/12/2018 1

User Requirements Creation 8/20/2018 8/22/2018 3 8/13/2018 8/16/2018 4

Feasibility Analysis (State Of the Art) 8/23/2018 9/12/2018 18 8/17/2018 9/3/2018 18

Mark requirements for 1st Delivery 9/13/2018 9/13/2018 1 9/4/2018 9/4/2018 1

Traceability Matrix Creation 9/14/2018 9/14/2018 1 9/5/2018 9/5/2018 1

Use Cases 9/15/2018 9/17/2018 2 9/6/2018 9/7/2018 2

Function and Purpose 9/18/2018 9/19/2018 2 9/8/2018 9/9/2018 2

System Requirements 9/20/2018 9/25/2018 38 9/10/2018 10/18/2018 40

Functional Requirements 9/20/2018 9/24/2018 4 9/10/2018 9/14/2018 5

Non-Functional Requirements 9/20/2018 9/24/2018 4 9/15/2018 9/18/2018 4

Traceability Matrix UR/SR 9/25/2018 9/25/2018 1 9/19/2018 9/19/2018 1

Architectural Design 9/26/2018 11/15/2018 42 10/19/2018 12/4/2018 47

Pre-Design Research 9/26/2018 11/9/2018 37 10/19/2018 11/22/2018 35

Build Component Diagram 11/10/2018 11/12/2018 2 11/23/2018 11/27/2018 5

Build Sequence Diagram 11/13/2018 11/15/2018 3 11/28/2018 12/4/2018 7

194194194

Phase Planned Actual

Sub-Task Begin Date End Date Duration Start End Duration

Bare Bones Development 11/16/2018 12/25/2019 45 12/4/2018 1/11/2019 39

MIDI Controller Development 11/16/2018 12/6/2018 26 12/4/2018 12/20/2018 17

VR Application Development 12/7/2018 12/25/2019 19 12/20/2018 1/11/2019 22

Documentation of Implementation Details 12/26/2019 1/28/2019 14 1/11/2019 1/22/2019 12

Modest Build Development 1/29/2019 4/6/2019 59 1/23/2019 3/28/2019 65

VR Application Development 1/29/2019 2/22/2019 22 1/23/2019 2/15/2019 24

MIDI Controller Development 2/23/2019 3/26/2019 27 2/16/2019 3/15/2019 28

Documentation of Implementation Details 3/27/2019 4/6/2019 10 3/16/2019 3/28/2019 13

Evaluation 4/8/2019 4/26/2019 15 4/4/2019 4/10/2019 7

Socio-Economic Environment 4/27/2019 5/6/2019 7 4/11/2019 4/18/2019 8

Legal Framework 5/7/2019 5/16/2019 9 4/19/2019 4/27/2019 9

Conclusions 5/17/2019 5/27/2019 9 4/27/2019 5/11/2019 15

Review and Polishing 5/28/2019 6/13/2019 15 5/23/2019 6/15/2019 24

Table 6.1: Planned Dates vs Actual Dates

195

Chapter 7

Socio-Economic Environment

This chapter reflects on the socio-economic concerns regarding the project, provid-
ing a description of the monetary costs as well as the impact the developed system
may have on the society, end-users or other researchers of the Computer Science
field. This chapter comprises two sections, expanding on these two main ideas.
In Section 7.1 the reader will be provided with the costs associated to the completion
of this project, covering all the aspects involved, from human resources to hardware
used to build the system itself, as well as the cost of licenses and other expenses that
may be of interest of the reader. Later, in Section 7.2 a discussion will be presented,
related to how this project may impact its surrounding social environment, describ-
ing the target market of the product detailed in this dissertation and debating about
economic impact of it as well.

7.1 Project Budget

This section breaks down the set of costs derived from the project, covering dif-
ferent kinds of time and monetary resources that were required for its completion;
described according to some categories.
Section 7.1.1 will focus on costs regarding software systems and licences required
for production, as well as documentation of the project (as it is the example of
Overleaf). Equipment-related costs will be presented in Section 7.1.2, while Human
resources will be detailed later in Section 7.1.3. Finally, consumable costs along
with indirect costs will be detailed in sections 7.1.4 and 7.1.5. At the very end of
this passage, the total costs will be summarised, to give the reader a general idea
regarding expenditure.

The costs along this section are computed as if the author of this document was
working for a company during the whole time-span of the project, so expenses asso-
ciated to goods are translated into costs in terms of amortisation. The formula to
compute the amortisation costs associated is the following:

196

Amortisation cost =
Purchase price× Percentage of amortisation

months within a year
× # of amortisation months

(7.1)

For all the computations performed along this section, 10 months of work are as-
sumed, starting from August 2018 until the end of May 2019. As recorded in Section
??, 262 days of labour are considered, with an average of 3 hours and 30 minutes of
work per day, already including one day off per week.

Total Project time
Months 10 months

Days 262 days

Avg. hours per day 3.5 hours per day

Total labour time 890 hours

Table 7.1: Overall labour time required by the project

7.1.1 Software Resources

In this section we summarise the costs derived from software licenses and products
that were utilised to complete this project. Knowing that the percentage of amor-
tisation of Software resources according to Agencia Tributaria by 2018 [80] is 33%,
we computed the costs associated to the software used along these 10 months.

Software Resources
Software Product Licence price Amortisation

Windows 10 Education Edition 0.00e 0.00e
Unity Personal Edition 0.00e 0.00e
Visual Paradigm Community
Edition 15.2

0.00e 0.00e

Microsoft Office Student Licence 0.00e 0.00e
GanttProject 0.00e 0.00e
Overleaf LATEXeditor Online Stu-
dent Licence

84.70e 23.29e

loopMidi 0.00e 0.00e
Hairless MIDI 0.00e 0.00e
Adobe Creative Cloud Student
Licence

196.66e(per year) 54.08e

Cubase LE AI Elements (testing)
8

99.99e(permanent) 27.49e

Addictive Drums 2 (testing) 169.95e(permanent) 54.16e
Total: 159.02e

Table 7.2: Software Costs Summary

197

7.1.2 Equipment Costs

In this section we summarise the expenses regarding equipment, including computer
systems, acquired hardware and so on. Note that amortisation percentage for IT
equipment is 20%.
Table 7.3 shows the distribution of expenses regarding Computer systems used for
programming, design and documentation (Equipment Resources 1) whereas the sec-
ond part of the table shows the costs associated to the physical production of the
system described in this document. The price for tools required for hardware as-

Equipment Resources (1)
Computer systems used

Equipment Price
Cost per month (Amorti-
sation)

Cost (10 months)

Personal Computer 499.99e 8.33e 83.33e
Total: 83.33e

Equipment Resources (2)
Product Hardware

Item Units Price per unit Total price Cost (10 months)

Arduino Mega
2560 R3

1.00 33.00e 33.00e 5.50e

Pushbutton 12.00 0.15e 1.80e 0.30e
ELEGOO
Breadboard

3.0 3.33e 9.99e 1.67e

USB 2.0 Type
A Female
Socket

8.00 1.19e 9.52e 1.59e

USB 2.0. Male
to Male cable

4.00 1.44e 5.76e 0.96e

Grove Piezo
Sensor

2.00 10.80e 21.60e 3.60e

Flexible Piezo
Film (replace-
ments)

2.00 3.52e 7.04e 1.17e

60m Cables 1.00 13.90e 13.90e 2.32e
Vic Firth 5A
drumsticks

1.00 10.40e 10.40e 1.73e

Piezo sensor 6 0,74e 4.44e 0.74e
Light Depen-
dent Resistor

4.00 0.16e 0.64e 0.11e

LED 3.00 0.59e 1.77e 0.30e
Resistor 6.00 0.02e 0.12e 0.02e
Potentiometer 1.00 0.61e 0.61e 0.10e

Total: 120.59e 20.10e

Table 7.3: Software Costs Summary

198

sembly and testing are depicted separately in table 7.4. Note that utensils of this
kind have assigned a different amortisation percentage, which is 25%.

Tools
Item Units Price per unit Total Price Cost(amortisation)

Multimeter 1.00 14.99e 14.99e 3.12e
Welder 1.00 19.99e 19.99e 4.16e

Total: 34.98e 7.29e

Table 7.4: Costs regarding Hardware assembly utensils

7.1.3 Human Resources

This section covers the cost of the project associated to labour itself. Computations
have been performed using average salary values of technical engineers, that can be
seen on 7.5. Different roles were fit by the author of this paper along its completion
so wages vary shortly depending on the position.

Human Resources
Role Analyst Designer Programmer Tester

Days of labour 164.5 147 287 126

Max salary/hour 21.33e 21.41e 21.27e 21.32

Min salary/hour 6.59e 6.81e 5.64e 5.85e
Base/hour 13.96e 14.11e 13.46e 13.59e
Total 9943.885e

Table 7.5: Human Resources expenses

7.1.4 Consumable expenses

This section covers the office material and various consumables that were exhausted
during the progress of the project, so in this case, no amortisation is computed.

Cost of Consumables
Item Price per unit Total cost

Paper 0.05e 5e
Pens 1.97e 11.82e
Printer toner 32.98e 32.98e
Tin thread 9.6e 9.60e
Silicone bars 0.17e 1.70e

Total cost: 61.00e

Table 7.6: Caption

199

7.1.5 Indirect costs

This excerpt estimates the costs associated to indirect costs derived from the project
activity, that is, the creation of software and assembly of hardware to produce the
final product. Examples of these costs would be the ISP bill, electricity and water
consumption costs and so on. We will assume these cost vary within the range of 15
to 20 percent of the cost of the project, so we will compute estimations using 17.5%.

Indirect Costs
Total without indirect
costs

10,254.62e

Indirect Costs 1,794.56e

Table 7.7: Indirect Costs

7.1.6 Total Costs

This section summarises the expenses of the project as a whole, as a sum of partial
costs. Table 7.8 includes the price before and after considering taxes.

Total costs
Human resources 9943.885e
Software Resources 159.02e
Equipment Costs 110.72e
Consumables 61.00e
Indirect Costs 1,794.56e
Total cost (No profit) 12069.27977e

Margin of profit (18%) 1,810.391966e

Total without taxes 14,199.15267e
End price including taxes
(21%)

17,180.97473e

Table 7.8: Total cost

7.2 Socio-economic Impact

This section will discuss on the impact this project may have beyond the creation
of the project itself, justifying its usefulness accounting for different environmental
fields; that is, stating the repercussion of the work in different areas that may be
somehow affected by it.

First of all, the system has a direct impact on the author’s home studio itself, en-
abling him to use the gesture controller subsystem as an e-drum trigger to use in

200

conjunction with Cubase and Addictive Drums 2 to add drums to his own songs
while leveraging traditional drumming technique. It allows for an enhanced practice
by including real-drums sounds as a consequence of physical hitting, which will be
specially positive to develop limb coordination.

On another topic, this project provides a wide introduction to Virtual Musical In-
struments, along with the technologies and approaches that have been used over the
years for the design of these innovative ways of generating music. Consequently,
Chapter 2 of the present document is likely to have an positive impact on readers
keen on Computer Music and students looking for protocols that enable the trans-
mission and storage of musical events within a computer system. It may be specially
useful to gather resources in order to get started in NIME creation, as well as un-
derstanding the technical terminology surrounding these research fields. Plenty of
research papers are included as bibliography and summarised in broad strokes so
that information is easier to take in, which can help beginners to figure out the way
to go for their projects to come to life, specially when it comes to analyse feasibility.
Furthermore, the MIDI protocol is covered in-depth in this section, as it played
a huge role in the dissertation and its basics are may be of interest to any music
enthusiast.

On the other hand, the MIDI controller designed in this project is fairly easy to
replicate and constitutes a quite challenging task that anyone interested in building
a MIDI controller would find helpful. As source code is available to the public via
GitHub, improvements to the algorithms presented here can be suggested by the
community, or people can use the project as a base upon which they can build much
more complex systems. It is also a good way to get started with time management
and embedded systems programming, handling timers and problems derived of over-
flow in those. As a final comment on this aspect, note that a low-cost electronic
drumset trigger can be built by following the process described previously (with a
cost of around 110eat most in hardware) , making this project appealing to people
interested in learning to play drums or expanding a home-studio while leveraging
programming skills and creativity (as it is the case for the author of this document).

On another matter, the elicitation process performed and detailed in this disserta-
tion can be used as a reference for future work, at least regarding the author himself.
Revisiting the fundamentals of Software Engineering was appreciated and paved the
way for the rest of the project to come to life, transforming a fuzzy idea into a clear
objectives that could be finally approached. Context diagrams, Block diagrams and
UML tools in general helped making the ideas in my mind more concrete and cer-
tainly made the process of explaining the idiosyncrasies of the system much simpler,
aiding readers in understanding the content as well.

Finally, this project is conceived by the author as a starting point for further work
and research on the Computer Music field and thus, there is a possibility that in
the future, a PhD may be expanding on this project, including improvements and
advanced functionality that could not be explored herein.

201

Chapter 8

Legal Framework

This chapter covers the regulations and licenses that may apply to this project,
alongside the licences regarding third-party software used to provide integration of
subsystems within this project.
First, Section 8.1 will ennumerate European regulations of major applicability to IT
systems, discussing applicability to the project itself. Then, Section 8.2 will identify
the licences involved in the system developed for this dissertation.

8.1 Legal concerns

Since new laws have been created in the recent past which are specially oriented to
control data management in IT systems, that is, towards enforcing personal data
protection. It is worth mentioning them briefly, stating whether they apply to the
system depicted in this document.
To begin with, at the European level, the General Data Protection Regulation
(GDPR) entered into force in May 2018 (read at [81]). This Directive has di-
rect applicability in Spain and aims to make legislation homogeneous across the EU
(European Union), providing users with more control over the data they share with
all kinds of IT companies. Thus, the directive is applicable to data controllers and
data processors, that is, companies or organisations which tell the purpose of data
gathering and processing in the first place, and which later perform automated or
non-automated data processing.
In case of handling PII (Personal Identifiable Information), a company shall evaluate
the data and enforce privacy, as well as guaranteeing basic rights to the users.
This European regulation sprouted the creation of a new Spanish law, abbreviated
as LOPDPGDD (Ley Orgánica de Protección de Datos y garant́ıa de los Derechos
Digitales) that further constraints the European Regulation. Amongst the main
articles of interest regarding this law we find user rights regarding PII, summarised
next:

• Right to Access (Art. 13): a person shall be able to retrieve the information
a data processor or controller keeps.

202

• Right of Rectification (Art. 14): a person shall have the ability to modify
any incorrect data kept by the data processor or controller.

• Right of Elimination(Art. 15): a person shall be given the ability to have
their personal data removed from processing and control. However, the data
controller may keep the required data in order to avoid direct marketing.

• Right to limit data treatment(Art. 16): a person shall be given the ability
to limit how data is treated in the following circumstances:

– The user refutes the accuracy of the kept data.

– The data controller entity holds and processes data illicitly.

– The user does not want the data controller to treat their data but wants
it to keep data in order for the user to make a complaint.

– While the the right of opposition has been exercised and its application is
under verification.

• Right of portability (Art.17.): a person shall be given the ability to access
their own PII and transmit them to a different entity responsible for them from
that point forward.

• Right of Opposition (Art. 18): a person shall be given the ability to refuse
to receive direct marketing and the ability to oppose to data processing unless
a special imperative situation arises (e.g. a public interest).

The whole document is accessible at BOE (Bolet́ın Oficial del Estado) webpage
[82].
Some interesting articles that expand on the European regulation are Article 7,
which provides special coverage for minors (whose consent to data processing will
be valid only once they are 14 or older) or Article 9, which states the categories
of data that cannot be handled (e.g. those that have as main target to identify
ideological aspects, religion, sexual orientation, etc.) unless special circumstances
take place.

Since our system does not handle any kind of personal data by the end of this
dissertation, the aforementioned regulations do not apply to it. The author will
be specially conscious in case the system eventually processes or gathers personal
data, so that the system complies with the regulations on this fundamental aspect of
privacy nowadays, being aware of the different levels of infractions, the consequences
of data leakage and derived legal implications in case of infringement of the law
terms.

8.2 Applicable Licensing

The system developed bases integration upon software developed by other people;
the main programs used in this work are Hairless MIDI, loop MIDI and the MIDI
Jack Unity Add-on.

203

Hairless MIDI is distributed under the GNU Lesser General Public License 2.1.,
which is a permissive version of the GNU GPL (General Public Licence) Licence,
which allows the use of a Program 1 within a non-freely available work. That means
that anyone could create a given software product including the GNU LGPL licenced
piece of code and redistribute the result as privative software unless the new piece
of software is a derivative work (i.e. a work that is based upon the LGPL software
and modifies it would be derivative, whereas simply leveraging its features would
not be considered as derivative work).
Therefore, source code from Hairless MIDI could be modified in the future and
published using either GNU GPL or LGPL to, for instance, include the core func-
tionality of it within the source code of the Unity-based videogame presented in this
dissertation.

MIDI Jack is simply copyrighted, according to the GitHub page where you can find
the source code for the whole project; anyone is allowed to convey copies of the
software without restriction, being allowed to use, copy, modify, merge, publish,
distribute, sub-license or sell those copies but keeping the copyright notice found in
Keijiro’s page in all copies or substantial portion of Software.
On the other hand, LoopMIDI is a privative, free-of-charge program copyrighted by
Tobias Erichsen, which can be used for private, non-commercial use. In the case
commercial use is intended, the author of this program must be contacted.

Lastly, regarding other licences, the Arduino environment is covered by the GPL as
well, which allows the use of the libraries without restrictions on commercial and
non-commercial products.
Only modifications to these core software are required to be freely available. Regard-
ing Arduino boards hardware, this is said to be Open source, meaning that anyone
should be able to study the hardware, make changes to it and share changes. Thus,
files associated to the hardware (Eagle CAD files) are released under a Creative
Commons Attribution Share-Alike license (Arduino 2, which requires anyone mod-
ifying the hardware to notify so in the modified files and distribute contributions
under the same licence.

1Program: a work that is released under a GNU Licence
2see details at https://www.arduino.cc/en/Main/FAQ

204

Chapter 9

Conclusions

This chapter reflects on the results obtained from the project, discussing the objec-
tives that were achieved after months of work, providing with proposals for future
improvements that may be carried out and personal comments that will examine
the greatest difficulties found along the project. Section 9.1 will analyse to which
degree the objectives initially proposed were attained. Section 9.2 will deliberate
the future work that is aimed to expand the capabilities of the system in interest-
ing ways. Section 9.3 will contain personal conclusions regarding the experience of
development, in terms of technical expertise gained as well as acquired life lessons.

9.1 Project Retrospective

At the very beginning of this document (see Section 1.2), a set of objectives were
enumerated, accounting for the system to be built. This document covered the whole
process for a electronic musical instrument to come to life, including both a tangible
interface for interaction as well as sound generation subsystem, which although they
are fairly restricted in functionality, have paved the way for further research on this
topic.
Next, the set of objectives will be listed along with comments support their fulfil-
ment.

• Objective 1: Creation of a physical interface for musical generation: a
tangible interface involving drumsticks with embedded electronics was created,
along with a set-up involving a custom hi-hat pedal based on an LDR sensor.

• Objective 2: Creating a 3D visualisation application that represents
the drumset in virtual space and enables triggering sounds associated
to the different present components: an application based on the Unity
game engine was created in this project, exploring the virtues of this tool for
development and making use of previous work to avoid reinventing the wheel
while learning a lot.

205

Secondary objectives such as real-time concerns, usability or aesthetics were also
implemented to the extent possible, since time and budget limitations existed. On
this matter, the system is responsive enough to provide a natural performance to
the user, even though improvements would play a huge role in playfulness and user
experience.
Regarding aesthetics and ergonomics, an extra effort was made to make User Inter-
faces of the software application appealing, as well as making the hardware coun-
terpart solid, neat and seamless to use, trying hard to keep distractions away from
the users, so that they can focus on the experience.

On top of that, this project has involved a plenty of research, which is manifest in
the State of The Art excerpt devoted to previously developed musical instruments
(see Section 2.3); providing readers with a exceptional interest in the Computer mu-
sic field with a quite detailed summary of sundry research papers referenced along
the dissertation.

On the other hand, it is worth mentioning the fact that this project has changed a
lot in essence since it was first conceived in 2017, as the author progressed through
the Informatics Engineering degree. It all came to mind when the author got to
know Microsoft Hololens and thought it would be a would idea to apply the Aug-
mented Reality technology to one of his passions, music. As space had always been
a problem for him, he envisioned a system which could project a complete drumset
in front the eyes of the users to allow them play drums ubiquitously, but hitting real
surfaces, like say, the user’s bed (which was at that point used as practice drumset
during breaks from studying by the author himself).
Consequently, and inspired by the opportunity given by the supervisor of this dis-
sertation (which was happy to let the author use an actual pair of Hololens), he
targeted at eventually, giving birth to such system as a Bachelor Thesis.
Unfortunately, the reality is that at the end, the original concept solution turned
to be too complex and certainly unfeasible to be implemented in a timely schedule
due to the huge amount of expertise and effort required to complete effectively such
self-built expectations. Unsurprisingly, working with new technologies which were
not very well documented (as they are in their infancy) and doing so alone imposed
hard constraints in the outcome of the project, which had to focus on providing an
intermediate solution, going away from the AR paradigm (at least giving up Hololens
support) without deviating completely from the main objectives of the system and
aiming to leave room for improvement so that the initial concept can be ultimately
achieved.

9.2 Future Work

The development of this system has been carried out in two phases or builds, which
progressively added features. Regarding the limited duration of the project and the
constraints associated to working on several subjects concurrently, many additional

206

features were looked into yet left out because of the limited time and monetary
resources inherent to the dissertation deadlines and the low purchasing power of the
author. Thus, work in progress and future directions for the expansion of this work
will be listed and discussed next:

• Orientation Detection support: one of the major lacks of this project
is the limited number of sounds that can be obtained from interaction with
the tangible interface presented in this document. The original idea involved
triggering different sounds depending on the orientation of the drumsticks in
the real world, as well as representation of the drumsticks in virtual space. This
subject has been widely explored and was planned to be included in this paper.
Unfortunately, unexpected problems arised and the addition of this feature
could not be completed nor documented in a timely manner. The sensors
which are being used to support this functionality are MPU9250 IMUs(Inertial
Measurement Units). The author is developing a library to deal with this
sensor, based on its instructions sheet and with aid of similar work, such as
borderfligth’s Github project. By creating his own library, the author is striving
to learn basic hardware concepts that can help him deal with devices which
have no libraries specially supporting their easy integration. Understanding
IMUs and calculations required to compute orientation are thought to be very
interesting due to its applicability in many research areas.

• Explore MIDI BLE: as the system is currently limited in flexibility and
ergonomics due to the wiring required to interconnect components, one idea
for the future is to explore the the inclusion of Bluetooth Low energy modules
to Arduino. Other Arduino-compatible boards may be considered, taking into
account the possibility of embedding a small microcontroller with BLE support
within drumsticks, as in the case of Airstic drum.

• Support for Hololens: the ultimate objective of this project is AR visual-
ization using a see-thorugh device such as Microsoft Hololens. Exploration of
this support to date from the perspective of the author has been unsatisfac-
tory. However, further research will be performed to assess feasibility of this
highly-desirable feature.

• Support interruptions in the gesture controller side in order to guar-
antee that user hits are never missed: hardware interruptions allow to
increase the amount of simulated multi-tasking the microcontroller supports
by associating function calls to specific hardware events (such as pushing a
button). This opens up many possibilities for improvement of the subsystem.

• Add a UI to gestural interface: in order to provide the user with verbose
information about the status of the subsystem, an LCD could be used to help
the user understand potential problems. It would also help debugging the
system and could be used to implement configuration during runtime, by adding
rotary encoders or other sensors.

• Support air-drumming as well as hi-based interaction: similarly to
Airstic drum [42], both interaction modes can be enabled to further increase
the flexibility of the system. Air drumming could be used to trigger cymbal
sounds whereas drum sounds may be triggered by means of hitting.

207

• Add animation to virtual objects on interaction: in addition to simply
changing the colour of drum pieces when the user interacts with the system,
realistic movement of the cymbals can be included to enhance the appeal of
the application as a whole.

9.3 Personal Conclusions

After more than ten months of work and dedication, this document and the addi-
tional effort required by the actual development of the system described herein have
all finally come to an end.
This makes the author incredibly glad and proud of the achieved result, even though
the system differs quite a lot from the initially devised concept.
The author’s humble home studio has henceforth a new instrument to be used in
musical projects of his own, which is probably the main source of satisfaction out of
the whole project.

Countless hours and will power have been put into making the best out of this
project, taking care of the aesthetics and most importantly, the quality of the con-
tent and explanations. All of this attention to detail makes the author strongly
believe that each and every page of this dissertation is worth reading.
In this sense, it can be safely stated that his project has constituted the most dif-
ficult challenge the author has had to face in his entire life, both in personal and
professional aspects:
On the one hand, the author has been required to complete this project while work-
ing part-time on a different subject to help the family income, which confined the
project to progress much more slowly than it could have otherwise. On this matter,
developing DrumVR has been specially tough when dealing with the Augmented
Reality paradigm on the software side, since the early objective of developing for
Hololens progressively seemed more and more unfeasible due to the difficult access
to the Hololens (as it took to the author around 2 and a half hours to get to Uni-
versity using public transport). Testing on the Hololens Emulator was simply too
overloading for the developer’s equipment .
Furthermore, this development, research and documentation process has required
extra time resources due to the low level of expertise the author of this paper had
previous to proposing the idea to his tutor. Being honest, the author had not any
prior knowledge about the technologies used for this project beyond some Arduino
programming basics along with some 3D modelling skills. The hardware selection
has been probably one of the most uphill processes due to the obliviousness of the
author regarding this topic, prices, types of sensors and compatibility of those; elec-
tronics were all gone from the author’s mind when this project started.
On top of that, this document itself has been fully written using LATEX , which
has been incredibly useful and work-saving regarding citations, cross referencing,
page numbering and sectioning of the document, as well as basic styling. However,
sometimes, it has made the process of writing much more tiresome that it would
have been if the author had used a common text processor such as Microsoft Word,

208

becoming a distraction from the content when things did not work as expected. This
was the case when creating tables and styling those, as well as when dealing with
large figures, a topic that was hard to deal specially for traceability matrices. Re-
gardless of the additional effort derived from using this LATEX the author has been
able to learn a lot about it and can now estimate the kind of processes that can be
speed up using this tool and which are better off with other text processing software.

More personally speaking, this project has reasserted the fact that continued effort
is tiresome yet gratifying, and has served as an educative experience to get to know
my limitations and strengths better; understanding the importance of mental health,
specially, for a job such as those related to the IT field, requiring a lot of work and
often, isolation and time for introspective. In this sense, the author has discovered
a research path of his interest and has saw the doubt on future decisions regarding
his career, finally inspiring him to apply for a Master’s Degree oriented to research.

On another matter, the uncertainty surrounding the project and the difficulties
regarding its feasibility have made the author realise the amount of knowledge that
is required to estimate resources required for the completion of a system accurately.
This is an incredibly complex task whose extent is really difficult to encompass alone,
specially in the case of projects targeted at new platforms; it is a great responsibility
and takes a huge expertise.

Owing to the numerous difficulties that have been found along the way, the author
has had the opportunity to appreciate his mistakes as a necessary step for success;in
light to that, it is important to give credit to one’s efforts regardless of the visible
results in order to keep one motivated. If nobody values the process required to
make things happen, you are the one that should do so because otherwise, there is
no point in trying and you will never achieve a thing.

This project has certainly made the author appreciate clear guides to learning, such
as those provided by institutions like Universities, in the shape of notes, presen-
tations or class projects. These are invaluable and make learning so much easier
than simply finding your way out of problems without a clue about where to find a
solution.

All that been said, the author is looking forward to continue expanding the sys-
tem depicted herein, which eventually, will become much more useful and exciting
to showcase. It has been a great opportunity to merge two passions, music and
programming, expanding the author’s knowledge and testing out his capabilities
through adversity; but most importantly, has constituted an experience of personal
growth.

209

Appendix A

Side Notes

One important aspect of Virtual reality applications is presence, which plays an
important role in the success and usability and enjoyment of them. One way to aid
presence, also known as immersion, is to provide high quality graphics (High Repro-
duction Fidelity), or at least a level of graphics that best fits the central purpose of
the application. In the case of the presented system, a great effort was put onto the
refinement of the graphics of the virtual counterpart of the drum-set to be played,
enough so that the user can feel somehow interaction is similar to that of playing a
real instrument in a sense.
Since the project was initially targeted towards an AR application (to be used with
an HMD), the 3D models generated for the project were carefully modelled with
real-world sizes; using multiple references for modelling from drum hardware brands
such as Tama or Pearl, and cymbal brands like Zildjan or Sabian.

In this appendix, a description of some of the most cumbersome processes found
along the dissertation can be found.

A.1 How to configure Blender to work with real

world units

The firts thing that has to be done before modelling in real-world units is configu-
ration in Blender, which is the modelling program used all along this project.
Next, in order to ease the process to any newbie to the subject, I will describe the
process to get started with modelling in meters. Note that these instructions may
not be as accurate for versions distinct from 2.79, the one used by the author of this
paper.

1. Access the Scene panel within Properties view in any
Blender area of your choice (that is, any subdivision of the main window).

2. Go to the Units submenu and set the Length property to ”Metric”. You

210

should be able to see the word ”Meters” under the Type of View Displaying
(Ortho or Perspective).

REMARK: Perspective view mimics reality in the sense that perspective
distortion is present, that is, relative sizes are hard to tell for two objects that
are apart from each other. On the contrary, Orthographic view is unreal,
since no distortion with the distance is present; i.e. if two lines are parallel
and we look at them, they look like they are actually parallel (they never
cross), which doesn’t happen in the real world (where they seem to cross in the
horizon).

Figure A.1: Metric Submenu

∗ Then, you may want to specify the kind of unit you are more comfortable with,
in order to work with angles (either degrees or radians). You can change change
that next to the ”Angles” label (see Figure A.2a).

∗ Additionally you may want to set theUnit Scale down so that the grid Blender
provides in the ZY plane is visible again, knowing that a Unit Scale of 1 means
that if we input a value with no units, they will be assumed to be meters.
Therefore, that value can be changed to state all your measures in millimetres
by setting such value to 0.001.

211

(a) setMetric

(b) Resulting Blender grid

Figure A.2: Blender 3D Grid for a Unit Scale of 0.001

Open Source Free Software has been mostly used for the modelling process, as it is
the case of Blender. Addons like MeasureIt were found to be extremely useful for
modelling with real world sizes real hardware was used as reference to obtain an
enhanced precision towards the final user of the system, which is also the developer.
It can be enabled directly from the Blender User Configuration menu, and it is very
simple to use. In figure A.4 you can find a render using the aforementioned Add-on,
in order to visually keep track of the dimensions of the different drum-set parts while
building the scene.

212

Figure A.3: MeasureItAddon

Figure A.4: Final render using MeasureIt Blender addon

A.2 Baking for Unity

According to many 3D artists and videogame creators I have followed (e.g. Widhi
Muttaqien, Andrew Price [aka Blender Guru] or Asbjørn Thirslund [aka Brackeys])

213

for reference during the development of this project; game assets are to be created
using the Blender Render render engine. The reason for that is precisely com-
patibility, since materials work pretty much the same they do in game engines such
as Unreal or Unity. However, the author realised about this workflow after he had
already completed the detailed 3D models using Cycles render.
As Unity and Blender cycles textures are not directly compatible because a game
engine can’t deal with continuously updating textures on all objects of a scene due
to changes in light; textures need to be baked so that they can be used in Unity.
Baking is a process that consists in taking a snapshot of how textures in a scene
look under certain lighting conditions so that we can leverage the beauties of PBR
while having real time interaction. In other words, the result of a render given the
parameters of the current scene, is saved into an image file (used as image texture)
for latter use.
Baking is useful when we have fixed lighting in a scene, as we can simply paste a
texture looking like it was rendering in real time but instead we pre-rendered how
it looks. Baking can be done for both simple image textures as well as procedural
textures and is specially useful for animation and exporting to different software.
The baking process is somewhat hard to understand at first, since you need to deal
with UV maps, a delicate topic for beginners.
However, I will cover next the process involved into baking the textures for my whole
scene, aiming to make everithing easy to understand and follow.

1. Select the object whose textures you aim to bake onto a single one (e.g. the
bass drum mesh).

2. Create a new UV Map, give it a name of your choosing:

214

3. Create a new image for the Bake output, the texture to be exported. In order
to do so, we open the Image/UV view and Go to Image → New Image and
set a the dimensions of the texture we would like to create. 1024 px is fine
for both width and height unless you are going for a very high-quality texture
bake or your object is really huge and details do matter.

4. Go into edit mode with the target mesh selected and perform Ctrl+A to select
all the mesh. If we have created seams for unwrapping our mesh very precisely,
we can directly mouse over the 3D viewport and press U to display the UV
Unwrapping options. UV unwrapping is a technique to project a 2D texture
onto a 3D model, and it can be thought as unfolding our model so that all its
faces lie flat and can be rebuilt creating a smooth texture. For simple models,
the Smart Unwrap option will work well; since you can customise the angle
that is used to compute seams (texture cuts) automatically. Otherwise, you
must define your own seams so that the Unwrapping doesn’t look like a mess.

215

5. Once UV unwrapped, the UV/Image editor should be showing the unwrapped
faces all over the black texture map we created in step 2. Now, it is time for
us to tell Blender to bake the textures assigned to our object onto the image
we want. To do so, we need to create a set of nodes for each material that is
present in the mesh whose materials we want to bake. For each material, we
need to create at least One UV Map node (to reference the UV map specifically
created for the baking process), one Image Texture node (to tell Blender where
to bake) and an Emission node (in order to preview the results of Baking).

6. Set the Texture Image node source to be the Image we created previously in
all the Image Texture nodes we created in the previous step. Then, make sure
you left-click on the Image Texture node in all the materials you have applied
to your mesh (you can see if they are selected by looking at the orange border
they should show).

216

7. Make sure you have selected the Image Texture Node (it shows an orange
outline). Go to the Render Panel, within the Properties view. Find the Render
Submenu and Click Bake.

217

8. Check whether you like the result or there was some kind of issue.

Figure A.7: Render of Modeled Drumset after Baking

A.2.1 Bake Troubleshooting

A completely black render is a clear sign that there was an issue during the process.
The first thing to double check is your normals. There is a strong possibility that
the normals of your model are pointing inwards, thus, messing up your render, since
no light gets into the model (obviously)
In order to recalculate the normals of a mesh, you can Go into Edit Mode ¿ Press T
(to open the Tools menu) Go into Shading/Uvs and press Recalculate (within the
Normals Submenu; see Figure A.8b).
In order to visualise the direction of the normal vectors, you can go into Edit mode,
Press N to show an auxiliar panel and Find the Normals Submenu. There you can

218

choose among showing vertex normals, edge normals or face normals along with
their size (see Figure A.8a).

(a) ShowingNormals

(b) Recalculating Normals

Figure A.8: Baking Issues: Fixing Normals

Another possibility is that you are using a glossy material, which cannot be baked.
In this case, you will have to change it to a Diffuse one or any other compatible
Node.

To end this appendix, we show the result from all the bakes of the final scene, using
within the Unity game Engine for development. Figure A.9 shows the images ob-
tained from the baking process.These are the ones pasted into the models themselves
to avoid real-time calculations.

219

Figure A.9: Image textures for the whole drumset

220

A.3 Panoramic view of the development process

This last appendix provides with a set of figures showing progressive refinement
of the system described along this document. It has been added for completeness
and so that the reader can get a general idea of how the depictions of the system
provided along the document map to the actual thing.

Figure A.10: Initial Idea Draft

Figure A.10 shows the envisioned system at the first stage, reflecting in broad strokes
the market product that was conceived initially. It is manifest that the idea suffered
multiple adjustments in order to be feasible in a limited budget and schedule.

At the very beginning of the project, on the software side, a Piano-like video-game
was created, used as a basic project to learn about Unity. It was used in conjunction
with the MicroKeyboardByNolliejandro MIDI controller (see Figure 2.16) to trigger
sample sounds, and it allowed to generate piano tiles procedurally.
Notes were automatically assigned correctly as the piano grew in number of notes
and sounds were configurable. Similarly to the final solution for the drumset; keys
turned red as MIDI input was received corresponding to specific notes.

221

Figure A.11: Initial Unity Project

222222222

Figure A.12 shows one of the earliest versions of the MIDI controller subsystem,
when it did not involved USB wiring, nor included soldered joints of any kind. In
the picture, we can observe

Figure A.12: Early version of MIDI Controller

Figure A.13 shows the main components of the tangible interface created in this
project, embedding hit sensors (in the case f drumsticks) and a LDR in the case of
the left foot pedal. These are connected to the main Arduino board using a male-
to-male USB cable; having a female soldered end in both the drumsticks/pedal and
the Arduino wiring. An example of soldered joints regarding USB females can be
observed in Figure A.14.

In Figure A.15 we can observe all of the 3D models created for this project, along
with their textures. These aimed to provide high Reproduction fidelity to give real-
ism and appeal to the application, which otherwise would have look unprofessional.

223

Figure A.13: Tangible interface without USB wiring

Figure A.14: USB soldering

224

Figure A.15: Piece-by-piece drumset renders
225225225

As mentioned in the Conclusions, some future work discussed was already being
implemented, we can find evidence of that in Figure A.16, where a LCD screen has
been added to provide the user with more understandable information regarding the
status of the MIDI controller.

Figure A.16: Work in progress

226

Bibliography

[1] X. audio. (2019). Addictive drums 2, [Online]. Available: https : / / www .

xlnaudio.com/products/addictive_drums_2 (visited on 06/09/2019).

[2] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented reality: A
class of displays on the reality-virtuality continuum,” vol. 2351, Jan. 1994.

[3] Wikipedia. (2019). Application layer, [Online]. Available: https://en.wikipedia.
org/wiki/Application_layer (visited on 06/09/2019).

[4] ——, (2019). Tuple, [Online]. Available: https://en.wikipedia.org/wiki/
Tuple (visited on 06/09/2019).

[5] U. F. D. R. G. do Sul. (2019). Nime, [Online]. Available: https://www.ufrgs.
br/nime2019/e (visited on 06/09/2019).

[6] Wikipedia. (2019). Daw, [Online]. Available: https://en.wikipedia.org/
wiki/Digital_audio_workstation (visited on 06/09/2019).

[7] ——, (2019). Virtual studio technology (vst), [Online]. Available: https :

/ / es . wikipedia . org / wiki / Virtual _ Studio _ Technology (visited on
06/09/2019).

[8] ——, (2019). Tangible user interface, [Online]. Available: https://en.wikipedia.
org/wiki/Tangible_user_interface (visited on 06/09/2019).

[9] ——, (2019). Proprioception, [Online]. Available: https://en.wikipedia.
org/wiki/Proprioception (visited on 06/09/2019).

[10] Clavecin electrique, 1759, Aug. 2018. [Online]. Available: http://120years.
net/clavecin-electrique-1759/.

[11] Musical telegraph, 1876, Aug. 2018. [Online]. Available: http://120years.
net/the-musical-telegraphelisha-greyusa1876/.

[12] Telharmonium, 1897, Aug. 2018. [Online]. Available: http://120years.net/
the-telharmonium-thaddeus-cahill-usa-1897/.

[13] Novachord, hammond 1939, Aug. 2018. [Online]. Available: http://120years.
net/the-novachordl-hammond-c-n-williamsusa1939/.

[14] Sackbut synthesizer image, Aug. 2018. [Online]. Available: https://ingeniumcanada.
org/scitech/collection-research/artifact-hugh-le-caine-electronic-

sackbut-synthesizer.php.

[15] Sparkfun midi tutorial, Aug. 2018. [Online]. Available: https : / / learn .

sparkfun.com/tutorials/midi-tutorial/all.

227

https://www.xlnaudio.com/products/addictive_drums_2
https://www.xlnaudio.com/products/addictive_drums_2
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Tuple
https://www.ufrgs.br/nime2019/e
https://www.ufrgs.br/nime2019/e
https://en.wikipedia.org/wiki/Digital_audio_workstation
https://en.wikipedia.org/wiki/Digital_audio_workstation
https://es.wikipedia.org/wiki/Virtual_Studio_Technology
https://es.wikipedia.org/wiki/Virtual_Studio_Technology
https://en.wikipedia.org/wiki/Tangible_user_interface
https://en.wikipedia.org/wiki/Tangible_user_interface
https://en.wikipedia.org/wiki/Proprioception
https://en.wikipedia.org/wiki/Proprioception
http://120years.net/clavecin-electrique-1759/
http://120years.net/clavecin-electrique-1759/
http://120years.net/the-musical-telegraphelisha-greyusa1876/
http://120years.net/the-musical-telegraphelisha-greyusa1876/
http://120years.net/the-telharmonium-thaddeus-cahill-usa-1897/
http://120years.net/the-telharmonium-thaddeus-cahill-usa-1897/
http://120years.net/the-novachordl-hammond-c-n-williamsusa1939/
http://120years.net/the-novachordl-hammond-c-n-williamsusa1939/
https://ingeniumcanada.org/scitech/collection-research/artifact-hugh-le-caine-electronic-sackbut-synthesizer.php
https://ingeniumcanada.org/scitech/collection-research/artifact-hugh-le-caine-electronic-sackbut-synthesizer.php
https://ingeniumcanada.org/scitech/collection-research/artifact-hugh-le-caine-electronic-sackbut-synthesizer.php
https://learn.sparkfun.com/tutorials/midi-tutorial/all
https://learn.sparkfun.com/tutorials/midi-tutorial/all

[16] Dannenberg and R. B, “The interpretation of midi velocity,” Nov. 2006.

[17] T. M. Association. (2018). Control change messages (data bytes), [Online].
Available: https://www.midi.org/specifications-old/item/table-3-
control-change-messages-data-bytes-2 (visited on 01/03/2019).

[18] A. Rey. (2019). Microkeyboardbynolliejandro, [Online]. Available: https://
github.com/coredamnwork/MicroKeyboardByNolliejandro (visited on 06/09/2019).

[19] M. Walker. (2005). Optimising the latency of your pc audio interface, [On-
line]. Available: https://www.soundonsound.com/techniques/optimising-
latency-pc-audio-interface#7 (visited on 02/09/2019).

[20] T. M. Association. (2019). The midi manufacturers association (mma) and
the association of music electronics industry (amei) announce midi 2.0TM

prototyping, [Online]. Available: https://www.midi.org/articles-old/
the-midi-manufacturers-association-mma-and-the-association-of-

music-electronics-industry-amei-announce-midi-2-0tm-prototyping

(visited on 05/26/2019).

[21] I. E. Sutherland, “The ultimate display,” in Proceedings of the IFIP Congress,
1965, pp. 506–508.

[22] P. Cook, “Spasm: A real-time vocal tract physical model editor/controller and
singer: The companion software synthesis system,” Computer Music Journal,
vol. 17, Jan. 1992. doi: 10.2307/3680568.

[23] D. Trueman and P. Cook, “Bossa: The deconstructed violin reconstructed,”
Journal of New Music Research, vol. 29, Aug. 2010. doi: 10.1076/jnmr.29.
2.121.3098.

[24] V. Välimäki and T. Takala, “Virtual musical instruments - natural sound
using physical models,” Organised Sound, vol. 1, pp. 75–86, Aug. 1996. doi:
10.1017/S1355771896000039.

[25] P. Cook, “Principles for designing computer music controllers,” p. 4, Dec. 2001.

[26] T. Mäki-Patola, A. Kanerva, J. Laitinen, and T. Takala, “Experiments with
virtual reality instruments.,” Jan. 2005, pp. 11–16.

[27] R. Hamilton, “Building interactive networked musical environments using
q3osc,” Feb. 2009, p. 6.

[28] R. Hamilton. (2008). Quake iii open source control, [Online]. Available: https:
//ccrma.stanford.edu/~rob/q3osc/ (visited on 05/23/2019).

[29] M.Wright. (2002). Open sound control specification, [Online]. Available: http:
//opensoundcontrol.org/spec-1_0 (visited on 05/23/2019).

[30] R. Hamilton, “Maps and legends: Fps-based interfaces for composition and
immersive performance,” Jul. 2007, p. 4.

[31] S. Serafin, C. Erkut, J. Kojs, N. Nilsson, and R. Nordahl, “Virtual reality
musical instruments: State of the art, design principles, and future directions,”
Computer Music Journal, vol. 40, pp. 22–40, Sep. 2016. doi: 10.1162/COMJ_
a_00372.

[32] G. Wang, “Principles of visual design for computer music,” Sep. 2014, p. 6.
doi: 10.13140/2.1.3702.9763.

228

https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2
https://www.midi.org/specifications-old/item/table-3-control-change-messages-data-bytes-2
https://github.com/coredamnwork/MicroKeyboardByNolliejandro
https://github.com/coredamnwork/MicroKeyboardByNolliejandro
https://www.soundonsound.com/techniques/optimising-latency-pc-audio-interface#7
https://www.soundonsound.com/techniques/optimising-latency-pc-audio-interface#7
https://www.midi.org/articles-old/the-midi-manufacturers-association-mma-and-the-association-of-music-electronics-industry-amei-announce-midi-2-0tm-prototyping
https://www.midi.org/articles-old/the-midi-manufacturers-association-mma-and-the-association-of-music-electronics-industry-amei-announce-midi-2-0tm-prototyping
https://www.midi.org/articles-old/the-midi-manufacturers-association-mma-and-the-association-of-music-electronics-industry-amei-announce-midi-2-0tm-prototyping
https://doi.org/10.2307/3680568
https://doi.org/10.1076/jnmr.29.2.121.3098
https://doi.org/10.1076/jnmr.29.2.121.3098
https://doi.org/10.1017/S1355771896000039
https://ccrma.stanford.edu/~rob/q3osc/
https://ccrma.stanford.edu/~rob/q3osc/
http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0
https://doi.org/10.1162/COMJ_a_00372
https://doi.org/10.1162/COMJ_a_00372
https://doi.org/10.13140/2.1.3702.9763

[33] R. Hamilton, “Udkosc: An immersive musical environment,” Aug. 2011.

[34] S. Gelineck, N. Böttcher, L. Martinussen, and S. Serafin, “Virtual reality in-
struments capable of changing dimensions in real-time,” May 2019.

[35] D. Bowman and L. Hodges, “An evaluation of techniques for grabbing and ma-
nipulating remote objects in immersive virtual environments,” Symposium on
Interactive 3D Graphics, vol. 182, Sep. 1999. doi: 10.1145/253284.253301.

[36] G. Levin, Painterly inerfaces for audiovisual performance, M.S. Thesis, MIT
Media Laboratory, Jun. 2000.

[37] F. Berthaut, M. Desainte-Catherine, and M. Hachet, “Interacting with 3d
reactive widgets for musical performance,” Journal of New Music Research,
vol. 40, pp. 253–263, Sep. 2011. doi: 10.1080/09298215.2011.602693.

[38] J. Leonard, C. Cadoz, N. Castagné, and A. Luciani, “A virtual reality platform
for musical creation,” Oct. 2013. doi: 10.1007/978-3-319-12976-1_22.

[39] N. Lobo, “V-drum: An augmented reality drum kit,” International Journal
of Advanced Research in Computer and Communication Engineering, vol. 4,
no. 10, Oct. 2015. doi: 10.1080/09298215.2011.602693.

[40] Microsoft kinect, Aug. 2018. [Online]. Available: https://developer.microsoft.
com/es-es/windows/kinect.

[41] K. Okada et al., “Virtual drum: Ubiquitous and playful drum playing,” pp. 419–
421, Feb. 2015.

[42] H. Kanke, Y. Takegawa, T. Terada, and M. Tsukamoto, “Airstic drum: A
drumstick for integration of real and virtual drums,” vol. 7624, Nov. 2012,
pp. 57–69. doi: 10.1007/978-3-642-34292-9_5.

[43] J. Desnoyers-Stewart, D. Gerhard, and M. Smith, “Mixed reality midi key-
board,” Sep. 2017.

[44] A. Fangbemi and Y. Zhang, “Wrist-worn sensor-based tangible interface for
virtual percussion instruments,” in. Jun. 2018, pp. 54–66. doi: 10.1007/978-
3-319-95270-3_4.

[45] Wii music game details, Aug. 2018. [Online]. Available: https://www.nintendo.
com/games/detail/Fe0_TFVoa6RbkoZq_GoIDaRTgOzVAOID.

[46] COOLTHINGS. (2009). V-beat drumsticks: Imaginary drum kit, realistic play-
ing, [Online]. Available: https://www.coolthings.com/v-beat-drumsticks-
imaginary-drum-kit-realistic-playing/ (visited on 05/24/2019).

[47] Our comprehensive aerodrums review, Aug. 2018. [Online]. Available: https:
//www.electronicdrumadvisor.com/aerodrums-review/.

[48] Aerodrums, Aug. 2018. [Online]. Available: https://aerodrums.com/the-
product/.

[49] The music room, Aug. 2018. [Online]. Available: https://www.vrfocus.com/
2017/08/the-music-room-brings-real-instruments-to-vr/.

[50] S. Jordà, “Instruments and players: Some thoughts on digital lutherie,” Jour-
nal of New Music Research, vol. 33, Sep. 2004. doi: 10.1080/0929821042000317886.

229

https://doi.org/10.1145/253284.253301
https://doi.org/10.1080/09298215.2011.602693
https://doi.org/10.1007/978-3-319-12976-1_22
https://doi.org/10.1080/09298215.2011.602693
https://developer.microsoft.com/es-es/windows/kinect
https://developer.microsoft.com/es-es/windows/kinect
https://doi.org/10.1007/978-3-642-34292-9_5
https://doi.org/10.1007/978-3-319-95270-3_4
https://doi.org/10.1007/978-3-319-95270-3_4
https://www.nintendo.com/games/detail/Fe0_TFVoa6RbkoZq_GoIDaRTgOzVAOID
https://www.nintendo.com/games/detail/Fe0_TFVoa6RbkoZq_GoIDaRTgOzVAOID
https://www.coolthings.com/v-beat-drumsticks-imaginary-drum-kit-realistic-playing/
https://www.coolthings.com/v-beat-drumsticks-imaginary-drum-kit-realistic-playing/
https://www.electronicdrumadvisor.com/aerodrums-review/
https://www.electronicdrumadvisor.com/aerodrums-review/
https://aerodrums.com/the-product/
https://aerodrums.com/the-product/
https://www.vrfocus.com/2017/08/the-music-room-brings-real-instruments-to-vr/
https://www.vrfocus.com/2017/08/the-music-room-brings-real-instruments-to-vr/
https://doi.org/10.1080/0929821042000317886

[51] Thomann. (2019). Roland td-25k v-drum set, [Online]. Available: https :

//www.thomann.de/es/roland_td_25k_v_drum_set.htm (visited on
05/25/2019).

[52] J. Albano. (2017). Monitoring latency (how low can you go?) [Online]. Avail-
able: https://ask.audio/articles/monitoring-latency-how-low-can-
you-go (visited on 05/26/2019).

[53] P. Cook, “Remutualizing the musical instrument: Co-design of synthesis algo-
rithms and controllers,” Journal of New Music Research, vol. 33, pp. 315–320,
Sep. 2004. doi: 10.1080/0929821042000317877.

[54] M. Collicutt, C. Casciato, and M. Wanderley, “From real to virtual: A com-
parison of input devices for percussion tasks,” Jan. 2009.

[55] T. Mäki-Patola, “User interface comparison for virtual drums.,” Jan. 2005,
pp. 144–147.

[56] J. J. Gibson, The ecological approach to visual perception. Boston: Houghton
Mifflin, 1979.

[57] S. Serafin, C. Erkut, J. Kojs, N. Nilsson, and R. Nordahl, “Virtual reality
musical instruments: State of the art, design principles, and future directions,”
Computer Music Journal, vol. 40, pp. 22–40, Sep. 2016. doi: 10.1162/COMJ_
a_00372.

[58] B. Bache. (2019). A guide to drum sticks grip, [Online]. Available: https:
//www.libertyparkmusic.com/drum- sticks- grip- guide/ (visited on
05/26/2019).

[59] S. Nilsson, V. Vechev, A. Yeh, and C. Hedler, “Holo beats: Design and devel-
opment of an ar system toteach drums,” 2019.

[60] Roland td-17 series, Aug. 2018. [Online]. Available: https://www.roland.
com/global/products/td-17_series.

[61] Thomann. (2019). Pearl p-530, [Online]. Available: https://www.thomann.
de/es/pearl_p_530_bass_drum_pedal.htm (visited on 06/09/2019).

[62] ——, (2019). Tama hp30, [Online]. Available: https://www.thomann.de/es/
tama_hp30_bass_drum_pedal.htm (visited on 06/09/2019).

[63] Reverb.com. (2019). Tama iron cobra jr., [Online]. Available: https://reverb.
com/item/1762289-tama-iron-cobra-jr-double-bass-pedal (visited on
06/09/2019).

[64] Thomann. (2019). Bdp-s bass drum practice pad, [Online]. Available: https:
//www.thomann.de/es/millenium_bdp_s_bass_drum_practice_pad.htm

(visited on 06/09/2019).

[65] ——, (2019). Evans rfbass practice pad, [Online]. Available: https://www.
thomann.de/es/hq_percussion_rfbass_bass_pedal_practice_pad.htm

(visited on 06/09/2019).

[66] ——, (2019). Meinl mpp-12-jb 12”, [Online]. Available: https://www.thomann.
de/es/meinl_mpp_12_jb_12_practice_pad.htm (visited on 06/09/2019).

[67] ——, (2019). Tama hs80w snare stand, [Online]. Available: https://www.
thomann.de/es/tama_hs80w_snare_stand.htm (visited on 06/09/2019).

230

https://www.thomann.de/es/roland_td_25k_v_drum_set.htm
https://www.thomann.de/es/roland_td_25k_v_drum_set.htm
https://ask.audio/articles/monitoring-latency-how-low-can-you-go
https://ask.audio/articles/monitoring-latency-how-low-can-you-go
https://doi.org/10.1080/0929821042000317877
https://doi.org/10.1162/COMJ_a_00372
https://doi.org/10.1162/COMJ_a_00372
https://www.libertyparkmusic.com/drum-sticks-grip-guide/
https://www.libertyparkmusic.com/drum-sticks-grip-guide/
https://www.roland.com/global/products/td-17_series
https://www.roland.com/global/products/td-17_series
https://www.thomann.de/es/pearl_p_530_bass_drum_pedal.htm
https://www.thomann.de/es/pearl_p_530_bass_drum_pedal.htm
https://www.thomann.de/es/tama_hp30_bass_drum_pedal.htm
https://www.thomann.de/es/tama_hp30_bass_drum_pedal.htm
https://reverb.com/item/1762289-tama-iron-cobra-jr-double-bass-pedal
https://reverb.com/item/1762289-tama-iron-cobra-jr-double-bass-pedal
https://www.thomann.de/es/millenium_bdp_s_bass_drum_practice_pad.htm
https://www.thomann.de/es/millenium_bdp_s_bass_drum_practice_pad.htm
https://www.thomann.de/es/hq_percussion_rfbass_bass_pedal_practice_pad.htm
https://www.thomann.de/es/hq_percussion_rfbass_bass_pedal_practice_pad.htm
https://www.thomann.de/es/meinl_mpp_12_jb_12_practice_pad.htm
https://www.thomann.de/es/meinl_mpp_12_jb_12_practice_pad.htm
https://www.thomann.de/es/tama_hs80w_snare_stand.htm
https://www.thomann.de/es/tama_hs80w_snare_stand.htm

[68] M. Jones et al., Software Engineering Guides. Hertfordshire, UK, UK: Prentice
Hall International (UK) Ltd., 1996.

[69] Gracie. (2019). How much floor space do i need for a drum set? [Online].
Available: https://www.drummingbasics.com/average-floor-space-for-
drums/ (visited on 06/09/2019).

[70] O. de Weck, 16.842 Fundamentals of Systems Engineering. URL: https :

/ / ocw . mit . edu / courses / aeronautics - and - astronautics / 16 - 842 -

fundamentals-of-systems-engineering-fall-2015/# License: Creative
Commons BY-NC-SA Last visited on 2019/05/01, 2015.

[71] Q. Company. (2019). About qt, [Online]. Available: https://wiki.qt.io/
About_Qt (visited on 05/26/2019).

[72] K. Takahasi. (2019). Midi jack unity plugin, [Online]. Available: https://
github.com/keijiro/MidiJack (visited on 05/26/2019).

[73] M. Gudino. (2017). Arduino uno vs. mega vs. micro, [Online]. Available:
https://www.arrow.com/en/research-and-events/articles/arduino-

uno-vs-mega-vs-micro (visited on 05/26/2019).

[74] H. ElHady. (2017). Top game engines, [Online]. Available: https://instabug.
com/blog/game-engines/ (visited on 05/26/2019).

[75] P. Cook, “Re-designing principles for computer music controllers : A case study
of squeezevox maggie,” Jan. 2009.

[76] E. S. A. B. for Software Standardisation and Control, Guide to Applying the
ESA Software Engineering Standards to Small Software Projects. European
Space Agency, 1996. [Online]. Available: https://books.google.es/books?
id=yy%5C_bHAAACAAJ.

[77] GeeksforGeeks. (2019). Software engineering — classical waterfall model, [On-
line]. Available: https://www.geeksforgeeks.org/software-engineering-
classical-waterfall-model/ (visited on 06/09/2019).

[78] ——, (2019). Software engineering — spiral model, [Online]. Available: https:
//www.geeksforgeeks.org/software-engineering-spiral-model/ (vis-
ited on 06/09/2019).

[79] M. Rouse. (2019). Gantt chart definition, [Online]. Available: https://searchsoftwarequality.
techtarget.com/definition/Gantt-chart (visited on 06/09/2019).

[80] A. Tributaria. (2018). Tabla de coeficientes de amortización lineal., [Online].
Available: https://www.agenciatributaria.es/AEAT.internet/Inicio/
Segmentos/Empresas_y_profesionales/Empresas/Impuesto_sobre_

Sociedades / Periodos _ impositivos _ a _ partir _ de _ 1 _ 1 _ 2015 / Base _

imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_

lineal_.shtml (visited on 06/06/2019).

[81] D. O. de la Unión Europea. (2016). Reglamento general de protección de
datos, [Online]. Available: https://www.boe.es/doue/2016/119/L00001-
00088.pdf (visited on 06/09/2019).

231

https://www.drummingbasics.com/average-floor-space-for-drums/
https://www.drummingbasics.com/average-floor-space-for-drums/
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/##
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/##
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/##
https://wiki.qt.io/About_Qt
https://wiki.qt.io/About_Qt
https://github.com/keijiro/MidiJack
https://github.com/keijiro/MidiJack
https://www.arrow.com/en/research-and-events/articles/arduino-uno-vs-mega-vs-micro
https://www.arrow.com/en/research-and-events/articles/arduino-uno-vs-mega-vs-micro
https://instabug.com/blog/game-engines/
https://instabug.com/blog/game-engines/
https://books.google.es/books?id=yy%5C_bHAAACAAJ
https://books.google.es/books?id=yy%5C_bHAAACAAJ
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-spiral-model/
https://www.geeksforgeeks.org/software-engineering-spiral-model/
https://searchsoftwarequality.techtarget.com/definition/Gantt-chart
https://searchsoftwarequality.techtarget.com/definition/Gantt-chart
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2015/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.boe.es/doue/2016/119/L00001-00088.pdf
https://www.boe.es/doue/2016/119/L00001-00088.pdf

[82] B. O. del Estado. (2018). Ley orgánica 3/2018, de 5 de diciembre, de protección
de datos personales y garant́ıa de los derechos digitales., [Online]. Available:
https://www.boe.es/eli/es/lo/2018/12/05/3/dof/spa/pdf (visited on
06/09/2019).

232

https://www.boe.es/eli/es/lo/2018/12/05/3/dof/spa/pdf

	Dedication
	Abstract
	Resumen
	List of Figures
	List of Tables
	Introduction
	Preamble
	Objectives
	Document Structure
	Background concepts

	State of the Art
	History of Synthesizers and the origin of MIDI
	Overview of the MIDI protocol
	What is MIDI? Fundamentals
	How does Serial relate to MIDI?
	MIDI Sound generation and MIDI messages

	MIDI concerns regarding the project
	Main MIDI Limitations and the future of MIDI
	MIDI 2.0.

	Virtual Reality and Augmented Reality Musical Instruments
	State of the Art Conclusions

	Analysis of the problem
	General Description
	General capabilities of the system
	User Characteristics
	General Constraints
	Operational environment
	Product Perspective
	Assumptions and dependencies

	User Requirements
	Capability Requirements
	Constraint Requirements

	System Requirements
	Use cases
	Software Requirements Specification
	Functional Requirements
	Non-Functional Requirements
	System Requirements Specification

	Traceability Matrix

	Design of the Solution
	Evaluation of complexity and design alternatives
	MIDI Controller Subsystem alternatives
	Software subsystem (Sound Generator) alternatives
	Integration Mechanisms

	Architectural Design
	Bare Bones Build
	Bare Bones Build Concept
	Hardware Design: Arduino-Based MIDI Controller
	Selection of an Arduino-compatible board
	Sensor selection and circuitry design
	Design of the control algorithm
	Hi-hat interaction handling

	Software: Unity-based Sound generator
	About MIDI Jack:
	Architectural design of the videogame-alike program
	User Interface and visualization

	Modest Build
	Modest Build Concept
	Hardware Design: Arduino-Based MIDI Controller
	Tangible Interface Design
	CC Hihat output design (improvement)

	Software: Unity-based Sound generator
	Architectural Design
	User Interface and Visualization

	Evaluation
	Requirements fulfilment analysis
	Evaluation Traceability matrices

	Project plan
	Methodology selection concerns
	Methodology depiction

	Division of tasks and formal planning

	Socio-Economic Environment
	Project Budget
	Software Resources
	Equipment Costs
	Human Resources
	Consumable expenses
	Indirect costs
	Total Costs

	Socio-economic Impact

	Legal Framework
	Legal concerns
	Applicable Licensing

	Conclusions
	Project Retrospective
	Future Work
	Personal Conclusions

	Side Notes
	How to configure Blender to work with real world units
	Baking for Unity
	Bake Troubleshooting

	Panoramic view of the development process

