

This is a postprint version of the following published document:

Iuhasz, G.; Petcu, D. Perspectives on anomaly and event detection in
exascale systems, in 2019 IEEE 5th International Conference on Big Data
Security on Cloud (BigDataSecurity), 27-29 May 2019, Washington, USA

DOI: https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00051

© 2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288502173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00051
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Exascale programIng models for extreme data processing • Preprint

Perspectives on Anomaly and Event
Detection in Exascale Systems

Gabriel Iuhasz

Institute eAustria Timisoara and West University of Timisoara
iuhasz.gabriel@e-uvt.ro

Dana Petcu

Institute eAustria Timisoara and West University of Timisoara
dana.petcu@e-uvt.ro

Abstract

The design and implementation of exascale system is nowadays an important challenge. Such a system is expected to combine HPC with Big Data
methods and technologies to allow the execution of scientific workloads which are not tractable at this present time.

In this paper we focus on an event and anomaly detection framework which is crucial in giving a global overview of a exascale system (which in
turn is necessary for the successful implementation and exploitation of the system). We propose an architecture for such a framework and show
how it can be used to handle failures during job execution.

Keywords Exascale, H2020, machine learning, anomaly, distributed, monitoring

Formal publication https://ieeexplore.ieee.org/document/8819496/

I. Introduction

Exascale systems are envisioned to be a great leap in computational
power in the not so distant future. Creating a system which has a
50 to 100 fold increase in power when compared with the current
supercomputers is not an easy task to accomplish by any stretch of
the imagination. These Exascale systems will have to have vastly su-
perior processing units, memory and the ability to store and retrieve
large quantities of data at high speed. The latest fact also raises
another characteristic which is very commonly assigned to future
exascale systems, namely that they are inherently heterogeneous in
nature. Many type of computational nodes such as CPUs, GPGPUs
and even solution based on many integrated cores (MIC) or even
FPGA (Field programmable gate array) based solutions [4]. The vast
expansion of computational power is worth while, as speaking from
a historical point of view, these types of novel systems open new
fields of research such as but not limited to: advances in medicine,
material sciences, novel energy solutions, pollution reduction etc.

Besides the hardware advancements, the software stack required
to bring into being an exascale system is equally if not more impor-
tant. Because of the sheer size of these systems. Exascale systems
will be in fact the combination of HPC and Big Data in many ways
[13] and will require the combination of software frameworks and
properties from both types of computation paradigms.

The need for components that are capable of managing and
scheduling tasks on such large scale systems and posses mecha-
nisms for autonomously handle events is evident. However, in order
for a system to truly be autonomous there is a need for tools that
can provide a clear and comprehensive overview of the current state
of the exascale system. Monitoring of metrics can provide some of
the information required however, components which are able to
take historical data and identify not only normal events but also
anomalous ones can provide the comprehensive overview of the
current system state.

There is already a large amount of research reports being done
in defining the challenges inherent in designing an exascale system
capable of processing vast amount of data and/or executing scientific
calculation which require substantial computational power [15, 3].

In this paper we focus on identifying open research issues and
characteristics which are common to all exascale system research
being done. We will identify several challenges, in particularly focus-
ing on scalability and fault tolerance in section II. Furthermore, we
will see how these challenges are tackled in the current research into
exascale systems in section III. The main focus will be on the impor-
tance of event detection and how events are handled for scheduling
and optimization of workflows. Section IV will focus on identifying
the requirements for an event detection framework that is able not
only to detect anomalous events but also provide event description
and recommendations for root cause analysis and various other
event handling methods. In section V we present an overview of
the most suitable machine learning and data processing frameworks
and libraries that are able to support the implementation of our pro-
posed architecture. Finally, in section VI we draw our conclusions
and future steps.

II. Main challenges of exascale systems

Ease of use is important in any complex system and exascale is
no different. There is a clear need for the creation of systems and
libraries which mask the underlying complexity , making exascale
system more easy to use. This obfuscation can only happen if
certain tasks are handled autonomously by the system instead of
the user. Tasks that deal with data storage and retrieval, resource
management and scheduling are excellent targets for complete or
partial automation. In order for this to truly happen a system needs
to be in place which can identify specific events and faults during
job execution, be it at system or application layer.

One of the main issues when dealing with exascale systems is that,

1

mailto:iuhasz.gabriel@e-uvt.ro
mailto:dana.petcu@e-uvt.ro
https://ieeexplore.ieee.org/document/8819496/

Exascale programIng models for extreme data processing • Preprint

when running jobs on millions of processing nodes, it will increase
the occurrence of hardware faults significantly. New methods when
dealing with these type of fault events have to be created not only to
report the events to the end user, but also to the exascale system (re-
source management and scheduling subsystems, to be more precise)
enabling autonomic handling of these events. In a nutshell, as the
rate of fault events increases together with system size, it is feasible
to expect that for every job execution any number of nodes have
a high chance of failure. There are ways of handling these types
of events and increase reliability such as: ensure the availability
of critical application data even if global data becomes unavailable
(replication), ensuring the correctness and consistency of the data
at the start of recovery (metadata that records state transitions). All
of the aforementioned methods for handling faults hinge on a fault
tolerant management infrastructure that supports continuous ex-
ecution [12]. The management layer has to have mechanisms for
detecting when fault events occur and identifying when this actually
occurs.

Energy efficiency is also a hot topic of research and an important
metric when it comes to exascale systems. Tuning jobs with regard
to energy efficiency not only for execution time is an important
step in increasing the overall efficiency of exascale systems. These
optimization can take many forms such as moving jobs (if possible)
to specialized hardware such as FPGA or GPGPUs which have, in
certain circumstances, a better computation to power consumption
ratio then traditional CPUs. Again, these optimizations can only be
made only if there is a thorough understanding of the entire system
state and the underlying events.

Furthermore, there are many similarities between exascale and
edge/fog systems. Both are massively distributed and require ad-
vanced scheduling and management components. Research done in
this field for intrusion detection systems such as the ones detailed
in [7] is of particular interest as it can provide a baseline for event
detection methodologies. This also leads us to field of research
which is extremely active in edge/fog scenarios and which is in our
opinion underrepresented in exasscale system research. Namely the
problem of privacy and encryption [6, 5].

III. Software support for exascale systems

Systems such as Argos [14] are designed to create an exascale op-
erating system which aims to provide dynamic reconfiguration of
nodes based on current work load, allowing for massive concur-
rency, a hierarchical node management scheme and a cross-layer
communication.

Other systems such as ExaNest [11] aim to develop system level
interconnect and non volatile storage based largely around low cost
and low power components, ARM processors and FPGAs. This
trend of designing for energy efficiency can be found in several
research initiatives [16, 4]. For example the ATLAS library [10]
introduces methods for tuning linear algebra operations for both
energy efficiency and execution time. The HiPEAC1 initiative aims
to address the issues of data locality and energy efficiency.

Big Data technologies such as YARN, SPARK, Storm, Flink are
all mainstays of today’s computing world. A large percentage of
research is devoted in making these types of frameworks more

1https://www.hipeac.net/

efficient, while other initiatives try to bridge the gap between HPC
and Big Data such as the Extreme big data JST-CREST program [13].

All of these initiatives and ongoing efforts have one common
thread, they require greater insight into the inner workings and
states of not only the underlying exascale system but also of the
jobs or applications themselves. This in turn enforces the need for a
bespoken framework for identifying events and potential faults or
anomalies.

IV. Event Detection Framework

The proposed architecture for our event detection engine can be seen
in Figure 1. Why this architecture is feasible and appropriate for an
exascale system are explained in what follows.

Figure 1: Event Engine Architecture

2

Exascale programIng models for extreme data processing • Preprint

IV.1 Monitoring
The monitoring infrastructure necessary for monitoring an exascale
system is well beyond the scope of this article. However, we do
make certain assumptions about such a system that are, with a high
degree of certainty not only valid but necessary.

Systems as vast as exascale systems will require a monitoring sys-
tem which is capable of handling metrics from thousands possible
even millions of nodes. We do not make any assumption on the
overall architecture of the monitoring architecture, it can be central-
ized (more likely to be hierarchic) or even completely distributed
in nature. Most large scale monitoring solutions have a queuing
service or buffer that intercepts the messages from the monitoring
agents. This ensures that no new monitoring data is lost while the
monitoring service tries to save the previous instances.

This queuing service usually has another functionality, namely it
also is in charge of some degree of formatting of the incoming data;
extract, transform and load (ETL). This is not always the case, in
some situation the monitoring agents themselves are responsible for
transforming the incoming monitoring data so that it can be loaded
directly into the monitoring service. Even if this is the case queuing
service is still crucial for ensuring no data loss.

The monitoring service itself handles storage and serving of mon-
itored data. Data stores range from relational databases, NoSQL
databases (i.e. MongoDB, Cassandra, CouchDB) or even time-series
databases (i.e. InfluxDB) or search engines (i.e. Elasticsearch). All of
these solutions have both their pros and cons. The choice of using
one versus the others is highly dependant on the type of monitoring
architecture and use case. Regardless of the technology stack chosen,
a monitoring solution has to have two functionalities. The first one
is an API which allows for external tools to access the data being
stored and also to add or modify existing data. Second, a component
which allows for end users to view the current status of the system
and to report any other information related to what the monitored
exascale systems current status is.

IV.2 Events and Anomalies
In the following section we will use the term events and anoma-
lies seemingly interchangeably. However, we should note that the
methods used for detecting anomalies are applicable in the case of
events. The main difference lies in the fact that anomalies pose an
additional level of complexity by their spars nature, some anomalies
might have an occurrence rate well under 0.01%.

Event and anomaly detection can be split up into several categories
based on the methods and the characteristics of the available data.
The most simple form of anomalies are point anomalies which can be
characterized by only one metric (feature). These types of anomalies
are fairly easy to detect by applying simple rules (i.e. CPU is above
70%). Other types of anomalies are more complex but ultimately
yield a much deeper understanding about the inner workings of
a monitored exascale system or application [8]. These types of
anomalies are fairly common in complex systems.

Contextual anomalies are extremely interesting in the case of
complex systems. These types of anomalies happen when a certain
constellation of feature values is encountered. In isolation these val-
ues are not anomalous but when viewed in context they represent an
anomaly. These type of anomalies represent application bottlenecks,
imminent hardware failure or software miss-configuration. The last

major type of anomaly which are relevant are temporal or sometimes
sequential anomalies where a certain event takes place out of order
or at the incorrect time. These types of anomalies are very important
in systems which have a strong spatio-temporal relationship between
features, which is very much the case for exascale metrics.

IV.3 Event detection engine
The Event detection engine (EDE), as seen in Figure 1, has several
sub-components which are based on lambda type architecture where
we have a speed, batch and serving layer. Because of the hetero-
geneous nature of exascale systems and the substantial variety of
solutions which could constitute a monitoring services the data in-
gestion component has to be able to contend with fetching data from
a plethora of systems. Connectors will have to be implemented that
serve as adapters for each solution. Furthermore, this component
should also be able to load data directly from a file (HDF5, CSV or
even raw format). This will aid in fine tuning of event and anomaly
detection methods. We can also see that data ingestion can be done
directly via query from the monitoring solution or streamed directly
from the queuing service (after ETL if necessary). This ensures that
we have the best chance of reducing the time between the event or
anomaly happening and it being detected.

The pre-processing component is in charge of taking the raw data
from the data ingestion component and apply several transforma-
tions. It handles data formatting (i.e. one-hot encoding), analysis (i.e.
statistical information), splitter (i.e. splitting the data into training
and validation sets) and finally augmentation (i.e. oversampling
and undersampling). As an example the analysis and splitter are
responsible for creating stratified shuffle split for K-fold cross valida-
tion for training while the augmentation step might involve under
or oversampling techniques such as ADASYN or SMOTE[2]. This
component is also responsible for any feature engineering of the
incoming monitoring data.

The training component (batch layer) is used to instantiate and
train methods that can be used for event and anomaly detection.
The end user is able to configure the hyper-parameters of the selected
models as well as run automatic optimization on these (i.e. Random
Search, Bayesian search etc.). Evaluation of the created predictive
model on a holdout set is also handled in this component. Current
research and rankings of machine learning competitions show that
creating an ensemble of different methods may yield statistically bet-
ter results than single model predictions. Because of this ensembling
capabilities have to be included. Finally, the trained and validated
models have to be saved in such a way that enables them to be
easily instantiated and used in a production environment. Several
predictive model formats have to be supported, such as; PMML2,
ONNX3, HDF5, JSON.

It is important to note at this time that the task of event and
anomaly detection can be broadly split into two main types of
machine learning tasks; classification and clustering. Classification
methods such as Random Forest, Gradient Boosting, Decision Trees,
Naive Bayes, Neural networks, Deep Neural Networks are widely
use in the field of anomaly and event detection. While in the case of
clustering we have methods such as IsolationForest, DBSCAN and
Spectral Clustering.

2http://dmg.org/pmml/v4-1/GeneralStructure.html
3onnx.ai

3

Exascale programIng models for extreme data processing • Preprint

Once a predictive model is trained and validated it is saved inside
a model repository. Each saved model has to have metadata attached
to it denoting its performance on the holdout set as well as other
relevant information such as size, throughput etc. The prediction
component (speed layer) is in charge of retrieving the predictive
model form the model repository and feed metrics from the monitored
exascale system. If and when an event or anomaly is detected EDE
is responsible with signaling this to both the Monitoring service re-
porting component and to other tools such as the Resource manager
and/or scheduler any decision support system. Figure 1 also shows
the fact that the prediction component gets it’s data from both the
monitoring service via direct query or directly from the queuing service
via the data ingestion component. For some situations a rule based
approach is better suited. For these circumstances the prediction
component has to include a rule based engine and a rule repository.

Naturally, detection of anomalies or any other events is of little
practical significance if there is no way of handling them. There
needs to be a component which once the event has been identified
tries to resolve the underlying issues. Let us suppose that a particular
job shows anomalous behaviour, now the system must decide is the
job compromised beyond recovery? Is its internal state consistent
can it be restarted from a checkpoint? If not, can it be rescheduled
on a different node? Does the new node have the data required, if
not what is the most effective way of coupling the data with the job
to be executed? To solve these questions is by no means an easy
task. One of the ways in which this could be solved is to use a
Belief Desire Intention cognitive model where EDE represents the
current beliefs of the exascale system state while desires and future
intentions are formulated based on these.

V. Proposed Technology stack for EDE

V.1 Machine learning and data processing libraries

The choice of what underlying software framework to use for all of
these components is a complicated one. For most machine learning
tasks Python has become for many the language of choice. We
have frameworks such as Scikit-learn, Keras, XGBoost, LightGBM,
CatBoost, Pandas etc. which are widely used for these types of
tasks provide Python bindings. Moreover, all other frameworks
respect naming and API conventions from scikit-learn, making the
processing pipeline needed for training and prediction much easier.
Furthermore, all components listed for EDE are loosely coupled
and can have a high cardinality making them an excellent choice
for a distributed deployment. Moreover, in some situations it is
advisable to have more than one component instance for each major
functionality. These major functionalities are: data collection and
formatting, training and validation.

The deployment can be based on Big Data technologies such as
Spark in the case of prediction and training or even taking advantage
of machine learning services such as ML Engine4 by Google or
Kubeflow5. The data bus has the role of passing messages and data
between all of the EDE components. It can be implemented using
technologies such as Apache Kafka or even a simpler solution based
on RabbitMQ.

4https://cloud.google.com/ml-engine/
5https://github.com/kubeflow/kubeflow

V.2 Proof-of-concept prototype
We already have a close-related framework implemented for the
H2020 DICE project [1]. The DICE anomaly detection tool [9] is
also based on a lambda type architecture, having both bath and
speed layers encapsulating training and prediction very similar to
the envisioned architecture for EDE. However, DICE framework is
of a much more limited scope, it’s components being tightly coupled
making a distributed deployment difficult, and also, wrapping a
much more limited machine learning and pre-processing method
selection. The main issue is the difficult scaling of the DICE tool, as
data ingestion and pre-processing cannot be scaled separately. EDE
solves this by relying on decoupling of ingestion and pre-processing
components allowing selective scaling of these.

The next steps will be in a comprehensive overview of the type of
metrics inherent in all exascale systems which can be used to create
a coherent and global overview of not only of the system itself but
on the jobs that run on them. Selection of machine learning methods
to be used for event detection is another important step. Including
the checking of different evaluation metrics in conjunction with state
of the art machine learning methods.

VI. Conclusions

In this paper we have discussed the challenges related to exascale
systems in particular related to event/anomaly detection. We show
how most issues in these kinds of systems can be linked back to the
need for automatic handling of certain events and functionalities
which in turn requires a deep insight into the current state of not
only the exascale system but the jobs running on it.

Our main contribution is the identification of challenges for exas-
cale systems and the proposing of our event detection engine. We
detailed not only the overall architecture of the system based on
the challenges identified in this paper, but also provided a com-
prehensive list of technologies that can be used for a prototype
implementation. A complete prototype implementation of the pro-
posed EDE framework presented in this paper is expected to be
available in the next two years.

VI.1 Future Work
Interoperability is a key aspect in the success of any new platform
and this is no different in the case of EDE. One of our first steps will
be to ensure that the data integration component can interface with
as many monitoring platforms and underlying storage solutions as
possible (i.e. Elasticsearc, Influxdb, MongoDB etc.). Also linked with
interoperability is the necessity to provide a common format for
model export (i.e. Omnx. PMML etc.). Because of the distributed
nature of exascale systems EDE will have to support a distributed
deployment scheme which enables the scheduling of concurrent
tasks for both training and prediction. For distributed training we
have several viable underlying platforms o which we can base EDE
implementation, such as using Apache Spark, Apache AirFlow or
even a custom solution based on asynchronous task queues such
as Celery for Python. This will potentially aid in the hyperparam-
eter optimization of detection algorithms by enabling concurrent
deployment of candidate parameter configurations.

Furthermore, the selection of machine learning algorithms cou-
pled with the evaluation functions used for training is a key issue

4

Exascale programIng models for extreme data processing • Preprint

which we will have to tackle in order to ensure good predictive
performance. A comprehensive study of state of the art algorithms
and evaluation functions is needed. These will also include special
attention to security and privacy related events and anomalies, a
topic which is not sufficiently explored in current exascale systems.

VII. Acknowledge

This work has received funding from the EC-funded H2020 AS-
PIDE project (Agreement 801091). This work was supported with
hardware resources by the Romanian grant BID (PN-III-P1-PFE-28).

References

[1] G. Casale, D. Ardagna, M. Artac, F. Barbier, E. D. Nitto,
A. Henry, G. Iuhasz, C. Joubert, J. Merseguer, V. I. Munteanu,
J. F. Pérez, D. Petcu, M. Rossi, C. Sheridan, I. Spais, and
D. Vladušič. Dice: Quality-driven development of data-
intensive cloud applications. In Proceedings of the Seventh Inter-
national Workshop on Modeling in Software Engineering, MiSE ’15,
pages 78–83, Piscataway, NJ, USA, 2015. IEEE Press.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: Synthetic minority over-sampling technique. J. Artif. Int.
Res., 16(1):321–357, June 2002.

[3] G. Costa, T. Fahringer, J.-A. Rico-Gallego, I. Grasso, A. Hristov,
H. Karatza, A. Lastovetsky, F. Marozzo, D. Petcu, G. Stavrinides,
D. Talia, P. Trunfio, and H. Astsatryan. Exascale machines
require new programming paradigms and runtimes. Supercom-
puting Frontiers and Innovations, 2(2):6–27, June 2015.

[4] S. Fiore, M. Bakhouya, and W. W. Smari. On the road to exascale:
Advances in high performance computing and simulations—an
overview and editorial. Future Generation Computer Systems,
82:450 – 458, 2018.

[5] K. Gai, K. R. Choo, M. Qiu, and L. Zhu. Privacy-preserving
content-oriented wireless communication in internet-of-things.
IEEE Internet of Things Journal, 5(4):3059–3067, Aug 2018.

[6] K. Gai and M. Qiu. Blend arithmetic operations on tensor-
based fully homomorphic encryption over real numbers. IEEE
Transactions on Industrial Informatics, 14(8):3590–3598, Aug 2018.

[7] K. Gai, M. Qiu, L. Tao, and Y. Zhu. Intrusion detection tech-
niques for mobile cloud computing in heterogeneous 5g. Sec.
and Commun. Netw., 9(16):3049–3058, Nov. 2016.

[8] M. Gander, M. Felderer, B. Katt, A. Tolbaru, R. Breu, and A. Mos-
chitti. Anomaly detection in the cloud: Detecting security in-
cidents via machine learning. In A. Moschitti and B. Plank,
editors, Trustworthy Eternal Systems via Evolving Software, Data
and Knowledge, volume 379 of Communications in Computer and
Information Science, pages 103–116. Springer Berlin Heidelberg,
2013.

[9] G. Iuhasz, I. Dragan, G. Casale, T. Ustinova, M. Bersani,
and I. Torres. Quality anomaly detection and trace

checking tools - final version. Technical report, H2020
DICE, available at http://wp.doc.ic.ac.uk/dice-h2020/wp-
content/uploads/sites/75/2017/08/D4.4_Quality-anomaly-
detection-and-trace-checking-tools-Final-version.pdf, 2017.

[10] T. Jakobs, J. Lang, G. Rünger, and P. Stöcker. Tuning linear
algebra for energy efficiency on multicore machines by adapting
the atlas library. Future Generation Computer Systems, 82:555 –
564, 2018.

[11] M. Katevenis, R. Ammendola, A. Biagioni, P. Cretaro, O. Frezza,
F. L. Cicero, A. Lonardo, M. Martinelli, P. S. Paolucci, E. Pas-
torelli, F. Simula, P. Vicini, G. Taffoni, J. A. Pascual, J. Navaridas,
M. Luján, J. Goodacre, B. Lietzow, A. Mouzakitis, N. Chrysos,
M. Marazakis, P. Gorlani, S. Cozzini, G. P. Brandino, P. Kout-
sourakis, J. van Ruth, Y. Zhang, and M. Kersten. Next genera-
tion of exascale-class systems: Exanest project and the status of
its interconnect and storage development. Microprocessors and
Microsystems, 61:58 – 71, 2018.

[12] D. Kerbyson, A. Vishnu, K. Barker, and A. Hoisie. Codesign
challenges for exascale systems: Performance, power, and relia-
bility. Computer, 44(11):37–43, Nov. 2011.

[13] S. Matsuoka, H. Sato, O. Tatebe, M. Koibuchi, I. Fujiwara,
S. Suzuki, M. Kakuta, T. Ishida, Y. Akiyama, T. Suzumura,
K. Ueno, H. Kanezashi, and T. Miyoshi. Extreme big data ebd:
Next generation big data infrastructure technologies towards
yottabyte/year. Supercomput. Front. Innov.: Int. J., 1(2):89–107,
July 2014.

[14] S. Perarnau, J. A. Zounmevo, M. Dreher, B. C. V. Essen,
R. Gioiosa, K. Iskra, M. B. Gokhale, K. Yoshii, and P. H. Beck-
man. Argo nodeos: Toward unified resource management for
exascale. In 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 - June
2, 2017, pages 153–162, 2017.

[15] D. Petcu, G. Iuhasz, D. Pop, D. Talia, J. Carretero, R. Pro-
dan, T. Fahringer, I. Grasso, R. Doallo, M. Martin, B. B.
Fraguela, R. Trobec, M. Depolli, F. Almeida-Rodriguez, F. Sande,
G. Costa, J.-M. Pierson, S. Anastasiadis, A. Bartzokas, C. Lolis,
P. Goncalves, F. Brito, and N. Brown. On processing extreme
data. Scalable Computing: Practice and Experience, 16(4):467–489,
Dec. 2015.

[16] X. Zhao and N. Jamali. Energy-aware resource allocation for
multicores with per-core frequency scaling. Journal of Internet
Services and Applications, 5(1):9, Sep 2014.

5

	portadilla_postprint_IEEE
	hpsc_ieat_aspide_paper.pdf
	Introduction
	Main challenges of exascale systems
	Software support for exascale systems
	Event Detection Framework
	Monitoring
	Events and Anomalies
	Event detection engine

	Proposed Technology stack for EDE
	Machine learning and data processing libraries
	Proof-of-concept prototype

	Conclusions
	Future Work

	Acknowledge

