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Abstract

The use of synchronization mechanisms in multithreaded applications is essential on shared-memory multi-core architectures. However, debugging
parallel applications to avoid potential failures, such as data races or deadlocks, can be challenging. Race detectors are key to spot such concurrency
bugs, nevertheless, if lock-free data structures are used, these may emit a significant number of false positives. In this paper, we present a framework
for semantic violation detection of lock-free data structures which makes use of contracts, a novel feature of the upcoming C++20, and a customized
version of the ThreadSanitizer race detector. We evaluate the detection accuracy of the framework in terms of false positives and false negatives.
Thanks to this framework, we are able to check the correct use of lock-free data structures, thus reducing the number of false positives.
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I. Introduction

Since the multi-/many core processors became mainstream in HPC
platforms, the evolution of parallel programming models has al-
lowed applications to progressively exploit their computational re-
sources [3]. Parallel frameworks are designed to provide abstraction
layers to applications in form of library interfaces, which avoid the
direct use of low-level concurrency mechanisms. To achieve this
goal, the usage of building blocks implementing core functionalities
has been the de facto engineering methodology in many program-
ming frameworks [5]. Such “software blocks” should be designed
to ensure correctness and thread-safety in order to produce correct
global results.

In this sense, parallel programming may entail unexpected con-
currency errors, e.g. data races or deadlocks [4]. Discovering such
concurrency bugs has been recognized as a complex task, given that
these errors may only occur in low-probability event orderings and
depend on external factors, e.g. machine load. These facts make
data races extremely sensitive in terms of time, scheduling policies,
compiler options, memory models, etc. Although data race detectors
have alleviated the debugging task, there is still room for improve-
ment [4, 1]. In particular, the use of lock-free data structures can gen-
erate false positives. This fact hinders developer’s vision in finding
harmful races and makes the debugging process even harder when
tracing back the root cause of the problem. Furthermore, current race
detectors are not able to detect semantic violations of lock-free data
structures. In this line, the semantics of the Single-Producer/Single-
Consumer (SPSC) lock-free queue have already been embedded into
the ThreadSanitizer (TSan) race detector tool [6]. However, those
semantic rules were hard-coded in the detector and could not be
generalized to other lock-free structures.

In this paper, we extend the previous work with a novel semantic
violation detection framework which makes use of C++ contracts
to allow users to express semantic rules of other lock-free data

structures. Specifically, this work contributes to the following:

• We present a syntactic mechanism based on C++ contracts to
annotate the semantics of lock-free data structures.

• We extend both the Clang compiler and the TSan race detector
tool in order to support the proposed syntax and to perform the
semantic violation detection.

• We evaluate the detection accuracy of the proposed framework
using the SPSC and MPMC lock-free queue structures from the
Boost C++ library.

This paper is organized as follows: Section II revisits some related
work in the area. Section III describes the main software compo-
nents used in this work. Section IV describes the semantic violation
detection framework based on C++ contracts. Section V formalizes
the general semantics of the SPSC lock-free queue and describes a
worked example of the framework using the Boost C++ SPSC and
MPMC lock-free queues. Section VI evaluates the detection accuracy
of the semantic violation detection using synthetic benchmarks of
the C++ Boost library. Finally, Section VII provides some concluding
remarks and future works.

II. Related work

Over the years, numerous solutions to detect data races have been
proposed [16]. These, have been based on different well-known
mechanisms: i) happens-before relations, ii) locksets, and iii) hybrid
approaches, i.e., combining the previous two.

Basically, happens-before relations [12] are used as a mechanism
to detect potential data races in concurrent memory accesses. For
instance, Intel Inspector [10] and Acculock [27] are two well-known
commercial and research tools making use of this mechanism. How-
ever, software implementations of happens-before-based detectors
typically suffer from large run-time overheads, so hardware-based
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solutions have also been proposed to overcome these issues [28]. Al-
ternatively, the locksets approach reports a data race if there is no
common lock held by two threads accessing the same memory ad-
dress. This approach can be found in both static [8] and dynamic
tools [23] from the state-of-the-art. Finally, hybrid approaches take
advantage of happens-before mechanisms to reduce the false positives
reported by lockset-based detectors and preserve the performance
advantages of the lockset mechanisms. A race detector implementing
this approach is ThreadSanitizer [25].

Although previous mentioned tools aid developers to find con-
currency bugs, these can still miss ad-hoc synchronizations, and
therefore generate false positive warning reports. To face these
issues, Norris et al. [18, 19] provide an advanced dynamic partial-
order reduction algorithm implemented within CDSchecker, a tool
that detects potential data races by virtually executing a wide range
of possible thread orderings. An advantage of this tool is that it is
able to handle C++ atomics along with the different C++11 memory
models.

Despite the wide literature on data race detection techniques, we
only find the work by Ou et al. [21] to be able to directly handle the
semantics of lock-free data structures within the CDSchecker with
special annotations. In this work, we present a similar approach
to detect semantic violations for this kind of data structures which
makes use of the upcoming C++20 contracts programming features
to express semantic constraints.

III. Background

In this section, we give an overview of the main software components
that have been used to carry out the contributions in this paper.
Specifically, we review C++ contracts, the LLVM infrastructure along
with the TSan race detector, and some basic concepts about lock-free
structures.

III.1 C++ contracts

Contracts are a new feature from the C++20 draft specification aiming
to improve software correctness [22]. They allow users to state
assertions as well as to specify predicates on functions interfaces in
the form of preconditions and postconditions.

assertions may appear at any place where an executable statement
is valid and they specify a predicate that is assumed to hold
at its point in the computation. We use the attribute assert to
state assertions.

preconditions are part of a function declaration and they express
expectations on the function’s arguments and/or the state of
other objects using a predicate that is intended to hold upon
entry into the function. We use the attribute expects to state
preconditions.

postconditions are also part of a function declaration and they ex-
press conditions that the function should ensure for the return
value and/or the state of objects using a predicate that is in-
tended to hold upon exit from the function. We use the attribute
ensures to state postconditions.

A contract attribute may include an assertion level (default,
audit, or axiom) to express the assertion level of the contract. Those
levels indicate relative costs of checks so that they can be enabled or
disabled at build time.

To strengthen the understanding of subsequent explanations, we
use a code example that uses contracts to ensure the correct behavior
of the annotated functions. Listing 1 shows a simple C++ program
annotated with contracts and its simplified LLVM Intermediate Rep-
resentation (IR). Function main incorporates an assertion to check
the argc value. In the IR, this contract is translated into the icmp–br
instruction pair (lines 17-18), which causes a conditional jump to
terminate execution if the predicate is evaluated to false. Afterwards,
we find a call to the function foo, whose prototype has been anno-
tated with a precondition and a postcondition. Basically, the pre-
condition allows checking whether the value of b is greater than a,
while the postcondition is intended to ensure that the return value is
greater or equal than 1. Note that ensures attribute is accompanied
by the default assertion level. Similar to the previous assertion con-
tract, those conditions have been translated into conditional jumps
in the IR.

In general, contracts have no observable effects in a correct pro-
gram, beyond performance differences. Contracts are checked at
run-time and its default action is to terminate execution when they
are violated. In this paper, we use the axiom assertion level for an-
notating and formalizing semantics, as this level is intended to be
used for expressing user-defined conditions that are not checked at
run-time, but might be used by static analyzers or compiler plugins.

Listing 1: Example of C++ contracts.

(a) Contract-annotated code.

1 int foo(int a, int b)
2 [[expects: b > a]]
3 [[ensures default ret: ret

>= 1]];
4
5
6 // the compiler shall

generate code to
7 // evaluate the previous

conditions (see
8 // the IR listing, function

@_Z3fooii)
9 int foo(int a, int b)

10 {
11 return a + b;
12 }
13
14
15
16
17 int main(int argc, char *argv

[])
18 {
19 // matches IR icmp/br at

lines 17-18
20 [[assert: argc >= 1]];
21 foo(0, argc);
22
23 return 0;
24 }

(b) Simplified IR translation.

define i32 @_Z3fooii(i32 %a,
i32 %b) {

%cmp = icmp sgt i32 %b, %a
br i1 %cmp, label %ok.0,

label %fail.0
fail.0:

tail call void @std::
terminate()

ok.0:
%add.i = add nsw i32 %b, %a
%cmp1 = icmp sgt i32 %add.i,

0
br i1 %cmp1, label %ok.1,

label %fail.1
fail.1:

tail call void @std::
terminate()

ok.1:
ret i32 %add.i

}

define i32 @main(i32 %argc,
i8** %argv) {

%cmp = icmp sgt i32 %argc,
0

br i1 %cmp, label %ok.0,
label %fail.0

tail call void @_Z3fooii()
; ...

}
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III.2 The LLVM infrastructure and the TSan data
race detection tool

The LLVM (Low-Level Virtual Machine) is a compiler infrastructure
designed to be a set of reusable libraries with well-designed inter-
faces [14]. Its Clang front-end generates intermediate code that is
afterward converted into machine-dependent assembly code for a
specific target platform. Thanks to its high-level API, LLVM provides
the ability to develop and integrate new modules in order to perform
compile-time analysis and instrumentation. Taking advantage of the
latter feature, several run-time checks and tools have been developed
to identify suspicious and undefined behavior of threads. One of
them is ThreadSanitizer (TSan), a data race detector for applications
written in C/C++ or Go that uses compile-time instrumentation to
check for non-race-free memory accesses at run-time [25].

TSan instrumentation tracks synchronization primitives, thread
routines from libpthread, memory allocation routines, dynamic an-
notations and other kinds of functions that lead to synchronizations.
Its runtime library provides entry points for the instrumented code
to keep all the information that is of interest for the race detector.
With all these data, two race detection mechanisms based on happens-
before and locksets relations are applied. As a summary of [20], these
mechanisms develop the following strategies:

happens-before relations detect a potential data race when two
events a and b access a shared memory location, where at least
one of these accesses is a write, and neither a happens-before b
nor b happens-before a. In other words, they are concurrent, so
no causal relationship ordering exists between a and b [12].

locksets determine a data race when none of the locks held by a
pair of events accessing to a shared memory location are the
same, with at least one of these accesses being a write; i.e. when
the intersection of their locksets is empty.

Contrary to other race detectors, the TSan detector can be
switched to work only with the happens-before mechanism, also
known as pure happens-before, or with a combination of both pre-
vious mechanisms, referred to as the hybrid mode [25]. While in the
first mode the concurrency is only checked in terms of happens-before
relations, in the hybrid mode both happens-before and locksets mecha-
nisms are used to determine whether two events are concurrent.

In summary, the main reasons to extend TSan with high-level
semantic violation detection are: i) it employs compile-time instru-
mentation, making it much faster than other solutions; ii) it is built
on top of the LLVM infrastructure, being, therefore, an open-source
software capable of accommodating new functionalities.

III.3 Lock-/Wait-free buffers

In general, concurrent data structures can be classified as either
blocking or non-blocking. Non-blocking structures ensure thread-
safety bypassing the use of traditional synchronization primitives,
such as locks or mutexes. Lock-free is a level of progress guarantee
for non-blocking data structures. A concurrent data structure is
considered lock-free if there is guaranteed system-wide progress, i.e.
at least a thread makes progress on its execution [7].

The absence of synchronization mechanisms allows better perfor-
mance since no explicit waiting primitives are needed. However,

some constructs may require atomic operations, so that no interme-
diate states can be seen by other executing threads. Internally, these
atomic operations can be seen as a combination of both load and store
instructions. Lock-free data structures, such as queues [17], hash
tables [26] and SPSC buffers [9], are typically known to make use
of these type of atomic instructions. Nevertheless, lock/wait-free
data structures are significantly more complex to implement, and
consequently to verify their correctness, with respect to lock-based
structures. Apart from this fact, race detection tools are unable to
properly determine whether a race is an actual error or a false pos-
itive due to the lack of synchronization mechanisms detectable by
these tools.

In this paper, we contribute to improving the detection of semantic
violations in lock-free data structures. To do so, we use C++ contracts
to specify at user-code level the semantics of such lock-free structures
and extend the TSan race detector with a module for semantic
violation detection able to handle the contracts placed on the user
code.

IV. The contract-based semantic violation

detection framework

This section introduces the contract-based semantic violation de-
tection framework (CSV) as the main contribution of this paper5.
This framework is comprised of the contract-based interface and the
TSan extension for semantic violation detection.

Figure 1 depicts the CSV framework on an application whose
code has been annotated with the proposed contract interface for
semantic violation detection. The user code implementing a lock-
free structure has been annotated with the CSV interface defined in
the csv.h header file, which provides the required declarations for
specifying the semantic rules for such structures. Afterwards, the
user code is compiled with a Clang frontend that includes support
for C++ contracts and linked against a customized TSan version
for semantic violation detection (using the command line option
-fsanitize=thread). Finally, the build process yields an ELF exe-
cutable statically linked against the modified TSan library, that in-
cludes additional instructions to evaluate the contract-based checks.
Specifically, the TSan library has been extended with the implemen-
tation of functions declared in csv.h, which are invoked as part of
semantic checking each time a contract-annotated function is called
from the user code. Internally, violation detection is performed us-
ing Lamport clocks managed by TSan.

In the following sections, we explain in detail the two main com-
ponents of CSV: the contract-based semantic interface and the ex-
tended TSan version for verifying the semantics stated in the con-
tracts. Subsequently, we illustrate through a worked example of the
Boost C++ Single-Producer/Single-Consumer lock-free queue how
member functions of this data structure have been annotated us-
ing contracts and how the semantics are checked each time these
functions are called.

IV.1 Contract-based semantics interface
The required declarations for contract-based checking of lock-free
data structures is placed in the header file csv.h, which should be

5The Clang fork supporting C++ contracts has been open-sourced and accesible at
https://github.com/arcosuc3m/clang-contracts/. CSV can be found in branch CSV-
src.
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#include "csv.h"
class spsc_queue {

...
spsc_queue() [[expects axiom: csv::set_union(...)

.happens_before(csv::current_event())]]
}

user code

Clang + contract support
+ ThreadSanitizer

(-fsanitize=thread)

csv.h

Linker
libclang_rt.tsan-
x86_64.a (modified)

ELF binary

spsc_queue() {
if (!(csv::set_union(...)

.happens_before(current_event())))
__csv_violation_handler();

...
}

csv::set_union(...){
event_set &ret = get_reused_event_set();
auto es = event_set_impl::get_es_private_data(ret);
...
return ret;

}

user code library code

Figure 1: Workflow of the CSV framework.

included in the user code before referencing any of its functions.
Listing 2 shows the proposed header file csv.h. Execution events
of a given thread are represented by class event. They are used to
establish temporal relations via Lamport clocks. Execution events are
grouped in event_set objects. Both, event sets and events offer pred-
icate operations to check happens-before relations: happens_before()
and concurrent(). Two events are concurrent when none of them
can be proven to happen-before the other.

Listing 2: CSV header file.

1 #include <contract>
2
3 namespace csv {
4 class event_set;
5 // Execution event
6 class event {
7 public:
8 bool happens_before(const event_set &evs) const;
9 private:

10 // ... private members omitted
11 };
12 // Class for handling sets of events
13 class event_set {
14 public:
15 event_set();
16 ~event_set();
17
18 std::size_t size() const;
19 bool empty() const { return size() == 0; }
20 void add_event(const event &ev);
21 // Check if this event set happens-before another event or

event set
22 bool happens_before(const event &ev) const;
23 bool happens_before(const event_set &evs) const;
24 // Check if this event set is concurrent with another event

of event set
25 bool concurrent(const event &ev) const
26 { return !happens_before(ev) && !ev.happens_before(*this);

}
27 bool concurrent(const event_set &evs) const
28 { return !happens_before(evs) && !evs.happens_before(*this)

; }
29 private:
30 // ... private members omitted
31 };
32 // Get temporary reference to current event. It may be stored

in a event_set.
33 event &current_event();
34 // Calculate set union and intersection
35 template <class = void>
36 event_set &set_union(const event_set &, const event_set &);
37 template <class = void>
38 event_set &set_intersection(const event_set &, const event_set

&);
39
40 template <typename... Ts>
41 event_set &set_union(const event_set &a, const event_set &b,

const Ts &...u)
42 { return set_union(a, set_union(b, u...)); }
43 template <typename... Ts>
44 event_set &set_intersection(const event_set &a, const

event_set &b, const Ts &...u)
45 { return set_intersection(a, set_intersection(b, u...)); }
46 }
47 extern "C" { void __csv_violation_handler(const std::

contract_violation &cv); }

Accessing the current event is a key feature required for the se-
mantic checking. For this purpose, the current_event() function is
used to get a reference to the current event that can be used as part
of a semantic rule.
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To operate with event sets, we define a series of functions that
implement set operations (set_union() and set_intersection()).
These functions take as argument a variadic list of sets. Be-
cause temporary sets returned by csv::set_union() and csv-
::set_intersection() are reused from a pool of objects in the
Thread Local Storage (TLS) area, no additional memory manage-
ment is required. Additionally, an event_set permits to check for
emptiness (member function empty()). The previous functions are
enough to write complex rules that involve temporal relations.

Finally, event_set provides an operation for adding an event to
a specific set through the member function add_event(). All in all,
the functions in this header file enable semantic rules in lock-free
structures, while their implementation is part of the TSan static
library.

IV.2 TSan extension

The counterpart of the CSV framework is the extension made in the
TSan library for performing semantic violation detection. Basically,
this extension implements the functions declared in the csv.h header
file. These functions leverage the TSan internals in order to access
the Lamport clocks managed by the detector. Thus, when a contract-
annotated member function is processed by our modified Clang
compiler, the contracts are transformed into statements including
calls to the actual CSV functions. Besides, the TSan instrumentation
is disabled as if the __attribute__((no_sanitize("thread")))
was specified [25].

The semantic violation detection process makes use of the two
aforementioned data structures of the CSV interface: the event and
the set. The event structure contains the values of the Lamport
clock related to the caller thread at a given point in time. On the
other hand, the set stores copies of previous events of the same
type. However, given that events occurring in the same thread
are totally ordered, only the last needs to be stored in a set. This
allows for faster happens-before comparisons among events from
different threads. Moreover, these events are updated by means
of the current_event() and the add_event() functions. The for-
mer returns a reference to the current event object, while the lat-
ter copies the current event into the specified set. Afterwards, the
happens_before() function may be used to check whether the
events in a set meet the necessary conditions by comparing the
stored clocks.

V. Lock-free queues use cases

In this section, we employ the SPSC concurrent queue as a lock-free
data structure to demonstrate the workings of the CSV framework.
We have focused on this structure as it is an illustrative example
commonly used on shared-memory architectures to implement 1-
to-1 communication channels [9].

V.1 Formal definition and semantics of the SPSC
queue

Consider a queue Q the tuple {bu f , pread, pwrite}, where bu f is the
internal buffer and pread and pwrite are internal atomic read and
write pointers to bu f , respectively. This queue provides the following
member functions:

init Initializes the buffer, allocating memory and setting the inter-
nal pointers to 0. If the buffer has already been allocated, init
only resets the pointers.

push Enqueues an item to the buffer.
pop Dequeues an item from the buffer.

Head pointer (pread)
Head pointer (pread) Tail pointer (pwrite)

Tail pointer (pwrite)

Figure 2: SPSC queue circular buffer.

Note that, depending on the internal implementation of a par-
ticular queue, the buffer can be represented in different ways. For
instance, in an SPSC bounded queue, a circular buffer may be used.
Figure 2 depicts the internal workings of the SPSC queue circular
buffer. Initially pread and pwrite point to the initial position of the
buffer. Afterwards, some elements have been added at the end of
the buffer through push calls while others have been removed from
the head by means of pop calls.

The correctness of parallel lock-free SPSC queues, such as the
Lamport [13] or FastForward implementations [9], is only ensured
if several usage requirements are met. Basically, we define these
requirements as the following semantic rules:

1. A lock-free concurrent SPSC queue instance can be shared
by multiple entities acting as initializers, producers, and con-
sumers.

2. A certain entity can perform any role, however, at any point in
time, there must only exist, at most, one producer and one con-
sumer performing operations on the same queue concurrently.

3. An initializer cannot operate over the queue concurrently with
any other entity.

In any other case, the semantics of the queue are violated, thus
leading to undefined behavior due to the occurrence of potential
data races.

To formalize the aforementioned semantics we define an event
as the invocation of a function at a certain point in time performed
by an entity. In our particular case, we distinguish among three
different event types: production (push), consumption (pop), and
initialization (init) and denote them as p, c and i, respectively. Also,
each time these events occur they are accordingly stored in the sets
Prod, Cons and Init.

With these definitions, it is possible to control the proper use of
the lock-free SPSC queue by checking three simple requirements de-
pending on the type of a new incoming event. These requirements,
defined in Req. (1), (2) and (3), are checked each time a new produc-
tion (p′), consumption (c′) or initialization (i′) event occurs, respec-
tively. Assuming that there has been at least an initialization event,
Req. (1) ensures that the new production event has a happens-before
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relation (→) with all past initialization events and is not concurrent
( 6≈) with all past production events. Similarly, Req. (2) performs the
same violation detection, but for incoming consumption events.

p′, ∀i ∈ Init, ∀p ∈ Prod : Init 6= ∅ ∧ i → p′ ∧ p 6≈ p′ (1)

c′, ∀i ∈ Init, ∀c ∈ Cons : Init 6= ∅ ∧ i → c′ ∧ c 6≈ c′ (2)

Additionally, Req. (3) ensures that all initialization events hap-
pened sequentially with any other event. That is, all past events
of Q are not concurrent with the new initialization event i′. If this
requirement is not met at some point, it might be that the queue has
not been properly initialized, and therefore it can lead to undefined
behavior.

i′, ∀e ∈ Init ∪ Prod ∪ Cons : e 6≈ i′ (3)

V.2 Practical use cases
In this section we leverage the SPSC and MPMC lock-free queues
from the Boost C++ library to illustrate how their member functions
are annotated with the proposed CSV contract interface according
to the semantic rules of these structures.

V.2.1 The SPSC lock-free queue

The first practical use case leverages the Boost C++ SPSC lock-
free queue (boost::lockfree::spsc_queue) [2]. Before annotating
member class functions, we first analyze the set of available func-
tions in the data structure to check whether the general semantics
proposed in the previous section can be used directly. According to
the documentation, we find the presence of non-thread-safe func-
tions (such as reset) which cannot be called concurrently to any
other function. To handle such non-thread-safe functions in the gen-
eral semantics, we add the set NTS which will contain events of
type n related to such non-thread-safe function calls. With this, we
can now classify the member functions of this particular implemen-
tation as follows:

Prod = {push, write_available}
Cons = {pop, read_available, front, consume_one, consume_all}

Init = {ctor}
NTS = {reset}

Next, we extend the general SPSC semantic rules to ensure that
a non-thread safe event is not concurrent with a new production,
consumption or initialization event. This is achieved by adding the
constraint ∀n ∈ NTS : n 6≈ e′ in the requirements Req. (1), (2),
and (3), being e′ a new production, consumption or initialization
event. For instance, the requirement Req. (1) will result as:

p′, ∀i ∈ Init, ∀p ∈ Prod, ∀n ∈ NTS :

Init 6= ∅ ∧ i → p′ ∧ p 6≈ p′ ∧ n 6≈ p′
(4)

To complete the semantic rules, it is also needed to ensure that
all non-thread-safe events are not concurrent with other previous
events. This constraint is defined with the requirement Req. (5):

n′, ∀e ∈ Init ∪ Prod ∪ Cons ∪ NTS : e 6≈ n′ (5)

Having the revised semantic rules for the Boost C++ SPSC queue
implementation, it is possible to annotate the member functions with
the CSV interface. Listing 3 shows SPSC queue class declaration with
the member functions accordingly annotated with the revised seman-
tic rules. Note that the class definition has been annotated with the
new attribute [[csv::checked]] which automatically disables TSan
instrumentation for member functions annotated with a CSV con-
tract as if the attribute __attribute__((no_sanitize("thread")))
was specified.

Listing 3: Boost C++ SPSC queue code with CSV annotations.

1 // In header: <boost/lockfree/spsc_queue.hpp>
2 #include "csv.h"
3
4 template<typename T, typename... Options>
5 class [[csv::checked]] spsc_queue {
6 private:
7 [[csv::event_sets(init_events, prod_events, cons_events,

nts_events)]];
8 public:
9 ...

10 spsc_queue(void)
11 [[expects axiom:
12 csv::set_union(init_events, prod_events, cons_events,

nts_events)
13 .happens_before(csv::current_event())]]
14 [[csv::add_current(init_events)]];
15
16 bool push(T const &)
17 [[expects axiom:
18 !init_events.empty() && init_events.happens_before(csv::

current_event())]]
19 [[expects axiom:
20 !prod_events.concurrent(csv::current_event())]]
21 [[csv::add_current(prod_events)]];
22
23 bool pop()
24 [[expects axiom:
25 !init_events.empty() && init_events.happens_before(csv::

current_event())]]
26 [[expects axiom:
27 !cons_events.concurrent(csv::current_event())]]
28 [[csv::add_current(cons_events)]];
29 ...
30 void reset(void)
31 [[expects axiom:
32 !csv::set_union(init_events, prod_events, cons_events,

nts_events)
33 .concurrent(csv::current_event())]]
34 [[csv::add_current(nts_events)]];
35 };

The queue also includes the [[csv::event_sets]] attribute,
which introduces a number of identifiers. For each identifier
introduced, we add a new data member to the class of type
event_set. In the case of this queue, we use four sets to keep
track of init, prod, cons and nts events. New events are added to
sets either using the attribute [[csv::add_current]] or calling the
csv::add_current() function as part of a contract, which adds the
current event to the event_set specified as argument.

As observed, the push function has been annotated with the con-
tracts expressing the semantic requirement Req. (4). Similarly, the
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pop, init and reset functions have also been annotated to express
the corresponding Req. (2), (3) and (5), respectively. Once compiled,
our modified Clang C++ compiler supporting contracts transforms
this function into the corresponding IR (see Listing 4). Additionally,
the above mentioned [[csv::add_current]] results in the insertion
of invocations to the corresponding add_event() member function
of the corresponding set, where the result of current_event() is
passed.

Listing 4: Boost C++ SPSC queue simplified LLVM IR code.

1 define void @boost::lockfree::spsc_queue::ctor(%this) {
2 %union = invoke @csv::set_union(%init_events, %prod_events, %

cons_events, %nts_events)
3 %current = invoke @csv::current_event()
4 %HB = invoke @csv::event_set::happens_before(%union, %current)
5 br i1 %HB, label %ok, label %fail
6 fail:
7 invoke @__csv_contract_violation()
8 ok:
9 invoke @csv::event_set::add_event(%init_events, %current)

10 ; ...
11 }
12 define void @boost::lockfree::spsc_queue::push(%this) {
13 %empty = invoke @csv::event_set::empty(%init_events)
14 br i1 %empty, label %fail, label %l0
15 l0:
16 %current = invoke @csv::current_event()
17 %HB = invoke @csv::event_set::happens_before(%init_events, %

current)
18 br i1 %HB, label %l1, label %fail
19 l1:
20 %concurr = invoke @csv::event_set::concurrent(%prod_events, %

current)
21 br i1 %concurr, label %fail, label %ok
22 fail:
23 invoke @__csv_contract_violation()
24 ok:
25 invoke @csv::event_set::add_event(%prod_events, %current)
26 ; ...
27 }
28 define void @boost::lockfree::spsc_queue::pop(%this) {
29 ; similar to ’boost::lockfree::spsc_queue::push()’, but using

cons_events
30 ; ...
31 }
32 define void @boost::lockfree::spsc_queue::reset(%this) {
33 %union = invoke @csv::set_union(%init_events, %prod_events, %

cons_events, %nts_events)
34 %current = invoke @csv::current_event()
35 %concurr = invoke @csv::event_set::concurrent(%union, %current

)
36 br i1 %concurr, label %fail, label %ok
37 fail:
38 invoke @__csv_contract_violation()
39 ok:
40 invoke @csv::event_set::add_event(%nts_events, %current)
41 ; ...
42 }

V.2.2 The MPMC lock-free queue

The second practical use case employs the Boost C++ MPMC lock-
free queue (boost::lockfree::queue) [2]. For the sake of limited
space, we depart from the general semantics of the MPMC queue

described in our previous work [6]. To adapt the MPMC queue se-
mantics to this specific use case, we define a single set for storing
events from thread-safe function calls, namely TS. According to the
definition of MPMC queue, this structure can be used indistinguish-
ably by multiple producers and consumers concurrently; thus, the
single set TS is enough to store such thread-safe events. Similar
to the SPSC queue, we also encounter member functions that are
non-thread-safe. To store these events, we declare the set NTS. Fi-
nally, we define the Init set for events related to the class constructor.
This set will allow to check whether the queue is properly initialized
before its use. With this, we can classify the MPMC queue member
functions as follows:

TS = {pop, reserve, consume_one, consume_all, push, bounded_push, empty}
NTS = {unsynchronized_pop, unsynchronized_push, reserve_unsafe}
Init = {ctor}

Next, we define the following semantic requirements that are
checked each time a new thread-safe, non-thread-safe or initializa-
tion event occurs. Req. (6) ensures that a new thread-safe event (s′)
is not executed concurrently with previous non-thread-safe event.
Similarly, Req. 7 checks whether a new non-thread-safe event (n′)
is not executed concurrently with any other events. Both Req. (6)
and (7) also guarantee that the queue is properly initialized before
its use.

s′, ∀i ∈ Init, ∀n ∈ NTS : Init 6= ∅ ∧ i → s′ ∧ n 6≈ s′ (6)

n′, ∀i ∈ Init, ∀e ∈ TS ∪ NTS : Init 6= ∅ ∧ i → n′ ∧ e 6≈ n′ (7)

Finally, Req. 8 checks whether initialization events are not executed
concurrently with any other previous operation performed over the
same queue.

i′, ∀e ∈ Init ∪ NTS ∪ TS : e 6≈ i′ (8)

Similar to the CSV annotations performed on the SPSC queue code
in Section V.2.1, the Boost C++ MPMC queue member functions
have been accordingly annotated following the requirements stated
in Req. (6), (7) and (8) for experimental evaluation. However, we do
not show the MPMC queue code as the contract annotations result
straightforward having defined the formal semantic rules.

VI. Evaluation

In this section, we perform an evaluation of the proposed semantic
violation detection framework using the previous lock-free SPSC
and MPMC queues as a use case. In the following, we describe in
detail the lock-free structure, software and target platform used for
the evaluation.

Lock-free structures. We leverage the SPSC queue, the Multiple-
Producer/Multiple-Consumer (MPMC) queue and the Stack
lock-free data structures from the Boost C++ library v1.54.0 [9].

Software. The compiler used is Clang v6.0.0 (part of the LLVM
project) together with the runtime libraries (compiler-rt) in its
Subversion revision 314968, which support the ThreadSanitizer
data race detector.
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Target platform. The evaluation has been carried out on a server
platform comprised of 2× Intel Xeon Ivy Bridge E5-2695 v2
with a total of 24 cores running at 2.40 GHz, 30 MB of L3 cache
and 128 GB of DDR3 RAM. The OS is a Ubuntu 14.04.2 LTS with
the Linux kernel 3.13.0-57.

The methodology used to evaluate the CSV framework consists in
analyzing the relative decrease in false positives/negatives using the
semantics handled by CSV with respect to the original TSan race
detection mechanisms. In the following two sections we perform
the analysis using a series of synthetic parallel benchmarks which
make use of the member functions of the aforementioned lock-free
structures.

VI.1 Analysis of representative benchmark execu-
tions

In this section, we analyse with three representative execution se-
quences of SPSC queues in order to gain insight into the violation
detection process during correct and invalid situations under two
different scenarios: i) lock-protected, in which both producers and
the consumer wrap the respective push and pop calls into a com-
mon lock for protecting queue accesses; and ii) producer-protected,
in which only the producer threads protect the corresponding push
calls within the same lock.

Table 1a illustrates a correct execution sequence using a lock-free
SPSC queue in the lock-free scenario. This table is organized as
follows: i) column Time represents the instant of time i in which
the events happen; ii) column Event detail the actions performed by
the different threads using the queue; iii) columns Init, Prod and
Cons stand for the set of past events related to methods invocations;
iv) columns Req. (1)–(3) show how the semantic requirements are
applied; and v) columns TSan and CSV indicate if these tools pro-
duced false positive (FP) or missed a potential error (FN). In this
example, 3 different threads alternate their roles during the queue
lifetime, however, at a given point in time, only a producer and a
consumer coexist. For instance, in t3, t4, t5 and t8 TSan reports data
race warnings when in fact the semantic rules are satisfied at any
time. Also, in t7 TSan emits a false positive, while the happens-before
relation between T1 and T3 in t6 prevents this warning from being
an actual race. On the contrary, using CSV, no data race warnings
are emitted, as the semantics of the queue are always met.

On the other hand, Table 1b shows another execution sequence
using a SPSC queue under the same scenario but in a wrong way:
Req. (1), (2), and (3) are violated. First, Req. (1) is not met in t0,
since T1 uses the queue before having initialized it. Next, Req. (1) is
also violated in t4, as T2 produces an element concurrently with the
previous production event. Besides, Req. (2) is violated in t6: T2 and
T3 are performing pop operations concurrently, leading to undefined
behavior. Req. (3) is as well not satisfied in t7, considering that the
initialization event i2, performed by T1, has not happened after the
previous production and consumption events, so the state of the
queue at this point is inconsistent and may differ among executions.
Specifically, TSan is not able to encounter potential errors in t0 and
t7 and reports wrong race warnings in t5 and t6, given the pair of
calls at these time points. In contrast, CSV correctly reports errors in
t0, t4, t6 and t7.

The last execution sequence in Table 1c is also a wrong use of the
SPSC queue under the lock-protected scenario, where all the calls

are made after a shared lock has been acquired. In this case, TSan
does not emit any warning as all accesses are serialized, i.e. at t1,
t3 and t5 the proposed semantics may be violated, since locks do
not guarantee any ordering and push/pop calls could be executed
before the first call to init. For the same reason, CSV may detect
errors in t1, t3 and t5

1.

VII. Conclusions

Data race detectors aid, to a great extent, to identify races in parallel
applications. However, few of them are aware of the semantics
of lock-free data structures and may emit false positive warnings
when these are used. Similarly, an application free of warning
race reports does not entail that its internal data structures have
been properly used. In this paper, we present CSV, a tool built
on top of TSan that enables the annotation and run time checking
of semantics of lock-free data structures using C++ contracts. To
implement this framework, we extended both Clang compiler and
TSan race detector tool in order to support a contract-based syntax
that allows checking of user-defined semantics at run time. Though
this framework has been implemented within the TSan detector, it
would be possible to port it to other data race detectors from the
state-of-the-art, such as CDSchecker [18] or RCMC [11].

Throughout the evaluation, we demonstrated the benefits of CSV
with respect to the stand-alone TSan detector. Basically, CSV pro-
vides two main features: i) to filter misleading data race reports
(false positives); and ii) to detect violations of the semantics of lock-
free data structures. Assuming that the implementation of the data
structure is correct, CSV replaces TSan low-level reports by mean-
ingful traces. Additionally, given the high-level syntax of CSV for
annotating semantics, other lock-free structures may benefit from
this framework, as long as a formalization of their semantics is feasi-
ble.

As future work, we aim at extending the syntax to support other
types of event relations and detection of other potential failures,
e.g. deadlocks, livelocks and lock starvation. An ultimate goal is to
evaluate the framework with concurrent applications making use
of high-level parallel programming frameworks, e.g., FastFlow or
Raftlib.

References

[1] Artho, C., Havelund, K., Biere, A.: High-level data races. Soft-
ware Testing, Verification and Reliability 13(4), 207–227 (2003)

[2] Blechmann, T.: Chapter 17. Boost.Lockfree. https://www.
boost.org/doc/libs/1_54_0/doc/html/lockfree.html
(2011)

[3] Borkar, S.: The exascale challenge. In: VLSI Design Automation
and Test (VLSI-DAT), 2010 International Symposium on, pp.
2–3 (2010). DOI 10.1109/VDAT.2010.5496640

[4] Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe
programming: Preventing data races and deadlocks. In: ACM
SIGPLAN Notices, vol. 37:11, pp. 211–230. ACM (2002)

[5] Choi, J., Dukhan, M., Liu, X., Vuduc, R.: Algorithmic Time,
Energy, and Power on Candidate HPC Compute Building

1It may fail detecting a violation (depending on the execution order).

8

https://www.boost.org/doc/libs/1_54_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_54_0/doc/html/lockfree.html


REFERENCES REFERENCES

Table 1: Representative execution sequences of SPSC queues with semantic violation detection.

(a) Correct use of a SPSC queue under the lock-free scenario.
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